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: RECENT RESULTS ON CHARACTERIZATION OF PROBABILITY
DISTRIBUTIONS: A UNIFIED APPROACH THROUGH EXTENSIONS
OF DENY'S THEOREM

\ ABSTRACT
N
The problem of identifying solutions of general convolution equations

relative to a group has been studied in two classical papers by Choquet and
Deny (1960) and Deny (1961). Recently, Lau and Rao (1982) have oconsidered the

analogous problem relative to a certain semigroup of the real line, which
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C..¢1977). The extended versions of Deny's thecrem contained in the papers by
Lau and Rao, and Shanbhag (which’\'f; r:rop to as LRS theorems) yleld as specaial
cases improved versions of several characterizations of exponentiai, Weibull,
stable, Pareto, geometric, Poissuon and negative binomial distributions
obtained by various authors during the last few years. In \thia paper NQ
review‘g,Aaqna of the recent contributicns to characterization of probability
distributions (whose authors do not seem to be aware of LRS thecrems or
special cases exiating earlier) and show how dimproved mveniona of these

results follow as immediate ocorollaries to LRS theorems. ﬁe alaso give«;\a short

proof of Lau~Rao theorem based on Deny's theorem and thus establish a direct

link between the resultsof Deny (1961) and those of Lau and Rao’ (1982)\. A

variant of Lau-Rao theorem is proved and applied to some characterization .
problems. O :
: Kev MWords: Characterizationg, Deny's theorem, Exchangeable random .
: variables, Exponential, geometric, Pureto and stable
' distributions, Integrated Cauchy functional equations, 2 C

Lau-Rao theorem, Shanbhag's lamma.




1. INTRODUCTION

Let S be such that it equals either R (=(-»,«)) or R_ (=[0,=)), o be a
measure on (the Borel o-field of) S such that ({0}°) >0, and H : S — R, be

a non-negative continuous funotion which satisfies the functional equation

(1.1) H(x) ijsﬂ(x + Yoldy), ¥x¢e 8,

From a general theorem of Deny (1961), it follows that if S = R, then either

H(x) = 0 or

(1.2) H(x) = Eq(x)exp(~ nyx) + Ex(x)exp(~ nyx), x ¢ 8

with urt such that

f emux
Jse "4 oldx) =1, 1 =1, 2

and Ei as non-negative periodic functions such that

Ei(x +y) = Ei(x), ¥ xe8S and y € supp 0,

for i = . (Observe that if S = R and H = 0, then the measure ¢ involved in
(1.1), has to be a Radon measure). As a oorollary of Deny's general theorem,
Wwe have Choquet and Deny (1960) theorem which has important applications in
renswal theory (Feller, 1966 Vol. 2, p. 351).

Recently, Lau and Rao (1982) solved the equation (1.1) when S = R_which
subsumes partial results given by Marsaglia and Tubilla (1975}, Klebancy
(1977), Shanbhag (1977), Shimuzu (1978) and Ramachandran (1979). A simpler
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proof of Lau-Rac thecrem appears in Ramachandran (1982). More recently,

I Alzaid, Rao and Shanbhag (1983) used an argument based on de Finneti's theorem
concerning exchangeable random variables to derive the same result. Daviesand

Shanbhag (1984) have given a martingale proof for an extended version of

. Deny's result which generalizos Lau-Rac theorem. Extensions of Deny's general
| theorem tco the case of a semigroup have also been given via other approaches
by Richards (1981) and Ressel (1984) among others, However, both Richards and

m Ressel were able to deal with the problem only under some stringent conditionas
which imply that the semigroup generated by the support of the measure in the

functional wequation equals the semigroup itself; additionally Richards

1 PICRE - o

requires the function to be bounded and Ressel requires the semigroup to be

’ countable,
Various applications of Lau and Rao (1982) thecrem and Shanbhag's (1977)
a lemma, which we refer to as LRS (Lau~Rao-Shanbhag) thecrems have been

considered by Lau and Rao (1982), M. B. Rao and Shanbhag (1982), Rao (1983),
Alzaid (1983) and Davies and Shanbhag (1984) with special reference to damage
models, order astatiastics, record values, lack of memory, reliability and
renewal theories. The main purpose of this paper is to indicate further
applications of LRS theorems by reviewing some of the recent contributions to
characterizations of probability diatributiona, e.g., Dallas (1981), Deheuvels
{1984), Qupta (1984) and Grosswald, Kotz and Johnson (1980), whose authors do

nct seem to be aware of LRS theorems or the special cases existing earlier.

