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ABSTRACT

This report describes the development and application

of a program to forecast important air/ocean parameters using

the method(s) of model output statistics. The focus of this

operationally oriented study is to forecast atmospheric

marine horizontal visibility using a discrete analysis of

observed visibility and the Navy'Is Operational Global Atmos-

pheric Prediction System (NOGAPS) model output parameters.

Three strategies (two based on maximum-probability and one

based on natural-regression) are compared to two multiple

linear regression methods. The primary data set is from a

North Atlantic Ocean area bounded approximately by the North i
American coast from Norfolk, Va. to St. Johns, Newfoundland,

and then eastward to about 37.50W. Both the dependent and

independent data were derived from the same basic set. New

or unfamiliar concepts, in addition to the primary methodology,

include the statistical division of the North Atlantic Ocean

into physically homogeneous areas, two new threshold models

for the application of linear regression equations, linear

regression based upon a 'decision-tree' concept, functional

dependence of predictors and class errors. Results showI

that the methodology proposed by Preisendorfer does out

perform multiple linear regression.
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I. INTRODUCTION AND BACKGROUND

Model output statistics (MOS) is a technique whereby

parameters output from numerical weather prediction models

(predictors) are statistically processed, with observed

data, to produce forecasts of one of the following cate-

gories of parameters (as predictands):

a. operationally important parameters not output by the

numerical prediction model (e.g., visibility, cloud

cover, ceiling).

b. model output parameters whose predictive skill is

improved (e.g., surface wind, temperature) due to

correction of numerical model bias and/or scale.

Historically, the methodology has consisted of generating

empirical equations by a linear, least-squares regression

model. This technique is used by both the National Weather

Service and the United States Air Force Air Weather Service

and has demonstrated operationally usable skill in forecast-

ing numerous weather elements at locations over land i-i
throughout the world [Best and Pryor, 1983]. Attempts by

the United States Navy to forecast open-ocean fog and visi-

bility using linear regression equations have shown skills

of marginal operational usefulness but exceeding those of

persistence and climatology [Aldinger, 1979; Yavorsky, 1980;

Selsor, 1980; Koziara et al, 1983; Renard and Thompson, 1984].

14



Presumably, this level of performance is duet in part, to

the lack of 'calibrated' fog and visibility observations.

Shipboard weather observers lack sufficient reference points

to be able to accurately estimate the range of atmospheric

visibility.

In the spring of 1983, the United States Navy made the

decision to begin development of a MOS program to forecast

operational air/ocean parameters over the oceans of the

world. Primarily, because of the importance of horizontal

visibility to the mariner, this parameter was elected to be

the initial candidate. However, because of less-than-perfect

prior results using linear regression in the North Pacific

Ocean, it was decided to investigate other methodologies

to determine if a better one could be found.

This study presents statistical methodologies proposed by

Preisendorfer (1983 a,b,c). Specifically, three strategies,

two based on maximum-probability and one based on natural-

regression, are further developed, tested and applied to sets

of model output parameters from both the North Pacific and

North Atlantic Ocean areas. In addition, multiple linear

regression is applied to the same data. Innovative threshold

techniques, developed by Lowe (19 84a), are also applied, and

methodologies are compared.

In the following discussion, a sufficient number of terms

and symbols are defined to allow readers without strong

statistical backgrounds to understand the results. However,

15



for a proper understanding of the Preisendorfer (1983 a,b,c)

methodology, readers are encouraged to read Appendix A,

which contains a detailed discussion. Similarly, details on

the linear regression model and threshold procedures [Lowe,

1984a) are to be found in Appendix B.

16
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II. OBJECTIVE AND APPROACH

The objective of this study is to determine if a statis-

tical methodology, applied to discrete values of model

output and derived parameters, can improve upon the fore-

casting of horizontal marine atmospheric visibility when

compared to linear regression. The approach is as follows:

a. define categorical groupings of visibility which -

relate to operational use at sea.

b. develop and apply the Preisendorfer (1983 a,b,c)

methodology using July 1979 North Pacific Ocean data.

C. apply the methodology developed in b. above to June

1983 North Atlantic Ocean data.

d. compare Preisendorfer (1983 a,b,c) results to those

of the Lowe (1984a) linear regression approach for '

the North Pacific, and North Atlantic Ocean data sets.

.°

." -
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III. DATA

A. VISIBILITY OBSERVATIONS AND SYNOPTIC CODE

Visibility observations at sea are reported as one of

ten synoptic codes, ranging from 90 (visibility less than

50 m) to 99 (visibility equal to or greater than 10 kin).

However, in view of the inexactness of observing and record-

ing marine visibility, in category form, and the further

degradation of its interpretation by users in forecasting,

a simplified categorization of visibility was developed as

follows:

caeoysynoptic code visibility range

I 90-94 < 2km

II 95-96 > 2 km and < 10 km

111 97-99 > 10 km

This scheme is based upon the following operational

criteria, which applies when observed visibility falls below

the indicated value:I

1. 10 km (5 n mi) --United States Navy aircraft carrier

flight recovery operations change from visual to con-

trolled approach [Department of the Navy, 1979].I

2. 2 km (1 n mi)--sounding of reduced visibility signals

for all vessels operating in international waters.

(The term 'reduced visibility' is not defined in the

18
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International Regulations for Preventing Collisions at

Sea, 1972. However, United States Navy Captains and J
Merchant Marine Masters generally consider it to be

1 ni mi.)

B. NORTH PACIFIC OCEAN DATA

The data from the North Pacific Ocean are described by

Selsor (1980) and Koziara et al (1983). Only the July 1979

model initialization (TAUO0) data are used, consisting of 19

model output parameters (MOP) from the Northern Hemisphere

models operational in 1979, namely, the Mass Structure Analy-

sis, the Primitive Equation and the Marine Wind Models; and

one climatological visibility parameter from the National

Oceanic and Atmospheric Administration's National Climatic

Data Center (NCDC), Asheville, North Carolina. Two additional

parameters were derived from this set. A description of the

parameters is found in Appendix C.

C. NORTH ATLANTIC OCEAN DATA -:

1. Area

The North Atlantic Ocean, from 00 to 800N, was

divided into physically homogeneous areas by Lowe (1984b)

using an appropriate cluster analysis technique. The primary

area used in this study is identified as area 3W on Fig. 1,

which illustrates the North Atlantic Ocean homoegeneous areas.

This area was chosen because of the relatively frequent

occurrence of poor visibility as compared to the other areas.

19



A summary of visibility frequencies, for each homogeneous

area and three visibility categories, is contained in Table I.

2. Time Period

Data from 15 May 1983 through 15 July 1983 were

combined to form the June 1983 data set, hereafter referred

to as FATJUNE. FATJUNE was chosen as the initial data set

because of the high frequency of occurrence of poor visi-

bility during this period. In order to maximize the credi-

bility of visibility observations, 1200 GMT synoptic ship

report data were used exclusively since this time corresponds

to daylight over the entire area of study during FATJUNE.

Model output parameter data (predictors) at 1200 GMT

model output time, hereafter referred to as TAUOO, were used

in the development of the Preisendorfer (1983 a,b,c) methodology,,

time not being available to pursue the scheme beyond that

stage. Thus, TAUO represents model initialization time.

However, the term 'forecast' will be used throughout this

study to represent the estimate of visibility at this

initialization time.

3. Synoptic Weather Reports

All synoptic visibility observations (predictand

data) for this study were quality-control checked and pro-

vided by the Naval Oceanography Command Detachment (NOCD)

co-located with the NCDC. Those furnished observations which

contain systematic observer error or are suspect or obviously

erroneous, as determined from the data quality indicators,

are not incorporated in the final data set.

20
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4. Predictor Parameters

Fifty TAUOO model output parameters (MOP's) (predic- I
tor data) were provided for the period of study by the Fleet

Numerical Oceanography Center (FNOC), Monterey, California.

These parameters are from their current operational prediction

model, the Navy Operational Global Atmospheric Prediction

System (NOGAPS). All MOP's were interpolated from model grid

coordinates to synoptic ship observation positions using a

linear interpolation scheme. Of the 50 parameters provided,

only 35 were used in the development of the Preisendorfer

(1983 a,b,c) and Lowe (1984a) methodologies, the remainder

being considered as either having little likelihood of

importance in the forecasting of visibility or not usable

due to the lack.of significant digits (which were lost during

the transfer from FNOC tapes to the main computer center's

mass storage data system). Twelve additional parameters were

derived from the interpolated MOP's. Seven of these are

equations derived from a linear regression model which will

be described in Chapter V and Appendix B. Each equation

represents an estimate of the visibility category, which is

used as a predictor. A list of all of the predictor param-

eters is provided in Appendix D.

D. DEPENDENT/INDEPENDENT DATA SETS

Due to the limited amount of data available to this

study for each of the North Atlantic Ocean homogeneous

areas, it was necessary to withhold one-third of the

21
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observations from the developmental model to use as an inde-

pendent data set. This was accomplished by the use of a

counter and transfer statement in the computer programs which

prevented every third observation from entering the develop-

mental computations. To ensure that the dependent and inde-

pendent data were representative of the same population, a

95% confidence interval for proportions (Miller and Freund,

19771 was established from the entire data set, for each

visibility category, and the dependent and independent data

sets were constrained to have visibility frequencies within

these established confidence intervals. This same procedure

was applied to the North Pacific Ocean data for consistency of

method. Table II summarizes the dependent and independent

data for both the North Atlantic Ocean and North Pacific

Ocean data sets.

22
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IV. PRELIMINARY EXPERIMENTS

A. TERMS AND SYMBOLS

The terms and statistical symbols defined below will be

used throughout the remainder of this report. The formal

mathematical definitions can be found in Appendices A and

E.

1. Maximum-probability strategy--choosing forecast

visibility categories based upon the highest conditional

probabilities of visibility within a predictor interval.

2. MAXPROB1--designation of the maximum-probability

strategy in which ties of the highest conditional

probabilities in a predictor interval are resolved by

the generation of a random number.

3. MAXPROB2--designation of the maximum-probability

strategy in which ties of the highest conditional

probabilities in a predictor interval are resolved by

assigning the lowest visibility category, of those

tied, as the forecast category.

4. Natural-regression strategy--choosing forecast visi-

bility categories based upon the statistical average

of the conditional probabilities of visibility within

a predictor interval.

5. a0--the probability of a zero-class visibility category

forecast error (e.g., if visibility category I is fore-

cast, it is also observed).
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6. a1--the probability of a one-class visibility category

forecast error (e.g., if visibility category I is

forecast and category II is observed).

7. a2--the probability of a two-class visibility category

forecast error (e.g., if visibility category I is

forecast and category III is observed).

8. CE--class error parameter defined as a1 + 2a2, used to

identify the first predictor.

9. PP--the potential predictability of visibility by

any given predictor.

10. FD--the functional dependence of one predictor on

another. This is a measure of functional dependence

of a statistical kind and not of the deterministic

kind. The term 'functional dependence' is used by

Preisendorfer (1983c) and; being sufficiently descrip-

tive of the concept, it will be used herein.

11. RSS FD--root sum squared FD. The functional dependence

of a predictor on all predictors already included in

the developmental model. It is equal to the square-

root of the sum of the squares of the individual FD's.

12. TSl--threat score for visibility category I computed

from a contingency table.

13. ATSl--adjusted threat score for visibility category

I which removes the influence of the data set category

frequency.
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14. AAO--adjusted a0. A contingency table statistic

which removes the influence of the most frequent visi-

bility category in a set of data (similar to a nor-

malized value).

15. EPI--equally populous predictor interval used to

discretize the predictors.

B. COMPUTER PROGRAMS

Four computer programs were developed to test the

proposed Preisendorfer (1983 a,b,c) methodology. The

programs are on file in the Department of Meteorology, Naval

Postgraduate School, Monterey, California, 93943.

1. A program to compute a0 , a1 , CE and PP for all predic-

tors, all strategies (MAXPROBI, MAXPROB2 and Natural-

Regression) and a single number of EPI's. Statistics

for the three strategies are based upon the same pre-

dictor(s) rather than the best predictor(s) for each

strategy. It was determined during program development,

and will be shown in Chapter VI, that, in general, each

of the strategies chose the same predictor(s).

2. A program to compute FD for all predictors, on a given I
predictor, for a given number of EPI's, and to compute

the upper 5% critical value (FD(96)) by Monte-Carlo

means (Appendix A).

3. A program to construct contingency tables and to com-

pute skill and threat scores, for both the dependent

and independent data.
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4. A program to generate 100 random data sets, from the

marginal probabilities of the predictor(s) in the

developmental model, and to compute upper and lower I5% critical values for a0 and aI to be used for test-

ing the significance of the results from the Preisen-

dorfer (1983 a,b) methodology against chance.

C. BEHAVIOR OF a0 AND THREAT SCORES

Before attempting a formal application of the Preisen-

dorfer (1983 a,b,c) methodology, it was considered prudent

to investigate the behavior of certain statistics as the

number of equally populous predictor intervals was changed

and as new predictors were added. It was found, during

program testing and before a formal procedure had been estab-

lished, that the independent data threat score of visibility

category I (TSI) generally showed higher values than other

threat scores (TS2, TSI2) for the independent data. There-

fore, it was decided that the dependent and independent data

a0 and TSl scores would be compared. The statistic a0 was

chosen because it is the singularly most important scoring

parameter in the Preisendorfer methodology.

The experiment consisted of choosing the first predictor

as that one which gave the highest a0 value when divided

into ten equally populous intervals. Once this predictor

was chosen, dependent and independent data a0 and TSl scores

were computed for each number of intervals as the number was

varied from two to 100. Prior to proceeding to the next
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step, the number of intervals which gave the highest indepen-

dent data TSl score was identified and the first predictorI

was held at this number of intervals for the remainder of

the experiment.

Subsequent predictors were chosen by both a maximum a 0

test and a functional dependence test. As each subsequent

predictor was identified, its number of equally populous

intervals was varied from two to 50 (or less, as the maximum

array size waq set at 120,000). The number of equally popu-

lous intervals giving the highest independent data TSl was

identified and held fixed for the following stage. This proce-

dure was repeated until either six predictors were used or

until a new predictor addition did not allow the comparison

of at least intervals two through ten, due to computer

storage limitations. It should be noted here that all of

the North Atlantic ocean parameters, not including linear-

regression equations, were used in these experiments and,

subsequently, some parameters were removed from consideration

(Appendix D).

1. Maximum a Method

The first NOGAPS predictor selected was SMF which

was varied from two to 100 EPI's (Fig. 2a) and the highest

TSl score was obtained with six intervals. The second pre-

dictor chosen, when SMF was held at six intervals and all

others at ten, was DTDP which produced the highest a 0 value

for two predictors. Holding SMF at six intervals, DTDP was

varied from two to 50 intervals (Fig. 2b) and the highest
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TS1 score was obtained at 20 intervals. Anticipating problems

with the subsequent array size with respect to the number of

predictors which could be included, the secondary TSl maximum

at 16 intervals was used for further stepping. The third and

subsequent predictors and their optimum interval sizes were

PS at 12 (Fig. 2c), UBLW at ten (Fig. 2d) and V400 (Fig. 2e).

The optimum number of intervals for V400 was not germane as

no further stepping was done after this step. As illustrated

in Fig. 2, the dependent data statistics aymptotically approach

unity, as predictors are added, while the independent data

statistics (approximate maximum values: a0 = .70, TSl = .35)

show no further increase after the third predictor is includd,

which may imply a limit as to how well the methodology per-

forms on this particular data set.

