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ABSTRACT 00

-: The theory of scalar first order nonlinear partial differential equations

has been enjoying a rapid development in the last few years. This development

occurred because the authors established uniqueness criteria for generalized

solutions - called viscosity solutions - which correctly identify the

solutions sought in areas of application, including control theory,

differential games and the calculus of variations. The concept of viscosity

solutions is relatively easy to work with and many formally heuristic or

difficult proofs have been made rigorous or simple using this concept. A

feedback process has begun and the experience recently gained in working with

viscosity solutions has suggested new existence and uniqueness results. The

current paper continues this interaction by establishing new existence and

uniqueness results in a natural generality suggested by earlier proofs. It is

also felt that the presentation of the comparison results, which imply

uniqueness, continuous dependence, and are used to estimate moduli of

continuity, has something to offer over earlier presentations in special

cases.
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ON EXISTENCE AND UNIQUENESS OF SOLUTIONS OF HAMILTON - JACOBI EQUATIONS

Michael G. Crandall and Pierre-Louis Lions

Introduction.

Our main purpose here is to establish some uniqueness and existence

theorems for Hamilton-Jacobi equations. We will focus on the Cauchy problem

(CP) ut + H(x,t,u,Du) = 0 in RNx(O,T), u(x,O) (x),

and the stationary problem

(SP) u + H(x,u,Du) 0 in N,

in which H is a real-valued function of its arguments, x denotes points in R,

Du stands for the spatial gradient (u ..... ,u ) of u, which is itself a real-Xl XN

valued function of either (x,t) or x as appropriate.

The uniqueness follows from comparison theorems of maximum principle

type. The comparison theorems we present here correspond to some results proved

in special cases by Ishii in [9) and used by him without proof in more general

cases in [8]. These results concern the comparison of solutions which are

uniformly continuous in x - but perhaps unbounded - in cases where the

Hamiltonian H is restricted by appropriate continuity conditions, but not

otherwise by growth conditions. We will give complete proofs in a natural

generality which strictly includes the corresponding statements of [8]. In any

case, we would feel it worthwhile to present our complete proofs even in the

special cases used in [9]. For other sorts of uniqueness results for unbounded

solutions see Ishii [9] and Crandall and Lions [41, (5].

As regards existence, we will prove existence results in the same new

generality for which we establish the uniqueness. The main tool used for this

is estimates on the modulus of continuity of solutions of (CP) and (SP). These

estimates are obtained by using the comparison results and modifications of the

Universite de Paris - IX - Dauphine, place de Lattre-de-Tassigny, 75775 Paris
Cedex 16, France.
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elegant ideas of Ishii [8].

The notion of "solution" of the differential equations in (CP) and (SP)

that we will employ is that of a "viscosity solution". We will not explain this

notion here and refer the reader instead to Crandall, Evans and Lions [2] for

easy access to definitions and some proofs of the sort presented here in the

simplest situations and to Crandall and Lions [3], where various equivalent

notions of viscosity solutions were presented and the first uniqueness proofs

were given. The question of existence of solutions of Hamilton - Jacobi

equations has a long history. We refer the reader to the book Lions [10] for

references to the substantial work which predates the notion of viscosity

solutions. Existence theorems in the general spirit of this paper were

established in model cases in Crandall and Lions [3]. Considerable generality

was achieved in the results of Lions (10], [11] (in which boundary problems were

considered - we do not discuss existence under boundary conditions here,

although it is obvious that one could), some new results (in R) were obtained

by Souganidis [121 and then arguments were introduced in Barles [1] which

brought the existence theory to a new level of generality. Ishii [8] (using

estimates of moduli) and Crandall and Lions [4] (relying partly on Barles'

methods) were the first works concerning the existence of (possibly) unbounded

viscosity solutions. The review paper (7] outlines other aspects of the theory

of viscosity solutions and contains a moderately current bibliography.

The text begins with a Section I which is devoted to preliminaries and

statements of the main existence and comparison theorems. The comparison

results are then proved in Section 2. Section 3 is devoted to studying the

moduli of continuity of solutions of (CP) and (SP). The results on the moduli

of continuity quickly imply the desired existence theorems.

We are grateful to H. Ishii for pointing out a defect in a previous draft

of this paper.
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Section 1. Preliminaries, Notation and Statements of Results

We will use the following notational conventions throughout. The set of

continuous functions which map a metric space 2 into the reals will be denoted

by C(Q) and the subepace of C(M) consisting of uniformly continuous functions .

will be denoted by UC(Q). '.

Functions of modulus of continuity type will be denoted by the letter m as

well as m with various subscripts (e.g., mR, mH, etc.). Such functions m map

[0,-) into [0,-) and satisfy:

i) m is nondecreasing,

(ii) m(O+) - 0, S

(iii) Wa + b) < (a) + m(b) for a, b > 0,

(iv) mwr) < m(i)(r + 1) for r > 0,

where (iv) is in fact a consequence of (i) and (iii). We will call any such

function "a modulus".

When 0 is a subset of RN, UCx(Qx[O,T]) denotes the space of those

u E C(Qx[O,T]) for which there is a modulus m and an r > 0 such that

Iu(x,t) - u(y,t)l m(I x - YI) for x,y E n, Ix - yj 4 r and t E ,T-.

Finally, in what follows, T > 0 and BR(z) denotes the closed R-ball centered at

z RN , ERlZ) - { x E R: Ix - zC 4 RI, while intBR(Z) is its interior. The

Hamiltonians we will consider will typically be restricted by the following set

of conditions:

(HO) H E C(Ix[O,T]xRxRN).
* ,;- .-

For each R > 0 there is a modulus mR such that for

(HI) all (x,t,p), (y,t,q) E Rx[O,TIxR(O)-

IH(x,tr,p) - H(y,t,r,q)l 4 u (Ip - q + Ix - yj).