We show that LRS theorems not only provide a unified approach to a wide -

variety of characterizations of distributions such as Polason, Pareto, '.:.'_::f
AT
Bl
Welbull, stable, gecmetric and nogative binomial, but their application leads '.-74'.:‘2

in many oases to improved versions of the results already available in the

................




literature. In this paper we also give a simple proof of Lau-Rao theorem via
Deny's theorem and thus obtain & direct 1link between the two theorems. In

addition, we investigate the problem of solving the integral equation

(1.3) o+ BfH(x) = JR f(x + y)u(dy) a,e.[L] ¥ x ¢ R
'+

where o and £ are constants and indicate its applications to characterization

preblems,
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5 .
2. LAU-RAO THEOREM -
o
Lau-Rao theorem. Let H be a non-negative reasl locally integrable
measurable function on R, which is not a funotion iduntiec~ily eyual to zero S
a.e. (L], (L indicating Lebesgue measure), satisfying .uo functional equation A
N
(2.1) H(x) = «(R H(x + y)o(dy) a.e.[L] for x € R, ,
¥ S
where 0 is a O-finite measure on R_ such that o({0}) < 1. Then one of the
two possibilities hold.
g (a) o in (2.1) is arithmetic with some span X and [
H(x + nY = H(x)b%, n=0, 1,..., a.e.[L] for x ¢ R,
with b such that L
© samh
T bR ({nA) = 1, 2
g n=0 .
(b) o in (2.1) is non-arithmetic and ..,.]

H(x) = exp {-nx} a.e.[L] for x € R_
with n such that R

. J exp{= nxlo(dx) = 1.
N R,

) Lau and Rao (1982) gave a self-contained real variable proof of the above '
theorem. We now present an alternative proof based on Deny's (1961) theorenm, T

which provides an important 1link and at the same time brings out the main

difference between the two theoreums.




Proof There is no loss of generality in assuming that o(R,) > 1. ee '_'-- g

Consider some d > 0, and defime

N d
(2.2) H(x) = IO H(x + y)dy, x ¢ R_.

Cl early H 1s continuous and in view of Fubini's theorem satiafies (2.1) with
the atatement 'a.e.[L]' deleted. From elementary Lemma 1 of Daviea and

Shanbhag (1984), it immediately follows that for every support point s of ¢

(2.3) fitx + 28)fi(x) 2 [A(x + )12, x ¢ R,.

We can choose d sufficiently large so that ﬁ(o) > 0 and hence ﬁ(so) > 0 for
some positive support point sy of o. From (2.3), it follows that ﬁ(Zso) > 0.
Consequently, for sufficiently large ¢, we have Hix) > 0 ¥x ¢ [0, 28] for
some positive support point s, of o, We shall now fix the »y in question.

From (2.3), we can then claim that ﬁ(x) >0 ¥x <R, and

ﬁ(x + nao)
B(x + T = Tsp)

is an increasing sequence fur each x € R+. Clearly then we have

tne 1’ 2...0

(2.4) B(x + 85) 2 v A(x), x €R,,

where

H(x + 8,)

Vs mr;——a—-—-ﬂ—: 0$x<at>0.
{ H(x)

There is no loss of generality in assuming o({0}) = 0, If o is arithmetio, or

more generally if there exiets a constant ¢ > 0 such that o((0,0)) = 0 (i.e.,

if 0 is not a cluster point of the support of o), define 0 = d. Otherwise,



considering ¢ such that 0((0,¢)) < 1 and 0 < ¢ < s, define

o) = 1 op(le,)0) &<ﬁ

to be a measaure on R,, where 0; = U, and for each n 2 2, 0, is the h

convolution of the measures o, ,([0,0)()-) and o. It is then obvious that

a([0,0)) = 0 and

P Lo

(2.5) H(x) = I H(x + y)ﬁ(dy), x ER,.
R, R
N '
Observe that the measure o defined here is such that it is arithmetic if o is 1
arithmetio, and irn that oase, both have the same support; also & is non- .-':--44
LI

arithmetic if o is non-arithmetio. Define now inductively H(a; for

x e[(=(n+ 1o, =ne) for nz0, 1, 2,,.. such that

(2.6) l;(x) u j H(x + y)a(dy). -_“ﬂ
[o,»)

