FINAL REPORT ON PROJECT NR 150-464
IMPROVED ESTIMATION PROCEDURES
FOR ITEM RESPONSE FUNCTIONS

by
Robert K. Tsutakawa

Research Report-84-2
OCTOBER 1984

Department of Statistics
University of Missouri
Columbia, MO 65211

Prepared under contract No. N00014-81-K0265, NR 150-464
with the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government
This report summarizes the main findings of a research conducted under ONR contract N00014-81-K-0265, NR-150-464, during the period May 16, 1981 - September 30, 1984. The research focused on the estimation of parametric item response curves under the assumption that univariate ability parameters are sampled from some parametric population distribution. Both maximum likelihood and Bayesian approaches have been studied and compared to the more conventional approaches where abilities are treated as fixed parameters.
Final Report on
Project NR 150-464

Improved Estimation Procedures
for Item Response Functions

by

Robert K. Tsutakawa

Research Report 84-2

October 1984

Department of Statistics
University of Missouri
Columbia, MO 65211
Introduction

The overall objective of the research is to develop new statistical procedures for estimating item response curves used in mental testing. A typical test, which is studied here, consists of K test items administered to n examinees. The data consists of a matrix of binary scores indicating which items are scored correctly and which incorrectly by each of the examinees.

The analysis of such data is based on an assumed model which specifies the probability of correct response to each item as a function of the ability of the examinee. Such probability models can be indexed by item parameters. The main result of this research is the development of new methods for estimating these item parameters for the purpose of measuring abilities based on such estimates.

When abilities are defined in terms of real variables and treated as fixed effects, both theoretical and practical analysis of item responses are greatly hampered by the large number of parameters, which increases as the number of examinees, n, increases. The standard method for simultaneously estimating item and ability parameters is maximum likelihood, using standard programs such as LOGIST described in Wingersky, Barton, and Lord (1982). Some of the problems encountered by this approach are the occasional non-existence of a true maximum likelihood solution and the lack of a reasonable measure of the reliability of the estimated parameters.
The approach taken by the current research assumes that ability parameters are sampled from some population distribution, which itself may be indexed by parameters. The true likelihood function then becomes the integral of the conventional likelihood function with respect to the ability distribution. The resulting likelihood function is then a function of the item parameters and the "hyperparameters" of the unknown ability distribution. Though the resulting expression for the likelihood function is not simple, it contains substantially fewer parameters than the conventional maximum likelihood equations. A general approach to finding the maximum likelihood estimate using the new likelihood function is the EM algorithm, discussed in its general form by Dempster, Laird, and Rubin (1977). However, the implementation of the EM algorithm requires heavy computation involving numerical integration. Earlier versions of the EM algorithm are given for the one-parameter logit model by Sanathanan and Blumenthal (1978) and for the two-parameter probit model by Bock and Aitkin (1981). Part of the current work is an extension and refinement of these earlier applications.

The main work also includes an extension to fuller Bayesian methods by introducing prior distributions on the item parameters. The EM algorithm can be modified for computing posterior modes. The reciprocal of the negative second derivative of the log posterior evaluated at the mode is then used to approximate the posterior covariance matrix of item parameters. The Bayesian approach gives us a means of posterior analysis and opens up new tools for practical problems such as item selection and adaptive testing.
A brief account of the specific accomplishments of this research are summarized below. Fuller write-ups of the technical details are given in the technical reports and other papers listed at the end of this report.

A. Maximum likelihood (m.l.) estimation of item parameters.

1. General setup.

When the ability parameters are assumed to be a random sample from a distribution with parameter \(\gamma \), the formal likelihood function \(L(\xi, \gamma) \) becomes a function of the item parameters \(\xi \) and ability distribution parameter \(\gamma \). Under the assumption of local independence, the EM algorithm has been demonstrated as being a powerful tool for deriving the m.l. estimate, \((\hat{\xi}, \hat{\gamma})\). The computation reduces to working with a series of simpler problems involving one item at a time. For the one parameter logistic with a \(N(0, \sigma^2) \) ability distribution, the results are very similar to those obtained by Anderson (1970) using the conditional maximum likelihood approach. Simulation results have shown that estimates usually exist when they do not under the conventional m.l. approach which treats the ability parameter as fixed. Simulations have also suggested that there can be a savings in sample size of 10 - 15% when calibrating items under the one parameter logistic model, relative to the conventional methods. Similar results have been found for ability parameters estimated as posterior means, given \((\xi, \gamma) = (\hat{\xi}, \hat{\gamma})\). Details have been published in Rigdon and Tsutakawa (1983).
2. Convergence of the EM algorithm in item response analysis.