2. Functional Dependence Method

As functional dependence is not considered until after

the selection of the first NOGAPS predictor, Fig. 2a is also

applicable to this method. Subsequent predictors were chosen

as those having the lowest RSS FD using ten equally populous

intervals. The predictors selected and their optimum inter-

val sizes, for the TSl score, were RH at three (Fig. 3a),

DUDP at four (Fig. 3b), VOR925 at two (Fig. 3c), ENTRN at

14 (Fig. 3d) and UBLW (Fig. 3e) which was the last predictor

considered. As seen for the maximum a method, the dependent

data statistics asymptotically approach unity. However the

independent data statistics continue to grow at least through
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the addition of the sixth predictor (approximate maximum

values: a .71, TS1 = .38) . This method gave better results

than the maximum a method, though it, too, may imply a

limit. The results of this experiment also tend to show a

preferential selection of a small number of EPI's, for best

independent data TSl score, as well as indicating that func-

tional dependence is a relatively good choice as a deciding

f actor for choosing predictors.

D. BEHAVIOR OF FUNCTIONAL DEPENDENCE

Another statistic investigated prior to the formal

application of the Preisendorfer (1983 a,b,c) methodology

was the distribution of functional dependence (FD) calculated

from 100 randomly generated data sets. The FD calculation is

based upon the relationship of the distribution of one pre-

dictor to another. Because the predictors are divided into

the same number of EPI's for the calculation, the probability

of a randomly generated number falling into any given inter-

val for either predictor will be the same. Therefore, the

randomly generated FD values should be a function only of

the number of intervals and the number of data cases (subse-

quent randomly generated calculations, during the formal

application of the methodology, showed this to be true).

The randomly generated FD experiment consisted of com-

puting the mean, upper and lower 5% critical values, and the

standard deviation of the 100 randomly generated values for

both 1526 observations (as in the North Atlantic Ocean Area
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3W dependent data) and 3682 observations (as in the North

Pacific Ocean dependent data) and a comparison of the

results. As illustrated in Fig. 4 the FD values are similar

for a given interval size differing only in the size of the

confidence interval and the standard deviation. The FD

values calculated for 3682 observations lie totally within

the upper and lower 5% critical values for 1526 observations.

Because of this relationship, future FD(96) values, used to

qualitatively determine how well a new predictor will con-

tribute to the developmental model, can be obtained by read-

ing from the graph rather than using valuable computer

resources, providing the number of equally populous intervals

is less than or equal to ten.
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V. PROCEDURES

A. PREISENDORFER METHODOLOGY

1. Determination of the First Predictor in Relation
to the Number of Predictor Intervals

A matter not considered in Preisendorfer (1983 a,b,c)

is how to chose an optimum number of equally populous pre-

dictor intervals (EPI's) into which predictor data should

be divided. During the course of development, two important

realizations became evident, namely, (a) there is a tendency

for the methodology to give better results using a small

number of intervals, and (b) the NPS W.R. Church Computer

Center limits internal computer storage space to two mega-

bytes for routine programs. The first suggested, while the

second forced, the research to be limited to EPI's of less

than or equal to ten if more than three or four predictors

were to be considered. Once this was established, a proce-

dure was developed to look at all EPI's within the stated

limit.

The procedure involves computing the initial statis-

tics (a0 , a1 , CE and PP) for each predictor, for each strategy

(maximum-probability and natural-regression) and for EPI's

of two through ten. Then, the best first predictor for each

number of EPI's is determined, for each strategy, by meeting

one or both of the following conditions, when considered in

the indicated order:
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a. lowest CE

b. highest PP

Once the best predictor for each number of EPI's is

known, it is then necessary to determine the optimum number

of EPI's. This is accomplished by computing threat and skill

scores (Appendix E) for both the dependent and independent

data and choosing, as the optimum number of EPI's, that which

gives both a relatively high adjusted a0 (AAO) for the depen-

dent data and a relatively high adjusted threat score for

visibility category I (ATSl) for the independent data. This

becomes a somewhat subjective endeavor and remains as the

only imprecise step in the methodology.

The statistic ATSl is used on the independent data,

instead of a0 , because it is the poor visibility categories

(I and II) that are of primary forecast interest and their

forecastability is manifested in their threat scores. It

will be shown that, in general, the adjusted threat score

for visibility category II (ATS2) and for combined visibility

categories I and II (ATSl2) are small compared to ATSI, or

negative, and that ATS12 is maximized when ATS1 is maximized.

Additionally, it will be shown that maximum a0 does not

necessarily coincide with maximum ATS1 in the independent

data. Hence, if a0 was used, the optimum combination of

predictors necessary to forecast the poor visibility cate-

gories would not be included.

Once the number of EPI's is established, it is fixed

for all subsequent predictors considered for the developmental
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model. Holding the number of intervals fixed is not an

absolute necessity, however it allows for a much more rapid

development of the model. Once this number is determined for

the first predictor, it is used to calculate FD for the next

predictor because FD is calculated using the established

number of EPI's. The next stage statistics (a0, al, CE and

PP) are also computed with each predictor divided into this

same number of EPI's.

2. Choosing the Second Predictor

The second predictor to be included in the model is

determined from its FD on the first predictor and from the

increase in a0 resulting from its inclusion. This is accom-

plished by computing a0 with two predictors, namely, the

first predictor, as determined above, with each of the

remaining predictors. Those predictors which do not increase

a0 above its value as determined with the first predictor

alone, are removed from further consideration for inclusion

into the set of predictors in the developmental model. FD

for each of the remaining predictors vs. the first predictor

is computed. The remaining predictor with the lowest FD,

on the first predictor, is chosen as the second predictor in

the model.

3. Choosing Subsequent Predictors

Subsequent predictor determination is similar to the

second predictor determination. Compute a0 with N predictors

(N = I,...,M+l; M = the number of predictors already in the
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developmental model), that is, the first through Mth pre-

dictors, as previously determined, and each of the remaining

predictors. Those predictors which do not increase a0above

its value as determined with M predictors are removed from

further consideration. RSS FD is computed for each of the

remaining predictors and the one with the lowest RSS FD is

chosen as the Nth predictor in the model.

4. Significance Tests

After each stage (i.e., after each new predictor to

be included in the developmental model is determined) it is

necessary to determine if the results are significant. This

is accomplished by Monte-Carlo means using the data set

marginal probabilities of the predictors and assuming equal

probability of occurrence for visibility categories (Appen-

dix A). The statistics a 0 and a 1 are computed-.for each of

100 randomly generated data sets of a size equal to the

number of observations in the dependent data set being tested,

and sorted from lowest to highest. The 96th value of a 0

(a 0 (96)) and the fifth value of a 1 (a 1 (05)) are retained as

the upper and lower 5% critical values. For developmental

model results to be significantly better than chance, a 0

must be greater than or equal to a 0 (96) and a1 must be less

than or equal to a 1(05).

5. Terminating the Selection of Predictors

Model development continues until any one of four

conditions are met:
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a. no more predictors remain to be considered.

b. results are no longer significant.

c. required computer region size exceeds that which is

allowed (two megabytes at the NPS W.R. Church Computer

Center).

d. independent data ATS1 does not increase for two

consecutive predictor additions. (It will be shown

that there is a point in the development of the model

where the skill and threat scores for the dependent

data diverge sharply from those for the independent

data. This condition for terminating model development

is a subjective attempt at taking this point into

consideration.)

Once the model development is complete, contingency

tables of forecast visibility categories vs. observed visi-

bility categories, for both the dependent and independent

data, are constructed. From the contingency tables, threat

and skill, scores for both data sets are computed and compared.

B. COMPARISON METHODOLOGY

The results obtained from the Preisendorfer (1983 a,b,c)

methodology were compared to two variations of a linear,

least-squares regression model. The model chosen for the

comparison is that available in the BMDP Statistical Software

(namely BMDP2R) [University of California, 1981] using two

new threshold schemes developed by Lowe (1984c) (Appendix B).

The equations developed by BMDP2R include all predictors which

35



7j -. 1. _ 
.h _1. '._' 1:_ a . a.6

increased R-squared (the proportion of the predictand vari-

ance explained by the estimation of the predictand from the

multiple regression equation) by at least 1%. An excellent

description of this procedure is given by Best and Pryor

(1983), with R-squared being equivalent to their R-value.

1. Method 1

The first linear regression method consists of

generating a single equation, trained on the dependent data,

with the predictand set equal to 1, 2 or 3, corresponding to

visibility categories I, II and III, respectively. This

equation is used to determine threshold values (Appendix B)

and is then applied to the independent data.

2. Method 2

The second linear regression method is based on a

decision-tree scheme using two linear-regression equations

trained on the dependent data. The first equation is

generated with the predictand values set equal to zero or

one, corresponding to combined visibility categories I and

II (0) and visibility category III (1). The second equation

is generated with the predictand set equal to zero or one,

corresponding to visibility category I (0) and visibility

category II (1). Visibility category III observations are

ignored during this linear regression. Threshold values are

then computed for each equation.

When both equations and their associated threshold

values are known, the independent data set is sorted into
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visibility category III and visibility category 'other' by

the first equation, and the 'other' category is sorted into

visibility categories I and II by the second equation.

Following the development of linear regression method 1 and

method 2, contingency tables are constructed, skill and

threat scores computed, and comparisons made with the results

from the Preisendorfer (1983 a,b,c) methodology.

3.
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VI. RESULTS

A. NORTH PACIFIC OCEAN

1. First-Predictor Selection and Interval Determination

The first predictor selected, for equally populous

intervals (EPI's) of four through ten was EHF (Table III).

The constant value for al, maximum-probability strategy,

indicates that there is no predictability for visibility

category II (the least frequent category in the data set)

using a single predictor. A comparison of the dependent

data adjusted a0 (AAO) and independent data adjusted threat

score for visibility category I (ATSI) subjectively deter-

mined the selection of five EPI's for the developmental

model (Table IV; Fig. 5.).

2. Selecting Subsequent Predictors

Once the number of intervals and first predictor

were known, a new a0 computation was made with the first

predictor and each of the remaining predictors. Only six of

the remaining 21 predictors, CLIMO, SEHF, THF, DDWW, H510

and RH, in combination with EHF, gave new a0 values greater

than that for EHF alone (.697); these comprised the pool of

predictors to be consilered for further development of the

model. Functional dependence (FD) with EHF was computed for

each of these six predictors and DDWW was chosen as the second

predictor because it had the lowest FD.
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For the determination of the third through sixth

predictors, a new a0 was computed as a function of all of

the previously selected predictors and each of the remaining

predictors. At each stage, the new a0 computation for each

remaining predictor was greater than that for the prior

stage, so no further predictors were eliminated from con-

sideration. FD was then computed, for each of the predictors

being considered with each of the predictors previously

selected, and RSS FD determined. At any given stage (three

through six) the new predictor added to the developmental

model was that one with the lowest RSS FD. The third through

sixth predictors, in order of selection, are H510, RH, THF

and CLIMO (Table V).

3. Determining the Final Model

The final model for the Preisendorfer (1983 a,b,c)

methodology was determined by comparing the independent data

contingency table statistics, from each developmental stage,

and choosing the fourth stage because it gave the highest

adjusted threat score for visibility category I (ATSI)

(Fig. 6). The contingency tables for stage four and the

related statistics for the three strategies are shown in Table

VI.

4. Linear Regression

A single linear-regression equation was developed

from the North Pacific Ocean data using method 1. Both the

quadratic and equal-variance threshold models (Appendix B)
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were applied but only the threshold values from the equal-

variance model were used to compare methodologies. Table

VII contains the linear regression equation, the visibility

category linear regression statistics and the threshold

values. Contingency tables and related statistics for the

dependent and independent data are shown in Table VIII.

5. Discussion

The best results obtained from the North Pacific

Ocean data were from the Preisendorfer (1983 a,b,c) methodology,

MAXPROB2 strategy, as it has the highest independent data

adjusted threat scores for visibility categories I and com-

bined I/II (ATSl = .20, ATS12 = -.05). Each of the maximum-

probability strategies (MAXPROBl: ATSl = .17, ATS12 = -.10)

did better than linear regression (ATSl = -.16, ATS12 = -.13),

while natural-regression shows the poorest skill (ATS1 = -.02,

ATS12 = -.19).

It appears, from Fig. 6, that most of the usable

forecastability resides in the first predictor chosen. This

would indicate that it may be profitable to search for

better predictors by combining model output parameters,

conducting dimensional analysis or using linear-regression

equation estimates as predictors as was done in the North

Atlantic Ocean experiments which follow.

B. NORTH ATLANTIC OCEAN AREA 3W

Based upon the results obtained in the North Pacific

Ocean, it was decided to use the linear regression model to
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generate equations which could be used as predictors. Seven

such equations were developed, each representing a different

menu of parameters available to the regression model. The

seven equations are included in Appendix D. The Preisen-

dorfer (1983 a,b,c) methodology then proceeded both with

and without these linear-regression equations available as

predictors.

1. First Predictor Selection and Interval Determination

a. Without Linear-Regression Equations as Predictors

The first predictor, for EPI's of four through

ten, varied with the number of intervals (Table IX). A

comparison of the dependent data AAO and the independent

data ATSl determined the selection of eight EPI's for the

model (Table X) and, therefore, SMF as the first predictor.

However, through investigator error, the model was initially

developed with five EPI's and E925 as the first predictor.

Therefore, both results will be presented.

b. With Linear-Regression Equations as Predictors

The first predictor for each EPI of four through

ten is BMl, the predictand estimate computed by the linear

regression equation developed when all of the predictors

were available to the regression model (Table XI). Two of

the EPI's, namely four and eight, have identical, and best,

dependent data AAO and independent data ATS1 scores (Table

XII, Fig. 7), so it was decided to proceed with the develop-

mental model for both intervals.
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2. Selecting Subsequent Predictors

Subsequent predictors were chosen in the same way as

described in the procedures and for the North Pacific Ocean

experiment. The predictors, not including linear regression

equations as predictors, are SMF, D850, RH, UBLW and ENTRN

for eight EPI's (Table XIII) and E925, U700, DVDP, STRTFQ,

ENTRN and PS for five EPI's (Table XIV). The predictors,

including linear regression equations as predictors, are

BMl, U850, D500, V850, D1000 and U1000 for four intervals

(Table XV) and BM1, U500, ENTRN, DVDP and BM4 for eight

intervals (Table XVI). Significance tests were made after

each predictor selection and a 0(96) and a1 (05) values are

included in Tables XIII, XV and XVI. A comparison of the

behavior of critical level statistics, as predictors are

added, for both four and eight intervals, is shown in Figs.

8 and 9, where array size is equal to the number of EPI's

taken to a power equal to the number of predictors included

at that stage.

3. Determining the Final Model

The final model for the Preisendorfer (1983 a,b,c)

methodology was determined by comparing the independent data

contingency table statistics, from each developmental stage,

and choosing that stage which gave the highest adjusted

threat score for visibility category I (ATSl).

a. Without Linear Regression Equations as
Predictors (Eight Intervals)

It was determined, from Fig. 10, that the fifth

stage gave the best results (MAXPROBI, independent data:
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ATS1 = .19, ATS2 = .03, ATS12 = -.05). The contingency tables

for stage five and related statistics for the three strategies

are shown in Table XVII.

b. Without Linear Regression Equations as
Predictors (Five Intervals)

It was determined, from Fig. 11, that the fifth

stage gave the best results (MAXPROB2, independent data:

ATS1 = .25, ATS2 = .02, ATS12 = .01). The contingency tables

for stage five and related statistics for the three strategies

are shown in Table XVIII.

c. With Linear Regression Equations as
Predictors (Four Intervals)

It was determined, from Fig. 12, that the fourth

stage gave the best results (MAXPROB2, independent data:

ATSl = .40, ATS2 = -.05, ATS12 = .12). The contingency tables

for stage four and related statistics for the cl.e strategies

are shown in Table XIX.

d. With Linear Regression Equations as
Predictors (Eight Intervals)

It was determined, from Fig. 13, that the second

stage gave the best results (MAXPROB2, independent data:

ATS1 = .32, ATS2 = -.14, ATS12 = .02). The contingency tables

for stage two and related statistics for the three strategies

are shown in Table XX.