It is then easily seen, especially in view of (2.4), (2.5), and (2.6), that we : é

have a continuous funotion H:R —+R,_ such that its restrioction to R agrees j

wlth our original ﬁ and

(2.1) ﬁu>=[nﬁx+yﬁmw.xen. -

+

From Deny's (1961) theorem, it then follows that

H(x) = E(x)e™%, x ¢ R s

for some n > 0 and some [function & satisfying the ocondition ?Z'—-j:’.i

g(x + 8) = £(x), x ¢ R for each support point a of g. The required result now

follows on noting that -_.-:'::
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if o is non-arithmetic, and

if ois arithmetic with span A and

I exp(- nx)o(dx) = 1.
R,

Remark 1 If the oconditionas in Lau=Rao theorem are zmet with R* replaced

by R, then it follows at once from Deny's theorem that

(2.8) n J;/nﬂ(x + y)dy = Eg“)(x) exp(- nyx) + Eg")(x) exp(= N,x)

for n= 1, 2,,.., a.e.[L] for x ¢ R, where ny and ny are as defined in (1.2)
and Eg“) and Egn) are of the form of &, and %, in (1.2) with S = R. Since H is
locally integrable, it follows that

1/n
lim njo H(x + y)dy = H(x), a.e.[L] for x ¢ R
n--o

and hence that if 89 1s any nonzero support point of o (which olearly exists),
then

@'

‘. ': Rt ,
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(2.9) n f;/nﬂ(x + y)dy — H(x) and n I;/nﬂ(x + 8y + y)dy — H(x + so)

as n —», a.e.[L] for x e R.

Consequently, in view of (2.8), it follows that there exist functions &, and
£y @8 in (1.2) such that Esn)-‘* §4 and E;n) ‘*52 as n —», a.,e,[L] on R, and

hence asuch that

(2.10) H(x) = E1(x)exp(- Nyx) + Ez(x)axp(- nox) a.e.[L] for x ¢ R,

The result (2.10) was established by Leu and Rao (1984a).

Incidentally, it may be noted here that in the case of nonarithmetic o,
the form of H in (2.10) simplifies to

(2.11) H(x) = Bexp(- ™x) + (1 = B)exp(~ nyx) a.e.[L] for x € R,

whera B is some constant in [0,1].

Repark 2 From Davies and Shanbhag (1984), it is evident that at least in
the case of continuous H, Lau~Rao theorem remains valid even when the
requirement of g=finiteness of the measure ¢ is dropped. (This is so more
clearly in the case of Remark 1.) However, the following example shows that

the general result of Lau-Rac theorem does not remain valid if ¢ 13 not
Vefinite,

.......
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Example 1 Let ¢ be that measure on R+ for which its restriction to (1,2]
agrees with the counting measure on (1,2] and ¢([0,1] \J(2,=)) = 0. Define a

function H : R+ — R+ such that

1if x ¢ [C,1) and x = 2,
H(x) =
0 otherwise.

Observe that we have here

H(x) = JR H(x + y)o(dy) a.e. [L] for x € R
'+

but H is not of the form as in Lau-Rao theorem.

Remark 3 As observed by Lau and Rao (1982) and Alzaid, Rao and Shanbhag
(1983), Lau-Rao theorem yields the following modified version of Shanbhag's
(1977) lemma.

Lemma Let {(vn. wn) t: n=a0, 1,...} be a sequence of veotors with non-
negative real components such that v, # O for at least ons n, W < 1, and the

largest common divisor of the set {n : w, > 0} is unity. Then

n

o

v Ve n¥n? m=0, 1,...

)
T n=0
if and only if

v vab® n=0,1, 2,... and Wbl = 1
n2 Vob 2 Uy 1y nio' N

for some b > Q.

The modified version of Shanbhag's lemma yilelds somewhat improved

versions of the general characterization thecrems for the univariate and




1

bivariate cases given in Shanbhag (1977) as disocussed in Shanbhag (1983).
] Further variants and extensions ni Shanbhaz’s (1977) lemma have been

considered, amorg others, by Alzaid, Rao and Shanbhag (1983) and Lau and Rao

(1984b).
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3. COMMENTS ON RECENT RESULTS

In this section we review asome recent contributions to characterization
of probability distributions, ocomment on the gaps in the proofs and show how
improved versions of the results can be obtained by using LRS theorems.

3.1 Guota (1984)

One of the main theorems (Theorem 3.1) of Gupta (1984) is that
"E[(Ry,q = Ry)"|Ry = y] = o (independent of y) for fixed J and r > 1 iff F is
exponential, where R,, Ry, ... are record values from a ocontinuous distribution
function F such that F(0) = 0." We have the following comments on the

statement and proof of Gupta's theorem.

Gupta mentions that the oondition on oonditional expectation in his
theorem implies that

(3.1.1) c:l‘;ru”“ de

where S(x) = 1 - F(x), or

.