Certain questions concerning the convergence of the EM algorithm have been raised in the recent literature. Convergence is guaranteed for the 1-parameter logistic due to convexity properties of the likelihood function. For the two-parameter logistic it can be demonstrated that the EM solution is the solution to the likelihood equation, so that if there is a unique solution it will coincide with the EM solution. Details are presented in Research Report 82-1.

Computational details required in the EM algorithm for the 2-parameter logistic model have been derived and illustrated. The nonuniqueness of the parameterization in the 2-parameter model can be eliminated by placing restrictions on the ability prior. In particular, for normal priors on ability, uniqueness is obtained by using the N(0,1) distribution. The asymptotic covariance matrix of the item parameters can be computed using the empirical information matrix. Numerical results based on simulations have indicated the reasonableness of this approach for assessing the posterior uncertainty of the m.l. estimates. Details are presented in Research Report 83-1.
B. Empirical Bayes estimation of item parameters.

In certain situations the item parameters, in addition to the ability parameters, may be treated as a random sample from some prior distribution indexed by an unknown hyperparameter. This situation arises when the item parameters are exchangeable, and the prior information on each item is the same from item to item. Certain ad hoc procedures have been developed for the 1-parameter logistic model. The basic procedure consists of alternately re-estimating the item and ability parameters, which are assumed to be sampled from separate normal distributions with unknown parameters, until convergence is attained. Results were very similar to those derived under A.1. Due to heavy computational requirements, extensions to multiparameter models were not successful. This part of the work is summarized in Rigdon and Tsutakawa (1984).

C. Bayesian estimation of item response curves.

The third and final estimation procedure developed in this project is a fully Bayesian method based on a new family of prior distributions for the item parameter. This family of priors differs from the one proposed by Swaminathan and Gifford (1981), which assumes that item parameters have a common prior whose hyperparameter has a known distribution. The current approach assumes a prior distribution on the probability of correct responses at specified ability levels, for each item separately. This prior then induces a prior on the item parameters. In applications this approach seems simpler than working through the hyperparameters.
The estimation of item parameters is made by using the posterior mode which can be computed via the EM algorithm. The measure of uncertainty is then taken to be the posterior covariance, which can be approximated by the reciprocal of the negative second-derivative matrix of the log posterior. Numerical illustrations for the 2-parameter logistic model have shown that the posterior modes are very similar to the m.l. estimator described under A.2 and these obtained via LOGIST. This illustration was based on a 39 item math test using a sample of 400 subjects. Details are presented in Research Report 84-1.

D. Some unfinished work.
1. Comparison of item response curves.

Two curves can be compared in terms of their logits at different ability levels. In the case of the 2-parameter logistic model, the logits are straight lines. The posterior probability that two such lines are within a given distance over some fixed interval of ability is presented as a measure of the closeness of two lines. This approach differs from the more conventional approach where comparisons are made in terms of the item parameters. Numerical work based on simulated data and actual test data have been completed. Results remain to be written up.
2. Goodness-of-fit study.

A cross validation study was started to examine the predictability of item responses in one data set given observations on a separate but related data set. The test statistics being examined turned out to have power against certain alternative, but not against other alternatives which might be equally important. This phase of the research was discontinued pending a better test statistic.

E. Summary

This research has demonstrated that estimation of item curves with ability parameters treated as a random sample is a promising important approach to item response analysis. Although such modelling has been considered in the past, practical solutions have only recently become a reality with the advent of modern computer technology and the EM algorithm.

This research has focused on the theoretical formulation and solution of maximum likelihood and Bayesian estimations of item parameters. Algorithms have been developed and numerically illustrated for the one and two parameter logistic models. The results are generally comparable to the conventional methods which treat ability parameters as fixed. The current methods have the advantage however of generally producing estimates when they do not exist under older methods. The Bayesian approach yields an approximation to the posterior covariance matrix, which can be used to make probabilistic statements about the uncertainty of the estimated parameters.
Before widespread applications of these results can be realized, it is important that user oriented computer packages be prepared. Such packages should not only handle the case of \(n \) subjects and \(K \) items, but must be able to deal with missing data and other designs where different subjects may be given different items, as in the case of adaptive testing. For such packages, it would be desirable to include the 3-parameter logistic model, since guessing is an avoidable problem with tests using the multiple choice format which is quite commonly used today.

