Title: Electronic Structure, Chemical Bonding, and Electron Conductivity of Thin-Film Transition-Metal Silicides

Authors: K. H. Johnson and F. A. Leon

Performing Organization: Center for Materials Science and Engineering, M.I.T., Cambridge, Massachusetts 02139

Report Date: September 10, 1984

Abstract: The local electronic densities of states and chemical bonding of thin-film palladium and molybdenum silicides are compared on the basis of embedded cluster molecular-orbital calculations. Composite Pd(d)-Si(p)antibonding/Si(p)-Si(p)bonding character and composite Mo(d)-Si(p)nonbonding/Mo(d)-Si(d)bonding character at the respective Fermi energies are responsible for the different electrical conductivities of these silicide films and for the different Schottky barriers of the corresponding silicide/silicon systems.
ELECTRONIC STRUCTURE, CHEMICAL BONDING, AND ELECTRON CONDUCTIVITY OF THIN-FILM TRANSITION-METAL SILICIDES

by

K. H. Johnson and F. A. Leon

Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

September 10, 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for Public Release: Distribution Unlimited
ELECTRONIC STRUCTURE, CHEMICAL BONDING, AND ELECTRON CONDUCTIVITY OF THIN-FILM TRANSITION-METAL SILICIDES*

K. H. Johnson and F. A. Leon
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract
The local electronic densities of states and chemical bonding of thin-film palladium and molybdenum silicides are compared on the basis of embedded cluster molecular-orbital calculations. Composite Pd(d)-Si(p) antibonding/Si(p)-Si(p) bonding character and composite Mo(d)-Si(p) nonbonding/Mo(d)-Si(d) bonding character at the respective Fermi energies are responsible for the different electrical conductivities of these silicide films and for the different Schottky barriers of the corresponding silicide/silicon systems.

*Research sponsored by the Office of Naval Research.
Thin-film transition-metal silicides are being used to an increasing extent as interconnect and gate materials in very-large-scale-integrated (VLSI) circuits [1-3]. Experimental [4-6] and theoretical [7-9] studies, focussed primarily on the near-noble Pd, Ni, and Pt/silicon interfaces and silicides, have established the importance of chemical intermixing and bond formation in determining Schottky barrier height and electron transport across transition-metal silicide/silicon interfaces. Such issues are also expected to be of significance in refractory transition-metal (e.g. Mo, W, and Nb) silicide/silicon interfaces, which are of great current technological interest for high-speed VLSI computer circuits [10], but have not been the subjects of much fundamental experimental or theoretical investigation [11].

In this communication, we present quantitative theoretical models for the electronic structures and chemical bonding of thin-film palladium and molybdenum silicides. Because of the importance of local chemical bonding, the electronic structures have been calculated by a "real-space" molecular-orbital approach rather than a "reciprocal-" or "k-space" band-structure method. The approach used is the recently developed iterative partitioned scattered-wave method [12], which permits the computation of molecular orbitals and local densities of states for subclusters of an extended solid or interface, including the effects of "embedding" the subclusters in the extended environment. This method is combined with the Xalpha approximation to electron-electron exchange and correlation [13], which has traditionally been used with the scattered-wave method in its conventional form [14,15]. The standard Xalpha scattered-wave
molecular-orbital method has already been applied successfully to elucidate the local electronic structures of hydrogenated amorphous silicon [16] and crystalline silicon containing substitutional [17,18] and interstitial [19] transition-metal impurities.

In the iterative partitioning version of the scattered-wave technique [12], the secular equation for the molecular orbitals of large silicide aggregates, such as the Pd$_2$Si monolayer thin films shown in Fig. 1(a) and (b), consisting of the respective encircled SiPd$_3$ and Pd$_3$Si$_6$ subclusters and the surrounding extended silicide environment, can be written in the matrix form:

\[
\begin{bmatrix}
T_a^{-1} & G_{ab} \\
G_{ba} & T_b^{-1}
\end{bmatrix}
\begin{bmatrix}
A_a \\
A_b
\end{bmatrix} = 0
\]

(1)

