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ABSTRACT

This report describes the development and application
of a program to forecast important air/ocean parameters using
the method(s) of model output statistics. The focus of this
operationally oriented study is to forecast atmospheric
marine horizontal visibility using a discrete analysis of
observed visibility and the Navy's Operational Global Atmos-
pheric Prediction System (NOGAPS) model output parameters.
Three strategies (two based on maximum-probability and one
based on natural-regression) are compared to two multiple
linear regression methods. The primary data set is from a
North Atlantic Ocean area bounded approximately by the North
American coast from Norfolk, Va. to St. Johns, Newfoundland,
and then eastward to about 37.5°W. Both the dependent and

independent data were derived from the same basic set. New

or unfamiliar concepts, in addition to the primary methodology,

include the statistical division of the North Atlantic Ocean
into physically homogeneous areas, two new threshold models
for the application of linear regression equations, linear
regression based upon a 'decision-tree' concept, functional
dependence of predictors and class errors. Results show

that the methodology proposed by Preisendorfer does out

perform multiple linear regression.
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I. INTRODUCTION AND BACKGROUND :ix

L

o

Model output statistics (MOS) is a technique whereby o
parameters output from numerical weather prediction models f:ﬁ
Fe’q

(predictors) are statistically processed, with observed 2

data, to produce forecasts of one of the following cate-
gories of parameters (as predictands):
a. operationally important parameters not output by the
numerical prediction model (e.g., visibility, cloud
cover, ceiling).

b. model output parameters whose predictive skill is

improved (e.g., surface wind, temperature) due to ]
correction of numerical model bias and/or scale. ;3;
Historically, the methodology has consisted of generating é%i
empirical equations by a linear, least-squares regression ?:?
model. This technique is used by both the National Weather 25;
Service and the United States Air Force Air Weather Service éi%
and has demonstrated operationally usable skill in forecast- ;é:
ing numerous weather elements at locations over land E;S
throughout the world [Best and Pryor, 1983]. Attempts by 35:
the United States Navy to forecast open-ocean fog and visi- j&ﬁ:
bility using linear regression equations have shown skills .i?

of marginal operational usefulness but exceeding those of
persistence and climatology [Aldinger, 1979; Yavorsky, 1980;

Selsor, 1980; Koziara et al, 1983; Renard and Thompson, 1984].
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Presumably, this level of performance is due, in part, to
the lack of 'calibrated' fog and visibility observations.
Shipboard weather observers lack sufficient reference points s
to be able to accurately estimate the range of atmospheric
visibility.

In the spring of 1983, the United States Navy made the
decision to begin development of a MOS program to forecast
operational air/ocean parameters over the oceans of the
world. Primarily, because of the importance of horizontal
visibility to the mariner, this parameter was elected to be
the initial candidate. However, because of less~than-perfect
prior results using linear regression in the North Pacific
Ocean, it was decided to investigate other methodologies
to determine if a better one could be found.

This study presents statistical methodologies proposed by

Preisendorfer (1983 a,b,c). Specifically, three strategies,
two based on maximum-probability and one based on natural-
regression, are further developed, tested and applied to sets
of model output parameters from both the North Pacific and
North Atlantic Ocean areas. In addition, multiple linear

regression is applied to the same data. Innovative threshold

techniques, developed by Lowe (1984a), are also applied, and
methodologies are compared.

In the following discussion, a sufficient number of terms

and symbols are defined to allow readers without strong

statistical backgrounds to understand the results. However,
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for a proper understanding of the Preisendorfer (1983 a,b,c)

methodology, readers are encouraged to read Appendix A,
which contains a detailed discussion. Similarly, details on
the linear regression model and threshold procedures [Lowe,

1984a) are to be found in Appendix B.
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II. OBJECTIVE AND APPROACH

The objective of this study is to determine if a statis-
tical methodology, applied to discrete values of model
output and derived parameters, can improve upon the fore- ;,1
A
casting of horizontal marine atmospheric visibility when j;;
<
compared to linear regression. The approach is as follows: ;:L
o
a. define categorical groupings of visibility which m
N
relate to operational use at sea. )
“~ -
—d
b. develop and apply the Preisendorfer (1983 a,b,c) R
s
methodology using July 1979 North Pacific Ocean data. i
LOKS
. 'nd
c. apply the methodology developed in b. above to June ST
N
AR
1983 North Atlantic Ocean data. .
d. compare Preisendorfer (1983 a,b,c) results to those )
~
of the Lowe (1984a) linear regression approach for ﬁ?{
the North Pacific, and North Atlantic Ocean data sets. ig‘
L
73
o
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o
e
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o
A
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III. DATA

A. VISIBILITY OBSERVATIONS AND SYNOPTIC CODE

Visibility observations at sea are reported as one of

IR PN

ten synoptic codes, ranging from 90 (visibility less than

!
i

",
a.s 8 ei.

50 m) to 99 (visibility equal to or greater than 10 km).

However, in view of the inexactness of observing and record-

. . ¢
I'n‘. )
aiatat

ing marine visibility, in category form, and the further

-3

degradation of its interpretation by users in forecasting,

a simplified categorization of visibility was developed as

RPN

follows: T
¢
category synoptic code visibility range <
I 90-94 < 2 km -
II 95-96 > 2 km and < 10 km
III 97-99 > 10 km

This scheme is based upon the following operational

criteria, which applies when observed visibility falls below

the indicated value:

1. 10 km (5 n mi)--United States Navy aircraft carrier
flight recovery operations change from visual to con-
trolled approach [Department of the Navy, 1979].

2. 2 km (1 n mi)--sounding of reduced visibility signals
for all vessels operating in international waters.

(The term 'reduced visibility' isnot defined in the

18
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International Regulations for Preventing Collisions at
Sea, 1972. However, United States Navy Captains and
Merchant Marine Masters generally consider it to be

lnmi.)

B. NORTH PACIFIC OCEAN DATA
The data from the North Pacific Ocean are described by
Selsor (1980) and Koziara et al (1983). Only the July 1979

model initialization (TAUOO) data are used, consisting of 19

model output parameters (MOP) from the Northern Hemisphere

models operational in 1979, namely, the Mass Structure Analy-
sis, the Primitive Equation and the Marine Wind Models; and iﬁ
one climatological visibility parameter from the National ;f

Oceanic and Atmospheric Administration's National Climatic f?

Data Center (NCDC), Asheville, North Carolina. Two additional

parameters were derived from this set. A description of the

e e
e
* v

.y

parameters is found in Appendix C. s

r

YL

W P

C. NORTH ATLANTIC OCEAN DATA

1. Area o

’.-

The North Atlantic Ocean, from 0° to 80°N, was k%

divided into physically homogeneous areas by Lowe (1984b) oy

using an appropriate cluster analysis technique. The primary o
area used in this study is identified as area 3W on Fig. 1, .
i which illustrates the North Atlantic Ocean homoegeneous areas.
This area was chosen because of the relatively frequent

occurrence of poor visibility as compared to the other areas.
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A summary of visibility frequencies, for each homogeneous
area and three visibility categories, is contained in Table I.

2. Time Period

Data from 15 May 1983 through 15 July 1983 were
combined to form the June 1983 data set, hereafter referred
to as FATJUNE. FATJUNE was chosen as the initial data set
because of the high frequency of occurrence of poor visi-
bility during this period. 1In order to maximize the credi-
bility of visibility observations, 1200 GMT synoptic ship
report data were used exclusively since this time corresponds
to daylight over the entire area of study during FATJUNE.

Model output parameter data (predictors) at 1200 GMT

model output time, hereafter referred to as TAU0O, were used

A v'-.-. A ‘bl el Al ANt B

in the development of the Preisendorfer (1983 a,b,c) methodology,

time not being available to pursue the scheme beyond that
stage. Thus, TAUOO represents model initialization time.
However, the term 'forecast' will be used throughout this
study to represent the estimate of visibility at this
initialization time.

3. Synoptic Weather Reports

All synoptic visibility observations (predictand
data) for this study were quality-control checked and pro-
vided by the Naval Oceanography Command Detachment (NOCD)
co-located with the NCDC. Those furnished observations which
contain systematic observer error or are suspect or obviously

erroneous, as determined from the data quality indicators,

are not incorporated in the final data set. N
v..:'-
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4. Predictor Parameters

Fifty TAUO00 model output parameters (MOP's) (predic-
tor data) were provided for the period of study by the Fleet
Numerical Oceanography Center (FNOC), Monterey, California.
These parameters are from their current operational prediction
model, the Navy Operational Global Atmospheric Prediction
System (NOGAPS). All MOP's were interpolated from model grid
coordinates to synoptic ship observation positions using a
linear interpolation scheme. Of the 50 parameters provided,
only 35 were used in the development of the Preisendorfer
(1983 a,b,c) and Lowe (1984a) methodologies, the remainder
being considered as either having little likelihood of
importance in the forecasting of visibility or not usable
due to the lack.of significant digits (which were lost during
the transfer from FNOC tapes to the main computer center's
mass storage data system). Twelve additional parameters were
derived from the interpolated MOP's. Seven of these are
equations derived from a linear regression model which will
be described in Chapter V and Appendix B. Each equation
represents an estimate of the visibility category, which is
used as a predictor. A list of all of the predictor param-~

eters is provided in Appendix D.