4. Linear Regression

Both linear regression methods (single equation and

decision tree) and both threshold models (quadratic and

equal variance) [Lowe, 1984a] were used to compare with the
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Preisendorfer (1983 a,b,c) methodology in the North Atlantic

Ocean Area 3W. Additionally, the predictors available for

regression were varied as indicated in the following descrip-

tion. The first regression was conducted with all available

MOP's while the second regression was conducted using only

the best predictors from the Preisendorfer methodology (de-

fined as those predictors which, alone, produced an a0 value

greater than the frequency of visibility category III in the

dependent data). Table XXI contains the linear-regression

equations, associated visibility category statistics and

threshold values. Tables XXII through XXVII contain the

contingency tables and related statistics for the dependent

and independent data for each of the linear regression

variations.

5. Discussion

Table XXVIII summarizes each of the methodologies and

strategies applied to the North Atlantic Ocean Area 3W

data. In general, the maximum-probability strategy did

better than the other methods or strategies. Specifically,

the best results overall were obtained by the MAXPROB2

strategy, using predictors computed from linear regression

equations and four equally populous intervals. The methodology

without linear regression equations as predictors, and all

of the linear regression results, are about equivalent. The

best linear regression method is the decision tree, when all

MOP's are made available to the regression model. The results

44



obtained without linear regression equations as predictors

appear to discount the procedure established for choosing the

number of equally populous predictor intervals, but lends

support to the claim in Chapter V that there is a tendency

for the Preisendorfer (1983 a,b,c) methodology to give better

results using a small number of intervals.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The primary objective of this study was to determine

if the Preisendorfer (1983 a,b,c) methodology applied to the

FNOC NOGAPS model output parameters could improve upon the

forecasting of atmospheric marine horizontal visibility, in

three categories, when compared to the more traditional

method of least squares, multiple linear regression. It was

shown that, indeed, the proposed methodology, namely, the

maximum probability strategy, was superior when predictand

estimates, computed from linear regression equations

themselves, were used as predictors.

The method of determining the number of equally populous

predictor intervals requires further investigation. The

results from the North Atlantic ocean area 3W, without

linear regression equations as predictors, showed that the

proposed method was not the best, in that the number of inter-

vals determined by the method was eight but better results

were obtained with five. Additionally, only intervals of

ten or less were considered here, due to storage limitations

imposed by the computer center. As a result, the optimum

number of predictor intervals is inconclusive.

Predictor determination appears to be adequate. At each

stage of development a unique predictor was selected. The

only foreseeable problem is if, during the first (initial)

stage of development, multiple predictors have identical CE
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and PP values, or, during subsequent stages, multiple pre-

dictors have identical a0and FD values. Should this occur,

the model development would have to proceed, from that

particular stage, with each of the identified predictors.

The methodology appears to be sensitive, in two ways, to

the first predictor selected. First, there is an initial

large value for the independent data ATS1 and small incre-

mental increases thereafter for each new predictor added.

Secondly, there is a large magnitude difference in the

initial independent data ATSl values between the Preisen-

dorfer methodology without linear regression equations as

predictors (ATSl = .13; .14) and that with linear regression

equations as predictors (ATSl = .30), for the maximum

probability strategy.

The best strategy is MAXPROB2, followed by MAXPROBi, and

then natural-regression. Generally, natural-regression does

worse than linear regression. None of the methods did well

in predicting visibility category II, which may indicate

that visibility would be best handled as a two-category

phenomenon.

The number of independent data observations (1526) in

North Atlantic Ocean Area 3W were sufficient to test the

methodology. This was demonstrated by the similar results

between Area 3W, without linear regression equations as

predictors, and the North Pacific Ocean results (3682

observations). The small differences in the contingency
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table statistics for the independent data for the two experi-

ments can be attributed to parameters being from different

models and for different months.

The following recommendations are offered for future

research and to future researchers:

1. Investigate the problem of determining the optimum

number of equally populous predictor intervals.

Possibly, a statistic similar to the threat scores

or adjusted threat scores could be used, or, simply

choose the interval, between two and ten, which gives

the highest adjusted threat scores for the independent

data. Alternatively, adopt, without further experimen-

tation, the number of EPI's as five, which appears to

be a compromise between a gross resolution of the

predictor parameter range and a fine (but too expensive)

resolution of the predictor parameter range.

2. Investigate the use of potential predictability (PP)

in determining the selection of predictors. During

the initial stage of development, PP is computed for

all available predictors and provides a measure of

each predictor's individual ability to forecast

visibility, but, it is not used explicitly. Perhaps

computing the mean and standard deviation of PP,

during the initial stage, and removing from considera-

tion those predictors which are not greater than a

value equal to the mean minus one standard deviation,
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or, simply, not greater than the mean. This would

ensure that only those predictors which have a rela-

tively high prospect of forecasting visibility will

be available for subsequent selection.

3. Search for better predictors which are particularly

suited to visibility prediction. Recommended sources

are: new, direct and derived, model output parameters

(including original model output); non-dimensional

parameters derived from dimensional analysis; and

boundary-layer parameters such as the optical structure

function (CN2) and extinction coefficients.

4. Investigate a two-category visibility scheme.

5. Install automatic visibility recorders on ocean-going

military and civilian passenger/cargo ships. This

will place visibility observations on a more objective

basis and lead to improved methods of forecasting

visibility, as well as verifying such forecasts.

6. Investigate new prediction models, preferably those

which attempt to manipulate the observed data to

correct for probable observer bias (following Selsor,

1980; Renard and Thompson, 1984). This would be

unnecessary if recommendation 5 was acted upon.

7. Investigate other ocean areas and seasons to determine

if the physically homogeneous area scheme is consistent

and viable. Develop prediction tables and other aids

specifically tailored to region and season.
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8. Use a statistic other than ATSl for choosing the

first predictor and for comparing methods and strate-

gies. It was used in this study largely because of

its greater magnitude, as compared to ATS2 and ATSl2.

This was due to the relatively high frequency of visi-

bility category I in both data sets. In general, this

will not be the case. Because three visibility cate-

gories are being considered, and good forecasts of

the two poorest visibility categories is desirable, a

statistic such as ATS12 would be better suited as a

consistent comparison statistic for future researchers.

9. As soon as it is feasible, eliminate from further

testing the MAXPROBI strategy in order to allow for

more efficient and faster program execution. The

natural-regression strategy, though it gave the poorest

results in this study, should be re-examined when

predictands with relatively many discrete states

(e.g., ceiling) are considered. It has, in such

settings, potential to out perform the more rigid

linear regression technique.
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APPENDIX A

A DISCUSSION OF THE STATISTICAL PROCEDURES PROPOSED BY
PREISENDORFER (1.983 a,b,c) FOR THE FORECASTING OF
ATMOSPHERIC MARINE HORIZONTAL VISIBILITY USING

-MODEL OUTPUT STATISTICS

I. INTRODUCTION

The following discussion is based upon three unpublished

research papers by Preisendorfer (1983 a,b,c). His proposed

methodology deals with a simple statistical manipulation of

model output parameters (predictors) which have been trans-

formed from continuous to discrete quantities by grouping

each predictor into equally populous intervals. The proce-

dural approach in applying his methodology to model output

statistics (MOS) forecasting, is as follows:

1. Generate predictand/predictor pairs of data using the

United States Navy Fleet Numerical Oceanography Center

Navy Operational Global Atmospheric Prediction System

(NOGAPS) model output (predictors) and synoptic ship

visibility observations (predictand) provided by the

Naval Oceanography Command Detachment, Asheville, NC,

and generate bivariate plots.

2. Generate conditional probability tables based on the

distribution of the predictand/predictor pairs.

3. Define prediction strategies based on the conditional

probabilities.
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4. Compute the potential predictability of visibility

from the conditional probability tables.

5. Compute skill scores of the prediction strategies and

choose the first predictor.

6. Repeat steps 1, 2, 4, and 5, for multiple predictors.

7. Compute functional dependence of selected vs. potential

. subsequent predictors.

8. Choose the next predictor.

9. Repeat steps 1, 2, 4, 5, 7, and 8, until model

development is terminated.

• "For demonstration purposes, an artificial data set of

99 cases, consisting of four predictors plus visibility

(predictand), will be used throughout this discussion.

* Each predictor parameter is divided into three equally popu-

lous intervals and visibility is divided into three categories,

*[ as illustrated in Table Al. The four predictors are

Evaporative Heat Flux (EHF), Fog Probability Parameter

(FTER), Relative Humidity (RH) and Air-Sea Temperature

Difference (ASTD). Visibility categories are defined by the

marine visibility observation codes (MVOC) included in the

categories.
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TABLE Al

ARTIFICIAL DATA SET

Interval 1 Interval 2 Inte.:val 3

EHF < 2.65 2.65 < EHF < 4.44 EHF > 4.44

FTER < .024 .024 < FTER < .9 FTER > .9

RH < 85.9 85.9 < RH < 90.0 RH > 90.0

*.ASTD < 1.02 1.02 < ASTD < 1.91 ASTD > 1.91

Visibility Category I: MVOC 90 -> 94 (60 cases)

Visibility Category II: MVOC 95 & 96 (20 cases)

Visibility Category III: MVOC 97 ->99 (19 cases)

4-

II. SINGLE PREDICTOR STATISTICS

A. BIVARIATE PAIRS

Choose various visibility-predictor pairs and make

bivariate plots of these pairs. This will provide immediate

visual estimation of the potential predictability. As an

example, let us suppose that predictor EHF of our artificial

data set has 33 cases in each equally populous interval and

that the visibility categories I, II and III are respectively

Virepresented by 17, 7 and 9 in interval 1; 1, 7 and 25 in

interval 2; 1, 6 and 26 in interval 3. To make the bivariate

plot, simply make a tabular summary of this information, as

Sillustrated in Fig. 14. Now we define, from the bivariate

plot, our coordinate system and nomenclature. Items in

parentheses are examples from Fig. 14, numbers in brackets

.- are equation numbers from Preisendorfer (1983 abc) with

53

j* exmlltu.ups htprdco - foratfca



a letter designator indicating the paper from which it was

obtained.

n = number of visibility categories (n = 3)

m = number of equally populous predictor intervals
(m = 3)

j = the vertical counting index (j = 1,...,n)

i = the horizontal counting index (i = l,...,m)

n(i,j) = individual cell counts (n(l,3) = 9)

m
n(.,j) = marginal predictand totals = n(i,j) =

i=l1

row totals (n(.,2) = 20) [3.laj

n
n(i,.) = marginal predictor totals = I n(i,j) =

j=l
column totals (n(2,.) = 33) [3.2a]

n(.,.) = total predictand/predictor pairs =
n m
I I n(i,j) = sum over all cells (n(.,.) - 99)

j=l i=l
[3.3a]

B. CONDITIONAL PROBABILITIES

From the bivariate pairs determine the conditional proba-

bility of visibility given a predictor. We will continue from

the bivariate plot in Fig. 14, and define three probabilities:

P1 2(i,j) n(i,j)/n(.,.) = joint probability of a
predictand-predictor pair occurring in a
given cell = individual cell count
divided by the total number of cases
(p12 (3,3) = 26/99 = .2626) [3.5a]
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Pl(i) n(i,.)/n(.,.) = marginal probability of
predictor column total divided by the
total number of cases = the column sum of
the joint probabilities
(p1(2) 33/99 = .333) [3.6a]

p2 (j) n(., .,.) = marginal probability of
predictand = row total divided by the
total number of cases = the row sum of the
joint probabilities (P2 (2) = 20/99 = .202)
[3.7a]

We can now build a joint/marginal probability table as

illustrated in Fig. 15, and define conditional probability.

P2 1 (Jili) P1 2 (i, j)/p(i) = n(i,j)/n(i,.) =
conditional probability of predictand given
a predictor = a cell's joint probability
divided by the marginal probability of
predictor = individual cell count divided
by column total
(p21 (212) = .071/.333 = 7/33 = .212)

[3.8a]

Now build a conditional probability table as illustrated

in Fig. 16. Conditional probability of visibility, given

some predictor, is the quantity of greatest interest in this

study. Note that if P21(Jli) - 1/n for j = l,...,n at

some i (i.e., each cell contains 1/n of the cases in its

column), then very little information is available to predict

visibility at that i. However, if P2 1 (J 0ji) = 1 for some

J1 and P 2 1 (Jli) = 0 for all other j values, then there is

perfect predictability of class j 0 by the predictor at class

i. The underlying methodology of this study will be to

determine the maximum conditional probability of visibility

for each predictor value.
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C. STRATEGIES

Preisendorfer (1983 a,b,c) presents three different

prediction strategies, two based on maximum probabilities

(MAXPROBI and MAXPROB2) and one based on natural regression.

1. Maximum Probability

This strategy consists of determining the cell, in a

given column, with the highest conditional probability, and

assign to the column the visibility category associated with

that cell. As each column represents an interval of predic-

tor values, we now have a visibility forecast value associated

with that interval. In our example with EHF (Fig. 16),

interval- 1 (i = 1) will have a forecast value of visibility

category I (VISCAT 1). Hence, if we used only EHF as a

predictor, every time a value of EHF was encountered with a

value < 2.65, we would predict visibility category I. Simi-

larly, for interval 2 (i = 2) and for interval 3 (i = 3)

we would choose visibility category III (VISCAT 3).

MAXPROBI and MAXPROB2 differ only in the way they

handle a tie between maximal conditional probabilities in

a column. Should this occur, then a decision must be made

as to which predictand category will be assigned to that

predictor interval. In MAXPROBI, this decision is made by

a coin toss, figuratively. A random number, in the unit

interval, is generated. The unit interval is divided into a

number of subintervals equal to the number of tied values

and each subinterval is assigned to a specific predictand
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category. The subinterval into which the random number

falls determines the forecast visibility category. In

MAXPROB2, the lowest predictand category, among the tied

categories, is chosen.

2. Natural Regression

This strategy consists of first finding the average

predictand (visibility category) for each predictor interval,

S- using conditional probabilities, and then choosing the

-, predictand category nearest the average.

n
j(i) = [ j P2 1 (Jli) [7.1b]

j=l

Fig. 17 shows the computation for EHF interval 1 (i = 1).

*i Visibility category II (VISCAT 2) would be assigned to this

interval by this strategy.

D. COMPARISON STATISTICS

To determine if a predictor will be useful in forecasting,

there should be a statistic with which to compare its poten-

o tial utility. Preisendorfer (1983 a,bc) defines four such

statistics and their critical values. The four statistics

defined are potential predictability (PP), class-error

probabilities (a0 ,al, and functional dependence (FD).