Here T_a represents the electron-wave scattering matrix of the silicide subcluster and T_b represents the scattering matrix of the surrounding environment; G_{ab} and G_{ba} are matrices which represent the "propagation" of electron waves between the silicide subcluster and its environment; and A_a and A_b are the electron wavefunction amplitudes emanating from the silicide subcluster and environment, respectively. To make the solution of Eq. (1) practical, we first contract the matrix of (1) using a simple property of linear algebra [20]. This leads to the matrix equation:

\[
(T_a^{-1} - G_{ab} T_b G_{ba}) A_a = 0
\]

(2)
for the molecular orbitals of the silicide subcluster, including the effects of coupling to the silicide environment through the terms \(G_{ab} T_b G_{ba} \). Solving the contracted secular equation (2) is much more computationally efficient than solving the complete secular equation (1). The following iterative procedure is used to solve Eq. (2): First, an energy eigenvalue \(E_0 \) is found from the subcluster submatrix \(T^{-1}_a \), including only the molecular potential field of the surrounding silicide environment. Then the matrix elements of \(G_{ab} T_b G_{ba} \) are calculated using \(E_0 \) as the trial energy. Finally, determinants of the matrix

\[
[T_a(E)]^{-1} - G_{ab}(E_0) T_b(E_0) G_{ba}(E_0)
\]

are calculated at various values of the energy \(E \) until a zero is found. This value of \(E \) (call it \(E_1 \)) is assumed to be an approximate solution of (2). If \(E_1 \) differs considerably from \(E_0 \), the procedure is repeated from the second step using

\[
E = cE_0 + (1 - c)E_1 \quad (0 < c < 1)
\]

as the next energy. In the last step of this procedure, the matrix elements of \(G_{ab}, T_b, \) and \(G_{ba} \) are unchanged, so they must be calculated only once per iteration. Therefore, this procedure leads to a very substantial improvement in computational efficiency over the direct solution of Eq. (1).

The resulting local electronic densities of states for the encircled subclusters of the \(\text{Pd}_2\text{S}_1 \) monolayers of Fig. 1(a) and (b),
respectively, including the effects of "embedding" the subclusters in the surrounding silicide environment, are shown as the solid and dashed curves, respectively in Fig. 2(a) and (b). Consistent with recent band-structure studies of epitaxial Pd$_2$Si layers on a Si(111) surface [9], for each monolayer there is a large peak in the density of states between 1 and 3 eV below the Fermi energy E_F. The peak for layer (b) of Fig. 1 occurs at somewhat lower (more negative) energy, relative to the Fermi energy, and is somewhat broader than the peak for layer (a) of Fig. 1. This is due to the bonding interaction among the the Pd(d) orbitals (i.e. "d-band" formation) of the triangular Pd$_3$ clusters in layer (b). The calculated molecular orbitals corresponding to these peaks are Pd(d) nonbonding with respect to the Si(p) orbitals. The secondary peaks immediately below and above the nonbonding peaks correspond, respectively, to Pd(d)-Si(p) bonding and antibonding molecular orbitals. Indeed, the Fermi level coincides with Pd(d)-Si(p) antibonding states. Within layer (a) of Fig 1, these antibonding states are represented by the SiPd$_3$ subcluster molecular-orbital wavefunction contour map shown in Fig. 3(a). Within layer (b) of Fig. 1, these Pd(d)-Si(p) antibonding states are actually bonding between the Si(p) orbitals; as revealed by the molecular-orbital contour map shown in Fig 3(b). In other words, for a thin Pd$_2$Si film consisting of composite layers (a) and (b) of the type shown in Fig. 1, the Fermi level is "pinned" by electronic states of composite Pd(d)-Si(p) antibonding/Si(p)-Si(p) bonding character. These states lie near the top of the Si(p)-Si(p) bonding valence band of silicon and are responsible for the relatively large Schottky barrier...
observed for the Pd₂Si/Si system [11]. As will be demonstrated below, this composite Pd(d)-Si(p) antibonding/Si(p)-Si(p) bonding character at the Fermi energy also largely determines the electrical conductivity of a Pd₂Si thin film.