D. DEPENDENT/INDEPENDENT DATA SETS
Due to the limited amount of data available to this
study for each of the North Atlantic Ocean homogeneous

areas, it was necessary to withhold one-third of the
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observations from the developmental model to use as an inde-
pendent data set. This was accomplished by the use of a
counter and transfer statement in the computer programs which
prevented every third observation from entering the develop-
mental computations. To ensure that the dependent and inde-
pendent data were representative of the same population, a
95% confidence interval for proportions [Miller and Freund,
1977] was established from the entire data set, for each
visibility category, and the dependent and independent data
sets were constrained to have visibility frequencies within
these established confidence intervals. This same procedure
was applied to the North Pacific Ocean data for consistency of
method. Table II summarizes the dependent and independent
data for both the North Atlantic Ocean and North Pacific

Ocean data sets.
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IV. PRELIMINARY EXPERIMENTS

A. TERMS AND SYMBOLS

The terms and statistical symbols defined below will be
used throughout the remainder of this report. The formal
mathematical definitions can be found in Appendices A and
E.

l. Maximum-probability strategy--choosing forecast
visibility categories based upon the highest conditiocnal
probabilities of visibility within a predictor interval.

2. MAXPROBl--designation of the maximum-probability
strategy in which ties of the highest conditional
probabilities in a predictor interval are resolved by
the generation of a random number.

3. MAXPROB2-~-designation of the maximum-probabilify
strategy in which ties of the highest conditional
probabilities in a predictor interval are resolved by
assigning the lowest visibility category, of those
tied, as the forecast category.

4, Natural-regression strategy--choosing forecast visi-
bility categories based upon the statistical average

of the conditional probabilities of visibility within

a predictor interval.
5. ao-—the probability of a zero-class visibility category
forecast error (e.g., if visibility category I is fore-

cast, it is also observed).
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6. al--the probability of a one-class visibility category
forecast error (e.g., if visibility category I is
forecast and category II is observed).

| 7. a2--the probability of a two-class visibility category
forecast error (e.g., if visibility category I is
forecast and category III is observed).

8. CE--class error parameter defined as a; + 2a2, used to
identify the first predictor.

9. Pp--the potential predictability of visibility by
any given predictor.

10. FD--the functional dependence of one predictor on
another. This is a measure of functional dependence
of a statistical kind and not of the deterministic
kind. The term 'functional dependence' is used by
Preisendorfer (1983c) and; being sufficiently descrip-
tive of fhe concept, it will be used herein.

11. RSS FD--root sum squared FD. The functional dependence
of a predictor on all predictors already included in

the developmental model. It is equal to the square-

root of the sum of the squares of the individual FD's.
12. Tsl--threat score for visibility category I computed
from a contingency table.
13. ATSl--adjusted threat score for visibility category
I which removes the influence of the data set category

frequency.
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14. AAO0--adjusted a

A contingency table statistic

0
which removes the influence of the most frequent visi-
bility category in a set of data (similar to a nor-
malized value).

15. EPI-~equally populous predictor interval used to

discretize the predictors.

B. COMPUTER PROGRAMS

Four computer programs were developed to test the
proposed Preisendorfer (1983 a,b,c) methodology. The
programs are on file in the Department of Meteorology, Naval
Postgraduate School, Monterey, California, 93943.

1. A program to compute agr 2y CE and PP for all predic-
tors, all strategies (MAXPROB1l, MAXPROB2 and Natural-
Regression) and a single number of EPI's. Statistics
for the three strategies are based upon the same pre-
dictor(s) rather than the best predictor(s) for each
strategy. It was determined during program development,
and will be shown in Chapter VI, that, in general, each
of the strategies chose the same predictor(s).

2. A program to compute FD for all predictors, on a given
predictor, fdr a given number of EPI's, and to compute
the upper 5% critical value (FD(96)) by Monte-Carlo
means (Appendix A).

3. A program to construct contingency tables and to com-
pute skill and threat scores, for both the dependent

ard independent data.
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4. A program to generate 100 random data sets, from the
marginal probabilities of the predictor(s) in the
developmental model, and to compute upper and lower
5% critical values for a, and a, to be used for test-
ing the significance of the results from the Preisen-

dorfer (1983 a,b) methodology against chance.

C. BEHAVIOR OF ao AND THREAT SCORES

Before attempting a formal application of the Preisen-
dorfer (1983 a,b,c) methodology, it was considered prudent
to investigate the behavior of certain statistics as the
number of equally populous predictor intervals was changed
and as new predictors were added. It was found, during
program testing and before a formal procedure had been estab-
lished, that the independent data threat score of visibility
category I (TSl) generally showed higher values than other
threat scores (TS2, TS1l2) for the independent data. There-
fore, it was decided that the dependent and independent data
a, and TSl scores would be compared. The statistic a; was

chosen because it is the singularly most important scoring

parameter in the Preisendorfer methodology.

The experiment consisted of choosing the first predictor
as that one which gave the highest a, value when divided
into ten equally populous intervals. Once this predictor
was chosen, dependent and independent data a and TSl scores

were computed for each number of intervals as the number was

varied from two to 100. Prior to proceeding to the next
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step, the number of intervals which gave the highest indepen-

dent data TSl score was identified and the first predictor
was held at this number of intervals for the remainder of
the experiment.

Subsequent predictors were chosen by both a maximum a,
test and a functional dependence test. As each subsequent
predictor was identified, its number of equally populous
intervals was varied from two to 50 (or less, as the maximum
array size was set at 120,000). The number of equally popu-
lous intervals giving the highest independent data TSl was
identified and held fixed for the following stage. This proce-
dure was repeated until either six predictors were used or
until a new predictor addition did not allow the comparison
of at least intervals two through ten, due to computer
storage limitations. It should be noted here that all of
the North Atlantic Ocean parameters, not including linear-
regression equations, were used in cthese experiments and,
subsequently, some parameters were removed from consideration
(Appendix D).

1. Maximum QO Method

The first NOGAPS predictor selected was SMF which
was varied from two to 100 EPI's (Fig. 2a) and the highest
TS1 score was obtained with six intervals. The second pre-
dictor chosen, when SMF was held at six intervals and all
others at ten, was DTDP which produced the highest a value
for two predictors. Holding SMF at six intervals, DTDP was

varied from two to 50 intervals (Fig. 2b) and the highest
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TSl score was obtained.at 20 intervals. Anticipating problems
with the subsequent array size with respect to the number of
predictors which could be included, the secondary TSl maximum
at 16 intervals was used for further stepping. The third and
subsequent predictors and their optimum interval sizes were

PS at 12 (Fig. 2c¢), UBLW at ten (Fig. 2d) and V400 (Fig. 2e).
The optimum number of intervals for V400 was not germane as
no further stepping was done after this step. As illustrated
in Fig. 2, the dependent data statistics aymptotically approach
unity, as predictors are added, while the independent data
statistics (approximate maximum values: ay = .70, TSl = .35)
show no further increase after the third predictor is includd,
which may imply a limit as to how well the methodology per-
forms on this particular data set.

2. Functional Dependence Method

As functional dependence is not considered until after
the selection of the first NOGAPS predictor, Fig. 2a is also
applicable to this method. Subsequent predictors were chosen
as those having the lowest RSS FD using ten equally populous
intervals. The predictors selected and their optimum inter-
val sizes, for the TSl score, were RH at three (Fig. 3a),

DUDP at four (Fig. 3b), VOR925 at two (Fig. 3c), ENTRN at
14 (Fig. 3d) and UBLW (Fig. 3e) which was the last predictor
considered. As seen for the maximumlaomethod, the dependent

data statistics asymptotically approach unity. However the

independent data statistics continue to grow at least through
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the addition of the sixth predictor (approximate maximum
values: ag = .71, TSl = .38). .This method gave better results
than the maximum a, method, though it, too, may imply a

limit. The results of this experiment also tend to show a
preferential selection_of a small number of EPI's, for best
independent data TSl score, as well as indicating that func-

tional dependence is a relatively good choice as a deciding

factor for choosing predictors.

D. BEHAVIOR OF FUNCTIONAL DEPENDENCE

Another statistic investigated prior to the formal
application of the Preisendorfer (1983 a,b,c) methodology
was the distribution of functional dependence (FD) calculated
from 100 randomly generated data sets. The FD calculation is
based upon the relationship of the distribution of one pre-
dictor to another. Because the predictors are divided into
the same number of EPI's for the calculation, the probability
of a randomly generated number falling into any given inter-
val for either predictor will be the same. Therefore, the
randomly generated FD values should be a function only of
the number of intervals and the number of data cases (subse-
quent randomly generated calculations, during the formal
application of the methodology, showed this to be true).

The randomly generated FD experiment consisted of com-

puting the mean, upper and lower 5% critical values, and the
| standard deviation of the 100 randomly generated values for

both 1526 observations (as in the North Atlantic Ocean Area
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3W dependent data) and 3682 observations (as in the North
Pacific Ocean dependent data) and a comparison of the
results. As illustrated in Fig. 4 the FD values are similar
for a given interval size differing only in the size of the
confidence interval and the étandard deviation. The FD
values calculated for 3682 observations lie totally within
the upper and lower 5% critical values for 1526 observations.
Because of this relationship, future FD(96) values, used to
gualitatively determine how well a new predictor will con-
tribute to the developmental model, can be obtained by read-

ing from the graph rather than using valuable computer

resources, providing the number of equally populous intervals

is less than or equal to ten.
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V. PROCEDURES

A. PREISENDORFER METHODOLOGY

l. Determination of the First Predictor in Relation
to the Number of Predictor Intervals

A matter not considered in Preisendorfer (1983 a,b,c)
is how to chose an optimum number of equally populous pre-
dictor intervals (EPI's) into which predictor data should
be divided. During the course of development, two important
realizations became evident, namely, (a) there is a tendency

for the methodology to give better results using a small

number of intervals, and (b) the NPS W.R. Church Computer
Center limits internal computer storage space to two mega-
bytes for routine programs. The first suggested, while the
second forced, the research to be limited to EPI's of less
than or equal to ten if more than three or four predictors
were to be considered. Once this was established, a proce-
dure was developed to look at all EPI's within the stated
limit.