(H2) H(x,t,r,p) is nondecreasing in r for all (x,t,p) in 10x[0,T] .N

-3 -. a.
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There is a modulus .H such that for all (t,r) E [0,T]xR

(3) and all x, y E R and X 0 0"

H(x,t,r,X(x - y)) - H(y,t,r,A(x - y)) i - mH(Ix - y1 2 + Ix - y).-

Remark I. The assumption (H3) is a replacement for the stronger requirement

There is a modulus m. such that for all (t,r,p) E [0,T]XUR and

(H3)1 all x, y E le

IH(x,t,r,p) - H(y,t,r,p)l -C (Ix - yl(i + ipl),

which was introduced in [3] and has been used since then. The significant

observation that the original proofs of uniqueness go through under (H3)

(although one should choose p to be radial in, e.g., the proof of [3,Theorem

II.1], as is done later in [3]) is due to R. Jensen who was led to this remark

by considering the uniqueness question for Hamilton - Jacobi equations in

infinite dimensions in an ongoing investigation. It is easy to see that (HO)-

(H3) is strictly weaker than (HO), (HI), (H2), (H3)'. For example, if N - 1,

H(x,t,p) - b(x)p satisfies the weaker set of conditions if and only if b is

bounded and uniformly continuous and b(x) + cx is nondecreasing for some c,

while the stronger conditions replace this last requirement with Lipschitz

continuity of b. The analogous remark holds for general N. (Later we will

comment on how (H3) itself may be significantly relaxed.) Finally, the

requirement that m be a modulus may seem restrictive, but it is not - if this

estimate holds with any nondecreasing function tending to 0 at 0+, then it holds

with a modulus.

The uniqueness and existence results for (CP) are:

Theorem 1. Let H satisfy (HO) - (M3). Then:

Comparison. Let 0 be an open subset of , its closure and 30 its boundary.

Let and u, v UCx (OX[0,T]) satisfy the differential inequalities

(1.1) ut + H(x,t,u,Du) ( 0 and 0 ( vt + H(x,t,v,Dv) on Qx(0,T)

-4-

S o . . . . . . ..o- S. , , ". -

, '. -. -,.. -. -..- .. -. ..- : .. .. ..... .,.. .. .. . .,. ... .. , .- ,S .. .',. ,;- o,,'P. . . . ....-,,'..,.-.. . . ...,,. -. . .... :



in the viscosity sense. Assume also that

(1.2) u(x,O) 4 v(x,O) on 9 and u(xt) 4 v(x,t) on Mx[0,T].

Then u 4 v on Qx[O,T].

Existence. Let p E Uc(AK). Then (CP) has a solution u E UCx(JPx(O,T]) in the

viscosity sense.

Remark 2. Theorem i extends, via the substitution v - eAtu, to Hamiltonians H

for which H(x,t,u,p) + Au satisfies the assumptions in place of H for some A.

Of course, the "comparison" theorem when formulated in this way gives

uniqueness and much more - it also implies continuous dependence and wll be

used to estimate moduli of continuity, etc.. The parallel theorem for (SP)

results upon interpreting (HO) - (H3) for a function H:09X0d1 + R by regarding

H as a (t-independent) special case of the functions considered above. We have:

Theorem 2. Let H E C(]PxRx&M) satisfy (HO) - (H3). Then:

Comparison. Let 9 be an open subset of I and u, v E UC(i) satisfy the

* "differential inequalities

(1.3) u + H(x,u,Du) 4 0 and 0 4 v + H(x,vDv) on G.

in the viscosity sense and u 4 v on 0. Then u 4 v on n.

Existence. (SP) has solution u E C(SP).

Remark 3. Assume that 3fl is of class C2 and Vxdenotes the inward normal to fl

at x E an. Then the assumed comparison u C v of agx[O,T] in Theorem 1 and on a

in Theorem 2 can be weakened by replacing 39 by the set of x E 30 for which

A + H(x,t,up + AVx) is not nonincreasing for some (t,u,p) E [0,T]xRxK and

variants of Theorems I and 2 remain true. One needs to strenghten (H3) near the -.,..-.

boundary a bit - see Crandall and Newcomb [6).

The next lemma collects some simple estimates used throughout the text for

convenient reference. It may be skipped at this time. - %-

-5--''',*
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Lemma 1. Let m be a modulus. Then:

Mi If c, , r > 0, m(l) > 0, 6+ m(r) > r2/c and e and 6are

sufficiently small, then

(1.4) r 4 2(m(1)) 1 / 2 and r2/c 4 + m m e /

(ii) If E > 0, F > m(l) and K(y) is defined for y > 0 by

K(y) = sup( m(-fEr + (r/F) '/Y) -r: 0 4 r 4 F),

then K(0+) J im K(y) =0.

Proof. We first sketch the proof of (i). The assumptions and (1.1)(iv) yield

r24 c(m(1)(1 + r) + 6) 4 4c max(6,m(1),m(1)r)

and, choosing the various possibilities for the max on the right, the worst

estimate on r which arises for small 6,c is the one claimed in (1.4). Then the

second estitmate arises from the monotonicity of m. (Obviously these estimates

can be improved, but we will not need to do so.)

We just sketch the simple proof of the (awkward looking) assertion (ii).