The calculated local density of states for an SiMo₃ subcluster of an MoSi₂ monolayer is shown in Fig. 4. In contrast to the above results for Pd₂Si, the Fermi energy coincides with a high density of Mo(d) states which are nonbonding with respect to the Si(p) orbitals. These states lie well above the Si(p)-Si(p) bonding states that correspond to the top of the valence band of silicon. They are responsible for pinning the Fermi level and for the smaller Schottky barrier of the MoSi₂/Si system relative to that of the Pd₂Si/Si system [11]. A close examination of the molecular-orbital topology of these states, as exemplified by the wavefunction contour maps in Fig. 5, reveals that the Mo(d) orbitals, while nonbonding with respect to the Si(p) valence orbitals, are actually weakly bonding with respect to the virtual Si(d) orbitals. Although one usually ignores Si(d) orbitals as being relevant to solid-state electronic structure-properties relations, in this situation these orbitals act as a "pathway" for promoting overlap and metallic bonding among the d orbitals of the Mo atoms which are only second-nearest neighbors in the silicide monolayer. It is also evident from these results (see below) that spatially delocalized Mo(d)-Si(d) bonding of the type shown in Fig. 5 is largely responsible for the electrical conductivity of an MoSi₂ thin film.

The computed molecular orbitals can be used as a basis for calculating the electrical conductivities of these thin-film
silicides via Kubo theory [21]. Kubo’s formula for the conductivity can be reduced approximately (for “room temperature”) to the form [22]

$$\sigma = 2\pi^2 n e^2 d^2 / h$$ \hspace{1cm} (5)

where d is the molecular-orbital bond distance at the Fermi energy and n is the bond electron density at the Fermi energy. The Si(p)-Si(p) bond distance in Fig. 3(b) is 3.8Å, whereas the Mo(d)-Si(d) bond length in Fig. 5 is 2.6 Å. The corresponding values of n, obtained from the computed molecular-orbital components, are 3×10^{22} and 2×10^{22} cm$^{-3}$, respectively. Substitution of these values of d and n in Eq. (5) yields conductivities of 3.3×10^5 and 1.0×10^4 (ohm-cm)$^{-1}$ for the Pd$_2$Si and MoSi$_2$ layers, respectively, which correspond to resistivities of 30×10^6 and 97×10^6 ohm-cm. These values are in good agreement with experiment [1]. Thus the difference in the chemical bonding at the Fermi energies of Pd$_2$Si and MoSi$_2$ thin films accounts for their respective electrical conductivities.

In conclusion, it has been shown that the detailed composite molecular-orbital topology of the electronic states around the Fermi energy is key to understanding the specific electrical properties of thin-film transition-metal silicides. Such knowledge may possibly be put to use in the development and refinement of silicide/silicon VLSI microstructures.
References

22. K. H. Johnson, to be published.
Figure Captions

Fig. 1. Monolayer structures of Pd₂SI. Solid circles represent Pd atoms; open circles represent SI atoms. The principal subclusters defined in the partitioned scattered-wave molecular-orbital calculations are encircled (dashed circles).

Fig. 2. Subcluster local electronic densities of states for Pd₂SI monolayers (a) (solid profile) and (b) (dashed profile) of Fig. 1, as computed by the partitioned scattered-wave method. The principal chemical bonding, nonbonding, and antibonding characters of the component molecular orbitals are indicated.

Fig. 3. (a) Contour map of the Pd(d)-Si(p) antibonding molecular-orbital wavefunction at the Fermi energy for the SiPd₃ subcluster of Fig. 1(a) monolayer; (b) contour map of the composite Pd(d)-Si(p)antibonding/Si(p)-Si(p) bonding molecular-orbital wavefunction at the Fermi energy for the Pd₃Si₆ subcluster of Fig. 1(b) monolayer. The solid and dashed contours represent positive and negative values of the wavefunction, respectively.

Fig. 4. Subcluster local electronic density of states for an MoSi₂ monolayer, as computed by the partitioned scattered-wave method. The principal bonding, nonbonding, and antibonding characters of the component molecular orbitals are indicated.

Fig. 5. Contour maps of the SiMo₃ subcluster Mo(d)-Sl(d) bonding molecular-orbital wavefunction at the Fermi energy of an MoSi₂ monolayer, plotted in (a) the monolayer plane and in (b) a plane perpendicular to the monolayer and containing two Mo atoms. Solid and dashed contours represent positive and negative values of the wavefunction, respectively.
Fig. 1
Fig. 2