Potential predictability and class-error probabilities will

be defined now. Functional dependence will be addressed

later.

| .
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1. Potential Predictability

Potential predictability of a predictand/predictor

pair is defined as:

Sm n2
PP(211) n/(n-l) i Pl(i)[ [ (P 2 1 (Jji) -1/n)

j=l

m
= Pl(i) PP(i)

i=l

where:

PP(i) = n/(n-1) ( J - 2/n)2

j=l

pl(i) = the marginal probability of a predictor, and

P21 (li) = the conditional probability of the jth
predictand, given the ith predictor. [4.1a]

SI.

PP(211) is loosely related to Shannon's definition of infor-

mation [Preisendorfer, 1983a]. An example calculation is

shown in Fig. 18 where EHF has a PP value of .330. To

determine if this would be the best predictor using this

statistic, compute the potential predictability for all

predictors and rank them from highest to lowest. The

predictor with the highest PP should be the best predictor

for forecasting visibility using any strategy.
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2. Class-Error Probabilities

Zero-class (a0) and one-class (a1) error probabili-

ties can be defined to gauge the predictive skill of a

prediction strategy.

m
-ia0 = [ Pl(i) P 2 1 (J 0 (i)Ii)<:[: i= 1

where:

Pl(i) = the marginal probability of the predictor,

J 0 (i) = the j0th cell in column i assigned by

the prediction strategy, and

P 21 (j0 (i)ji) = the conditional probability of the j 0 (i).
21[6.la]

From Figs. 15 and 16, pl(i) = .333 for all i; j0 (l) = 1,

P 2 1 (j 0 (i) 1l) = .515; j0 (2) = 3, P21 (j0 (2)12) = .758; and

j 0 (3) = 3, P2 1 (j0 (3)13) = .788. Therefore, if EHF is the only

predictor,

a = (.333)(.515) + (333)(.758) + (.333)(.788) = .686
0

The statistic a is, by definition, equal to the fraction of

correct forecasts in the dependent data set.

m
a = P [(i)[P2 1 (9 0 (i) +lli) +P 2 1 (9 0 (i)-li)]
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where:

p21 (j0 (i) -lli) the conditional probabilities
adjacent to the P21( 0(i)i)
values used in the a
determination.

If J= 1 then, by definition, P21 (j0 (i) -'ii) 0; similarly

if j 0 = n then, by definition, P21 (J0 (i) +li) = 0. [6.2a]

The statistic a1 is, by definition, equal to the fraction of

forecasts for which a class 1 error has been committed.

Again, from Figs. 15 and 16:

a1 (.333) (.212+0) + (.333) (.212+.0) -+ (.333) (.182+0)

= .202

To determine which one of two or more predictors is

the most skillful, we can plot the (a0 ,al ) pairs on a skill

diagram as in Fig. 19. The dashed lines are lines of con-

stant class error (CE = a1 + 2a2 ) and the more skillful

predictors will lie on the lower right part of the triangle.

In general, the skill on the diagram decreases according to

the zig-zag rule shown in the figure. If, for all predic-

tors, a1 is constant, which may occur during the first

predictor determination with a data set containing relatively

few poor visibility cases, then the best predictor is that

one with the greatest a0 value. In this instance there is

no need to plot the pairs.
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III. MULTIPLE PREDICTOR STATISTICS

Once all predictand/predictor pairs have been formed

and potential predictability and skill scores determined,

the predictors can be ordered by decreasing predictor skill

and by potential predictability. Fig. 20 contains the

bivariate plot, conditional probabilities, potential pre-

*dictability and skill scores for the remaining three predic-

tors in our artificial data set. The ordering of predictors

is shown in Table A2. Therefore, EHF would be chosen as

our first predictor, as illustrated on the skill diagram

in Fig. 19. As RH, FTER and ASTD have equal a0 and a1

. values, they are ranked according to decreasing potential

predictability.

.TABLE A2

RANKING OF PREDICTORS BY SKILL
AND POTENTIAL PREDICTABILITY

a 0 a1 PP

.st EHF .686 .202 .330

2nd RH .606 .202 .2250
3rd FTER .606 .202 .211

4th ASTD .606 .202 .209

Preisendorfer (1983b) develops statistics, similar to

those already mentioned, for multiple predictors. The main

conceptual difficulty of additional predictors is the

increase of dimensions. One predictor presents a relatively
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simple two-dimensional problem (predictor 1 vs. predictand);

two predictors present a three-dimensional problem (predictor 1

vs. predictor 2 vs. predictand); three or more predictors

present four-dimensional and larger problems. However, with

a little manipulation, all of the multi-dimensional problems

greater than two-dimensions can be reduced to a two-dimensional

problem. This is illustrated in Figs. 21 and 22 for three-

dimensions (two predictors) and four-dimensions (three predic-

tors). An easily programmable equation can be developed to

create these two-dimensional arrays based upon the number of

equally populous intervals for each predictor and upon the

* interval in which a particular data case resides.

In our continuing example, reduce the equally populous

[-" intervals for each predictor to an integer number (i = 1,...,m)

with 1 corresponding to the lowest interval and m correspond-

ing to the highest interval, as defined for the predictor

index in Section II.A. Let

ii the interval integer number for EHF,

ji = the interval integer number for RH,

• kk = the interval integer number for FTER,

mm = the interval integer number for ASTD,

11 = the column location in the two-dimensional
bivariate plot (equivalent to i for a

* single predictor),

SIGP the total number of intervals for EHF,

IGP2 = the total number of intervals for RH,

IGP3 = the total number of intervals for FTER,

IGP4 = the total number of intervals for ASTD.
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Then, f or one predictor, EFH:

i1i = ii

for two predictors, EHF and RH:

11 = IGP2(ii-1) + jj

4.

for three predictors, EHF, RH and FTER:

11 = IGP2(ii-l+IGPl(kk-l)) + jj

for four predictors, EHF, RH, FTER and ASTD:

11 = IGP2(ii-l+IGPl(kk-l+IGP3(mm-l))) + jj

This equation form can be expanded to accommodate any number

of predictors.

IV. FUNCTIONAL DEPENDENCE

After the first predictor has been selected, either from

its skill score or potential predictability, we. need a means

to determine whether or not to add a new predictor to the

one(s) already chosen. For this purpose, Preisendorfer

(1983c) proposes a functional dependence index (FD) which

describes the dependence of the new predictor being considered

upon those already in the set of predictors. If FD is large
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(on the scale 0 to 1) then it can be represented by predic-

tors already chosen and its inclusion into the set of

predictors would be redundant. However, if FD is small (on

the scale 0 to 1) then it is likely to be a useful addition

to the existing collection of predictors.

rn n
- FD(211) = m/2(m-l) U P 2 (i j)fq(i, j)-r(i, j)I (2.1c)

i=l j=l

-.'.. where:

q[.) n-j j-1
q(i,j) I P21 (j+kli+l) + I P21 (j-k i-l) (2.2c)

kL k=1

the sum of the conditional probabilities
which lie in column i+l and rows greater
than j and the conditional probabilities
which lie in column i-1 and rows less than j

the sum of the conditional probabilities to
the right and up, and to the left and down.
The upper left (l,n) and lower right (m,l)
cells will always have q values equal to zero.

j-i n-j
r(i,j) = p2 1 (j-kli+l) + I P2 1 (j+kli-l) (2.3c)

k=l k=l

the sum of the conditional probabilities
which lie in column i+l and rows less than j
and the conditional probabilities which lie
in column i-l and rows greater than j

the sum of the conditional probabilities
to the right and down, and to the left and up.
The upper right (m,n) and lower left (1,1)
cells will always have r values equal to zero.
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. P1 2(i,j) and P 2 1 (j±kli±l) = the joint and conditional

probabilities defined earlier, differing
only in that the abscissa and ordinate are
now predictor vs. predictor vice predictor
vs. visibility.

Fig. 23 illustrates the FD computation for RH given EHF.

In this example, FD(211) = FD(RHIEHF) = .286.

V. CRITICAL VALUES

Once the various statistics have been found, a means to

determine whether they are significant must be established.

.0 Preisendorfer (1983 a,b,c) proposes the use of Monte Carlo

means, applied as follows.

From the bivariate plot, as in Figs. 14, 21b and 22b,

we determine the marginal probabilities of the predictor

(pl(i)) and establish incremental values from 0 to 1 (note

that for equally populous predictor intervals, pl(i) = 1/m,

a constant, where m = the number of intervals). We then cast

a total of n(.,.) randomly generated numbers into the

intervals to simulate a new data set. After each randomly

generated data case is cast into a column, it is placed into

a cell using uniform probability. Fig. 24 shows the incre-

mental values associated with the bivariate plot in Fig. 21b.

In our continuing example we have n(.,.) = 99, so we would

generate 99 random numbers in the unit interval. All random

numbers < .071 would be placed in column i = 1; those greater
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than .071 and < .192 would be placed in column i = 2; and

so on. As each data case is placed into a column, a single

random number is generated to determine into which cell the

case is to be placed (e.g., a random number < .33 would be

counted in cell (i,l); a random number greater than .33 and

< .66 would be counted in cell (i,2); etc.). After all 99

cases have been cast into their appropriate cells, all of

the statistics previously discussed would be computed and

saved. This process would be repeated 100 times so that we

would have an array containing 100 randomly generated poten-

tial predictabilities, aIs, a s and FD's. These would be

sorted from lowest to highest and the 96th (PP(96), a0 (96),

a1 (96) and FD(96)) value would determine the upper 5% critical

value and the 5th (PP(05), a0 (05), a1 (05) and FD(05)) value

would determine the lower 5% critical value. For all statis-

tics other than FD, we want values from our dependent data

set to be greater than the upper 5% or less than the lower

5% critical values. For FD we want values lower than the

upper 5% critical value to ensure that our second, and subse-

quent, predictor is not significantly dependent on the previous

predictor(s).

*O VI. CHOOSING PREDICTORS

The first predictor is determined as shown in Section III.

That is, by computing initial PP, a0 and a1 values for each

predictor, ordering them by skill score and PP and choosing
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the one with the greater skill score, or greatest PP in the

event that all skill scores are identical.

Subsequent predictors will be subjected to two tests;

functional dependence and skill score. Let

p = the number of predictors already chosen,

a0 (k-l) and al(k-l) = the 0- and 1-class errors

of the previous stage of construction of the
developmental model,

k the index of the current stage.

Then, for the next (kth) predictor to be accepted it should

meet the following three conditions:

(1) FD < FD(961i) (i = l,p)

(2) a0 (k) > a0 (k-1) and al (k) < a (k-1)

(3) a 0 (k) > a0 (96) and a1 (k) < a 1 (05)

If condition (1) is not met but conditions (2) and (3) are,

then a predictor may still be used, but the increase of

*predictability of the predictand will, on average, be less

than if condition(l) had been met. However, if conditions

(2) and (3) are not met, then the predictor should not be

* considered further. Repeat this process at all stages forK all remaining predictors until no further predictors are
available, then stop the construction of the developmental

model.
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VII. TESTING THE DEVELOPMENTAL MODEL ON INDEPENDENT DATA

Once the model has been developed and no further predic-

tors remain to be considered, we can test it for skills

(a0 ,a1 ) on an independent data set (any set whose numbers

were not used to develop the model). This is easily accom-

plished by sorting the independent data case values into

predictor intervals, determined from the dependent data, and

calculating the location in the forecast array (11 in Figs.

21b and 22b) of the appropriate prediction, using the equa-

tions established in Section III. It is to be expected that

on average the test (a0 ,a1 ) points on the skill diagram, for

an independent data set, will not be as skillful as on the

set of developmental points.

4

.
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APPENDIX B

LINEAR REGRESSION AND THRESHOLD MODELS

A. LINEAR REGRESSION

In this study a least-squares, multiple linear regression

model, known as BMDP2R in the BMDP Statistical Software

[University of California, 1981], was used. The procedure

used is called forward step-wise selection and picks the

predictors (of the many offered) that have the highest

correlation with the predictand (visibility) based upon F-to-

enter and F-to-remove limits, where F is a ratio which tests

the significance of the coefficients of the predictors in

the regression equation.

The regression model fitted to the data is

11 +b 2 x2 +... + bpxp +

where:

y = the dependent variable (predictand) which can
be either a continuous function or a discrete
value

S1 ...,xp = the independent variables (predictors)

b,....,bp = the regression coefficients

a = the intercept

p = the number of independent variables

= the error with mean zero.
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The predicted value y, and the general form of the resulting

equation, is

y = a + bx + b x + ... + bpx
1 1 2 2 p p

The step-wise selection of predictors continues until there

are no predictors remaining which meet the F-to-enter criteria.

The regression equation generated at each step is printed,

along with its R-value (the correlation of the dependent
A2

variable y with the predicted value y) and R'. The resulting

set of equations, one for each step, are reviewed, and that

equation containing only those predictors which increased

2
R by at least .01 is retained for application.

The role of regression, once appropriate predictor

variables have been selected, is simply that of dimension

reduction (representing a multivariate structure by a uni-

.- variate proxy which constitutes a classificatory or predictive

index). This proxy takes the form of a polynomial, linear

in its coefficients, of the components of the multivariate

structure. The problem now becomes one of determining the

form of the state conditional distributions (one for each

group of interest; e.g., 1, 2 and 3 for visibility categories

I, II and III, as used in this study). Once an appropriate

form has been selected, it remains, then, to determine the

parameters of the class conditional distributions (e.g.,

means and variances) and then apply the decision criteria or

threshold model.

70

9 o ' - $. . . . .-.-... -.-. . . - . . . .. .. .



- B. THRESHOLDS [LOWE, 1984a]

* 1. Notation

E - an event; this is an indicator variable which
when E = 1, the threatening event occurs, and
when E = 0, the non-threatening event occurs.

C the classification of an unknown event which
when C = 1, the event is classified as a
threat, and when C = 0, the event is classified
as a non-threat.

P[E = 1] unconditional probability of occurrence of
threat.

P[E = 0] - unconditional probability of occurrence of
non-threat.

Error of the 1st kind (false alarm) [C = n E =0] .

Error of the 2nd kind (miss) [C =0 n . 1].

P[C =ln E =0] joint probability of an error of the 1st
kind.

P[C =0 nE =i joint probability of an error of the
2nd kind.

"* P[C=11E=] -- class conditional probability of misclassi-
fying a non-threat.

P[C =01E = Ei class conditional probability of misclassi-
fying a threat.

P[C l nE=0] = P[C=IIE=0] P[E=0].

P[C=OnE=] = P[C=01E=1] P[E-01.

* z = a value of the predictive index (equivalent
to y, above).

Z = range of the predictive index on the real line.

For a dichotomous problem, Z is into two parts Z0 , Z1 ,

C = 0 if z E Z

C = 1 if z Z
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The decision regions are mutually exclusive and exhaustive

(i.e., Z0 nZ = 0 and Z = u Zl)

• Thresholds boundary(s) between decision regions.

p(zE =0) class conditional density of z given
that E = 0.

p(zIE =1) class conditional density of z given
that E = 1.

A(z) = p(zE =l)/p(zlE =0) = the maximum likelihood

ratio (i.e., the ratio of class conditional
densities).

Pe p{[C=l nE=0] u [C=O nE=l]} = the total

*probability of error.
-o .

* 2. Minimum Probability of Error Criterion

P = probability of an incorrect clas.sification.