(3.1.2) e S(y) =J0ru"18(u + y)du.

But for (3.1.2) to be valid for all y ¢ (0,=), it i1s necessary to assume,
besides continuity of F, that F(x) > 0 for x > 0, which is not explicitely
mentioned in the statement of the theorem., Once (3.1.2) is assumed to be
valid for all y, then an application of Lau-Rao theorem immediately shows that

S(x) = e** which is the required rezult,
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However, (upta obtains the solution in a different way by considering

Mellin's transform of both sides of (3.1.2), deriving an equation of the form

(3.1.3) h(t) - Ah(t = r) =0 for t > r,

and writing its solution as h(t) = kePt attributed to Bellman and Cooke (1963,

p. 54). Unfortunately (3.1.3) has no unique solution; for inastance,

h(t) = exp (. ‘xsin-a%t‘) y A £ O

is also a »solution, whioch snows that further arguments are necessary to

Justify Gupta'a solution,

The same remark applies to the alternative proof given by Srivastava and
Singh (1975, p. 273) for the Rao=Rubin (1964) theorem, quoting the Bellman-
Cooke result.

As observed above, the statement of Gupta's theorem needs the additional
oondition, 0 < F(x) for x > 0. Some extensions of Gupta's result are as

follows:

(1) The result is true even if 0 < r < 1 since Lau-Rac theorem is still
applicable.

(i4) If F is such that F(a) = 0 and F(x) > 0 for x > a, then the
characterization is valid but for a modification of F as
exponaential with a shift in the origin.

(11i) Lau~Rao theorem also implies that the same characterization is
obtiined if in Gupta's condition, the expression (Ry , = R)" is
replaced by ¢(R -l = ) where ¢ is an inoreasing ‘or decr®asing
real function on R wijt.h ¢(x) £ ¢(0+) ¥ x > 0 and such that
E[|¢(RJ‘_1 - RJ)|] < o, As a special case of this result, it follows
that

E{[1 - exp(RJ+1 - RJ)]IRJ} = oonstant a.e.

—t
h
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characterizes an exponential distribution (but for a shift).
(iv) If F is arithmetic with its aupport as {0, 1, 2,...}, then the

condition E[(RJ+1 - nj)rlnj 2 y] = ¢ (independent of y) implies
that

e L T
The result is obtained by an application of Shanbhag's lemma. The last result
remains valid even when the expression (RJ_._.| - RJ)" is replaced by ¢(RJ+1 - RJ)
where {¢{n): n = 0, 1,...} is an increasing or decreasing real sequence with

#(0) & (1) 4 ... 4 ¢(J) and such that 5:{|¢(11J*1 - RJI} <w,

3.2 Qrosswsld, Kotz and Johnaon (1980)

Grosswald et al (1980) proved that if F, is a distribution funotion on R,
with survivor function S, satisfying se(o) 2 1 and having a pover series
erpansion, then
(3.2.1)

S0t = X)Fy(dx) = | 182(8/8(x)IEy(ax), b e B

J[O.tl (o
for every distribution function F1 on R_._ with F1(0) = Q0 if and only if Fz is
exponential. (In (3.2.1), S,(t)/S,(x) is interpreted as zero if Sy(x) = 0).
They conjeotured that the result i1a still true when S, (or equivalently Fz) is

merely assumed to be ocontinuous. More recently, Westoott (1981) used a

probabilistic argument to show that the conjeoture is ocorrect.

However, an improved version of the above result follows trivially from
the result of Marsaglia and Tubilla (9975): Let F, be a probability
distribution on R, such that S,(0) > 0 and xy, Xy be two positive nmbers such

that 52("2) >0, xq < x, and x4/x, is irrational. If (3.2.1) is satisfied for
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any two distinct probability distributions Fy concentrated on {xq, x5}, then
F, is exponential. (If F, is exponential, then (3.2.1) is satisfied for any

F1 on R+a)

It is interesting to point out that this result does not hold when the
condition 'any two distinet probability distributions' is replaced by ‘'a

probability distribution.' This is illustrated by the follnwing exampie.

Example 2 Let x, < 2x; and Fq be a probability distribution on R* such
that F,(xy) - F,(x,—) = o and F1<"2) - F1(x2-) = 1 -q where 0 { ¢ & 1.
Define a probability distribution function Fz on R+ such that

0 if x < x4,
Fa(x) =B if x4 £ x £ %5, 0 < g < 1,
B+ (1= g)aPp(x = x¢) + (1 =qa)Fy(x = x5)} 1f x > x5,

Clearly F, is a distribution function -and satisfies (3.2.1).