The procedure involves computing the initial statis-
tics (ao, a,, CE and PP) for each predictor, for each strategy
(maximum-probability and natural-regression) and for EPI's
of two through ten. Then, the best first predictor for each
number of EPI's is determined, for each strategy, by meeting
one or both of the following conditions, when considered in

the indicated order:
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a. lowest CE
b. highest PP

Once the best predictor for each number of EPI's is
known, it is then necessary to determine the optimum number
of EPI's. This is accomplished by computing threat and skill
scores (Appendix E) for both the dependent and independent
data and choosing, as the optimum number of EPI's, that which
gives both a relatively high adjusted a, (AAQ) for the depen-
dent data and a relatively high adjusted threat score for
visibility category I (ATS1l) for the independent data. This
becomes a somewhat subjective endeavor and remains as the
only imprecise step in the methodology.

The statistic ATS1 is used on the independent data,
instead of ag because it is the poor visibility categories
(I and II) that are of primary forecast interest and their
forecastability is manifested in their threat scores. It
will be shown that, in general, the adjusted threat score
for visibility category II (ATS2) and for combined visibility

categories I and II (ATS12) are small compared to ATS1l, or

negative, and that ATS12 is maximized when ATS1 is maximized.
Additionally, it will be shown that maximum a, does not
necessarily coincide with maximum ATS1 in the independent
data. Hence, if a, was used, the optimum combination of
predictors necessary to forecast the poor visibility cate-
gories would not be included.

once the number of EPI's is established, it is fixed

for all subsequent predictors considered for the developmental
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model. Holding the number of intervals fixed is not an
absolute necessity, however it allows for a much more rapid
development of the model. Once this number is determined for
the first predictor, it is used to calculate FD for the next
predictor because FD is calculated using the established
number of EPI's. The next stage statistics (ao, a,, CE and
PP) are also computed with each predictor divided into this
same number of EPI's.

2. Choosing the Second Predictor

The second predictor to be included in the model is
determined from its FD on the first predictor and from the
increase in a, resulting from its inclusion. This is accom-
plished by computing a, with two predictors, namely, the
first predictor, as determined above, with each of the
remaining predictors. Those predictors which do not increase

a, above its value as determined with the first predictor

0
alone, are removed from further consideration for inclusion
into the set of predictors in the developmental model. FD
for each of the remaining predictors vs. the first predictor
is computed. The remaining predictor with the lowest FD,

on the first predictor, is chosen as the second predictor in

the model.

3. Choosing Subsequent Predictors

Subsequent predictor determination is similar to the
second predictor determination. Compute a, with N predictors

(N=1,...,M+1l; M = the number of predictors already in the
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developmental model), that is, the first through Mth pre-

dictors, as previously determined, and each of the remaining
predictors. Those predictors which do not increase a3y above
its value as determined with M predictors are removed from
further consideration. RSS FD is computed for each of the
remaining predictors and the one with the lowest RSS FD is
chosen as the Nth predictor in the model.

4. Significance Tests

After each stage (i.e., after each new predictor to
be included in the developmental model is determined) it is
necessary to determine if the results are significant. This
is accomplished by Monte-Carlo means using the data set
marginal probabilities of the predictors and assuming equal
probability of occurrence for visibility categories (Appen-
dix A). The statistics a, and a, are computed .for each of
100 randomly generated data sets of a size equal to the
number of observations in the dependent data set being tested,
and sorted from lowest to highest. The 96th value of a,
(a0(96)) and the fifth value of a, (al(OS)) are retained as
the upper and lower 5% critical values. For developmental
model results to be significantly better than chance, a,
must be greater than or equal to a0(96) and a; must be less
than or equal to al(OS).

5. Terminating the Selection of Predictors

Model development continues until any one of four

conditions are met:
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a. no more predictors remain to be considered.

b. results are no longer significant.

c. required computer region size exceeds that which is
allowed (two megabytes at the NPS W.R. Church Computer
Center).

d. independent data ATS1l does not increase for two
consecutive predictor additions. (It will be shown
that there is a point in the development of the model
where the skill and threat scores for the dependent
data diverge sharply from those for the independent
data. This condition for terminating model development
is a subjective attempt at taking this point into
consideration.)

Once the model development is complete, contingency
tables of forecast visibility categories vs. observed visi-
bility categories, for both the dependent and independent
data, are constructed. From the contingency tables, threat

and skill scores for both data sets are computed and compared.

B. COMPARISON METHODOLOGY

The results obtained from the Preisendorfer (1983 a,b,c)
methodology were compared to two variations of a linear,
least-sguares regression model. The model chosen for the
comparison is that available in the BMDP Statistical Software
(namely BMDP2R) [University of California, 1981] using two
new threshold schemes developed by Lowe (1984c) (Appendix B).

The equations developed by BMDP2R include all predictors which
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increased R-squared (the proportion of the predictand vari-

ance explained by the estimation of the predictand from the
multiple regression equation) by at least 1%. An excellent
description of this procedure is given by Best and Pryor
(1983) , with R-squared being equivalent to their R-value.
1. Method 1
The first linear regression method consists of
generating a single equation, trained on the dependent data,
with the predictand set equal to 1, 2 or 3, corresponding to
visibility categories I, II and III, respectively. This
equation is used to determine threshold values (Appendix B)
and is then applied to the independent data.
2. Method 2
The second linear regression method is based on a
decision-tree scheme using two linear-regression equations
trained on the dependent data. The first equation is
generated with the predictand values set equal to zero or
one, corresponding to combined visibility categories I and

II (0) and visibility category III (1l). The second equation

is generated with the predictand set equal to zero or one,
corresponding to visibility category I (0) and visibility
category II (l). Visibility category III observations are
ignored during this linear regression. Threshold values are
then computed for each equation.

When both equations and their associated threshold

values are known, the independent data set is sorted into
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visibility category III and visibility category 'other' by

the first equation, and the 'other' category is sorted into
visibility categories I and II by the second equation.
Following the development of linear regression method 1 and
method 2, contingency tables are constructed, skill and
threat scores computed, and comparisons made with the results

from the Preisendorfer (1983 a,b,c) methodology.
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VI. RESULTS

A. NORTH PACIFIC OCEAN

l. First-Predictor Selection and Interval Determination

The first predictor selected, for equally populous
intervals (EPI's) of four through ten was EHF (Table III).
The constant value for aj» maximum-probability strategy,
indicates that there is no predictability for visibility
category II (the least frequent category in the data set)
using a single predictor. A comparison of the dependent
data adjusted a, (AA0) and independent data adjusted threat
score for visibility category I (ATS1l) subjectively deter-
mined the selection of five EPI's for the developmental
model ('Table IV; Fig. 5). |

2. Selecting Subsequent Predictors

Once the number of intervals and first predictor

were known, a new a, computation was made with the first

0
predictor and each of the remaining predictors. Only six of

the remaining 21 predictors, CLIMO, SEHF, THF, DDWW, H510 !

and RH, in combination with EHF, gave new a, values greater

0 ;
than that for EHF alone (.697); these comprised the pool of
predictors to be considered for further development of the

model. Functional dependence (FD) with EHF was computed for

each of these six predictors and DDWW was chosen as the second

predictor because it had the lowest FD.

38

......

AT SR AP " . :'. -‘.. ----- SO K .n" RS IS N NN A AN I A P R AT T B
SRR CRCRERLL LR TR MR W L C S C R W HLL G L R LA LY RO LV S CR R R a1 PO



For the determination of the third through sixth

predictors, a new a, was computed as a function of all of

0
the previously selected predictors and each of the remaining
predictors. At each stage, the new a, computation for each
remaining predictor was greater than that for the prior
stage, so no further predictors were eliminated from con-
sideration. FD was then computed, for each of the predictors
being considered with each of the predictors previously

H selected, and RSS FD determined. At any given stage (three
through six) the new predictor added to the developmental

‘ model was that one with the lowest RSS FD. The third through

sixth predictors, in order of selection, are HS510, RH, THF

and CLIMO (Table V).

3. Determining the Final Model

' . The final model for the Preisendorfer (1983 a,b,c)

methodology was determined by comparing the independent data
contingency table statistics, from each developmental stage,
and choosing the fourth stage because it gave the highest
adjusted threat score for visibility category I (ATS1)

(Fig. 6). The contingency tables for stage four and the

) related statistics for the three strategies are shown in Table

A VI.

4., Linear Regression

A single linear-regression equation was developed

from the North Pacific Ocean data using method 1. Both the

LG 28 B8 Lar o an SN 4.

quadratic and equal-variance threshold models (Appendix B)

-y
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were applied but only the threshold values from the equal-
variance model were used to compare methodologies. Table
VII contains the linear regression equation, the visibility
category linear regression statistics and the threshold
values. Contingency tables and related statistics for the
dependent and independent data are shown in Table VIII.

5. Discussion

The best results obtained from the North Pacific
Ocean data were from the Preisendorfer (1983 a,b,c) methodology,
MAXPROB2 strategy, as it has the highest independent data
adjusted threat scores for visibility categories I and com-

bined I/II (ATS1 = .20, ATS12 = -.05). Each of the maximum-

probability strategies (MAXPROBl: ATSl = .17, ATS12 = -.10)
did better than linear regression (ATS1 = .16, ATS12 = -.13),
while natural-regression shows the poorest skill (ATS1 = -.02,

ATS12 = -,19).

It appears, from Fig. 6, that most of the usable
forecastability resides in the first predictor chosen. This
would indicate that it may be profitable to search for
better predictors by combining model output parameters,
conducting dimensional analysis or using linear-regression
equation estimates as predictors as was done in the North

Atlantic Ocean experiments which follow.