Let r be the maximum point ofY

f (r) m(yEr + (r/F) 1 1 Y) -r

on [0,F]. Clearly f (r) > m(O) -0 =0. If (r /F) 1 /Y has a limit point e as
Y Y Y

y 0and 0 < 8,then the corresponding limit superior of f r is at most
'&~~~ 0Y~r)L

mMi - F < 0 (so this cannot be), while if e 0 then the limit superior is at

most m(O) - 0 =0. Since K(y) f f(r~) we are done.

We conclude this section with a useful lemma which illustrates the

advantage one can take of the linear dependence on the time derivative in

(CP). This is a convenient packaging of a standard argument. (For a sketch of

a proof in a special case see Ishii [B, Lemma 3.3]).

Lemma 2. Let Q be an open subset of R
1e, H,G E C(Sx(0,T)xRxRtN) and

u, v E C(flx(0,T)) satisfy

ut + H(x,t,u,Du) 4 0 and 0 4 vt + G(x,t,v,Dv) on flx(0,T).

-6-



Define z(x,yt) on O~XQX(O,T) by z(x,yt) -U(x,t) -V(y,t). Then

Zt + H(Xitgu(xit),Dxz) -G(Y,t,v(y,t),-Dyz) 4 0 on O)xnx(O,T)

in the viscosity sense.,

IProof. It will suffice to show that if pEC 1((Oxnx(0,T)) and

(1.5) (x,y,t) + u(x,t) -V(y,t) - (xfy,t)

ghas a strict local maximumt at (a,bc) E N(~x O,T), then

(1.6) (P~~~)Hacuacx(,~c)GbcvbcDi~~~) 4 0.

Put

*(1.7) d(x,y,t,s) -max(Ix -al,ly -bI,lt cI.Is -ci).

Since the maximum is strict, there is an ro > 0 and H E C(LO,r01) with H(r) > 0

for 0 < r< ro such that

*(1.8) u(x,t)-v(y,t)-$Px,y,t) 4 u(a,c)-v(b,c)-p(a,b,c)-H(d(x,y,t,t))

for 0 4 d(x,y,t,t) 4 r0.

We claim: Given r > 0 there is an e > 0 such that

(1.9) Y(x,y,t,s) - u(x,t) - v(YsB) - pVx'y't) -(t - ) 2/C

Ihas a local maximum point (xriyrftrgsr) which satisfies

*(1.10) d(xriyritrisr) r.

W Assuming the claim is correct f or the moment we then have, by the assumptions,

2(t - sa
rC + (pt(xr rtr) + (xrtru(xrtr)D x ,rtr)) 4

2(tr- a
r-G(y r t r V(y rt r, D y p(x ,y ,t )) 0.

C r' r

*If these inequalities are added, r is sent to 0 and (1.10) is taken into

account, the result follows.

It remains to produce (xrgYritr'sr). Fix r < r0 and choose £ so that

* (.1) v(ygt)-v(y,s)I+Iu(x,t)-u~x,s)I+(P(x,y,t-(P(x,y,S)I -C (t-8) 2 /e+H(r)/2.

-7-
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for d(x,yt,s) 4 ro. This is clearly possible. Let 'I be given by (1.9) and

d(x,y,t,s) =r. Then either d(x,y,t~t) r or d(x,y,sts) =r. Assume

d(x,y,t,t) =r (the other case is treated a similar way). Then using (1.8) and

(1.11) we have

'(x,y,t,s) 4 u(x,t) -v(y't) - (x,y,t) - vy's) -v(y,t) + (t -) /0

4 '(a,b,c,c) - H(r) + Iv(y's) -v(y,t)I - t - )2/F 4

4 Y(a,b,c,c) - H(r)/2,

so the maximum of If over the set d < r must occur at an interior point, which is

then a local maximum satisfying (1.10).

Section 2. Proofs of the Comparison Results.

We will first prove Theorem 1, which is more difficult than Theorem 2. The

next lemma is an essential step in the proof of the comparison assertion of

Theorem 1.

*Lemma 3. Let the assumptions of the comparison assertion of Theorem I hold.

Then u - v is bounded from above on 0 x t,]

Proof of Lemma 3. Since u, v E UC x(Al x (0,T]), there is a modulus m and an

r r> 0such that

Iu~x,t) -u(y,t)I + lv(x,t) -v(y,t)I 4 m(Ix - I)
* (2.1)

for x, y E Al and Ix -yI -4 r.

* Let

(2.2) d(x) =distance(x,8Q).

p Since u 4 v on aSi x [0,T] and (2.1) holds, we have

U(X,t) - v(y,t) 4 m(Ix -yI) + m(min(d(x),d(y)) for x, y A and
(2.3)

t E [0,T] such that Ix -j 4 r and min(d(x),d(y)) < r.

Thus to bound u - v it will suffice to bound u(a,t) -v(a,t) for a E 0 and

d(a) > 2r. To this end, choose such an a and set

K - 1 + 2m(r)/r 2

(2.4) Y(x,y,t) = u(x,t) -v(y,t) -K(Ix - a 12+1y a a12),

w(t) =sup (Y(x,y,t) (x,y) E B r((aia))li



for 0 4 t 4 T. Here

Br((aa)) " ((x,y) E RP x Rjx - a12+1y - al2  1 r21 C f x

by d(a) > r. In order to prove the lemma, it suffices to show that w is bounded

from above uniformly in a. Clealy w is continuous. The main part of the proof

is to show that w' is bounded above on the open set -

{w > 01 - (t E 10,T]: w(t) > 0)

by a constant in the viscosity sense (and hence in the distribution sense - see

(2, Proposition 1.11]). Since u C v on Q x (01, we have

w(O) 4 sup {u(x,O)-v(y,O) - (ix - a12+1y - a12): (xy) E r((a,a))) 4 2m(r).