= p[C=ljE=0] piE=0] + p[C=01E=l] p[E=l]

where piE =11 + p[E =01 = 1. Note that the events E = 1

and E = 0 are mutually exclusive and exhaustive. The objec-

tive is to select decision regions (thresholds) so as to

minimize p

p[C =OE=l] = f p(zjE =l)dz = the probability of
ZEZ

misclassifying E = 1.

p[C--OJEl f p(zE-1)dz + f p(zjE=1)dz
ZEZ 0  ZEZ 1

f p(zjE --1)dz
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p[C =OJE =1] 1 -f p(z E =1)dz these are
ZEZ1  substituted

into the

f p~jE =~dzexpressionp [C 1 E 0]f pzE0d forp
ZEZ

1

then,

= p[E =01 f p(zjE =0)dz + p(E =1] (1 f p(z jE=1)dz]
e Z 1  ZZ1

and algebraic rearrangement yields,

= p[El =1 f {p[E=01 p(zlE=0) -p[E=l1 p(zIE=1)}dz
z Z1

In order to minimize pe Z1 (the decision region for C =1)

will include all those values of z for which the integrand

in the expression for pe will be negative. The decision

regions can be symbolically represented as follows:

=O {z: p[E =01 p(zIE =0) -p[E =11 p(zjE =1) > 0}

Z {z: p [E 0I p (z E 0) p p[E =1] p (zlE =1) < 0)

An alternative representation is given by,

Z {z: p[E =01 p(zjE =0) > p[E =1] p(zIE =1)}

{z: p[E =0]/p(E =1] > p(zlE 1)/p(zlE =0)}
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Likewise,

Z = {z: p[E =0]/p[E =1] < p(z!E =1)/p(zE =0)}

These statements can be combined to give,

c=l
p(zjE =l)/p(zlE=0) = A(z) > p[E =0]/p[E =l]

c=O

Thresholds are the value(s) of z for which

A(z) = p[E=0]/p[E=l]

This equation can be solved for z either analytically or

numerically depending on the forms of the density functions.

3. Threshold Cases

In order to examplify the model, the assumption is

made that the class conditional distributions are Gaussian.

There are essentially three distinct cases that can arise.

a. Case I: Equal variances; different means
(Referred to as the equal variance model in the
text)

2 2
* .. p(zIE=i) = k exp{(-i/2)(z -i) /a 2

2 2p(zIE =0) = k exp{(-i/2) (z -p / 2

where:

(2r)-1/2 -1
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2 2exp{(-l/2)(z -j±1 /a }c=1 p0
Ai-) exp{ (-1/2) (z - i) 2/a c2 l 0-. exp{(-1/2) z - /0 22} c<0 Pl

where p0 = p[E=0] and p1 = p[E =i. Thus, the threshold

value is

z*= (N0 + 1 )/2 + 2 (P0/Pl)/(Pl-10 )

V -

0

->,E=O E=I

C

Classification Index (z)

The position of the threshold depends on the relative values

of p1 and p0. The threshold moves toward the group with the

smallest pi. If p1 = p0 the threshold will be the value of

z where the densities intersect (i.e., where the densities

are equal).

b. Case II: Equal means; different variances

a 0 exp{ (-1/2) (z - .l) 2/ a} c~l P0A.-. (z) = 22 cO~
alexp{ (-1/2) (z - j ) 2 IG2 c 0
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m-q

with the threshold

2 21
2a p0a 1/2

Z 0 1 in -n- 2 2-P 0

Note that in this situation there are two thresholds. The

group having the smaller variance will lie between the two

thresholds.

E 1

4 . , :. E=O

4 ."

Classification index (z)

The thresholds shown are typical of a situation where p1 < pO.

Note that these thresholds lie between the two intersections

of the densities. If the inequality of prior probabilities

were reversed, the thresholds would lie outside of the

region between the two density intersections. Further note

that the decision region for the group having the lesser

variance lies between the thresholds.
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c. Case III: General Solution (Referred to as
the Quadratic Model in the text)

p(zjE=1) = k/a 1 exp{ (-1/2) (z - 2 22

2 2

p(z(E=0) = k/a0 exp{(-1/2)(z -U 0 ) /a

0 0 0 p

where k = (2ff) -I 2  Algebraic manipulation produces

2 2 2 2 2
(a- -a )z + 2(0o011 -yl o)z

c=12 2 2 2 2 2 >+ [(01110 ao01u1 - 2oa i n (po/po) <
c=l

F-.,

which is recognizable as a quadratic equation in z.

-Z* = -b ± (b2- 4ac) 1/2/2a
- p

where:

2 2
a = 1- 0

m ' 4

b 2( 2 2
j b 2(o041 ailuo)

(a 2 2 2 2 22

"a'-, c = (/0 - 2a inp~ 0 )
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E 12

T2

~E=O
4-

Classification index (z)

The remarks given for the figures in cases I and II are also

applicable here. More often than not, only one of a pair of

thresholds induced by differing variances will be of real

interest. If the variances of the two groups are radically

different, then both members of the threshold pair become

important.

In the foregoing, normal class conditional dis-

tributions were assumed. This was done because the Gaussian

*,.-.form admits of a rather clean analytical solution. However,

the general concept of the minimum probable error decision

criteria may be applied to any form of density function.

* -.- Indeed, the density function of one group need not even be

the same form as that for another group (one might be exponen-

tial and the other Gaussian). The difficulty with most non-

Gaussian forms is that they seldom admit of closed analytical

* forms and require numerical means in determination of thresholds.
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APPENDIX C

NORTHERN HEMISPHERE PREDICTOR PARAMETERS AVAILABLE
FOR THE NORTH PACIFIC OCEAN, JULY 1979, EXPERIMENTS

Area: 30°-60°N; 145*E-130°W

*Model output time: OOOOGMT (TAU0O)

A. Model output Descriptive name of parameters
parameters

Primitive equation model

TX Surface air temperature

EX Surface vapor pressure

* EHF Evaporative heat flux

SEHF Sensible plus Evaporative heat flux

THF Total heat flux

H510 1000-500 mb thickness anomaly

GGTHTA Surface-front location parameter

. FTER Advective fog probability

Mass structure model

PS Surface pressure

TAIR Surface air temperature

EAIR Surface vapor pressure

TSEA Sea surface temperature

SSANOM Sea surface temperature anomaly

T925 925 mb temperature

U925 925 inb zonal wind component

V925 925 mb meridional wind component

NCLOUD Total cloud cover

Marine wind model

VVWW Marine surface wind speed

DDWW Marine surface wind direction
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CLIMO National Climatic Center fog
frequency climatology

C. Derived parameters

ASTD TAIR-TSEA

Surface relative humidity

08



APPENDIX D

NOGAPS PREDICTOR PARAMETERS AVAILABLE FOR THE NORTH
ATLANTIC OCEAN, 15 MAY-15 JULY 1983, EXPERIMENTS

Area: Entire North Atlantic Ocean and Mediterranean Sea

Model output time: 1200GMT (TAUQO)

A. Model output Descriptive name of parameter
parameter

DI000 1000 mb geopotential height

D925 925 mb geopotential height

D850 850 mb geopotential height

D700 700 mb geopotential height

D500 500 mb geopotential height
D400 * 400 nb geopotential height

D300 * 300 mb geopotential height

D250 * 250 mb geopotential height

TAIR Surface air temperature

TI000 1000 mb temperature

T925 925 mb temperature

--T700 700 mb temperature

T500 500 mb temperature

T400 * 400 mb temperature

T300 * 300 mb temperature

T250 * 250 mb temperature

. EAIR Surface vapor pressure

El000 1000 mb vapor pressure

E925 925 mb vapor pressure

E850 850 mb vapor pressure

E700 700 mb vapor pressure

ES00 500 mb vapor pressure

UBLW Boundary layer zonal wind component

UI000 1000 mb zonal wind component

U925 925 mb zonal wind component
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U850 850 mb zonal wind component

U700 700 mb zonal wind component

U500 500 mb zonal wind component

U400 * 400 mb zonal wind component

U300 * 300 mb zonal wind component

U250 * 250 mb zonal wind component

VBLW Boundary layer meridional wind
component

V1000 1000 mb meridional wind component

V925 925 mb meridional wind component

V850 850 mb meridional wind component

V700 700 mb meridional wind component

V500 500 mb meridional wind component

V400 * 400 mb meridional wind component

V300 * 300 mb meridional wind component

V250 * 250 mb meridional wind component

VOR925 ** 925 mb vorticity

VOR500 ** 500 mb vorticity

PS Surface pressure

SMF Surface moisture flux

PBLD Planetary boundary-layer depth

STRTFQ Percent stratus frequency

STRTTH Stratus thickness

SHF Surface heat flux

ENTRN Entrainment at top of marine
boundary-layer

DRAG ** Drag coefficient (CD)

B. Derived parameters

DTDP Vertical gradient of temperature
DEDP Vertical gradient of vapor pressure
DUDP Vertical gradient of zonal wind
DVDP Vertical gradient of meridional wind

RH Surface relative humidity

BMl *** 2.81132 + (.16201 x EAIR)
- (.00237xE850) - (.0739 xT925)
- (.16179xE925)
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BM2 **2.08302 + (.36810 xTAIR)
- (.26675 XTlOOO) - (.15980 xT925)

BM3 **3.00866 + (.11771 x EAIR)
- .01024 x E850) - (.19321 x E925)

BM4 **2.42235 - (.000418 XUBLW)
+ (.000255 xU700)

- BM5 **2.55859 - (.000355 xVlOOO)

* BM6 2.57317 + (.000893 x D1000)
- (.0000489 xD700)

BM7 -15.2173 + (.01764 xPS)
- (.01007 xSTRTFQ) + (.02642 xSTRTTH)
+ ( .06042 x SHF)

* Parameters which were not used due to their being
considered as having little likelihood of being
important in forecasting marine visibility.

* ** Parameters which were not used due to loss of
significant digits during transfer from tape

o to mass storage.

SLinear regression equation parameters.
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APPENDIX E

SKILL AND THREAT SCORES

"- R S T
--3

U V Wwi2

0u X Y Z

1 2 3
OBSERVED

Total = R+S+T + U + V + W + X + Y + Z

P1 = (R+U+X)/Total P3 = (T+W+Z)/Total

P2 = (S+V+Y)/Total PN = greatest of P1, P2 or P3

" Raw scores

AO = % correct = (X+V+T)/Total

Al = 1 -class error = (U+S+Y+W)/Total

TSI = Threat score for visibility category I

= X/(R+U+X+Y+Z)

TS2 = Threat score for visibility category II

= V/(U+X+V+Y+W)

TS12 = Threat score for visibility categories I and II

= (X+V) / (Total-T)

TS12 is designed to represent the skill of forecasting visi-

bility categories I and II as separate categories, rather
than their skill as a combined category, which would be
(U+V+X+Y) / (Total-T).
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Adjusted scores

AAO (AO-PN)/(1-PN)

ATS1 (TS1-P1)/(1-P1)

ATS2 =(TS2-P2)/(l-p2)

ATS12 =(TS12-[P1+P2])/(1- [P1+P2])
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APPENDIX F

TABLES

TABLE I. A SUMMARY OF THE OBSERVATIONS (PERCENTAGE
FREQUENCIES) OF THREE VISIBILITY CATEGORIES
(VISCAT'S), FOR THE NORTH ATLANTIC OCEAN
HOMOGENEOUS AREAS SHOWN IN FIG. 1, 15 MAY-
15 JULY 1983

NUMBER OF
AREA OBERSERVATIONS VISCAT I VISCAT II VISCAT III

1 2725 163 (.06) 436 (.16) 2126 (.78)

2 2867 277 (.10) 317 (.11) 2273 (.79)

3E 131 8 (.06) 31 (.24) 92 (.70)

3W 2288 437 (.19) 284 (.12) 1567 (.68)

4 4771 129 (.03) 597 (.13) 4045 (.85)

5E 1087 9 (.01) 94 (.09) 984 (.91)

5W 2307 8 (.003) 40 (.02) 2259 (.98)

6N 580 19 (.03) 45 (.08) 516 (.89)

6M 2337 21 (.01) 131 (.06) 2185 (.93)

6S 60 1 (.02) 2 (.03) 57 (.95)

7 801 7 (.01) 34 (.04) 760 (.95)

8 1284 1 (.001) 27 (.02) 1256 (.98)

ENTIRE NORTH ATLANTIC AND MEDITERRANEAN

21,238 1080 (.05) 2038 (.10) 18,120 (.85)
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TABLE II. NUMBER OF OBSERVATIONS (PERCENTAGE FREQUENCIES)
OF THREE VISIBILITY CATEGORIES (VISCAT'S),
AND 95% CONFIDENCE INTERVALS FOR THE

DEPENDENT AND INDEPENDENT DATA, FOR THE NORTH
PACIFIC OCEAN AND AREA 3W OF THE NORTH
ATLANTIC OCEAN

North Pacific Ocean, July 1979

TOTAL # OF

VISCAT I VISCAT II VISCAT III OBSERVATIONS

95% CI .207-.229 .126-.144 .635-.660

Dependent data 816 (.222) 498 (.135) 2368 (.643) 3682

Independent data 388 (.211) 246 (.134) 1207 (.656) 1841

Total 1204 (.218) 744 (.135) 3575 (.647) 5523

North Atlantic Ocean area 3W, FATJUN 1.983

95% CI .175-.207 .11-.138 .666-.704

Dependent data 296 (.194) 190 (.125) 1040 (.682) 1526

Independent data 141 (.185) 94 (.123) 527 (.692) 762

Total 437 (.191) 284 (.124) 1567 (.685) 2288
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TABLE III. THE INITIAL FIVE BEST PREDICTORS FOR
EPI'S OF FOUR THROUGH TEN, FOR EACH
STRATEGY, WITH ASSOCIATED PP, a0 , al
AND CE VALUES FROM THE NORTH PACIFIC
OCEAN DEPENDENT DATA, JULY 1979

Maximum-probability Natural-regression

- EPI Predictor PP a0 a CE a0 a CEEH .15.67.5
4 EHF .328 .684 .135 .497 .491 .467 .551

SEHF .315 .681 .135 .503 .478 .475 .569

FTER .317 .680 .135 .505 .482 .468 .568

CLIMO .296 .657 .135 .551 .471 .478 .580

RH .311 .649 .135 .567 .508 .442 .542

5 EHF .337 .697 .135 .471 .435 .538 .592

. SEHF .319 .688 .135 .489 .535 .400 .530

FTER .314 .678 .135 .509 .539 .396 .526

RH . .312 .658 .135 .549 .449 .518 .584

CLIMO .295 .658 .135 .549 .418 .549 .615

6 EHF .338 .695 .135 .475 .491 .467 .551

SEHF .319 .690 .135 .485 .478 .475 .569

FTER .318 .673 .135 .519 .574 .349 .503

RH .316 .661 .135 .543 .508 .442 .542

CLIMO .295 .659 .135 .547 .471 .478 .580

7 EHF .337 .693 .135 .479 .529 .415 .527

SEHF .319 .685 .135 .495 .523 .417 .537

FTER .320 .675 .135 .515 .523 .417 .537

CLIMO .297 .661 .135 .543 .435 .528 .602

RH .314 .659 .135 .547 .308 .654 .730

8 EHF .338 .688 .135 .489 .491 .467 .551

SEHF .320 .681 .135 .503 .478 .475 .569

FTER .320 .680 .135 .505 .553 .377 .517

CLIMO .301 .663 .135 .539 .404 .567 .625

RH .315 .657 .135 .551 .508 .441 .543
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TABLE III (CONT.)