B. NORTH ATLANTIC OCEAN AREA 3W
Based upon the results obtained in the North Pacific

Ocean, it was decided to use the linear regression model to
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generate equations which could be used as predictors. Seven

Lol e an Ao s _gbug o s an

such equations were developed, each representing a different
menu of parameters available to the regression model. The
seven equations are included in Appendix D. The Preisen-
dorfer (1983 a,b,c) methodology then proceeded both with
and without these linear-regression equations available as
predictors.

l. First Predictor Selection and Interval Determination

a. Without Linear-Regression Equations as Predictors
The first predictor, for EPI's of four through
ten, varied with the number of intervals (Table IX). A
comparison of the dependent data AA0 and the independent
data ATS1 determined the selection of eight EPI's for the
model (Table X) and, therefore, SMF as the first predictor.
However, through investigator error, the model was initially
developed with five EPI's and E925 as the first predictor.
Therefore, both results will be presented.
b. With Linear-Regression Equations as Predictors
The first predictor for each EPI of four through
ten is BMl, the predictand estimate computed by the linear
regression equation developed when all of the predictors
were available to the regression model (Table XI). Two of
the EPI's, namely four and eight, have identical, and best,
dependent data AA0 and independent data ATS1l scores (Table

XII, Fig. 7), so it was decided to proceed with the develop-

! mental model for both intervals.
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2. Selecting Subsequent Predictors

Subsequent predictors were chosen in the same way as
described in the procedures and for the North Pacific Ocean
experiment. The predictors, not including linear regression
equations as predictors, are SMF, D850, RH, UBLW and ENTRN
for eight EPI's (Table XIII) and E925, U700, DVDP, STRTFQ,
ENTRN and PS for five EPI's (Table XIV). The predictors,
including linear regression equations as predictors, are

BM1l, U850, D500, v850, D1l000 and Ul000 for four intervals

(Table XV) and BM1l, U500, ENTRN, DVDP and BM4 for eight
intervals (Table XVI). Significance tests were made after
each predictor selection and a0(96) and al(05) values are
included in Tables XIII, XV and XVI. A comparison of the
behavior of critical level statistics, as predictors are
added, for both four and eight intervals; is shown in Figs.
8 and 9, where array size is equal to the number of EPI's

taken to a power equal to the number of predictors included

at that stage.

3. Determining the Final Model

The final model for the Preisendorfer (1983 a,b,c)
methodology was determined by comparing the independent data
contingency table statistics, from each developmental stage,
and choosing that stage which gave the highest adjusted
threat score for visibility category I (ATS1).

a. Without Linear Regression Equations as
Predictors (Eight Intervals)

It was determined, from Fig. 10, that the fifth

stage gave the best results (MAXPROBl, independent data:

------------
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ATS1 = .19, ATS2 = .03, ATS12 = -.05). The contingency tables

for stage five and related statistics for the three strategies
are shown in Table XVII.

g b. Without Linear Regression Equations as
Predictors (Five Intervals)

It was determined, from Fig. 11, that the fifth
stage gave the best results (MAXPROB2, independent data:
ATS1 = .25, ATS2 = .02, ATS12 = .0l1). The contingency tables
for stage five and related statistics for the three strategies
are shown in Table XVIII.

c. With Linear Regression Equations as
Predictors (Four Intervals)

It was determined, from Fig. 12, that the fourth
stage gave the best results (MAXPROB2, independent data:
ATS1 = .40, ATS2 = -,05, ATS12 = .12). The contingency tables
for stage four and related statistics for the clice strategies
are shown in Table XIX.

d. With Linear Regression Equations as
Predictors (Eight Intervals)

It was determined, from Fig. 13, that the second
stage gave the best results (MAXPROB2, independent data:
ATS1l = ,32, ATS2 = -,14, ATS12 = .02). The contingency tables
for stage two and related statistics for the three strategies

are shown in Table XX.

4. Linear Regression

Both linear regression methods (single equation and
decision tree) and both threshold models (quadratic and

equal variance) [Lowe, 1984a] were used to compare with the
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Preisendorfer (1983 a,b,c) methodology in the North Atlantic

Ocean Area 3W. Additionally, the predictors available for
regression were varied as indicated in the following descrip-
tion. The first regression was conducted with all available
MOP's while the second regression was conducted using only
the best predictors from the Preisendorfer methodology (de-

fined as those predictors which, alone, produced an a, value

0
greater than the frequency of visibility category III in the
dependent data). Table XXI contains the linear-regression
equations, associated visibility category statistics and
threshold values. Tables XXII through XXVII contain the
contingency tables and related statistics for the dependent
and independent data for each of the linear regression

. variations.

5. Discussion

Table XXVIII summarizes each of the methddologies and
strategies applied to the North Atlantic Ocean Area 3W
data. In general, the maximum-probability strategy did
better than the other methods or strategies. Specifically,
the best results overall were obtained by the MAXPROB2
strategy, using predictors computed from linear regression
equations and four equally popﬁlous intervals. The methodology
without linear regression equations as predictors, and all
of the linear regression results, are about equivalent. The
best linear regression method is the decision tree, when all

MOP's are made available to the regression model. The results
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obtained without linear regression equations as predictors

appear to discount the procedure established for choosing the
number of equally populous predictor intervals, but lends
support to the claim in Chapter V that there is a tendency
for the Preisendorfer (1983 a,b,c) methodology to give better

results using a small number of intervals.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The primary objective of this study was to determine
if the Preisendorfer (1983 a,b,c) methodology applied to the
FNOC NOGAPS model output parameters could improve upon the
forecasting of atmospheric marine horizontal visibility, in
three categories, when compared to the more traditional
method of least squares, multiple linear regression. It was
shown that, indeed, the proposed methodology, namely, the
maximum probability strategy, was superior when predictand
estimates, computed from linear regression equations
themselves, were used as predictors.

The method of determining the number of equally populous
predictor intervals requires further investigation. The
results from the North Atlantic Ocean area 3W, without
linear regression equations as predictors, showed that the
proposed method was not the best, in that the number of inter-
vals determined by the method was eight but better results
were obtained with five. Additionally, only intervals of
ten or less were considered here, due to storage limitations
imposed by the computer center. As a result, the optimum
number of predictor intervals is inconclusive.

Predictor determination appears to be adequate. At each
stage of development a unique predictor was selected. The
only foreseeable problem is if, during the first (initial)

stage of development, multiple predictors have identical CE
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and PP values, or, during subsequent stages, multiple pre-

dictors have identical a, and FD values. Should this occur,
the model development would have to proceed, from that
particular stage, with each of the identified predictors.

The methbdology appears to be sensitive, in two ways, to
the first predictor selected. First, there is an initial
large value for the independent data ATS1 and small incre-
mental increases thereafter for each new predictor added.
Secondly, there is a large magnitude difference in the
initial independent data ATS1l values between the Preisen-
dorfer methodology without linear regression equations as
predictors (ATS1 = .13; .1l4) and that with linear regression
equations as predictors (ATS1 = .30), for the maximum
probability strategy. |

The best strategy is MAXPROB2, followed by MAXPROBl, and
then natural-regression. Generally, natural-regression does
worse than linear regression. None of the methods did well

in predicting visibility category II, which may indicate

that visibility would be best handled as a two-category
phenomenon.

The number of independent data observations (1526) in
North Atlantic Ocean Area 3W were sufficient to test the
methodology. This was demonstrated by the similar results
between Area 3W, without linear regression equations as
predictors, and the North Pacific Ocean results (3682

observations). The small differences in the contingency
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table statistics for the independent data for the two experi-
ments can be attributed to parameters being from different
models and for different months.

The following recommendations are offered for future
research and to future researchers:

l. Investigate the problem of determining the optimum
number of equally populous predictor intervals.
Possibly, a statistic similar to the threat scores
or adjusted threat scores eould be used, or, simply
choose the interval, between two and ten, which gives
the highest adjusted threat scores for the independent
data. Alternatively, adopt, without further experimen-
tation, the number of EPI's as five, which appears to
be a compromise between a gross resolution of the
predictor parameter range and a fine (but too expensive)
resolution of the predictor parameter range.

2. Investigate the use of potential predictability (PP)
in determining the selection of predictors. During
the initial stage of development, PP is computed for
all available predictors and provides a measure of
each predictor's individual ability to forecast
visibility, but, it is not used explicitly. Perhaps
computing the mean and standard deviation of PP,
during the initial stage, and removing from considera-
tion those predictors which are not greater than a

value equal to the mean minus one standard deviation,
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or, simply, not greater than the mean. This would
ensure that only those predictors which have a rela-
tively high prospect of forecasting visibility will

be available for subsequent selection.

Search for better predictors which are particularly
suited to visibility prediction. Recommended sources
are: new, direct and derived, model output parameters
(including original model output); non-dimensional
parameters derived from dimensional analysis; and
boundary-layer parameters such as the optical structure
function (Cﬁ) and extinction coefficients.

Investigate a two-category visibility scheme.