If also v, C on {w > 01, we conclude that w(t) 4 2m(r) + CT on [0,T], whence

the result. It remains to show that w' is bounded above on {w > 0). The

* constant K in (2.4) is choosen so as guarantee that Y(x,y,t) < f(a,a,t) if

(x,y) 8Br((a,a)), so there is a point (1,.F) E intlr((a,a)) such that

(2.5) w(t) u(,t) - v(gt) - K(1i - at2 - a12).

Of course, ., depend on t and a. Let 'be an open interval in {w > 0},

P C C(I and w(t) - P(t) have a local maximum at E E 1. Let

... (F,g) E intBr((a,a)) be such that (2.5) holds with t - =. Then for all (x,y,t)

near (itj,,)

u(x,t)-v(Y,t)-K(lx-al2fly-a2-pt u(;,i)-v(y,Z)-K(I;-a2--a2-<.

" It then follows from Theorem 1, Iemma 2 and the definition of viscosity

solutions that

( (2.6) PI(E) + H(I,E,u( lE,2K(i - a)) H(,f,v(g,E),-2K(g - a)) c 0.

We will use this with the estimates given next to reach our conclusion. Clearly

(2.7) 2Kji - al, 2XIg - al < =r.

The string of inequalities written next will be explained immediately below.

H(i,f,u(i,E),2K(i - 7)) - H(g,E,v(g,E),-2K(Y - a)) )

* (2.8) ~ Hifv()2~-)) -H(g,F,v(gj),-2K(Y - a))

) - - ; -Y + UKi - al + 2K19 - al)

- m2 r(2r(1 + 2K)).

-9-
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The first inequality is due to the assumption w(E) > 0 (which implies

u(x,E-) > v(gE) > 0) and (H2). In the next inequality, we use (2.7) and (Hi).

*The final inequality uses ji- gl 2r and (2.7). From (2.6) and (2.8) we now

know that that, in the viscosity sense,

w' 4 C =m2Kr( 2 r(1 + 2K)) on {w >0 1

and the proof of Leimma 3 is complete.

Remark 4. The reader may observe that only (HO) -(H2) were used in the proof

of Lemma 3 and WH) was not required. An analogous remark holds concerning the

study of (SP) later.

End of Proof of Comparison for (CP).

Assume the hypotheses of the theorem, that (2.1) holds and that u 4 v

fails. We may choose a constant c such that

(2.9) c > 0 and M =SUP{u(x,t) - v~x,t) - ct: x E and 0 4 t 4 T) > 0.

*Note that M <'sby Lemma 3. Next let C, 8>0 and set

(2.10) Y(x,y,t) -u(x,t) -v(y,t) -ct -(Ix -l y2/c + O(Jx1 2 + Jy12 )

* Clearly

* 2.1)6() M -sup[T(x,x,t): x E fl, 0 4 t 4 T)

satisfies

(2. 12) 6(0+) =0

and

(2.13) sup{Y(x,y,t): (x,ylt) E (OxflE0,T] and Ix -yI 4 ri) M 6(0).

In view of (2.1), for (x,y,t) E bx~x[0,T) satisfying Ix - yI < r we have

M + m(Ix - yI) -(Ix -y1
2 /e + O(Jx12 + J1 2 ") >

(2.14) )o u(x,t) - v(x,t) -ct +(v(x,t) -v(y,t)) -(Ix -i y 2 /c +

+ B(x12 + iy12)) f (x,y,t)
* and from (2.13) and (2.14) it is clear that TF attains a positive maximum with

*respect to the set {(x,yt) E Qx~x[0,T]: Ix -I y 4 r Iat some point i,j;,E) if

0 is small (as we hereafter assume).



We now proceed to make some simple and standard estimates involving

1iiE). Using (2.14) and (2.13) we have

(2.15) 8(o) + M(I 1 - ) . i 12/ + BI(i12 + Ig12)

From (2.15) and Lemma I we deduce that (taking m(1) 0 0 without loss of

generality)

i) I- "l - 21m11111/2,"

(2.16) (ii) I - g12/e < d1O) + -12 11)1/2),

(iii) B(IrJ2 + gi12) 6(5) + n121.11)e)1/2),

provided only that c and B are small. Next we check that E > 0. Indeed, the

inequality '

,(x,y,o) - u(x,O)-v(x,o)+v(x,O)-v(yo)-(Ix-1 2/eo(lxl2+lyl 2))

M (Ix - yl) - (x - y12/C +O(1x1 2 + y12 ))

coupled with (2.16) shows that

l(R,9,O) C am(2 m(1c)/ 2 )

s0 M is impossible if eand Bare small. Thus > 0.

Similarly, if d(R) 4 r or d(g) C r, (2.3) yields

(j, ,:F) C 2m(r),

which cannot be if r is sufficiently small (and we may take it to be so).

Lastly, (2.16) (i) guarantees that I - 91 < r if C is sufficiently mall. Thus

we can guarantee that ( is an interior point of the set

{(x,y,t) E n x n x [0,T]: i - r"

for which it provided a maximum of V.

To proceed, put

(2.17) p - 2(F - g)/c, x 20R, qy - -20j.

Since Y has an interior maximum point at 1 Lemma 2 and the definition of ,

viscosity solution yield.

(2.18) c + H(,E,u(,E)),p + qx ) - H(,f,v(,f),p + qy) c 0.

We next write a string of inequalities to be used in conjunction with (2.16) and

.4. 44.
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then explain them imu-ediately following: We have

H(5I,E,u5C,E),p + qx) - H(I,E,v(I,E),p + qy) :

) H(R,E,v(l,E),p + qx) - H(j,E,v(l,E),p + qy) .-:'

(2.19)

) H~iE,v( ,EI,p) - H(Y,E,v(9,E),p) - (mR (lqx) + MR(Iqy)l) ;

-(m.(I - lpIl + Ix - yl) + mR (Iqxj) + -RC(Iqy)l)).