It is possible to give ssveral other variants of our modified version of
the result of Grousswald et al (1980) s=such as the arithmetic analogue

characterizing the geumetric distribution.

3.3 Dallas (1981)

In this paper, it is shown thau if Ro, R1,... are record values from a
continuous distribution function F(x) and 0 £ 1 < } are fixed integers, then
the independence of RJ - Ri and R:I. implies that F is exponential or shifted

exponential.

There 1s an implicit assumption in the pruof given by Dailas that every

peint of [a, =) is a support point of F. Further, the derivation of the

N R F S S TR S S L T N I W
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conditional distribution (Dallas, 1981, p. 950) needs some Jjustification
especially if one is dealing with a distribution having a singular continuous
component in its Lebesgue decomposition. We provide the sketch of an

alternative and more satisfactory proof based on LRS theorenms.

Let for any ¢ < b, the right extremity of the distribution function F,

{Rg"), nz1, 2,...} be a sequence of record values from the distribution

= F(o if 2 > o,
0 otherwise.

Fix) «
It is edsily seen that RJ - Ri is indepsndent of Ri' if and only if the
distribution of Rggi = ¢ is independent of ¢ a.e,[F]. The distribution of
R{2} - o is computed to be
[(§=-1- 1)1]'111(-1‘,@)3"’1@ If oLa+x<D
(3.3.1) P(R{S) - o < %} 5 {1 o if c+x2b
0 if x< 0,

where o = [1 = F(o +x)V/[1 = F(a)]. (A rigorous proof of (3.3.1) follows from
a lemma in Kotz and Shanbhag, 1980.) Consequently, it followa that RJ - Ry is

independent of R, if and only if b = = and [1 = F(o + x)1/[1 = F(o)] is
incependent of o a.e.[F], Then from the result of Marsaglia and Tubilla

(1975) (and not from the usual lack of memory property of an exponential

distribution as mentioned by Dallas), it then follows that F is either
exponential or shifted exponential. (Observe that if [1 = F(e + x)1/[1
-~ F(o)], x 2 0 1s independent of ¢ a.e.[F], then the left extremity of F

N
should be some a > - = and for every ¢ ¢ supp [F] and x ¢ R Dl

1 =F(o+ x) =2(1-F(x+ a)]J[1=F()] a.e.[F]).

.........................................
...............
-----------------------
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3.4 Deheuvels (1984)

This paper reviews some of the characterization results on the
exponential and geometric distributions based on properties of order
statistics and record values, As mentioned in our present discussion and
elsewhere, several of these results and improved versions in some cases can be
deduced directly from LRS theorems, which provide a unified approach to a wide
variety of problems, Hcwever, we make a comment on Thecrem 2 of Deheuvels
(1984) which is, perhaps, only of minor relevance to this discussion. The
theorem mentioned is not valid unless in the statement above equation (7) on
p. 329 of the paper, 'for all z' is replaced by 'for z ¢ R a.e.[F]' and 1
- F(x) on the right hand side of (7) is changed to 1 = F(z). (The latter of

the two errors in question appears to be a misprint).

3.5 _Rao (1983)

We give hers slight refinements and extensions of some of the results

mentioned in Rao (1983), which again follow from Lau=Rao theorem.

Theorem 5.1 of Rao (1983) states: Let the distribution function F of a
r.v. X be continuous and such that F(0) = 0 £ F(x) < 1 for all x ¢ [0,=).
Then F(x) = 1 - e ** if and only if Ry =- Ry and Ry have the same
distribution, where R,, Rz,..., are record values. Thia theorem remains true
even if F is assumed to by such that F(0) = 0, the right extremity is not a
discontinuity point, and at least «ne of its support points is a ocontinuity

point,

- . P .o
L Sl 20N s
4 u_ s
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Theorem 5.2 of Rao (1983) states: Let X be a discrete r.v. taking values
5 0, 1,... such that p; = F(X = 1) > 0 for all i. Then X hes a geametric
distribution if Ryp = BJ has the same distribution as Ry + 1. This thecrem
N remains true if instead of p; > 0 for all i, we have only sup{i : py > 0} = @

and pi >0 for 1= 0,.....‘] + 1.

. Thecrem 4.3 of Rao (1983) states: Let X(4) < X(,y be order atatistics in
I a sample of size 2 from a discrete distribution on (0, 1, 2,...} with
4

P(X = 1) = py 4 0 for all i, Then

(3.5-1) E(X(a) - X(«')' x(1) ] X) s U for x = 0, 1|o-n

iff X has a goometric distribution.