Install automatic visibility recorders on ocean-going
military and civilian passenger/cargo ships. This
will place visibility observations on a more objective
basis and lead to improved methods of forecasting
visibility, as well as verifying such forecasts.
Investigate new prediction models, preferably those
which attempt to manipulate the observed data to
correct for probable observer bias (following Selsor,
1980; Renard and Thompson, 1984). This would be
unnecessary if recommendation 5 was acted upon.
Investigate other ocean areas and seasons to determine
if the physically homogeneous area scheme is consistent
and viable. Develop prediction tables and other aids

specifically tailored to region and season.
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Use a statistic other than ATS1 for choosing the

first predictor and for comparing methods and strate-
gies. It was used in this study largely because of

its greater magnitude, as compared to ATS2 and ATS12.
This was due to the relatively high frequency of visi-
bility category I in both data sets. 1In general, this
will not be the case. Because three visibility cate-
gories are being considered, and good forecasts of

the two poorest visibility categories is desirable, a
statistic such as ATS12 would be better suited as a
consistent comparison statistic for future researchers{
As soon as it is feasible, eliminate from further
testing the MAXPROB1l strategy in order to allow for
more efficient and faster program execution. -The
natural-regression strategy, though it gave the pcorest
results in this study, should be re-examined when
predictands with relatively many discrete states

(e.g., ceiling) are considered. It has, in such
settings, potential to out perform the more rigid

linear regression technique.
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APPENDIX A

RN A DISCUSSION OF THE STATISTICAL PROCEDURES PROPOSED BY
: PREISENDORFER (1983 a,b,c) FOR THE FORECASTING OF
P ATMOSPHERIC MARINE HORIZONTAL VISIBILITY USING
MODEL OUTPUT STATISTICS

I. INTRODUCTION

- The following discussion is based upon three unpublished
%x‘ research papers by Preisendorfer (1983 a,b,c). His proposed
methodology deals with a simple statistical manipulation of

model output parameters (predictors) which have been trans-

A formed from continuous to discrete quantities by grouping
EE each predictor into equally populous intervals. The proce-
ii: dural approach in applying his methodology to model output
&\ : statistics (MOS) forecasting, is as follows:

0 l. Generate predictand/predictor pairs of data using the
- United States Navy Fleet Numerical Oceanography Center

- Navy Operational Global Atmospheric Prediction System

P (NOGAPS) model output (predictors) and synoptic ship

:} visibility observations (predictand) provided by the

;f Naval Oceanography Command Detachment, Asheville, NC,
if and generate bivariate plots.

;; 2. Generate conditional probability tables based on the

ij distribution of the predictand/predictor pairs.

gi 3. Define prediction strategies based on the conditional
o probabilities.

(]




4. Compute the potential predictability of visibility
from the conditional probability tables.
5. Compute skill scores of the prediction strategies and
choose the first predictér.
6. Repeat steps 1, 2, 4, and 5, for multiple predictors.
7. Compute functiohal dependence of selected vs. potential

subsequent predictors.

Ca el

8. Choose the next predictor.

P 9. Repeat steps 1, 2, 4, 5, 7, and 8, until model

: development is terminated.

i For demonstration purposes, an artificial data set of

99 cases, consisting of four predictors plus visibility
(predictand), will be used throughout this discussion.

Each predictor parameter is divided into three equally popu-
lous intervals and visibility is divided into three categories,
N as illustrated in Table Al. The four predictors are

Evaporative Heat Flux (EHF), Fog Probability Parameter

{

(FTER) , Relative Humidity (RH) and Air~Sea Temperature

I3

oo ¥
<4 2.

Difference (ASTD). Visibility categories are defined by the

et %

marine visibility observation codes (MVOC) included in the

»
-
-

categories.
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TABLE Al

ARTIFICIAL DATA SET

Interval 1 Interval 2 Intesval 3
EHF < 2.65 2.65 < EHF < 4.44 EHF > 4.44
FTER < .024 .024 < FTER < .9 FTER > .9
RH < 85.9 1 85.9 < RH < 90.0 RH > 90.0
ASTD < 1.02 1.02 < ASTD < 1.91 ASTD > 1.91

Visibility Category I: MVOC 90 -> 94 (60 cases)
Visibility Category II: MVOC 95 & 96 (20 cases) !
Visibility Category III: MVOC 97 -> 99 (19 cases)

ITI. SINGLE PREDICTOR STATISTICS

A. BIVARIATE PAIRS

Choose various visibility-predictor pairs and make
bivariate plots of these pairs. This will provide immediate
visual estimation of the potential predictability. As an
example, let us suppose that predictor EHF of our artificial
data set has 33 cases in each equally populous interval and
that the visibility categories I, II and III are respectively
represented by 17, 7 and 9 in interval 1l; 1, 7 and 25 in
interval 2; 1, 6 and 26 in interval 3. To make the bivariate
plot, simply make a tabular summary of this information, as
illustrated in Fig. 14. Now we define, from the bivariate
plot, our coordinate system and nomenclature. Items in
parentheses are examples from Fig. 14, numbers in brackets

are equation numbers from Preisendorfer (1983 a,b,c) with
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a letter designator indicating the paper from which it was

obtained.
n = number of visibility categories (n = 3)
m = number of equally populous predictor intervals
(m = 3)
j = the vertical counting index (j = 1,...,n)
i = the horizontal counting index (i =1,...,m)
n(i,j) = individual cell counts (n(l,3) = 9)
m
n(.,j) = marginal predictand totals = z n(i,j) =
i=1
row totals (n{(.,2) = 20) [3.1la])
n
n(i,.) = marginal predictor totals = )} n(i,j) =
. j:l
column totals (n(2,.) = 33) ({[3.2a]
n(.,.) = total predictand/predictor pairs =
n m
Y 7 n(i,j) = sum over all cells (n(.,.) = 99)
j=1 i=1
[3.3a]

B. CONDITIONAL PROBABILITIES
From the bivariate pairs determine the conditional proba-
bility of visibility given a predictor. We will continue from

the bivariate plot in Fig. 14, and define three probabilities:

plz(i,j) = n(i,j)/n(.,.) = joint_probabil@ty of a
predictand-predictor pair occurring in a
given cell = individual cell count
divided by the total number of cases
(p12(3,3) = 26/99 = .2626) [3.5a]l
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pl(i) = n(i,.)/n(.,.) = marginal probability of
predictor = column total divided by the
total number of cases = the column sum of
the joint probabilities
(pl(Z) = 33/99 = .333) [3.6a)

pz(j) = n(.,j)/n(.,.) = marginal probability of
predictand = row total divided by the
total number of cases = the row sum of the
joint probabilities (p,(2) = 20/99 = .202)
13.7a] 2

We can now build a joint/marginal probability table as

illustrated in Fig. 15, and define conditional probability.

Py (314) = py,(i,3)/p (i) = n(i,3)/n(i,.) =
conditional probability of predictand given
a predictor = a cell's joint probability

- divided by the marginal probability of

predictor = individual cell count divided
by column total
(p21(2|2) = ,071/.333 = 7/33 = .212)
[3.8a]

Now.build a conditional probability table as illustrated
in Fig. 16. Conditional probability of visibility, given
some predictor, is the quantity of greatest interest in this
study. Note that if p21(j|i) = 1/n for j=1,...,n at
some i (i.e., each cell contains 1l/n of the cases in its
column), then very little information is available to predict
visibility at that i. However, if le(joli) = 1 for some
iy and p21(j|i) = 0 for all other j values, then there is
perfect predictability of class j0 by the predictor at class
i. The underlying methodology of this study will be to
determine the maximum conditional probability of visibility

for each predictor value.
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C. STRATEGIES

Preisendorfer (1983 a,b,c) presents three different
prediction strategies, two based on maximum probabilities
(MAXPROB1 and MAXPROB2) and one based on natural regression.

l. Maximum Probability

This strategy consists of determining the cell, in a
given column, with the highest conditional probability, and
assign to the column the visibility category associated with
that cell. As each column represents an interval of predic-
tor values, we now have a visibility forecast value associated
with that interval. In our example with EHF (Fig. 16),
interval- 1 (i = 1) will have a forecast value of visibility
category I (VISCAT 1). Hence, if we used only EHF as a
predictor, every time a value of EHF was encountered with a
value < 2.65, we would predict visibility category I. Simi-
larly, for interval 2 (i = 2) and for interval 3 (i = 3)
we would choose visibility category III (VISCAT 3).

MAXPROB1 and MAXPROBZ differ only in the way they
handle a tie between maximal conditional probabilities in
a column. Should this occur, then a decision must be made
as to which predictand category will be assigned to that
predictor interval. In MAXPROBl1l, this decision is made by
a coin toss, figuratively. A random number, in the unit
interval, is generated. The unit interval is divided into a
number of subintervals equal to the number of tied values

and each subinterval is assigned to a specific predictand
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category. The subinterval into which the random number
falls determines the forecast visibility category. In
MAXPROB2, the lowest predictand category, among the tied
categories, is chosen.

2. Natural Regression

This strategy consists of first finding the average
predictand (visibility category) for each predictor interval,
using conditional probabilities, and then choosing the

predictand category nearest the average.
_ n
() = 1 3 py(ild) [7.1b]
i=1

Fig. 17 shows the computation for EHF interval 1 (i = 1).
Visibility category II (VISCAT 2) would be assigned to this

interval by this strategy.

D. COMPARISON STATISTICS

To determine if a predictor will be useful in forecasting,
there should be a statistic with which to compare its poten-
tial utility. Preisendorfer (1983 a,b,c) defines four such
statistics and their critical values. The four statistics

defined are potential predictability (PP), class-error

probabilities (ao,al), and functional dependence (FD).
Potential predictability and class-error probabilities will

be defined now. Functional dependence will be addressed

later.
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1. Potential Predictability

AR

Potential predictability of a predictand/predictor

pair is defined as:

'J".-“a"- v‘_ '-" .

p

l.