The first inequality is due to the monotonicity (H2) of H and u(i,E) >

v(g,E). The second inequality arises from (Hi) when Re denotes a bound on lP,.

lp + qxj, and Ip + qyj. It is clear from (2.16) and (2.17) that

(2.20) (e)Ipi C C and lqxl, lqyl C CVO

for a suitable constant C as c and 0 tend to 0. Thus for some C we have

(2.21) Re C C//e.

The final inequality of (2.19) arises from (H3) and p - 2(i -)/e from

(2.17). Using (2.16) again we have ; -yI + 0 and

(2.22) I mIIPl" 21i - 12/e C 28(B) + m(2(m(1)C) 1/2 ).

We are now essentially done: Letting B + 0 and then e + 0 in (2.19) yield 0 on

the right hand extreme of (2.19) because of (2.20) and (2.22), so (2.18) implies

that c 4 0, a contradiction.

Proof of Co,,parison for (SP).

The proof of the comparison result for (SP) has such in con with that

for (CP), and where it differs it is simpler. Assuming the hypotheses of

Theorem 2 we first prove that:

Lemma 5. Let u and v be as in the comparison assertion of Theorem 2. Then L

u - v is bounded from above.

Proof. Let m be a modulus and r > 0 be such that

lu(x) - u(y)j + lv(x) - v(y)l 4 ,(Ix - yl) for x,y E n
(2.23) ':''T

such that Ix - YI 4 r.
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Analogously to (2.3) we have

u(x) - v(y) 4 m(Ix - yI) + m(min(d(x),d(y)) for x,y E £.
(2.24)

such that Ix - y4 ( r and min(d(x),d(y)) 4 r.

Choose a point a E f such that "..,

(2.25) u(a) - v(a) > m(r),

(if there is no such a we are done) and then d(a) > r by (2.24). The function If

defined by

K " 1 + 2m(rl/r 2 and

(2.26)
I(x,y) - u(x) - v(y) - K(Ix - a12 + Iy - a12 ),

satisfies ¥(a,a) > (x,y) for (x,y) E abr(a,a)) and so it will have an interior

maximum (x,g) with respect to this set. We then' use the definition of viscosity

sub - and supersolutions to find that

u() - v(9) + H(i,u(i),2K(M - a)) H(,v(Y),-2K(Y - a)) 4 0.

Since u(i) ) v(q) (by (2.23) and Y(Ry) ) Y(a,a)) we use (HI) - (H2) as in the

proof of Theorem 1 to conclude that u(l) - v(9) is bounded above and then

u(a) - v(a) 4 u(i) - v(g) + 2m(r)

to conclude that u - v is bounded above.

To complete the proof of Theorem 2, we assume that

(2.27) M - sup (u(x) - v(x))> 0,

now choose e > 0 and B > 0 and let (i, g) be a maximum point of

(x,y) - u(x) - v(y) -(Ix - y12/6 + O(Ixl 2 + lY1 2))

over the set S - ((x,y) E a x ~:lx - yj c r , which exists since

(2.28) M + a(Ix - yI) - (Ix - y12/e + O(IxI2 +Iy12)) ) V(x,y)

on S. Moreover,

• -2(2.27) ( , 19) M - 11. .

where 8(0+) - 0. An before, one rules out i, 9 E 8S for B, e, r small and then,

using the assumptions, if p " 2(i - 9), qx 20R, qY- -20.-

we have

-13-
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M - 6(B) ( u(l) - v() ( H(l,v(l),p + qy) - H(T,u(R),p + qx1).

Finally, arguing as in the proof for (CP), IpI is bounded by C//c for small e

" and 0, while with c fixed qx and q tend to zero like lB and the proof is

._ completed just as before.

Remark 5. One knows, in dealing with bounded solutions, that uniform continuity

of u or v (and not necessarily both) suffices to prove comparison results. The

analogous statement in the present context is that the above proofs easily adapt

to prove that the comparison assertions of Theorem I remain correct provided

only that u and v are continuous, there is a constant K such that

-u(x,t) - u(y,t)l + Iv(x,t) - v(y,t)l ( K + Ix - yI)

for (x,t), (y,t) E 0 x[O,T] and one of u,v lies in UCx(0 x[O,T]). The analogous

statement for (SP) arises upon letting u and v be independent of t. Later we

use this remark and the existence results of Section 2 to improve the comparison

results in the case 0 . .

Section 2. Moduli of Continuity and Existence.

Throughout this section we assume that H satisfies (HO) - (H3) in the case

-" of (CP) and, as before, interpret these conditions and others to be laid below

in the case of (SP) in the obvious ways. To begin, following Ishii [8], we

" label the following structure properties of H: C will be a constant such that

(3.1) IH(x,t,o,o)l 4 C( + lxi)

or

(3.2) IH(x,t,u,O) - H(y,t,u,O)l 4 Co1 + ix - YI)

for x,y E R1N, u E R, t E [0,T]. The existence of such constants C is guaranteed

by the assumptions. Contrary to the previous section, we will begin with the
L_

simpler case of (SP) and prove:

Theorem 3. Let H E C(UxRxRN) satisfy (HO) - (H3). If also (3.2) holds, then

. there is a modulus m depending only on C,

(3.3) a(R)- mR(R),

-14-
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(where umR is from (11)), and % (from (H3)) such that if u E UC(Ot) is a

*.. vicosity solution of (SP) then.