References

Technical Reports and Publications
Prepared under Contract No.
N00014-81-K0265, NR150-464

Dr. Robert G. Saith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

Dr. Alfred F. Swade
Senior Scientist
Code 7B
Naval Training Equipment Center
Orlando, FL 32813

Dr. Richard Snow
Liaison Scientist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

Dr. Richard Sorensen
Naval Personnel R&D Center
San Diego, CA 92152

Dr. Frederick Steinheiser
CMO - OP115
Navy Annex
Arlington, VA 20370

Mr. Brad Symson
Naval Personnel R&D Center
San Diego, CA 92152

Dr. Frank Vizcino
Naval Personnel R&D Center
San Diego, CA 92152

Dr. Ronald Weitzman
Naval Postgraduate School
Department of Administrative Sciences
Monterey, CA 93940

Dr. Douglas Wetzel
Code 12
Naval Personnel R&D Center
San Diego, CA 92152

Mr. John H. Wolfe
Naval Personnel R&D Center
San Diego, CA 92152
Missuri/Tsutakawa

Marine Corps

1. Jerry Lehnus
 CAT Project Office
 HQ Marine Corps
 Washington, DC 20380

1. Headquarters, U. S. Marine Corps
 Code M1-16
 Washington, DC 20380

1. Special Assistant for Marine Corps Matters
 Code IAM
 Office of Naval Research
 300 N. Quincy St.
 Arlington, VA 22217

1. Major Frank Johannan, USMC
 Headquarters, Marine Corps
 Code MPI-26
 Washington, DC 20380

Army

1. Dr. Kent Eaton
 Army Research Institute
 5001 Eisenhower Blvd.
 Alexandria, VA 22335

1. Dr. Glassan Martin
 Army Research Institute
 5001 Eisenhower Blvd.
 Alexandria, VA 22335

1. Dr. William E. Nordbrock
 FMC-ABDO Box 25
 AFO, NY 09710

1. Dr. Harold F. O'Neill, Jr.
 Director, Training Research Lab
 Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22335

1. Comander, U.S. Army Research Institute for the Behavioral & Social Sciences
 ATTN: PERI-BR (Dr. Judith Orasanu)
 5001 Eisenhower Avenue
 Alexandria, VA 22335

1. Robert Ross
 U.S. Army Research Institute for the Social and Behavioral Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22335

1. Dr. Robert Sasaor
 U. S. Army Research Institute for the Behavioral and Social Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22335

1. Dr. Joyce Shields
 Army Research Institute for the Behavioral and Social Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22335

1. Dr. Hilda Wing
 Army Research Institute
 5001 Eisenhower Ave.
 Alexandria, VA 22335
Air Force

1 Dr. Earl A. Allusi
AFRL/AFSC
Brooks AFB, TX 78235

1 Mr. Raymond E. Christal
AFRL/MCE
Brooks AFB, TX 78235

1 Dr. Alfred R. Fregly
AFOSR/ML
Rolling AFB, DC 20332

1 Dr. Patrick Kyllonen
AFRL/MCE
Brooks AFB, TX 78235

1 Dr. Randolph Park
AFRL/MDAN
Brooks AFB, TX 78235

1 Dr. Roger Pennell
Air Force Human Resources Laboratory
Lowry AFB, CO 80230

1 Dr. Malcolm Ree
AFRL/MOE
Brooks AFB, TX 78235

1 Major John Welsh
AFRL/MDAN
Brooks AFB, TX 78235

Department of Defense

12 Defense Technical Information Center
Cameron Station, Bag 5
Alexandria, VA 22314
Attn: TC

1 Dr. Clarence McCormick
HQ, MEPCOM
MEPCOM-P
2500 Green Bay Road
North Chicago, IL 60064

1 Military Assistant for Training and Personnel Technology, Office of the Under Secretary of Defense for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 Dr. W. Steve Sellman
Office of the Assistant Secretary of Defense (IMMA & LT)
28269 The Pentagon
Washington, DC 20301