9 EHF .340 .693 .135 .479 .522 .425 .531

SEHF .322 .686 .135 .493 .514 .429 .543

FTER .324 .683 .135 .499 .574 .349 .503

CLIMO .299 .663 .135 .539 .443 .516 .598

RH .315 .657 .135 .551 .476 .482 .566

10 EFH .341 .696 .135 .473 .491 .467 .551

SEHF .323 .688 .135 .489 .534 .401 .531

FTER .322 .678 .135 .509 .539 .396 .526

CLIMO .300 .662 .135 .541 .418 .549 .615

RH .316 .658 .135 .549 .508 .441 .543
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TABLE IV. FIRST-STAGE CONTINGENCY TABLE STATISTICS
AO, TS1, AAO AND ATS1 FOR BOTH DEPENDENT
AND INDEPENDENT NORTH PACIFIC OCEAN, JULY
1979, DATA, FOR EPI'S OF FOUR THROUGH TEN
AND THE MAXIMUM-PROBABILITY STRATEGY, WITH
EHF AS THE FIRST PREDICTOR FOR EACH NUMBER
OF EPI'S

Dependent data Independent data

EPI AO TS1 AAO ATS1 AO TS1 AA0 ATS1

4 .684 .36 .113 .17 .686 .34 .087 .16

5 .697 .35 .150 .17 .695 .33 .114 .15

6 .695 .32 .145 .13 .696 .30 .117 .12

7 .693 .30 .139 .10 .693 .28 .107 .09

8 .688 .27 .126 .06 .694 .27 .110 .08

9 .693 .36 .139 .17 .695 .34 .114 .16

10 .696 .35 .149 .17 .695 .33 .114 .15
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TABLE V. FD(96), FD, RSS FD AND a0 FOR STRATEGY
MAXPROB2, NORTH PACIFIC OCEAN, JULY 1979,
DEPENDENT DATA, FOR THOSE PREDICTORS
SELECTED AT EACH STAGE OF THE DEVELOPMENTAL
MODEL USING FIVE EPI'S. FD(96) IS COM-
PUTED FROM 100 RANDOMLY GENERATED DATA SETS,
AS EXPLAINED IN APPENDIX A, AND PROVIDES
A MEASURE OF HOW MUCH ADDITIONAL PREDICTA-
BILITY MAY BE EXPECTED FROM THE INCLUSION
OF A NEW PREDICTOR. IDEALLY, RSS FD
SHOULD BE LESS THAN FD(96)

FD, of predictor added, on
I i

Predictor
added FD(96) EHF DDWW H510 RH RSS FD a0

EHF - - - .697

DDWW .1399 .1494 - - - .1494 .699

H510 .1978 .2488 .2185 - .3311 .704

RH .2423 .2606 .2087 .1515 - .3666 .746

THF .2798 .3290 .1464 .1678 .1907 .4408 .820

CLIMO .3128 .3558 .1727 .1823 .2551 * .882

RSS FD was not computed for CLIMO as the choice for
the sixth predictor was between only CLIMO and SEHF.
It was more economical to compute contingency table
statistics for each and to choose the best predictor
from those results.
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TABLE VI. CONTINGENCY TABLES AND RELATED STATISTICS FOR
BOTH DEPENDENT (3682 OBSERVATIONS) AND
INDEPENDENT (1841 OBSERVATIONS) NORTH PACIFIC
OCEAN, JULY 1979, DATA, FROM STAGE FOUR OF
THE DEVELOPMENTAL MODEL. PREDICTORS ARE EHF,
DDW-W, H510 AND RH, EACH DIVIDED INTO FIVE
EPI'S, FOR (A) MAXPROBI, (B) MAXPROB2 AND
(C) NATURAL-REGRESSION-'S

(a) MAXPROB1

DEPENDENT DATA

3 316 301 2198 AO= .75 AAO= .29

- Al= .13

U 2 29 79 29
w TS1= .44 ATS1= .28
0
u. 471 118 141 TS2= .14 ATS2= .01

TS12=.37 ATS12= .02

1 2 3
OBSERVED

INDEPENDENT DATA

AO= .70 AAO= .12

- 3 175 162 1065
_ -. _ Al= .15

o 24 26 35
u, 2 TS1= .34 ATS1= .17

: O -- _ _

u TS2= .09 ATS2= -. 06
. 1 189 58 107

_.__ TS12= .28 ATS12= -.i0

1 2 3
OBSERVED
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TABLE VI (CONT.)

(b) MAXPROB2

N DEPENDENT DATA

AO= .75 AAO .29
3 228 238 2077

" A1= .13

2 25 108 63
U TS1= .47 ATSI= .32

0

1 563 152 228 TS2= .18 ATS2= .06

TS12= .42 ATS12= .10
1 2 3
OBSERVED

INDEPENDENT DATA

3. 16AO= .69 AAO= .09
0O 3 135 136 1007

_ _Al= .16

l 2 23 29 48 TSI= .37 ATS1- .20

0 0
u. TS2= .09 ATS2 = -. 05

1 230 81 152
"-_TS12= .31 ATS12 = -. 05

1 2 3
, BSERVED

93



TABLE VI (CONT.)

(c) Natural-Regression

DEPENDENT DATA

AO .62 AAO= -. 06
4 75 171 1773

) Al= .35

02 501 279 565 TS1 .27 06
uJ ATSI=

0

240 48 30 TS2= .18 ATS2= .05

_i TS12= .27 ATS12= 13
1 2 3

OBSERVED

INDEPENDENT DATA

AO =  .58 AAO= -. 21

"- 3 72 91 857
"__ ___ A1=  .35

- 2 226 128 298 TS1 .19 ATS1- -. 02

0
u. TS2= .17 ATS2= .04

1 90 27 52

"TS12= .22 ATs12= -. 19
'" 1 2 3

OBSERVED

'.
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. TABLE VII. LINEAR-REGRESSION EQUATION FOR THE PREDICTED

VALUE OF THE VISIBILITY CATEGORY (Y), Y
STATISTICS WITH RESPECT TO THE ACTUAL VISI-
BILITY CATEGORIES (Y) AND THRESHOLD VALUES
FROM THE EQUAL-VARIANCE ASSUMPTION MODEL,
NORTH PACIFIC OCEAN, JULY 1979. NOTATION
IS AS IN APPENDIX B.

y = 3.78586 + .04118(EHF) - .91412(FTER) - .01592(RH)

Class conditional distributions (i.e., distribution of y for
a given y).

Number of Frequency Mean Value Standard
observations of 9f deviation of

y of y y (p) y(m) y(a)

1 816 .222 2.077 (ml) .348

2 498 .135 2.263 (m2 ) .382
3 2368 .643 2.568 (m3) .353

T = threshold between y = 1 and y = 2 = 2.506

T 2 = threshold between y 2 and y = 3=1.768

T = threshold between y = land y = 3=2.048

State conditional distributions for visibility category I
(y = 1), II (y = 2) and III (y = 3) depicting threshold
values and means.
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TABLE VII (CONT.)
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TABLE VIII. CONTINGENCY TABLES AND RELATED STATISTICS
FROM LINEAR REGRESSION, FOR BOTH DEPENDENT
(3682 OBSERVATIONS) AND INDEPENDENT (1841
OBSERVATIONS) NORTH PACIFIC OCEAN, JULY
1979, DATA

DEPENDENT DATA

389 342 2131 AO= .69 AAO= .14

'I)___ __ ___ __ Al= .14

0 2 0 0 0
wTS1= .35 ATS1= .17

1 47 56 37 TS2=0.0 ATS2=-.16

- TS12=.28 ATS12=-.13
1 2 3

OBSERVED

*INDEPENDENT DATA

AO= .69 AAO= .11
3 189 176 1076

'fl___ __ ___ __ Al= .13F. W 2  TS1= .34 ATS1= .16

TS2= 0.0 ATS2= -. 15
1 199 70 131

TS12= .26 ATS12= -. 13K 1 OBSE2 RVED

- -7



TABLE IX. THE INITIAL FIVE BEST PREDICTORS FOR EPI'S
OF FOUR THROUGH TEN, FOR EACH STRATEGY,
WITH ASSOCIATED PP, a0 , a AND CE VALUES
FROM THE NORTH ATLANTIC OCEAN AREA 3W
DEPENDENT DATA, 15 MAY-15 JULY 1983,
WITHOUT LINEAR-REGRESSION EQUATIONS AS
PREDI CTORS

Maximum-probability Natural-regression

EPI Predictor PP a0 a1 CE a0 a1 CE

4 E850 .372 .697 .125 .482 .514 .446 .526

SHF .376 .691 .125 .493 .512 .455 .521

DTDP .344 .685 .125 .505 .611 .304 .474

E925 .359 .685 .125 .505 .505 .453 .537

SMF .334 .682 .125 .511 .606 .301 .487

5 E925 .367 .702 .125 .472 .564 .379 .494

E850 .375 .700 .125 .475 .576 .370 .478

DTDP .344 .699 .125 .477 . .528 .409 .535

SHF .379 .698 .125 .479 .567 .383 .483

SMF .337 .686 .125 .503 .526 .409 .539

6 DTDP .353 .710 .125 .456 .568 .360 .503

E850 .374 .699 .125 .477 .609 .324 .458

SMF .341 .699 .125 .477 .563 .360 .514

E925 .363 .695 .125 .485 .595 .334 .476

SHF .374 .693 .125 .489 .512 .455 .521

7 DTDP .356 .716 .125 .443 .514 .429 .542

SMF .348 .706 .125 .463 .590 .325 .495

E850 .379 .699 .125 .477 .561 .389 .489

E925 .364 .692 .125 .491 .547 .400 .506

.- SHF .376 .691 .125 .493 .548 .407 .497

8 SMF .352 .714 .125 .448 .543 .386 .528

DTDP .356 .712 .125 .451 .611 .304 .474

E850 .378 .700 .125 .475 .588 .355 .469

SHF .379 .691 .125 .493 .512 .455 .521

E925 .364 .685 .125 .505 .577 .360 .486
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TABLE IX (CONT.)

9 SMF .352 .714 .125 .448 .563 .360 .514

DTDP .351 .708 .125 .459 .568 .360 .504

SHF .382 .700 .125 .475 .541 .417 .501

E850 .376 .699 .125 .477 .550 .402 .498

E925 .369 .699 .125 .477 .537 .414 .512

10 SMF .357 .719 .125 .437 .526 .409 .539

DTDP .354 .710 .125 .455 .581 .341 .497

E925 .369 .702 .125 .471 .564 .379 .493

E850 .380 .700 .125 .475 .576 .370 .478

SHF .381 .698 .125 .479 .567 .383 .483

.9
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TABLE X. FIRST-STAGE CONTINGENCY TABLE STATISTICS AO,

TS1, AAO AND ATS1 FOR BOTH DEPENDENT AND

INDEPENDENT NORTH ATLANTIC OCEAN AREA 3W,
15 MAY-15 JULY 1983, DATA, FOR EPI'S OF FOUR

THROUGH TEN AND THE MAXIMUM-PROBABILITY
STRATEGY, WITHOUT LINEAR-REGRESSION EQUATIONS
AS PREDICTORS

Dependent Independent

Best
EPI Predictor AO TS1 AAO ATS1 AO TS1 AAO ATS1

4 E850 .70 .32 .05 .15 .69 .30 -.01 .14

-5 E925 .70 .30 .06 .13 .71 .30 .05 .14

-.. 6 DTDP .71 .32 .09 .15 .71 .29 .05 .13

*7 DTDP .72 .31 I11 .14 .71 .28 .07 .11

*8 SMF .71 .28 .10 .10 .73 .29 .13 .13

9 M 7 26.0 .8 .3 2 1 0

109 SMF .71 .26 .09 .08 .73 .26 .15 .09

100
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TABLE XI. SAME AS TABLE IX, EXCEPT WITH LINEAR-
REGRESSION EQUATIONS AS PREDICTORS

Maximum-probability Natural-regression

EPI Predictor PP 0 1 CE a0 1 CE

4 BMI .443 .753 .125 .370 .662 .282 .394

BM3 .427 .742 .125 .392 .665 .270 .400

BM2 .395 .713 .125 .450 .516 .455 .512

BM7 .389 .705 .125 .465 .512 .461 .515

E850 .372 .697 .125 .482 .514 .446 .526

5 BM1 .438 .749 .125 .377 .589 .380 .442

BM3 .433 .749 .125 .377 .590 .374 .446

BM2 .400 .727 .125 .421 .566 .387 .482

BM7 .396 .716 .125 .444 .564 .393 .480

E925 .367 .702 .125 .472 .564 .379 .494

6 BM1 .449 .752 .125 .372 .628 .332 .413

BM3 .433 .746 .125 .383 .625 .328 .422

BM7 .404 .725 .125 .425 .604 .338 .453

BM2 .399 .723 .125 .429 .517 .454 .512

DTDP .353 .710 .125 .456 .568 .360 .503

7 BMI .452 .745 .125 .385 .650 .303 .397

BM3 .434 .740 .125 .394 .575 .393 .457

BM2 .406 .728 .125 .419 .554 .406 .486

BM7 .404 .721 .125 .434 .480 .505 .536

DTDP .356 .716 .125 .443 .514 .429 .542

8 BM1 .453 .753 .125 .370 .606 .358 .431

BM3 .441 .742 .125 .392 .601 .358 .440

BM2 .405 .724 .125 .427 .585 .364 .466

BM7 .406 .723 .125 .429 .575 .378 .472

SMF .352 .714 .125 .448 .543 .386 .528
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TABLE XI (CONT.)

- 9 BNl .453 .752 .125 .372 .689 .250 .372

-. BM3 .442 .744 .125 .387 .685 .248 .381

- BM7 .410 .723 .125 .430 .540 .427 .493

BM2 .405 .721 .125 .434 .547 .414 .491

SMF .352 .714 .125 .448 .563 .360 .514

10 BM1 .456 .749 .125 .377 .704 .235 .356

BM3 .444 .749 .125 .377 .647 .301 .404

BM2 .411 .727 .125 .421 .576 .377 .471

BM7 .407 .721 .125 .433 .564 .393 .480

SMF .357 .719 .125 .438 .526 .409 .539

I
0.9

.6

4

".102

-r.



4.

TABLE XII. SAME AS TABLE X, EXCEPT WITH LINEAR-
REGRESSION EQUATIONS AS PREDICTORS AND
BM1 IS THE PREDICTOR FOR EACH NUMBER
OF EPI'S

Dependent Independent

* EPI AO TS1 AAO ATS1 AO TSI AAO ATS1

4 .75 .45 .22 .32 .74 .43 .17 .30

5 .75 .42 .21 .28 .75 .41 .17 .28

6 .75 .41 .22 .27 .75 .40 .18 .26

7 .75 .37 .20 .22 .75 .39 .19 .25

* 8 .75 .45 .22 .32 .74 .43 .17 .30_

9 .75 .44 .22 .31 .75 .42 .18 .29

10 .75 .42 .21 .28 .75 .41 .17 .28

.