( (3.4) Juli) - u(y)l C M(Ix - Y1) for x,y R ".

Moreover, if (3.2) holds, then

(3.5) IU(x)l -C Co + jxj) + a(c).

Proof of Theorem 3.

We begin vith the estimate (3.5). The proof, given our comparison result,

is essentially the sam as the proof of [8, Proposition 2.21. The only property

* "of a needed is

(3.6) IH(x,t,u,p) - H(x,t,u,O)l - O(R) for Ipl - R.

In order to guarantee that C'-

Vx) - Alxt + D,

where A, B ) 0, solves v + H(x,v,Dv) ) 0, we observe that

v + H(x,v,Dv) ) Alxl + B + H(x,0,ADlxI) -

-) Alx + B + H(x.0,0) - O(A) ; Alxj + 8 - c1l + Ixl) - O(A),

and then take A - C and B - C + o(C). (We are being a little bit formal,

however, the subdifferential of Ixi at the origin is the unit ball, and

.* so DJlx stands for an arbitrary vector in the ball at x - 0, and the computation

is valid.) The estimate (3.5) with u in place of Jul now follows from

comparison. One then estimates u below by - v in a similar way to complete the

proof.

Next, we can prove in a similar way that if C is from (3.2), then

(3.7) lu(x) - u(y)l 4 clx - yj + (C + 2o(C)). '

Indeed, observe that

(3.8) z(x,y) - u(x) - u(y)

is a viscosity solution of

z + H(x,u(x),Dxz) -H(y,u(y),-DyZ) -,

-15--
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and so the monotonicity property of H guarantees that

(3.9) z(x,y) + H(x,u(y),D Z) - H(y,u(y),-DyZ) 4 0 on {z > 0).

Define H:VIx"xRtRxR x = R2xR2 + R by

(3.10) H(x,y,pq) = inf(H(x,rp) - H(y,r,-q)).
rER"

Clearly (3.9) and (3.10) imply

(3.11) z + H(x,yDxZDyz) 4 0 on (z > 01,

and it is also obvious that H satisfies (HO) - (H3) on R2NXR2N. We seek

solutions

(3.12) v(x,y) - Aix - IyT + B
B.

of

(3.13) v + H(xyDxvDyv) ) 0 on R2N ,

where A,B > 0 and 0 < y 4 1. We make some formal (when x y) estimates below .-t
which one can (following Ishii) make rigorous by first replacing

Ix - ylY by (Ix - y12 + E)Y/2) and then letting e + 0. We estimate for all r:

V + H(x,r,Dxv) - H(y,r,-Dyv) > Aix - ylY + B +
-- (3.14)

H(x,ryAIx - yly-2 (x - Y)j - R(y,r,yAjx - yl- 2 (x - y)).

In the case y I we use (3.2) and (3.6) to estimate the right hand side of

(3.14) below by

Aix yj + B (c(1 + Ix yj) + 20(A))

*: so v satisfies (3.13) if

A C and B- 2a(C) + C.

Since z 4 v on 3{z > 01, we use the comparison result for (SP) to conclude that

* (3.7) holds. We will use the bound (3.7) while estimating the modulus of

• "continuity. Let y < 1. We will compare z and v only on the set

(z > oi n (jx - yj < I -

so we want z 4 v on the boundary of this set. By (3.7) this will hold if

(3.15) A P 2C + 20(C),

We guarantee this by setting, for reasons which will soon be evident,

-16-
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(3.16) A max(2C + 2o(C), %MC1  + 1). P..

Next we use (H3) to estimate the right-hand side of (3.14) below by

AIx - yly + B - -(YAIx - y + Ix - yi)

and, thinking of AIx - yly as r, we see this is nonnegative on (ix - <I < 1)

provided that

B K 1(Y) - mmx{m(yr + (r/A) 1 1  
- r: 0 1 r 4 A).

Since A > m.B(l) by (3.16), Lemm 1 yields

(3.17) K(0+) - 0.

We now have shown that

u(x) - uly) 4 MY) + AIx - yly for 0 < y < 1 and Ix - yj <1,

where A is independent of y and (3.17) holds. Thus

mlr) - inf{K(y) + Ary: 0 < y 4 1}

provides the desired modulus on (0,11.

Proof of Existence for (SP).* It follows from Theorem 3 and the uniqueness that

if {Hn } is a sequence of Hamiltonians on fKPaXxa satisfying (HO)-(H3), (3.1) and

(3.2) uniformly (with the same mR , m, C), un ( UC(AW) are solutions of

un + Hn(xun.Dun) - 0 .*

and On tends locally uniformly (on IxFKMM) to a limit H, then there is a -' -

solution u E UC(R") of u + H(x,u,Du) - 0 and un + u locally uniformly. Thus

existence follows if, given R satisfying the assumptions, we can produce

sequences {Rn) and {un). Let 0 C(R) be nonnegative, symmetric, 0(r) - 1 for
SIn C 1 and 8(r) - 0 for Irl ; . Put Hn(x,u,p) - H(x,u,e(Ipl/n)p). clearly ,n

.. 1 n 0 )

satisfies the required conditions uniformly and also, for fixed n, Hn satisfies .,';

(HO) - (H2), (H3)'. Ishii's existence theory may be invoked to provide the un

and we are done.

We turn to the Cauchy Problem.

4:17 o

,' ""' ': ,-'.- :'.'.","." -, "'. •~ -'," " .. '.". . 4.-"- . " ,.- .. ,..,.. . ..-. -. .." .v .4.'.~ ".' .,•'..'.. '.. . '•. .



Modulus of Continuity f or (CP).