The condition (3.5.1) implies that

(3.5.2) u(qr + 0:""1) - 2(0r+1 + Gr*z * s )| re 0' 1,0--

where G_ = Pp ¥ Py t oo o Clearly (3,5.2) 1s equivalent to

(3.5-3) uGr a 20:""'1 - uGN_z, rs 0. 1,-;.

and the desired result follows from {3.5.3) by applying Shanbhag's 1amma. 2y
(The expression (4.4) in Rao (1983) should be as in (3.5.2).)

A stronger version of the above result is obtained by replacing the
condition (3.5.1) by

. . .
., - - . . . . - PR I IR A} -
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E(d’(X(a) - X(1))lX(1) = X) = U for x = 0, 1,-.-

vwhere ¢ is such that E{]| ¢(X(p) = Xq))l} < =1, ¢(1) > ¢(0) and
$(r + 2) - 20(r « 1) + ¢(r) 2 0 for all r, i.,e,, the second differances of

¢ are non-negative,

Another version of Theorem 4.3 is obtained by considering only samples
without ties, in which oase x(z) > x“). Let ¢ be an increasing funotion such
that ¢(2) = ¢(1) > ¢{1), Then

E(¢(x(2) - X(1))lxk1) = x) 2 U) X = 0. 1.0.-

implies that

py =8, 1 a1, 2.,

for some B ¢ (0,1) and p, is arbitrary. (Slightly stronger results than those
discussed here follow via the extended version of Shanbhag's lamma given in

section 2; the results are also valid when -¢ meets the requirements of ¢).

Finally Theorem 6.2 of Rao (1983), in which some asaumptions are not
explicitly mentioned, ocan be astated as followa: Let x be a non-negative
random variable with a continuous distribution function F, and h be a real
function on [1,*) such that it is either increasing or deocreasing with h(x) #
h(1+) for each x > 1, If

E[h(':';')lxj a] = constant ¥ a ¢ (0,®)

a2 o a0
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then X has a Pareto distribution. (The result in question remains valid even
t when the assumption of oontinuity of F 1is replaced by F(0) = 0; also the
. extended result remains valid when the assumption that h(x) # h(1+) for each
. x > 1 ia replaced by that there exist points x4, X, > 1 such that

h(x + xy) 4 h(xy=), 1 =1, 2 for each x > 0 and log X4/108 x5 is irrational),

v e
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4. A VARIANT OF THE LAU=-RAO THEOREM

Consider the following equation which is a variant of the one discusaed
by Lau and Rao (1982):

(4.1) jR £(x + y)u(dy) = £f(x) + ¢ a.e.[L] for x e R,
-.-

where £ : R, — R is a locally integrible Borel measurable function and u is a
o=finite measure on R_ with u({0}) < 1. (The identity in (4.1) is understood
as the one for which the left hand aside exists and equals the right hand
side.,) This may clearly be viewed as an integrated version of the equation
f(x + y) = £(x) + £(y) which is derived from the Cauchy equation by taking
logarithms, In this oase, by analogy with Lau=Rao theorem, one would be
tempted to oonjecture that a solution of (U4.1) is a.e, of the same form as the
logarithm of a poaitive solution of Lau-Rao equation. However, we have the

following ocounter example to show that such a conjecturs cannot hold,

Exanple 3 Consider u to be a probability measurs on R, such that it is
determined by an infinitely divisible probability distribution with an entire
characteristio funotion. From Pioard's theorom (o.f., Titchmarsh, 1949,
p. 277) and the fact that the characteristio function involved here does not

vanish, we ocan conclude that there exist infinitely many points (‘r' b,) of  d
such that

a.x+1ib_x
f e "M (dx) =t
R,

or equivalently such that

(4.2) j e‘rxoos(brx)u(dx) x 1
R,
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and

(4.3) [ e stntwinan = 0.
-

If we now define

a,x
f.(x) = e cos(byx), x € R,

it follows immedintely, in view of (4.2) and (4.3) that

{ fu(x + Yuldy) = £(x), xe R,
Ry

whioh showa that the conjecture cannot be true.

If we replace R.._ by R in the problem considered, we arrive at the variant
of Lau=Rao problem mentioned in Remark 1. In this latter ocase, we have a
simpler oounter example on taking f(x) = x2 and ¥ as any probability

distribution with zero mean and finite variance. C(Clearly we have then

) Jnf(x + y)(dy) = f(x) + 0, xe R

with

IA 2
) Inx u(dx) .