1
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TABLE XIV. FD(96), FD, RSS FD AND a0 FOR STRATEGY
MAXPROB2, NORTH ATLANTIC OCEAN AREA 3W, 15
MAY-15 JULY 1983, DEPENDENT DATA, WITHOUT
LINEAR-REGRESSION EQUATIONS AS PREDICTORS,
FOR THOSE PREDICTORS SELECTED AT EACH STAGE
OF THE DEVELOPMENTAL MODEL USING FIVE EPI'S.
FD(96) IS COMPUTED FROM 100 RANDOMLY GENERATED
DATA SETS, AS EXPLAINED IN APPENDIX A, AND
PROVIDES A MEASURE OF HOW MUCH ADDITIONAL
PREDICTABILITY MAY BE EXPECTED FROM THE
INCLUSION OF A NEW PREDICTOR. IDEALLY, RSS
FD SHOULD BE LESS THAN FD(96)

FD, of predictor added, on

Predictor
Added FD(96) E925 U700 DVDP STRTFQ ENTRN RSS FD 0

E925 ....- - - - .702

U700 .1518 .1510 .... .1510 .706

DVDP .2147 .1581 .1494 - - - .2175 .733

STRTFQ .2629 .1557 .1904 .1427 - - .2844 .813

ENTRN .3036 .1665 .1556 .1734 .1387 - .3178 .918

PS .3394 .1897 .1779 .1492 .1971 .1495 .3887 .950

-p
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TABLE XVII. CONTINGENCY TABLES AND RELATED STATISTICS FOR
BOTH DEPENDENT (1526 OBSERVATIONS) AND INDE-
PENDENT (762 OBSERVATIONS) NORTH ATLANTIC
OCEAN AREA 3W, 15 MAY-15 JULY 1983, DATA,
WITHOUT LINEAR-REGRESSION EQUATIONS AS
PREDICTORS, FROM STAGE FIVE OF THE DEVELOP-
MENTAL MODEL. PREDICTORS ARE SMF, D850,
RH, UBLW AND ENTRN, EACH DIVIDED INTO EIGHT
EPI'S, FOR (a) MAXPROBI, (b) MAXPROB2 AND
(c) NATURAL-REGRESSION

(a) MAXPROBI

DEPENDENT DATA

3 AO= .98 AAO= .953 8 11 1039""
. I-

A1= .01

.2 5 178 0
uJ TS1=.95 ATS1= .94

O

u. 1 283 1 1 TS2=. 9 1  ATS2= .90

I TS12= .95 ATS12 .92
1 2 3
OBSERVED

INDEPENDENT DATA

AO= .70 AAO= .04
3 68 61 452

Al= .16

9 1 TS1 .34 ATS1= .19

u. TS2= .15 ATS2= .03

1 64 12 37
__ TS12= .27 ATS12=-. 0 5

1 2 3
OBSERVED

108

...... .........................................



,. %,4,,. -? ,%, .'.:.. ., -".' -.' - - - . . . .- . . .. ., . . -. - . ., . . . .

TABLE XVII (CONT.)

Vw
L
.

V".

(b) MAXPROB2

DEPENDENT DATA

AO= 98 AAO . 5
3 0 0 1021

. A1= .01<4
- .02 0 183 10u TS1= .95 ATS1=.94

0
" 296 7 9 TS2= .92 ATS2=' 9 0

TS12= -95 ATS12= 9 2

1 2 3
OBSERVED

INDEPENDENT DATA
'

AO=  .66 AAO= -. 10
3 54 52 408

-,____ Al= .19

u 2 14 23 TS1 .33 ATS1= .18

0 TS2= .14 ATS2- .02

1 73 19 62

TS12 = .27 ATS12=-. 0 5

1 2 3
OBSERVED
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TABLE XVII (CONT.)

(c) Natural-Regression

DEPENDENT DATA

AO= .98 AAO .93
-3 0 10 1031

-A1= .02

2 15 179 9
w TS1= .95 ATS1= .93

0
U. 1 TS2= .84 ATS2= .81o 1 281 1 0

I I TS12=.93 ATS12= .90
1 2 3

OBSERVED

INDEPENDENT DATA

* 5AO= .65 AAO = -. 15-- 54 56 407"

- -..- _ Al= .25

- 2 30 28 91 TS1= .32 ATS1- .16
=0

S. TS2= .13 ATS2= .01
1 57 10 29

- -" TS12= .24 ATS12 = -. 10
1 2 3

OBSERVED

110
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TABLE XVIII. SAME AS TABLE XVII, EXCEPT FOR FIVE
EPI'S. PREDICTORS ARE E925, U700, DVDP,

STRTFQ AND ENTRN

.,

(a) MAXPROBI

DEPENDENT DATA

AO= .92 AAO= .74

36 49 1027

.-. _01_ A1= .05

-o2 21 135 42
21 135TSI= .77 ATSI= .71

T2 239 6 9 ATS2=

_,_123 ______TS12=.75 ATS12= .63

1 2 3
OBSERVED

INDEPENDENT DATA

AO= .72 AAO =  .09
*= 54 60 460"

__-_ _ _ _ _ A1= .16

2, 19 20 27
wu2  10TS1= .35 ATS1= .20

0
"O TS2= .14 ATS2 = .02

1 68 14 40

_ _ _ _ TS12= .29 ATS12=-.02

1 2 3
OBSERVED

.111
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TABLE, XVIII (CONT.)

(b) MAXPROB2

DEPENDENT DATA

AO= .92 AAO= .7
3 11 12 970

;-.:-

- Al= .05

2 148 36
LU TS1= .79 ATS1= .73

:..,

0
U1 283 30 34 TS2= .65 ATS2= .60

___ABTS12=.78 ATS12 .67
1 2 3

OBSERVED

.o

INDEPENDENT DATA

- 4AO= .70 AAO= .03

U) __ _ _ __ _ Al= .17

12 12 44
w-2  TS1 .39 ATS 25

0
TS2= .14 ATS2= .02

1 86 24 57

__TS12= .32 ATS12= .01
1 2 3

OBSERVED

112



TABLE XVIII (CONT.)

(c) Natural-Regression

DEPENDENT DATA

3 3 96 AO= .88 AAO= .63

U) Al= .12

2 76 142 54 1.7wj TS1.7 ATS1= .65
0
IL. 1 217 5 0 TS2= .44 ATS2= .36

_____TS12= .51 ATS12= .28
1 2 3

OBSERVED

* * INDEPENDENT DATA

41 5 44 AO= .68 AAO= -. 05

- _ ___ ___ __ Al= .23

39 3 5 TS1= .34 ATS1= .19

* 0 TS2= .15 ATS2= .03

1 61 11 28

____TS12= .27 ATS12=-.05
1 2 3
OBSERVED

113



TABLE XIX. CONTINGENCY TABLES AND RELATED STATISTICS

FOR BOTH DEPENDENT (1526 OBSERVATIONS) AND

INDEPENDENT (762 OBSERVATIONS) NORTH ATLANTIC

OCEAN AREA 3W, 15 MIAY-15 JULY 1983, DATA,

WITH LINEAR-REGRESSION EQUATIONS AS PREDICTORS,

FROM STAGE FOUR OF THE DEVELOPMENTAL MODEL.

PREDICTORS ARE BM1, U850, D500 AND V850,

EACH DIVIDED INTO FOUR EPI'S, FOR (a) MAXPROBI,

(b) MAXPROB2 AND (c) NATURAL-REGRESSION

(a) MAXPROBi

DEPENDENT DATA

AO= .79 AAO .34

97 120 990
,.-__ Al= .12

2. 6 215
6 uj TS1= .50 ATSI= .37

0

193 4 TS2= .10 ATS2=-.02

iTS12= .40 ATS12= .12

1 2 3
OBSERVED

INDEPENDENT DATA

3 AO= .78 AAO= .29
' I-3 45 74 499

u__ A1=  .13

. , 2  5 4 TSI= .51 ATSI= .40

• 0
. .TS2= .05 ATS2 = -. 09

1 92 15 24

- - TS12= .37 ATS12 = .09

1 2 3
OBSERVED

114

""



- "o. - . - .~.

TABLE XIX (CONT.)

(b) MAXPROB2

DEPENDENT DATA

AO= .79 AAO .34
3 77 109 967

A1= .12

02
U 3 21 9 TS1= .51 ATSI= .40

0
.1 TS2= .10 ATS2=-.02..: 216 60 64

_ _-_,_ TS12= .42 ATS12= .16

1 "2 3
OBSERVED

INDEPENDENT DATA

' 3 6 48 AO= .78 AAO= .273.", 36 68 481"

2'O 33
-- . .A1= .42

0.-'uJ23 8 6 TS1= .51[ ATSI: ,40

:0 0 -. _ _ _ _

u. TS2= .08 ATS2 = -.05

1 102 18 40
__-___ TS12= 39 ATS12 =  .12

1 2 3
OBSERVED

115
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TABLE XIX (CONT.)

(c) Natural-Regression

DEPENDENT DATA

AO= .72 AAO= .11
3 35 82 875

(n A1= .25

,.O2 131 87 147"O TS1= .39 ATS1= .24

0
i 12 1 TS2= .19 ATS2= .07-i- 1 130 21 18"

TS12=.33 ATS12= .0 2

1 2 3
OBSERVED

- INDEPENDENT DATA

A0- .69 AAO= .01
*3 24 49 427

,___.-. _ A1= .26

53 38 87
w 2  TS= .40 ATS1= 26
040 .26

TS2= .16 ATS2= .05
1 64 7 13

-'-'I TS12= .30 ATS12=-.01

1 2 3
OBSERVED

1
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* . TABLE XX. SAME AS TABLE XIX, EXCEPT RESULTS ARE FROM
STAGE TWO IN THE DEVELOPMENTAL MODEL AND
PREDICTORS ARE DIVIDED INTO EIGHT EPI'S
EACH. PREDICTORS ARE BM1 AND UJ500

(a) MAXPROB1

DEPENDENT DATA

AO= .75 AAO= .23
S112 130 965

(I)Al= .13

*2
w 10 13 9 TS1= .43 ATS1= .29

0
U1 174 47 66 TS2= .06 ATS2=... 0 7

TS12=. 3 3  ATS12= .02
1 2 3

OBSERVED

INDEPENDENT DATA

AO= .75 AAO= .17
3 56 79 484

U) _ ___ - _ ___ Al= .13

Lu2 1 0 3 TS1= .43 ATS1= .30

I.'. TS2=0.0 ATS2= -. 14
1 84 15 40

TS12= .30 ATS12=- 0 1

1 2 3
* OBSERVED

117



TABLE XX (CONT.)

(b) MAXPROB2

DEPENDENT DATA

AO= .75 AAO= .23
3 90 118 943

Al= .13

02
LU 3 6 4 TS1= .45 ATS1= .31

0.123 6 9 TS2= .03 ATS2=-. 11

____ _________TS12=.36 ATS12=.06

1 2 3
OBSERVED

INDEPENDENT DATA

AO= .74 AAO= .16
*3 46 76 470

- _ _ _ Al= .13

wj2  0 0 2 TS1= .44 ATS1~ .32

0
U. TS2=0 .0 ATS2= -. 14

1 95 18 55
____TS12 .33 ATS12= .02

1 2 3
OBSERVED
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TABLE XX (CONT.)

(c) Natural-Regression

DEPENDENT DATA

AO= .67 AAO= -. 05
3 59 97 873

U) A-1= .29

o 7 7 5 TS1= .21 ATS1= .02

0
67 17. TS2= .15 ATS2= .03

____ ___ ____ TS12=.22 ATS12-.15
1 2 3

OBS ERV ED

* INDEPENDENT DATA

AOm .64 At.O= -. 15
*3 32 64 431

in _ ___ __ ___ ___ _ _ AI= .31

wU 2 74 25 90 TS1= .23 ATS1= .06

0
TS2= .10 ATS2= -. 03

1 35 5 6

____ ____ ____ TS12= .18 ATS12= -. 18

1 2 3
OBSERVED
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TABLE XXI. LINEAR-REGRESSION EQUATIONS FOR THE PREDICTED
VALUE OF THE VISIBILITY CATEGORY (Y), FOR BOTH
REGRESSION METHODS, Y STATISTICS WITH RESPECT
TO THE ACTUAL VISIBILITY CATEGORIES (Y) AND
THRESHOLD VALUES FROM BOTH THRESHOLD MODELS,
NORTH ATLANTIC OCEAN AREA 3W, 15 MAY-15 JULY
1983. NOTATION IS AS IN APPENDIX B

A. Definitions:

t.1 - Linear regression method 1: single equation,
three visibility categories

LR2 - Linear regression method 2: Decision-tree; two
equations, two visibility categories each

./ a - All predictors were made available to the
regression model.

O b - Only the best predictors from the Preisendorfer
(1983 a,b,c) methodology were made available
to the regression model

*- A - Quadratic threshold model (Case III, Appendix B)

B - Equal variance threshold model (Case I, Appendix B)

B. LRla

y = 2.81132 + .16201(EAIR) - .00237(E850) - .07319(T925)

- .16179(E925)

Class conditional distributions (i.e., the distribution of y
for a given y).

Number of Frequency Mean value Standard
observations of of deviation of

y of y y (p) Y (m) (a)

1 296 .194 2.014 (mI1 ) .434

2 190 .125 2.324 (m2 ) .379

O 3 1040 .682 2.652 (m3) .352

120
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TABLE XXI (CONT.)

LRlaA

T =threshold between y 1 and y 2 =2.275
1

T -threshold between y 2 and y =3 =1.839

T 3 threshold between y =1 and y =3 =2.008

(second threshold value, of the pair, was of no interest.
- - See Appendix B)

LR.1aB

T =threshold between y =1 and y =2 =2.368
a

T b threshold between y =2 and y =3 = 1.768

* =thre-shold between y =1 and y =3 = 2.060

State conditional distributions for visibility category
I (y =1), 11 (y = 2) and III (y =3) depicting
threshold values and means.

.076.

.050./

C

.025-TT
TTbTa

1 .0 1 . -5 2 . : 3 :0 3 5

Predicted value AY
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TABLE XXI (CONT.)

C. LR2a
/-4

Equation 1: y = .90305 + .06122(EAIR) + .11284 xlO (D850)

- .08438(E850) - .04083(T925)

Class conditiona distributions

Number of Frequency Mean value Standard
" observations of of Deviation

Y. of y y (p) Y (m) of y (a)

0 486 .318 .479 (m0) .222

1 1040 .682 .776 (mI) .209

"LR2aA: T threshold between y = 0 and y = 1 .4979

LR2aB: T = threshold between y = 0 and y = 1 .5110

State conditional distributions for combined visibility
categories I and II (y = 0) and visibility category III
(y = 1) depicting threshold values and means

.075-

.050 .

02-01.

*..025so,7

S M

0 . 1.o 1:5

Predicted value (A)
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TABLE XXI (CONT.)

Equation 2: y .01229 - .18917 x 10-(Ul000)

- .02088(T500) + .1339 x I0 (U500)

+ .15259 x 10- (D925) - .32705 x 10 2 (STRTFQ)

+ 7.50153(DEDP) - .03279(DVDP)

Class conditional distributions

Number of Frequency Mean value Standard
observations of of deviation
of y y (p) (m) of y (a)

0 296 .609 .319 (m.) .186

1 190 .391 .503 (mI) .194

LR2aA: T = threshold between y = 0 and y = 1 = .5102

LR2aB: T = threshold between y = 0 and y = 1 = .4972. a

State conditional distributions for visibility category I
(y = 0) and II (y = 1) depicting threshold values and means.

.075-

.050

.o25-","" "
00

0 .I5

Predicted value (y)
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TABLE XXI (CONT.)

D. LR2b

Equation 1: y = .89952 - .04830(E850) + .02472(SHF)

+ 2.17081(DTDP) + 6.81684(DEDP)

Class conditional distributions

Number of Frequency Mean value Standard
observations of of deviationA A

of y Y (p) (m) of y (a)

0 486 .318 .496 (m0) .220

1 1040 .682 .768 (mI) .201

LR2bA: T = threshold between y = 0 and y = 1 = .4922* 1

LR2bB: T = threshold between y = 0 and y = 1 = .5119a

State conditional distributions for visibility categories
I and II (y = 0) and visibility category III (y = 1)
depicting threshold values and means.

.075

.050

0

'--.025 * mT

4', II--

C .5 - .J

0 .5 1.0 1.5
Predicted value ( )
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TABLE XXI (CONT.)