»

Pog
L]
7"

m n
= PP(2[1) = n/(a=1) § p,(i)[ ] (py,(ili) -1/m)°]
Lo P L. Py
i=1l j=1
m
= ] py(i) PP(i)
i=1
where:
) n
L L 2
PP(i) = n/(n-1) (PZI(JIL) - 1/n)< ,
i=1
pl(i) = the marginal probability of a predictor, and
le(jli) = the conditional probability of the jth

predictand, given the ith predictor. [4.la]

PP(2|1) is loosely related to Shannon's definition of infor-
mation [Preisendorfer, 1983a]. An example calculation is
shown in Fig. 18 where EHF has a PP value of .330. To
determine if this would be the best predictor using this
statistic, compute the potential predictability for all
predictors and rank them from highest to lowest. The
predictor with the highest PP should be the best predictor

for forecasting visibility using any strategy.
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2. Class-Error Probabilities

Zero-class (ao) and one-class (al) error probabili-~
ties can be defined to gauge the predictive skill of a

prediction strategy.

m
a, = 1 Ppq(i) pyqldy(i)|i)
0 481 71 2170

where:

]

pl(i) the marginal probability of the predictor,

]

jo(i) the joth cell in column i assigned by

the prediction strategy, and

the conditional probability of the jo(i).
[6.1la]

Pyq(dg (1) 1)

From Figs. 15 and 16, pl(i) = .333 for all i; jo(l) =1,

Py (G (1) |1) = .515; 34(2) = 3, p,y(§4(2)]2) = .758; and

3g(3) = 3, p21(j0(3)|3) = .788. Therefore, if EHF is the only

predictor,

ag = (.333)(.515) + (333)(.758) + (.333)(.788) = .686

The statistic a, is, by definition, equal to the fraction of

0
correct forecasts in the dependent data set.

m
121 Py (1) [Pyy (34 (1) +1[1) +py; (35(1) - 1]d)]
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where:

(1) £1]1) the conditional probabilities

Py1 g
adjacent to the p21(jo(i)|i)
values used in the a

determination. 0

]

If j, = 1 then, by definition, p,,(j, (i) -1|i) = 0; similarly

0. [6.2a])

it

if j, = n then, by definition, pzl(jo(i)-+1|i)
The statistic ay is, by definition, equal to the fraction of
forecasts for which a class 1 error has been committed.

Again, from Figs. 15 and 16:

)
n

(.333)(.212+0) + (.333)(.212+.0) + (.333)(.182+0)

= .202

To determine which one of two or more predictors is
the most skillful, we can plot the (ao,al) pairs on a skill
diagram as in Fig. 19. The dashed lines are lines of con-
stant class error (CE = a, + 2a2) and the more skillful
predictors will lie on the lower right part of the triangle.
In general, the skill on the diagram decreases according to
the zig-zag rule shown in the figure. If, for all predic-
tors, a; is constant, which may occur during the first
predictor determination with a data set containing relatively
few poor visibility cases, then the best predictor is that
one with the greatest a, value. In this instance there is

no need to plot the pairs.
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ITI. MULTIPLE PREDICTOR STATISTICS

Once all predictand/predictor pairs have been formed
and potential predictability and skill scores determined,
the predictors can be ordered by decreasing predicﬁor skill
and by potential predictability. Fig. 20 contains the
bivariate plot, conditional probabilities, potential pre-
dictability and skill scores for the remaining three predic-
tors in our artificial data set. The ordering of predictors
is shown in Table A2. Therefore, EHF would be chosen as
our first predictor, as illustrated on the skill diagram
in Fig. 19. As RH, FTER and ASTD have equal a, and a;
values, they are ranked according to decreasing potential

predictability.

. TABLE A2

RANKING OF PREDICTORS BY SKILL
AND POTENTIAL PREDICTABILITY

wnoou 7
1st EHF .686 .202 .330
2nd RH .606 .202 .225
3rd FTER .606 .202 .211
4th ASTD .606 .202 .209

Preisendorfer (1983b) develops statistics, similar to
those already mentioned, for multiple predictors. The main
conceptual difficulty of additional predictors is the

increase of dimensions. One predictor presents a relatively

T S T R Y
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simple two-dimensional problem (predictor 1 vs. predictand);
two predictors present a three-dimensional problem (predictor 1
vs. predictor 2 vs. predictand); three or more predictors
present four-dimensional and larger problems. However, with

a little manipulation, all of the multi-dimensional problems
greater than two-dimensions can be reduced to a two-dimensional
problem. This is illustrated in Figs. 21 and 22 for three-
dimensions (two predictors) and four-dimensions (three predic-
tors). An easily programmable equation can be developed to
create these two~dimensional arrays based upon the number of
equally populous intervals for each predictor and upon the
interval in which & particular data case resides.

In our continuing example, reduce the equally populous
intervals for each predictor to an integer number (i =1,...,m)
with 1 correéponding to the lowest interval and m correspond-
ing to the highest interval, as defined for the predictor

index in Section II.A. Let

ii = the interval integer number for EHF,

jj = the interval integer number for RH,

kk = the interval integer number for FTER,

mm = the interval integer number for ASTD,

11 = the column location in the two-dimensional

bivariate plot (equivalent to i for a
single predictor),

IGPl = +the total number of intervals for EHF,

'ﬁl : IGP2 = the total number of intervals for RH,

;.::. ‘
'@. IGP3 = the total number of intervals for FTER,

o 5
Eﬁ IGP4 = the total number of intervals for ASTD. j
..‘: -, |
-'\’. |
o |
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Then, for one predictor, EFH:

11 = ii
for two predictors, EHF and RH:
11 = IGP2(ii-l1l) + jj
for three predictors, EHF, RH and FTER:
11 = IGP2(ii-1+IGPl(kk-1)) + jj
for four predictors, EHF, RH, FTER and ASTD:
11 = IGP2(ii-1+IGP1l(kk-1+IGP3(mm-1))) + jj
This equation form ;an be expanded to accommodate any number

of predictors.

IV. FUNCTIONAL DEPENDENCE

After the first predictor has been selected, either from
its skill score or potential predictability, we need a means
to determine whether or not to add a new predictor to the
one(s) already chosen. For this purpose, Preisendorfer
(1983c) proposes a functional dependence index (FD) which
describes the dependence of the new predictor being considered

upon those already in the set of predictors. 1If FD is large
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(on the scale 0 to 1) then it can be represented by predic-

tors already chosen and its inclusion into the set of

predictors would be redundant. However, if FD is small (on

the scale 0 to 1) then it is likely to be a useful addition

to the existing collection of predictors.

FD(2|1) =
where:
ot q(i,3)
Ny
St
r(i,j)

m n
m/2(m-1) [ I py,(i.d)qli.i) i ] (2.1e)
i=1 j=1
ngj | jgl |
= P4 (J+k|[i+l) + P, (3-k|i-1) (2.2¢)
k=1 21 k=1 2%

the sum of the conditional probabilities
which lie in column i+l and rows greater
than ; and the conditional probabilities
which lie in column i-1l and rows less than j

the sum of the conditional probabilities to
the right and up, and to the left and down.
The upper left (1,n) and lower right (m,1l)
cells will always have g values equal to zero.

jfl | nfj I
Prq (J=k|i+l) + Py (j+k|i~1) (2.3¢)
k=1 21 k=1 21

the sum of the conditional probabilities
which lie in column i+l and rows less than j
and the conditional probabilities which lie
in column i-1l and rows greater than j

the sum of the conditional probabilities

to the right and down, and to the left and up.
The upper right (m,n) and lower left (1,1)
cells will always have r values equal to zero.
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Py,(i,Jj) and le(jtintl) = the joint and conditional
probabilities defined earlier, differing
only in that the abscissa and ordinate are
now predictor vs. predictor vice predictor
vs. visibility.

Fig. 23 illustrates the FD computation for RH given EHF.

In this example, FD(2|1) = FD(RH|EHF) = .286.

V. CRITICAL VALUES

Once the various statistics have been found, a means to
determine whether they are significant must be established.
Preisendorfer (1983 a,b,c) proposes the use of Monte Carlo
means, applied as follows.

From the bivariate plot, as in Figs. 14, 21b and 22b,
we determine the marginal probabilities of the predictor
(pl(i)) and establish incremental values from 0 to 1 (noté
that for equally populous predictor intervals, pl(i) = 1/m,

a constant, where m = the number of intervals). We then cast
a total of n(.,.) randomly generated numbers into the
intervals to simulate a new data set. After each randomly
generated data case is cast into a column, it is placed into
a cell using uniform probability. Fig. 24 shows the incre-
mental values associated with the bivariate plot in Fig. 21b.
In our continuing example we have n(.,.) = 99, so we would
generate 99 random numbers in the unit interval. All random

numbers < .071 would be placed in column i = 1; those greater
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than .071 and < .192 would be placed in column i = 2; and

so on. As each data case is placed into a column, a single
random number is generated to determine into which cell the
case is to be placed (e.g., a random number < .33 would be
counted in cell (i,1); a random number greater than .33 and

< .66 would be counted in cell (i,2); etc.). After all 99
cases have been cast into their appropriate cells, all of

the statistics previously discussed would be computed and
saved. This process would be repeated 100 times so that we
would have an array containing 100 randomly generated poten-
tial predictabilities, ao's( al's and FD's. These would be
sorted from lowest to highest and the 96th {(PP(96), a0(96),
al(96) and FD(96)) value would determine the upper 5% critical
value and the Sth (PP(05), a,(05), a, (05) and FD(05)) value
would determine the lower 5% critical value. for all statis-
tics other than FD, we want values from our dependent data

set to be greater than the upper 5% or less than the lower

5% critical values. For FD we want values lower than the
upper 5% critical value to ensure that our second, and subse-
quent, predictor is not significantly dependent on the previous

predictor(s).

VI. CHOOSING PREDICTORS

The first predictor is determined as shown in Section III.
That is, by computing initial PP, a, and a; values for each

predictor, ordering them by skill score and PP and choosing
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the one with the greater skill score, or greatest PP in the
event that all skill scores are identical.
Subsequent predictors will be subjected to two tests;

functional dependence and skill score. Let

p = the number of predictors already chosen,

ao(k-l) and al(k-l) = the 0- and l-class errors

of the previous stage of construction of the
developmental model,

k = the index of the current stage.