1 Dr. Robert A. Wisner
DUSDARE (ELS)
The Pentagon, Room 3D129
Washington, DC 20301
Civilian Agencies

1 Dr. Patricia A. Butler
NIE-ERM Eldg, Stop #7
1200 19th St., NW
Washington, DC 20208

1 Dr. Vern M. Urry
Personnel R&D Center
Office of Personnel Management
1900 E Street NW
Washington, DC 20415

1 Dr. Thomas A. Warn
U. S. Coast Guard Institute
F. O. Substation 1B
Oklahoma City, OK 73169

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Private Sector

1 Dr. Erling B. Andersen
Department of Statistics
Studiestraede 5
1455 Copenhagen
DENMARK

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08540

1 Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
Israel

1 Dr. Werner Birke
Personalaamt der Bundeswehr
9-5000 Kiel 90
WEST GERMANY

1 Dr. R. Darrell Bock
Department of Education
University of Chicago
Chicago, IL 60637

1 Mr. Arnold Bohrer
Section of Psychological Research
Caserne Petits Chateau
CRS
1000 Brussels
Belgium

1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 148
Iowa City, IA 52240

1 Dr. Glenn Bryan
5208 Pce Road
Bethesda, MD 20817

1 Dr. Ernest R. Cadotte
307 Stokelv
University of Tennessee
Knoxville, TN 37916

1 Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514
Private Sector

I Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90087

I Dr. Hans Crombag
Education Research Center
University of Leyden
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

I Lee Cronbach
16 Laburnum Road
Atherton, CA 94020

I CTB/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

I Mr. Timothy Davey
University of Illinois
Department of Educational Psychology
Urbana, IL 61801

I Dr. Bhattoradad Divgi
Syracuse University
Department of Psychology
Syracuse, NE 33210

I Dr. Emmanuel Donchin
Department of Psychology
University of Illinois
Champaign, IL 61820

I Dr. Hsi-Ki Dong
Ball Foundation
Room 314, Building B
800 Roosevelt Road
Glen Ellyn, IL 60137

I Dr. Fritz Drasgow
Department of Psychology
University of Illinois
605 E. Daniel St.
Champaign, IL 61820

I Dr. Stephen Dunbar
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Private Sector

I Dr. John M. Eddins
University of Illinois
232 Engineering Research Laboratory
103 South Mathews Street
Urbana, IL 61801

I Dr. Susan Embertson
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
Lawrence, KS 66045

I ERIC Facility-Acquisitions
4835 Rugby Avenue
Bethesda, MD 20014

I Dr. Benjamin A. Fairbank, Jr.
Performance Metrics, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78218

I Dr. Leonard Feist
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

I Univ. Prof. Dr. Gerhard Fischer
Liebigasse 5/3
A 1010 Vienna
AUSTRIA

I Professor Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

I Dr. Deuter Fletcher
University of Oregon
Department of Computer Science
Eugene, OR 97403

I Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

I Dr. Janice Bifford
University of Massachusetts
School of Education
Amherst, MA 01002
Private Sector

1 Dr. Robert Blaser
Learning Research & Development Center
University of Pittsburgh
3739 O'Hara Street
PITTSBURGH, PA 15260

1 Dr. Marvin D. Glock
217 Stone Hall
Cornell University
Ithaca, NY 14855

1 Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 24th Street
Baltimore, MD 21218

1 DR. JAMES G. GREENO
LRC
UNIVERSITY OF PITTSBURGH
3739 O'HARA STREET
PITTSBURGH, PA 15213

1 Dipl. Fac. Michael W. Habon
Universitat Busseldorf
Erziehungswissenschaftliches Inst. II
Universitastr. 1
D-4000 Dusseldorf 1
WEST GERMANY

1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Prof. Lutz F. Horstk
Universitat Busseldorf
Erziehungswissenschatliches Inst. II
Universitastr. 1
Dusseldorf 1
WEST GERMANY

1 Dr. Paul Horst
677 S Street, #184
Chula Vista, CA 92010

1 Dr. Lloyd Huynh
Department of Psychology
University of Illinois
805 East Daniel Street
Champaign, IL 61820

Private Sector

1 Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

1 Dr. Jack Hunter
2122 Coilidge St.
Lansing, MI 48906

1 Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29708

1 Dr. Douglas H. Jones
Advanced Statistical Technologies Corporation
10 Trafalgar Court
Lawrenceville, NJ 08648

1 Professor John A. Keats
Department of Psychology
The University of Newcastle
N.S.W. 2308
AUSTRALIA

1 Dr. William Koch
University of Texas-Austin
Measurement and Evaluation Center
Austin, TX 78703

1 Dr. Thomas Leonard
University of Wisconsin
Department of Statistics
1210 West Dayton Street
Madison, WI 53705

1 Dr. Alan Lasepold
Learning R&D Center
University of Pittsburgh
3739 O'Hara Street
Pittsburgh, PA 15260

1 Dr. Michael Levine
Department of Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61820
Private Sector

1. Dr. Charles Lewis
 Faculteit Sociale Wetenschappen
 Rijksuniversiteit Groningen
 Dude Boteringestraat 23
 9712SC Groningen
 Netherlands