(It may be worth pointing out here that the counter example in the case of R+

given above also serves as a counter example in the present case if R_._ is

replaced by R.)

.............
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We shall now establish the following theorem answering the question of

identification of the solution of (4.1) partially.

Meorem If f in (4.1) is not a funotion which is identically equal to &
constant a.e.(L] on R, and f is either increasirg a.e.[L] on R_ or decreasing
a.e.[L], then the equation cannot be valid unless either p is a non-arithmetic

measure and £ is of the form

{y +a(l - e™"%) g, e.[L] if n 40
fi(x) =
Y + BX a.0.[L], if n=0

e or u is arithmetic with span A for some A, and f is of the form for which i

“u -.:QM\‘
£(x)¢MN + at(l = ¢™BAN)  a,el[L] ifn kO
f(x + n\) = ‘},

f(x) L J B'n ..C.[L]’ ifns0 —‘-::‘

where o, B, v, o', B' are constants and n is such that

I exp(=nx)u(dx) = 1,
R-O-

(From the statement of the theoream, it is implicit that if u(R,) = =,
then there is no solution to (4.1); this is wlso so if JR xu(dx) = « when v

+ e
r =0 and 4 is nonearithmetic.) i

Proof There is no loss of generality in assuming that f is inoreasing.

Define for each X ¢ R_..

He(y) = f(x +y) - £(y), ye R

..................
b “ e .
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. 2y
; In view of the discuasion in Remark 1, it follows that there is no loss of
|

generality in taking f to be continuous. In that case, we get H,(:) to be a

continuous function on R . such that

JR Hy(y + 2)u(dz) = H(y), vy e R_.
'S

S From Lau-Rao theorem, we conclude that

(4.4) He(y) = E (ylexp(-ny), ¥ e R,

where Ex is such that Ex(y + 8) s Ex(y) ¥ye R+ and every support point s of

Y. In the oase of non-arithmetic u, (4.4) implies

(4.5) f(x+ny) s f(x+TNewly Ey(o)exp[-n(x +ne1 yl

n
= £(x) + £ (0)exp(=nx) } expl- n(k - Nyl
-39

s f(x) + Enyexp(-nx). X, ye¢ R, n21.

It is easy to check that if (4.5) is valid, then Eyw) = [1 - exp(=ny)), vy € R 1f

n#4 0 and Ey(o)«y if n = 0. Consequantly, it follows that if p is non-

arithmetic we have for every x ¢ R, s

- exp(=nx) if n # 0,

1
(4.6) £(x) - £(0) Hx(O)m{
x if n= 0.

In the case of arithmetic u with span ), we have directly from (4.4)
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f(x + n ) = £(n1) = g (A)exp(-nnd)

= [f(x) - £(0)]exp(-nn}), n =0, 1,...,x € R

and hence for x e R_and n= 0, 1,... we have

(8.7) £(x + aA) - £(x) = [£(n}) = £(0)] + [£(x) =~ £(0)1(2™" " <1)

(£(x) = £(0) +E#)(e™BAN o 1) 4fn 4 0

n{r(A; - £(0)] ifn =20

where g% = [£(0) « £(2)1/[1 - exp(=An)].

The part assertion for the arithmetic case of u is now obvious.

Remark U4 Isham et al (1975) oconsidered a special ocase of the above
theorem with the additional oonditiona that £ is non-negative and right
continuous with £{0) = 9, and U ia a probability measure, This special case
was used in obtaining a certain characterization of the Pcisson process and

its disorete analogue,

Bemark 5 If R in (4.1) is replaced by R, then under the aasumption that
f is not a function thst is equal to a constan® a.s.[L] on R and £ is eithar
increasing or decreasing a.e.[L] on R, it follcws that every solution f of the
equation (4.1) can be expressed as & convex combinatin of funoticns £, and f,

of the form arrived at in the theorem above with n replaced respeciively by nq

........................... RO 4"-".'.
et W -~ ety e
WL NI )
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and no satiafying the conditions

Inexp(-nix)u(dx) =1, 1i=1, 2,

4.1 Dugue's prohlem

Rossberg (1972) and more recently in an unpublished article Wolinsta=
Welez and Szynal (1984) have conaidered the problem of identifying
characteristic functions ¢1 and ¢, (of probability distributions on R) for

which the following equation holds

(4.1.1) (1= 0)8,(t) + edolt) = &,(t)d,(t), t € R

with 0 < ¢ < 1. This is indeed an extended version of the problem posed

earlier by Dugue for c = 1/2.