Then, for the next (kth) predictor to be accepted it should

meet the following three conditions:
(L) FD < FD(96]|1) (i =1,p)
(2) ao(k) > ao(k-l) and al(k) < al(k—l)
(3) aglk) > a,(96) and a;(k) < a,(05)

If condition (1) is not met but conditions (2) and (3) are,
then a predictor may still be used, but the increase of

predictability of the predictand will, on average, be less
than if condition(l) had been met. However, if conditions

(2) and (3) are not met, then the predictor should not be

considered further. Repeat this process at all stages for |
all remaining predictors until no further predictors are
available, then stop the construction of the developmental

model.
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VII. TESTING THE DEVELOPMENTAL MODEL ON INDEPENDENT DATA

Once the model has been developed and no further predic-
tors remain to be considered, we can test it for skills
(ao,al) on an independent data set (any set whose numbers
were not used to develop the model). This is easily accom-
plished by sorting the independent data case values into
predictor intervals, determined from the dependent data, and
calculating the location in the forecast array (11 in Figs.
21b and 22b) of the appropriate prediction, using the equa-
tions established in Section III. It is to be expected that
on average the test (ao,al) points on the skill diagram, for

an independent data set, will not be as skillful as on the

set of developmental points.
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APPENDIX B

LINEAR REGRESSION AND THRESHOLD MODELS

A. LINEAR REGRESSION

In this study a least-squares, multiple linear regression
model, known as BMDP2R in the BMDP Statistical Software
[University of California, 1981), was used. The procedure
used is called forward step-wise selection and picks the
predictors (of the many offered) that have the highest
correlation with the predictand (visibility) based upon F-to-
enter and F-to-remove limits, where F is a ratio which tests
the significance of the coefficients of the predictors in
the regression equation.

The regression model fitted to the data is

y = a+ blxl + bzx2 + ... + bpxp + €

. where:

i y = the dependent variable (predictand) which can
FC be either a continuous function or a discrete
. value
E; xl,...,xp = the independent variables (predictors)
%
:! bl""'bp = the regression coefficients
f; a = the intercept
;; p = the number of independent variables
S € = the error with mean zero.
g
~
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The predicted value y, and the general form of the resulting

equation, is

The step-wise selection of predictors continues until there
are no predictors remaining which meet the F-to~-enter criteria.
The regression equation generated at each step is printed,
along with its R-value (the correlation of the dependent
variable y with the predicted value §) and R2. The resulting
set of equations, one for each step, are reviewed, and that
equation containing only those predictors which increased

R2 by at least .01 is retained for application.

The role of regression, once appropriate predictor
variables have been selected, is simply that of dimension
reduction (representing a multivariate structure by a uni-
variate proxy which constitutes a classificatory or predictive
index). This proxy takes the form of a polynomial, linear
in its coefficients, of the components of the multivariate
structure. The problem now becomes one of determining the
form of the state conditional distributions (one for each
group of interest; e.g., 1, 2 and 3 for visibility categories
I, II and III, as used in this study). Once an appropriate
form has been selected, it remains, then, to determine the
parameters of the class conditional distributions (e.qg.,

means and variances) and then apply the decision criteria or

threshold model.
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e
o B. THRESHOLDS [LOWE, 1984al
o 1. Notation
{t E = an event; this is an indicator variable which
g when E = 1, the threatening event occurs, and
when E = 0, the non-threatening event occurs.
C = the classification of an unknown event which
when C = 1, the event is classified as a
~ threat, and when C = 0, the event is classified
ol as a non-threat.
A
- P[E = 1] = unconditional probability of occurrence of
A‘." threat.
\; P[E = 0] = unconditional probability of occurrence of
o non-threat.
= Error of the lst kind (false alarm) [C=1nE=0].
3 Error of the 2nd kind (miss) [C=0nE=1].
N
o0 P[C=1,E=0] = joint probability of an error of the lst
" kind.
> A
- P[C=0,E=1] = joint probability of an error of the
{ 2nd kind.
.if P{C=1{E=0] = class conditional probability of misclassi-
= fying a non-threat.
- P[C=0|E=1] = class conditional probability of misclassi-
D fying a threat.
-
“ P[C=1nE=0] = P[C=1[E=0] P[E=0].
s
oY P[C=0nE=1] = P[C=0|E=1] P[E=0].
ld z = a value of the predictive index (equivalent
Iﬁf to y, above).
o
= Z = range of the predictive index on the real line.
.?: . For a dichotomous problem, Z is into two parts ZO' Zl'
;5 cC = 0 if =z ¢ Zo
.\'.:
.. .
if C = 1 1if =z ¢ Zl
..\
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The decision regions are mutually exclusive and exhaustive

(i.e., Z0 nZl =

0and 2 =2_u2

0 l)a

Thresholds = boundary(s) between decision regions.

p(z|E =0) = class conditional density of z given
that E = 0.

p(z|E =1) = class conditional density of z given
that E = 1.

A(z) = p(z|E=1)/p(2|E=0) = the maximum likelihood
ratio (i.e., the ratio of class conditional
densities).

Pe = p{I[C=1nE=0] v [C=0nE=1]} = the total

probability of error.

2. Minimum Probability of Error Criterion

)
o
h

g
1]
]

probability of an incorrect classification.

plC=1|E=0] p[E=0] + p[C=0|E=1] p[E =1]

where pl[E=1] + p[E=0] = 1. Note that the events E =1

and E = 0 are mutually exclusive and exhaustive. The objec-

tive is to select decision regions (thresholds) so as to

minimize Pg-

plC=0|E=1]

plC=0|E =1]

f p(z|E=1)dz = the probability of
ZeZ0

misclassifying E = 1.

{ p(z|E=1)dz + [ p(z|E=1)dz
Zezo zezl

- [ p(zlE=1)az
ZeZl
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1l

In order to minimize P Z1 (the decision region for C = 1)
will include all those values of z for which the integrand
in the expression for Pe will be negative. The decision

regions can be symbolically represented as follows:

{z: p[E=0] p(z[E=0) - p[E=1] p(z|E=1) > 0}

[
"

[
[}

{z: p[E=0] p(z|E=0) - p[E=1] p(2z|]E=1) < 0}

An alternative representation is given by,

2y = {z: p[E=0] p(z|E=0) > p[E=1] p(z|E=1)}

= {z: pl[E=0]/p[E=1] > p(2|E=1)/p(z|E=0)}

O e NN S A A A A A e oy
o
'r'!’
plC=0|E=1] = 1 - f p(z|E=1)dz these are
[ zely substituted
- into the
A expression
S pliC=1|E=0] = [ p(z|E=0)dz for p,
AN 2¢lZ
1
then,
P = PIE=0] [ p(z|[E=0)dz + p(E=1]1(1 - [ p(z|E=1)az]
2¢2 ZeZ
1 1
and algebraic rearrangement yields,
Pe = plE=1] - [  {plE=0] p(z]E=0) - pl[E=1] p(z|E =1)}dz
2e¢l




Likewise,
z2, = {z: p(E=0]/p(E=1] < p(z|E=1)/p(z|E=0)}

These statements can be combined to give,

‘ c=1
p(z|E=1)/p(z|[E=0) = A(z) 2 plE=0]/p[E=1]
c=0

Thresholds are the value(s) of z for which
A(z) = plE=0]/plE =1]

This equation can be solved for z either analytically or
numerically depending on the forms of the density functions.

3. Threshold Cases

In order to examplify the model, the assumption is
made that the class conditional distributions are Gaussian.
There are essentially three distinct cases that can arise.

a. Case I: Equal variances; different means
(Referred to as the equal variance model in the

text)

2, 2
: p(z|E=1) = k exp{(-1/2)(z -uqy) /0 }
i 2,2
- p(z|E=0) = k exp{(-1/2)(z -uo) /0“1
3
:::E: where:
\d’
e
oY k = (2m V%1

T2
L |

P LN LA A

.'J l.':. .'
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exp{(-1/2) (z -u)) 2/0%} e

0

o P

A(z) =

A Vil

exp((-1/2) (z -ug) %/0%} ©

where Py = p[E=0] and P, = p(E=1]. Thus, the threshold

value is
2
* = -
z (g +Hy)/2 + 0 ln(po/pl)/(ul Mg)
2*
> E=0 E=1
@
c
o
Q

Classification index (z)

The position of the threshold depends on the relative values
of Py and Pg- The threshold moves toward the group with the
smallest p; - if P1 = Py the threshold will be the value of
z where the densities intersect (i.e., where the densities

are equal).

b. Case II: Equal means; different variances

\\¥ 2,2
. o,exp{(=1/2) (2 ~p,) “/0c5} ezl p
rz) 0 1 1 0

oexp{(-1/2) (z ~ug)/a2) o
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with the threshold

20202 PAO 1/2
* - 071 01
Z —t—z*rln(o)
(cl~oo) P1%

Note that in this situation there are two thresholds. The
group having the smaller variance will lie between the two

thresholds.

Density

Y v

Classification index (z)

The thresholds shown are typical of a situation where Py < Pg-
Note that these thresholds lie between the two intersections
of the densities. If the inequality of prior probabilities
were reversed, the thresholds would lie outside of the

region between the two density intersections. Further note
that the decision region for the group having the lesser

variance lies between the thresholds.
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fﬂ c. Case III: General Solution (Referred to as
R the Quadratic Model in the text) !