Theorem 4. Let H E C(3Ox[0,T]x~tRN) satisfy (HO) -(H3), (3.1), (3.2) and

(3.6). Let u E ucx(§Px[0,Tj) be a viscosity solution of ut+ H(x,t,uDu) =0 on

ROx(0,TI. Let C0 be a constant, p(x) u(x,O) and mq be a modulus such that

bPoxl -c 0 (I + lxI) and b~p(x) - (p(y)l 4 C0 (1 + Ix -yj),
(3.17)

and I (x) - cP(Y)I 4m(I O - yI) for x,y C IP*

Then there is a modulus m depending only on C (from (3.1), (3.2)), C0, mo (from

(3.17)), mH (from (H3)) and T such that

*(3.18) lu(x,t) -u(y,t)I 4 m(Ix -yI) for x,y E RH and t E [0,T].

moreover,

lu(x,t)1 ( + t)(AOIxI + Bo) and

* (3.19)

Iu(x,t) -u(y,t)l 4 (1 + t)(AOlx - j + B0),

where

(3.20) A0  max(C,C0 ), B0  max(C0,C + 2a((l+T)A0 )).

Also for each R > 0 there is a modulus mR depending only on C, cc), moo a# mH# T 9.

and F vhere

F(R) niax(IH(z,t,r,0)I: Izi-C R, t E 10,T], In'- A0R+B01,

such that

*(3.21) tu(x,t) -u(x,s)I 4 m'R(It -si) for x,y E BR(O) and t,s E [0,T].

Proof. The strategy of proof is the samse as in the previous case. To verify

* the first inequality of (3.19), one shows that

v = 1+ t)(Alxl + B) 1
solves vt + H(x,t,v,Dv) > 0 and v(x,0) > u(x,O) = O(x) provided that

Aixi + B ), max(Co(lxI + 1), co1 + lx I) + 0((1 + T)A)),

* so the values given by (3.20) work.

We next set

z(x,y,t) =u(x,t) -u(y,t)

which, by Lemma 1 and WH), is a solution of



p..

(3.22) t + H(xOYDxz,Dz) 4 0 on (z > 0)

where

(3.23) H(x,y,p,q) - inf(H(x,t,r,p) - H(y,t,r,-q): r E R, t E [0,T])

satisfies (9O) - (H3). We seek some solutions v of vt + H(X,y,DXV,DyV) • 0 on

(ix - yj < 1) on the form

(3.24) v(x,y,t) 0 (1 + t)CAix - YI' + B)

where A, B o 0 and 0 < y ( 1. If y - it suffices to have .

Aix- yj + B P C(I + Ix- yj) + 2o((1 + T)A),

since

C(1 + Ix- yj) + 2o((1 + T)A) ; 0

H (y,t,r,-(1 + t)ADYIx -YI) -H(2c,t,r,(1 + t)AD1IX -I)

- We also have v(x,y,0) ) u(x,0) - u(y,0) if AIx - YI + B ) C 0(1 + Ix- YI). By

" comparison we conclude that the second inequality of (3.19) holds.

In the case y < 1, the inequation is satisfied by v on (Ix - yI < 11 if

(3.25) AIx - yl + B ;, 1(I + T)YAlx - yl + IX - yl)

while v(x,y,O) ) z(xy,O) holds on (Ix - yj < 1) if

(3.26) Ax - y1Y + B - (Ix - yI) on (1x- 1 ' 1 

and, by (3.19), v(x,y,t) ) u(x,t) - u(y,t) on {Ix- yj " 1}xLO,T] if

(3.27) A + B ; A0 + B O O

We achieve all these conditions as follows: Put

(3.28) A - max(A0 + B 0 NO1) + 1, m(0(1) + 1),

which guarantees (3.27), and then

(3.29) B -K(Y) uax{,((+T)yr+(r/) m )I/Y)-r: 0 ( r IC A).

by Lem a I

(3.30) K(O+) - 0

and so the estimate

(3.31) u(X) - u(y) 4 AIx - yfl + K(y) for Ix - <I ( 1, 0 < y 4 1, .-.

provides the desired modulus m.
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We turn to the estimate of the modulus in t. Here we will depart more

dramatically from Ishii's analysis in order to obtain some new information even

in the case he treated. (We leave it to the reader to adapt Ishii's analysis to ,N
the current case.) To understand what follows, let us consider two extremely

simple cases of the problem

(CP) ut + H(x,t,u,Du) = 0 on R0x(O,T]and u(x,0) = p(x) on

In the first case, put H(x,t,p) = f(x). The solution of (CP) is then

u(x,t) = P(x) + tf(x). If f is unbounded, then u is unbounded and u is not

uniformly continuous in t uniformly in x. In the second case, put

tW
H(x,t,u,p) - u. Now the solution of (CP) is u(x,t) - e-t(P(x). If (P is

unbounded then u is unbounded and u is not uniformly continuous in t uniformly

in x. However, these cases illustrate the only way in which unboundedness and

lack of uniform continuity arise. This is the main content of the proposition

we will prove next. This proposition involves the auxiliary function U(x,t)

which is defined by letting t + U(x,t) be the solution of the following ode

intial-value problem:

(3.32) U' + H(x,t,U,O) 0, U(x,t) - x),

where ' means "d/dt". The continuity of H and the monotonicity of H(x,t,U,0) in

U guarantee that U is well defined on RNx[O,T] and it is easy to see that

U E UC x(Ox[OT]} Since U is a viscosity solution of Ut + G(x,t,U,DU) 0

where G = H(x,t,U,0) satisfies the necessary conditions, we deduce from the

above that

(3.33) IUlx,tll 4 A01xl + Bo

with constants from (3.20). From (3.33) and (3.32) we conclude that

(3.34) IU'(x,t)l 4 F(R) for lxi C R

so U is Lipschitz continuous in t uniformly for bounded x. Thus the assertions

concerning the modulus in t locally in x of Theorem 4 follow from the part of
L

Theorem 4 already proved and:
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Proposition 1. Let the assumptions and notation of Theorem 4 hold. Let U be

defined by (3.32) where u(x,O) = 9(x). Then there is a function g:[O,T] " .

with g(0+) - 0 and depending only on C from (3.1), (3.2), C O , mv (from (3.17)),

m0 (from (Hi)) and O (from (3.3)), such that

(3.35) lu(x,t) - U(x,t)l C g(t) for x ( 1P, t E [0,T].