Equation 2: y = .71769 + .11439 × -3(V700) - .47810 x10-2(STRTFQ)

+ 4.5433(DTDP)

Class conditional distributions

Number of Frequency Mean value Standard
observations of of deviation
of y y (p) y(m) of (a)

0 296 .609 .337 (m 0 ) .164

1 190 .391 .476 (mI1 ) .177

LR2bA: T = threshold between y = 0 and y = 1 = .5208

LRabB: T = threshold between y = 0 and y = 1 = .4978
a

State conditional distributions for visibility category I
". (y = 0) and II (y = 1) depicting threshold values and means.

.075-

.050

eo "

.025 ..,,

a

0.5 1 .0 1 5

Predicted value 1.5
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TABLE XXII. CONTINGENCY TABLES AND RELATED STATISTICS
FROM LINEAR REGRESSION METHOD 1 (SINGLE
EQUATION), QUADRATIC THRESHOLD MODEL, FOR

BOTH DEPENDENT (1526 OBSERVATIONS) AND
INDEPENDENT (762 OBSERVATIONS) NORTH
ATLANTIC OCEAN AREA 3W, 15 MAY-15 JULY 1983,

DATA, WITH ALL PREDICTORS AVAILABLE TO THE
REGRESSION MODEL

LRlaA (Table XXI)

DEPENDENT DATA

129 AO= .75 AAO .21> 3 152 151 996

"-_ __ ___ __ A1= .12

02 0 0 0
w TS1= .38 ATSI= .23

. 144 39 44 TS2=0 0  ATS2=- 1 4

- TS12= .27 ATS12m -. 07
1 2 3

OBSERVED

INDEPENDENT DATA

" 69 80 498 AO= .75 AAO: .18
3

U, ___ _ _ ___ __ ___ Al= .12

00 0 0
uj2 TS1= .39 ATS1= .25

* 0
u. TS2=0.0 ATS2 = -. 14

1 72 14 29

__ __ TS12= .27 ATS12=-. 0 5

1 2 3
OBSERVED
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TABLE XXIII. SAME AS TABLE XXII, EXCEPT USING THE
EQUAL-VARIANCE THRESHOLD MODEL

J

LRlaB (Table XXI)

DEPENDENT DATA

" AO= .75 AAO= .22

3 135 147 984

____. _ A1 = .12

2  0 0 0
w TS1= .41 ATS1= .27

0
u. 161 43 56 TS2= 0.0 ATS2=-. 1 4

TS12= .30 ATS12= -. 03
1 2 3
OBSERVED

INDEPENDENT DATA

AO= .75 AAO= .17
3 65 78 492

_._._ Al= .12

o 0 0 0
0i u__2 TS1= .40 ATS1- .26

U76 16 35 TS2= 0.0 ATS2= -. 14

TS12= .28 ATS12=-. 0 4

1 2 3
OBSERVED
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TABLE XXIV. CONTINGENCY TABLES AND RELATED STATISTICS
FROM LINEAR REGRESSION METHOD 2 (DECISION-
TREE), QUADRATIC THRESHOLD MODEL, FOR BOTH
DEPENDENT (1526 OBSERVATIONS) AND INDEPENDENT
(762 OBSERVATIONS) NORTH ATLANTIC OCEAN AREA
3W, 15 MAY-15 JULY 1983, DATA, WITH ALL
PREDICTORS AVAILABLE TO THE REGRESSION MODEL

LR2aA (Table XXI)

DEPENDENT DATA

AO= .76 AAO= .23

105 118 945

AI= .13

02 11 28 19
wu TS1= .43 ATS1= .30

0
1 180 44 76 TS2= .13 ATS2= .00

__-__ TS12= .36 ATS12= .06

1 2 3
OBSERVED

INDEPENDENT DATA

52 68 474 AO= .73 AAO= .14

* I-

__-"__ A1= .14

0

11 8 6 TSI= .38 ATS1- .24

u. TS2= .07 ATS2= -. 06

1 78 18 47

TS12= .30 ATS12=-.0 1

1 2 3
OBSERVED

4. 128



TABLE XXV. SAME AS TABLE XXIV, EXCEPT USING THE EQUAL-
VARIANCE THRESHOLD MODEL

LR2aB (Table XXI)_

DEPENDENT DATA

AO= .76 AAO .2 3
3 96 116 938

Li)Al= .13

021w02 TS1= .44 ATS1= .31

* 0
U. 18 44 76 TS2= .13 ATS2- .01

____ ____TS12= .37 ATS12= .07
1 2 3
OBSERVED

- . INDEPENDENT DATA

3 9 67 44 AOm .73 AAO= .11

Cl) ___ __ ___ __ ___ __ Al= .14

w 1 9 1 TS1= .38 ATS1= .24

LLTS2= .08 ATS2= -. 05
1 80 18 50

- _____TS12= 30 ATS12=- .0
1 2 3

* OBSERVED
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TABLE XXVI. CONTINGENCY TABLES AND RELATED STATISTICS FROM

LINEAR REGRESSION METHOD 2 (DECISION-TREE),

QUADRATIC THRESHOLD MODEL, FOR BOTH DEPENDENT

(1526 OBSERVATIONS) AND INDEPENDENT (762

OBSERVATIONS) NORTH ATLANTIC OCEAN AREA 3W,

15 MAY-15 JULY 1983, DATA, WITH ONLY THOSE

PREDICTORS IDENTIFIED AS BEST BY THE

PREISENDORFER METHODOLOGY AVAILABLE TO THE

REGRESSION MODEL

LR2bA (Table XXI)

DEPENDENT DATA

AO= .75 AAO .20

•-3 116 127 952

__._ - -A1= .13

U 2 5 10 13
w-TS1= .41 ATSI= .27

175. TS2= .05 ATS2= -. 09

,._117 53_75 TS12= .32 ATS12= .01

1 2 3
OBSERVED

INDEPENDENT DATA

AO . AAO= .14
3 54 72 475

()_-_ __ A1 =  .14

0i 4 1 7 S T1
TSI .40 ATS1Z .26

0
* TS2= .01 ATS2 = -. 13

1 83 21 45

TS12 = .29 ATS12 = -. 02

1 2 3

OBSERVED
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TABLE XXVII. SAME AS TABLE XXVI, EXCEPT USING THE

EQUAL-VARIANCE THRESHOLD MODEL

LR2bB (Table XXI)

DEPENDENT DATA

-"AOZ .74 AAO= .19

3 105 116 933

A = .14

U. 2 8 14 238"4 2 TS1= .42 ATS1= .28

00 TS2= .06 ATS2= -.07

u1 183 60 84

TS12=. 3 3  ATS12= .02

1 2 3

OBSERVED

INDEPENDENT DATA

AO=  .73 AAO= .11
3 51 71 465

__ __ _ A1 =  .14

w 2  5 3 10 TS1 = .40 ATS1= .26

.0 TS2= .03 ATS2 = -. 11

1 85 20 52

TS12= .30 ATS12 = -. 02

1 2 3
OBSERVED
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7.

APPENDIX G

FI GURES
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C.)

C!

EOUALLY POPULOUS JNTERVRILS

Fig~ 2b. Same as Fig. 2a, except for two predictors (S r- (6)
and DID2)
C!

....... ...................

oV7 -

i .

00 5 O is 20 25 30 is 40 4S so
EOURLLY POPULOUS INTERVRLS

rigj 2c. Same a s Fi.2a, excekt -*;r thre-e prlctr(M6)DTDP(16) adPS).L*itr
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LJO, 00

EOURLLY POPULOUS INTERVALS
Fiq. 3d. Same as Fij. 3a, exce-t 'or five ireictors

(SMF (6) , RH (3) , DUDP (4),VO2925 (5) and SN~iN).
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OEP.ORTA: AO-SOLID, ATSI-OOTS
-~INOEP.ORA: RAO-DA~SHES, RTSI-CHAINCRSHES

(a) ~

Li o

----------------------------------------

--- -- -- --

NUMBER OF PREDICTORS

OEP.OATM: AAO-SOLIO, RTS1-COTS
INCP.CTA:AAO-ORSrIES, ATSI-CHAINASHES
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50

I-j

;C

0 .. ...... .....

NUMBER OF PREDICTORS

C.).

"Lit
---""A

0I 5c, 10 10027 50 00 4,

F'ORECST ARRAY'I LENOTH

Fig. 8. Behavior of a0 (96) (upper solid), (05) (lower
solid) , ai(96) (upper dashed) , al(0) (lower dashed),
PP(96) (upper dotted) and PP(05) (lower dotted) from
100 randomly generated data sets, using predictors
from the North Atlantic Ocean area 3W experiment,
with each predictor divided into four EPI's, for (a)
as each predictor is added and (b) as the forecast

A array size increases (forecast array size, at any
6 given stage, is equal to the number of E.PI's taken

to the nth power, where n is equal to the number of

predictors included at that stage).
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OEP.ORA: AO-SOLID, PTSI-QOTSINDEP.ORTA: RAO-ORSHES, PTSI-CtIAINDASHES

Ll
a

Cm

C;

1 4

p ".0

Li

(a) -

Fig. 10 Contingency table-f:H5 sttisicHNOsHAOan orbt

str-:" ateie (aoo.O1 n b AXRB.Pe

dictr areP.A RA-5LF, D80,TE UL-anOETR5ac

Li

% -.
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* OEI.ORTA: AO-SOLIO, RTSI-OOTS
INOEP.DATA: ARO-ORSHE5, f9TSI-CHHINOASHES

LJo

ci-

C .4

(a

6 a6

NUMBER OF PREDICTORS

DEP.OI9TA: RAO-SOLID, ATSI-OOTS
4.. INDEP.OATA: AAO-CASHES, RTS1-CHAINDASHES

4' 4n

(b)

4.4.

I.-

c- - -------- _8---- - - --------- n

012 3 45 6
NUMBER 0r PREDICTORS

Fig. 11. same as Fig. 10, except predictors are E925, U700,
DVDP, STRTFQ, ENTRN and PS, each divided into five
EPI 's.

q 147



DE P.DFITA: AO-SOLIO, ATSt-OOTS
-~INDEP.019TA: AAO-OASHES, ATSI-CHRINOASHES

GE0

(a

Li

ci-

........ 
.

Ca) .

NUMBER OF PREDICTORS

@1OEP.OATH: ARC-SOL rO, HTSI-OorS
SINOEP.ORTR: RHO-UOiSHES, ATS1-CHAINOASHES

Li-

(b)

Lio

ci-

1 13

NUMBER OF PREDICTORS

dependent and independent North Atlantic Ocean area

equations as predictors, as a function of the number
of predictors in the model for strategies (a) MAX-
PROBi and (b) MAXPROB2. Predictors are BM1, U850,
D500, V850, D1000 and U1000, each divided into four
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lXP.O0TA: PRO-5OLIO, PT5t-OOTS
- INOEP.OATA: RAO-ORShES, ITSI-CHAINOASHES

0

C3-

(a) c

.

.. 

.

-- - -- - - -- - - -- - - .. . .. .

r" NUMBER OF PREDOICTORS

t ODEPORTS: AHO-SOLTO, ATSl-DOTS
*" = INOEP.OAT: 1:tO-NISHS, ATSI-CHAINOASHS

ci-

,b)

0 0- - --- - - - -

"* 0

NUMER OF PRDICTORS

"v.= Fig. 13. Same as Fig. 12, except predictors are BM1, U500,i• ENTRN, DVDP and BM4, each divided into eight EPI's.
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!.2 - - a n(.,j)

Ii 9 25 26 60

V'I 7 7 6 20

u"17 1 1 19

n(1,.) 33 33 33 99 n(.,.)

=1 2 3(m)
Predictor interval

Fig. 14. Bivariate plot of EHF as a function of both
equally populous intervals (EPI) and visibility
categories (VISCAT).

'4,..)

,.0 .091 .252 .263 .606

0 .071 .071 .061 .202
CO 

"
- .172 .010 .010 .192

P 1l) .333 .333 .333 1.0

- 6~P . 3 33_ _ _ _ _ _

1 2 3

-' Predictor Interval

Fig. 15. Joint and marginal probabilities of VISCAT's as a
function of EPI's for EHF.
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5.5

:', .273 .758 .788

0: .212 .212 .182

* .515 .030 .030

1.0 1.0 1.0

1 2 3
Predictor interval

Fig. 16. Conditional probabilities of VISCAT's as a
function of EPI's for EHF.

v

A.

Conditional

probabilities Products

J=3 .273 .819

' 1=2 .212 .424

-1=. .515 .515

n
S1.758 = JP2 1 (jli)

Fig. 17. Sample calculation of the average visibility
category (VISCAT), natural-regression strategy,
for the first EPI (i = 1) of predictor EHF.
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%-7

_ _ _ (P2 1(i)- 13) 2

J =3 .00364 .18034 .20672

j = 2 .01472 .01472 .02290

J - 1 .03300 .09201 .09201

n

[.05136 _.28707 )32163

PPMI .07704 .43061 .48245

P 1 ) .333 .333 .333

m
p1 I~p~) 0268 .14354 .16082 =.33004 =PP

0 112 3

Fig. 18. samplei alculation iof jEtential predictabil~ity

(pp) of vslbi lit y by prelicto1r Bil.
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decreasing\
skill

01
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Fig. 19. Skill diagram with lines of constant a+2a1 2'
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-,u u . - .' * . -t n

Cell numbering

36 9

NY 215 8
1 4 -

11=1 2 3

VISCAT I VISCAT 11 VISCAT III

9 0 0 3 4 4 2 5 6

1 1 12 2 1 4~ 11 10

EHF EHF EHF

Pip. 21a. Tabular presentation cf a tlree-jimGeisiLral

prot.Lea wit., predictors EHF and 2H1 eaeii divi.1ed intt,

thre~e PI's, is ai unctior of VISCAT's.
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- . d,•.. . . ...*-- -

,.4

Bivariate plot (11 = IGP2(li-1)+Jj)

-111 4 3 2 11 9 5 10 10 6

II 2 2 3 2 1 4 1 1 4

I 1 7 9 1 0 0 1 0 0
"' 1 2 3 4 5 6 7 8 9

Conditional probabilities

.571 .250 .143 .787 .900 .556 .833 .909 .600

.286 .167 .214 .143 .100 .444 .083 091 1400

143 583 4300 .000 083 .000 .000

Forecast array

13111113 13 1 313 13131

Fi4. 21b. Reduction of the tnree-dimensi3nal. pro-iel, in
F.ig. 21a., to two dimensions.
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Joint Conditional
Bivariate plot probabilities probabilities

14 9 10 0 .141 .091 .101 .424 .273 .303

" 12 10 11 .' 121 .101 .111 .364 .303 .333

7 14 12 .071 .141 .121 .212 .424 .364
L=1 2 - 1 2 3 1 2 3

EHF EHF EHF

- ---- ..-

0[: l.j0 rlij) lqli~j)-rli~j)l

0 .5761 .727 .727 .697 0 .727 .121 .72j

---- --
.27 .515 .424 .424 .788 .273 .151 .273 .151

6.636 0 0 .788 .579 .576 .152 .576

m=3 m/2(m-1)=.75

* FD211)=FD(RHIEHF)=.75(.141(.727) +.121(.151)+.071(.576)+
.091 (.121) +.101 (.273) +.141 (.152)+

.101(.727)+.111 (.151)+.121(.576)) .286

Fig. 23. Samele calculatioa of fuDctional dopeazc (ED)I'/,',of: HI on H.B..
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