1. Dr. Robert Linn
 College of Education
 University of Illinois
 Urbana, IL 61801

1. Dr. Robert Lockean
 Center for Naval Analysis
 200 North Beauregard St.
 Alexandria, VA 22311

1. Dr. Frederic W. Lord
 Educational Testing Service
 Princeton, NJ 08541

1. Dr. James Lumsden
 Department of Psychology
 University of Western Australia
 Nedlands W.A. 6009
 AUSTRALIA

1. Dr. Gary Marco
 Stop 41-E
 Educational Testing Service
 Princeton, NJ 08541

1. Mr. Robert McIntire
 American College Testing Programs
 P.O. Box 168
 Iowa City, IA 52243

1. Dr. Barbara Means
 Human Resources Research Organization
 200 North Washington
 Alexandria, VA 22314

1. Dr. Robert Mislevy
 711 Illinois Street
 Geneva, IL 60134

1. Dr. W. Alan Nicewander
 University of Oklahoma
 Department of Psychology
 Oklahoma City, OK 73109

Private Sector

1. Dr. Melvin R. Novick
 LS6 Lindquist Center for Measurement
 University of Iowa
 Iowa City, IA 52242

1. Dr. James Olson
 WICAT, Inc.
 1873 South State Street
 Orem, UT 84057

1. Wayne M. Patience
 American Council on Education
 SED Testing Service, Suite 20
 One Dupont Circle, NW
 Washington, DC 20036

1. Dr. James Paulson
 Dept. of Psychology
 Portland State University
 P.O. Box 751
 Portland, OR 97207

1. Dr. Mark D. Reckase
 ACT
 P. O. Box 168
 Iowa City, IA 52243

1. Dr. Lawrence Rudner
 401 Ela Avenue
 Takoma Park, MD 20012

1. Dr. J. Ryan
 Department of Education
 University of South Carolina
 Columbia, SC 29208

1. PROF. FUMIKO SAMEJIMA
 DEPT. OF PSYCHOLOGY
 UNIVERSITY OF TENNESSEE
 KNOXVILLE, TN 37916

1. Frank L. Schmidt
 Department of Psychology
 3ldg. GS
 George Washington University
 Washington, DC 20052

1. Lowell Schuer
 Psychological & Quantitative Foundations
 College of Education
 University of Iowa
 Iowa City, IA 52242
Private Sector

1 Dr. Kazuo Shigematsu
7-9-24 Kugamusa-Kaigan
Fujisawa 251
JAPAN

1 Dr. William Sims
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

1 Dr. H. Wallace Saraiko
Program Director
Manpower Research and Advisor Services
Smithsonian Institution
901 North Pitt Street
Alexandria, VA 22314

1 Martha Stocking
Educational Testing Service
Princeton, NJ 08541

1 Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

1 Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

1 Dr. Haritharan Seshanathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Kiyoshi Tatsuoka
Computer Based Education Research Lab
252 Engineering Research Laboratory
Urbana, IL 61801

1 Dr. Maurice Tatsuoka
129 Education Bldg
1110 S. Sixth St.
Champaign, IL 61820

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Private Sector

1 Mr. Gary Thomasson
University of Illinois
Department of Educational Psychology
Champaign, IL 61820

1 Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201

1 Dr. Ledyard Tucker
University of Illinois
Department of Psychology
115 E. Daniel Street
Champaign, IL 61820

1 Dr. J. F. R. Updike
Union Carbide Corporation
Nuclear Division
P. O. Box Y
Oak Ridge, TN 37830

1 Dr. David Vaise
Assessment Systems Corporation
2222 University Avenue
Suite C10
St. Paul, MN 55114

1 Dr. Howard Weiner
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08540

1 Dr. Ming-Mei Yang
Institute Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Dr. Brian Waters
HuPRD
200 North Washington
Alexandria, VA 22314

1 Dr. David J. Weiss
Hood Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 Dr. Rand K. Milco
University of Southern California
Department of Psychology
Los Angeles, CA 90007
Private Sector

1 German Military Representative
ATTN: Wolfgang Wildgrube
Streittraefteam
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016

1 Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

1 Ms. Marilyn Wingersky
Educational Testing Service
Princeton, NJ 08541

1 Dr. George Wong
Biosciences Laboratory
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021

1 Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940