Remark 6. The proposition suffices to establish the local modulus in t since a

uniform one-sided continuity is a uniform two-sided continuity and the

continuity estimate of the Proposition at t -0 may be repeated at any t > 0.

Proof. By Lema 2 and (H2), z(x,y,t) - u(x,t) - U(y,t) is a viscosity solution

Of

(3.36) zt + H(x,y,DxZDyz) < 0 on (z > 0),

wheoe

(3.37) H(x,y,tp,q) - inf{H(x,t,r,p) - H(y,t,r,O): r E Rt, t E [0,T])

satisfies (H0) - (83). In the usual way, if A0, Do are given by (3.20)

(3.38) Iu(x,t) - U(y,t)lj (1 + t)(AOIx - YI + n 0 )

because the right-hand side is a supersolution of (3.36), etc.. Now we seek

another supersolution on Ix - y I < 1 in the form

(3.39) v(x,y,t) 0 (1 + t)A(x - y12 + )Y/ 2 + tS + D

where A, B, D ) 0, 0 < y C 1 and e > 0, which further satisfies

(3.40) v(x,y,O) • m1(x - yj 1) u(x,O) U(y,0) = (x) - 0(y)

and

00(3.41) vlx,y,t) ) (1 + ?)IA0 + DO  ulx,t) - Uly,tl if Ix - yI - 1. %.

If we achieve all these things, then

(3.42) u(x,t) - U(x,t) C v(xx,t) C (I + t)Ae y/ 2 + tB + D

by comparision.

We leave it to the reader to verify that (3.41) holds for arbitrary B, D :

*~ Oif

(3.43) A m ax((1 + T)(A0 + B0 ),mj11) + 1),
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and then, with A now fixed by (3.43), (3.40) holds if

(3.44) D , Kl(y) - max{ m0((r/A)/'Y)) - r: 0 4 r 4 A).

Finally, we use that ID.A(Ix - y12 + £)y/21 C Ay/(E 1 - 'y ) / 2 ) to conclude that v

is a supersolution on ix - yI < 1 provided

(3.45) B - K2 1¥, ) = O(Ay/(1- 1 / 2 ) + m (1).

But now we are done: A is fixed, D tends to zero with y and so the right hand

side of (3.42) can be made as small as desired by taking e small, then y small

and, finally, t small. A lower bound is produced in the same way.

Remark 7. Using a similar (but somewhat more complex) argument one can prove u

- U E BUc(RNx(0,T1). In particular, if H(x,tu,p) is independent of u, the above

proof adapts to show that

t
u(x,t) - P(x) + J H(x,T,0)dT a.--

0

is uniformly continuous in t with a modulus depending only on the usual data.

The analogue for (SP) of these results is that if O(x) is defined implicitly by

the equation

U(x) + H(x,U(x),0) - 0,

and u is the solution of (SP), then u - U E BUC(RM).

Existence for (CP). ." "

Theorem 4 and the same device which was used to establish existence for

(SP) succeed here, and we need not repeat the argument.

Remark 8. The existence results cn be used together with Remark 5 to strengthen

the comparison results when 0 - R". We illustrate this for (SP) - the analogous

remarks hold for (CP). let H E C(3MxR") satisfy (HO) - (H3). Let u,v E C(EP)

be a sub and a supersolution of (SP) on le such that there is a constant K for

which Ii
Iu(x) - u(y)I + Iv(x) - v(y)j 4 K(1 + Ix - yj) for x,y E RP.

Then u 4 v. Indeed, let w E UC(I) be the solution of (SP) provided by

-22-
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Theorem 2. By Remark 5, u C w and w 4 v, so the assertion is correct.

Remark 9. The conditions (H3) and (H3)' are not "natural" in the sense that

they are not invariant under simple changes of variables. Hence, for example,

they are not sensible on manifolds. To extend the scope of our results to

. include manifolds, we will formulate a generalization of (H3), and to this end

let us consider the following properties of a metric (x,y) + d(x,y) on R:"

There are constants A, A such that
0dl)

Xix - yj 4 d(x,y) C Aix - yj for x,y E R::

(d2) For z,y E R" and z 1 y, the map x + d(x,y) is differentiable at z.

We will denote the derivative of the map x + d(x,y) at x and the map y + d(x,y)

at y by dx(x,y) and dy(x,y) respectively. The generalization of (H3) is: L

There is a distance d satisfying (dl) and (d2) and a modulus mH such

(H3)0 that for all (t,r) E (0,T]XR, x,y E R" and ) 0

H(x,t,r,CdCx,y)) - N(y,t,r,-Cdy(x,y)) 4 -mNlUCx - yI + Ix - yl).

The uniqueness arguments go through if (H3) is replaced by (H3)" when one

Sieplaces ix - Yl by d(x,y) at appropriate points in the proofs. Moreover, one

can work more generally on manifolds. The extension of the existence assertions

to manifolds deserves more than a remark and will be considered elsewhere.

LL
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