Rossberg (1972) s2lved the problem when at least one of the ¢i'a is non=
arithmetic and Wolinsta-Welez and Szynal (1984) when both ¢ and ¢, are
arithmetic. In both these papers, there is an assumption that the left
extremity of the distribution ocorresponding to ¢1 is ron-negative and the
right extremity of the distribution corresponding to ¢, is non-positive. We
shall now show that under the assumptions made by these authors, the problem
of identifying the solutions to (4.1.1) reduces to a straight-forward

application of LRS theorems.

Let F.l and F, be the distribution functions corresponding te ¢1 and ¢2

respectively., Assume that F1(o-) = 1 - Fy(0) = 0. It is then obvious that
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(4.1.1) ylelds

(8,102) Opz(-X) ] IR Fa(-x - y)dF1(y) . X € R* - {0}-
-

If Fy is nonarithmetic, (4.1.2) implies, in view of Lau~Rmo theorem, that
Fo(-x) « exp{-ax} for x > 0 and some a > 0, and consequently (4.1.1) yields
Fo(-x) = exp{-ax}, x ¢ R, for some a > 0. (This follows since under the given
asswptions, the faot that Fy(-x) « exp{-ax}, x € R, - {0} when used in

(4.1.1) gives the rollowing equation relative to probability measures of (0}
on both sides

(1 = )F4(0) + c[Fo(0) = Fp(0=)] = Fy(0)[Fp(0) = Fp(0-)]

and hence F,(0) = F,(0-). From this it follows that if (4.,1.1) is valid, then
undsr the assumption that st least one Fi is non-arithmetic (and hence without

loss of generality that F, is non-aritimetic), we have

Fe=le e"bx, x € R, Fy(-x) = X x ¢ R,

with a > 0 and b such that b = ac/(1 - a). (The oconverse of the assertion is

obvious.) This is the result of Rossberg (1972) but for hia apriori

restriction that F,(o) = 0., On the other hand if F‘1 is aritimetic, in view of
LRS theorems, (4.1.2) implies that

(4.1.3) $p(t) =1 = o+ ofoRlA=g) Lo ¢t ¢ o

for some b > 0, a ¢ [0,1] and scme 5 ¢ [0,1) with an additional requirement

that the oorresponding characteristic function ¢1 satiasfies

Lercia
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(4.1.8)  4(t)(0 - el - e84 a} = of(1 - @)elP a B4 a}, ~w<t <=,

If X; ia a random variable corresponding toc ¢;. then from (4.1.4) we have for
n21

(o = a)P{Xq = nb} = (B = a)P{Xy = (n + 1)b}

implying that either P{X{ = nb} = 0 for n 2 1 ora2 o. Further (4.1.4) gives

(¢ = cB)P{Xy = 0} = o(a = B)

i which yields that o > B whenever « 2> o. Thus, it follows that if (4.1.4)

holds, then either ¢;(t) =z 1, or for a > max{g,c} and for some b > 0

R ¢ IR

which is clearly a characteristic funotion satisfying (4.1.4). Then it easily

Pt I A et

follows that if (4.1.1) 1s satisfied with at least one of the ¢ 's as
arithmetic and the extremity assumptions are satisfied, then either ¢1 x 1 and
¢ = 1 or ¢, and ¢, are of the type given respectively by (4.1.5) and (4.1.3)

for some B ¢ [0,1) and o € [max{B,e},1]. This is indeed the result arrived at
by Wolinste~Welez and Szynal using a different approach.

The following example 1illustrates that Rossberg-Wolinsta Welez=Szynal

characterization of (¢1, ¢2) satisfying (4,1.1) does not remain valid if the
assumption that F,(0=) = 1 = F5(0) = 0 is dropped.
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, oit 4
$(t) = [(1 + 46)(1 ~0it)(1 = go)]7) =< t <

and

(L) 2 8(=t), w0 < t <

Observe that (4.1.1) is satisfied with ¢ = 1/2 and ¢1 and ¢, are non-

arithmetic. However, ¢1 and ¢2 are not of the form given by Rossberg.

In the above ocounter example, we have F.I(O-) sz 1 - Fz(f)) > 0. It may be
noted that there also exist examples illustrating the point with either F1(0-)

2 0or1«Fy,0) 20, Inpartioular, if we take ¢ = a/(1 ~a)

$4(8) = (1= 48)72, et C
4,080 = (1 + B 11)71(1 = 871 B ap)™!, ceC b ¢

with o = (82 = 1)2/482 and 8 > 1, ve have an example with F((0-) = 0. (The

existence of an example with 1 = F5(0) = 0 follows by symmetry.)
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