(& p(z|E =1) K/, exp{(-1/2) (z -u;)%/0?}

P(z|[E=0) = k/og expl(-1/2) (z -uy) 2/o}

c=1
z‘“o)zﬁ(z“‘l)z]} > Pp%
% o1 c=0 p,9y

A(z) = exp{l/2 [(

j; where k = (2m) ~1/2, Algebraic manipulation produces

< 2

o (01 2

2 2 2
-oo)z + 2(0011l -cluo)z

oS + [(°§u§ -cgui):-Zogoi ln(pool/ploo)] <
which is recognizable as a gquadratic equation in z.
. 2* = -b: (b%- sac)/?)2a

where:

2 2
2 (Ooul - cluo)

_ 2 2 22 _ .22
¢ = (ojug = 9gu7) 20]Hg 1n (pocl/Plco)

AONPON
Sy

4
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.
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| Density

1

" Classification index (z)

The remarks given for the figures in cases I and II are also
applicable here. More often than not, only one of a pair of
thresholds induced by differing variances will be of real
interest. If the variances of the two groups are radically
different, then both members of the threshold pair become
important.

In the foregoing, normal class conditional dis-
tributions were assumed. This was done because the Gaussian
form admits of a rather clean analytical solution. However,
the general concept of the minimum probable error decision
criteria may be applied to any form of density function.
Indeed, the density function of one group need not even be
the same form as that for another group (one might be exponen-
tial and the other Gaussian). The difficulty with most non-
Gaussian forms is that they seldom admit of closed analytical

forms and require numerical means in determination of thresholds.
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APPENDIX C

E NORTHERN HEMISPHERE PREDICTOR PARAMETERS AVAILABLE
I FOR THE NORTH PACIFIC OCEAN, JULY 1979, EXPERIMENTS
(7
p \‘
3} Area: 30°-60°N; 1l45°E-130°W

> Model output time: O0000GMT (TAUQO)
-

'Q A. Model output Descriptive name of parameters

Q parameters

Primitive equation model

TX Surface air temperature
‘ EX Surface vapor pressure
® EHF Evaporative heat flﬁx
$i SEHF Sensible plus Evaporative heat flux
.- THF Total heat flux
3{ H510 1000-500 mb thickness anomaly
- GGTHTA Surface~front location parameter
5! FTER Advective fog probability
%ﬁ Mass structure model
)
N PS Surface pressure
i; TAIR Surface air temperature
;f EAIR Ssurface vapor pressure
%? TSEA Sea surface temperature
o SSANOM Sea surface temperature anomaly
:3 T925 925 mb temperature
e U925 925 mb zonal wind component
; V925 925 mb meridional wind component
i; NCLOUD Total cloud cover
o~
& Marine wind model
Vet
g: VVWW Marine surface wind speed
- DDWW Marine surface wind direction
.
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B. Climatological parameter
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CLIMO National Climatic Center fog
frequency climatology
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A C. Derived parameters
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: :{.: ASTD TAIR-TSEA
= RH

surface relative humidity
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APPENDIX D

NOGAPS PREDICTOR PARAMETERS AVAILABLE FOR THE NORTH
ATLANTIC OCEAN, 15 MAY-15 JULY 1983, EXPERIMENTS

Area: Entire North Atlantic Ocean and Mediterranean Sea

Model output time: 1200GMT (TAUO0O)

A. Model output Descriptive name of parameter
parameter
D1000 1000 mb geopotential height
D925 925 mb geopotential height
D850 850 mb geopotential height
D700 700 mb geopotential height
D500 500 mb geopotential height
D400 * 400 mb geopotential height
D300 * 300 mb geopotential height
D250 * 250 mb geopotential height
TAIR Surface air temperature
T1000 1000 mb temperature
T925 925 mb temperature
T700 700 mb temperature
T500 500 mb temperature
T400 * 400 mb temperature
T300 * 300 mb temperature
T250 * 250 mb temperature
EAIR Surface vapor pressure
E1000 1000 mb vapor pressure
E925 925 mb vapor pressure
E850 850 mb vapor pressure
E700 700 mb vapor pressure
ES00 500 mb vapor pressure
UBLW Boundary layer zonal wind component
Ul000 1000 mb zonal wind component
U925 925 mb zonal wind component
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U8so 850 zonal wind component

mb
U700 700 mb zonal wind component
U500 500 mb zonal wind component
U400 * 400 mb zonal wind component
U300 * 300 mb zonal wind component
U250 * 250 mb zonal wind component
VBLW Boundary layer meridional wind
component
v1000 1000 mb meridional wind component
V925 925 mb meridional wind component
V850 850 mb meridional wind component
V700 700 mb meridional wind component
V500 500 mb meridional wind component
v400 * 400 mb meridional wind component
V300 * 300 mb meridional wind component
V250 * 250 mb meridional wind component
VOR925 ** 925 mb vorticity
VOP500 ** 500 mb vorticity
PS Surface pressure
SMF Surface moisture flux
PBLD Planetary boundary-layer depth
STRTFQ Percent stratus frequency
STRTTH Stratus thickness
SHF Surface heat flux
ENTRN Entrainment at top of marine
boundary~layer
DRAG ** Drag coefficient (CD)
B. Derived parameters
%ﬁ DTDP Vertical gradient of temperature
- DEDP Vertical gradient of vapor pressure
;g DUDP Vertical gradient of zonal wind
f: DVDP Vertical gradient of meridional wind
3; RH Surface relative humidity
~ BM1 *** 2.81132 + (.16201 x EAIR)
¢ - (.00237xE850) - (.0739 xT925)
- - (.16179%xE925)
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2.
.
::::- BM2 **% 2.08302 + (.36810 x TAIR)
’,’.:" - (.26675 xT1000) -~ (.15980 xT925)
o BM3 *x* 3.00866 + (.11771 x EAIR)
| - (.01024 xE850) - (.19321 x E925)
:,-:‘ BM4 *** 2.42235 - (.000418 x UBLW)
& + (.000255 x U700)
o BM5 *** 2.55859 - (.000355 x V1000)
o BM6 *** 2.57317 + (.000893 xD1000)
- (.0000489 xD700)
o BM7 *** -15.2173 + (.01764 x PS)
e - (.01007 x STRTFQ) + (.02642 x STRTTH)
362 + (.06042 x SHF)
\
e * Parameters which were not used due to their being
R considered as having little likelihood of being
T important in forecasting marine visibility.
o
_! **  parameters which were not used due to loss of
T significant digits during transfer from tape
. to mass storage.
;:. *%* Linear regression equation parameters.
¢
o
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o
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oN APPENDIX E

SKILL AND THREAT SCORES

-
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\ o
e, X1 Y| 2
- 1 2 3

OBSERVED

. Total = R+ S+ T+ U+V+W+X+Y+ 2

- Pl = (R+U+X)/Total P3 = (T+W+2)/Total
{?' P2 = (S+V+Y)/Total PN = greatest of Pl, P2 or P3
{% Raw scores

y A0 = % correct = (X+V+T)/Total

Al = 1 -class error = (U+S+Y+W) /Total
TS1 = Threat score for visibility category I

° = X/ (R+U+X+Y+2Z)

¢
x3 TS2 = Threat score for visibility category II
o = V/(U+X+V+Y+W)
:; TS1l2 = Threat score for visibility categories I and II
oy = (X+V)/(Total-T)

ﬁ TS12 is designed to represent the skill of forecasting visi-
3 bility categories I and II as separate categories, rather
® than their skill as a combined category, which would be
= (U+V+X+Y) /(Total-T) .
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Adjusted scores

- AAO = (AO-PN)/(1-PN)
%& ATSl = (TS1-Pl)/(1l-P1)
E ATS2 = (TSZ-P2)/(1-P2)
2 ATS12 = (TS12-[Pl+P2])/(1-[P1l+P2])
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APPENDIX F
TABLES

TABLE I. A SUMMARY OF THE OBSERVATIONS (PERCENTAGE
FREQUENCIES) OF THREE VISIBILITY CATEGORIES

(VISCAT'S), FOR THE NORTH ATLANTIC OCEAN
HOMOGENEQUS AREAS SHOWN IN FIG. 1, 15 MAY-
15 JULY 1983
NUMBER OF
AREA OBERSERVATIONS VISCAT I VISCAT II VISCAT III
>
o 1 2725 163 (.06) 436 (.16) 2126 (.78)
Doy
o 2 2867 277 (.10) 317 (.11) 2273 (.79)
> 3E 131 8 (.06) 31 (.24) 92 (.70)
-
% 3w 2288 437 (.19) 284 (.12) 1567 (.68)
o 4 4771 129 (.03) 597 (.13) 4045 (.85)
i 5E 1087 9 (.01) 94 (.09) 984 (.91)
5W 2307 8 (.003) 40 (.02) 2259 (.98)
6N 580 19 (.03) 45 (.08) 516 (.89)
6M 2337 21 (.01) 131 (.06) 2185 (.93)
65 60 1 (.02) 2 (.03) 57 (.95)
7 801 7 (.01) 34 (.04) 760 (.95)
° 8 1284 1 (.001) 27 (.02) 1256 (.98)
N..
E.': ENTIRE NORTH ATLANTIC AND MEDITERRANEAN
5} 21,238 1080 (.05) 2038 (.10) 18,120 (.85)
.
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ol TABLE II. NUMBER OF OBSERVATIONS (PERCENTAGE FREQUENCIES)

- OF THREE VISIBILITY CATEGORIES (VISCAT'S),

- AND 95% CONFIDENCE INTERVALS FOR THE
DEPENDENT AND INDEPENDENT DATA, FOR THE NORTH
PACIFIC OCEAN AND AREA 3W OF THE NORTH
ATLANTIC OCEAN

North Pacific Ocean, July 1979

a2 TOTAL # OF
o VISCAT I VISCAT II  VISCAT III  OBSERVATIONS
= 95% CI .207-.229  .126-.144  .635-.660

; Dependent data 816 (.222) 498 (.135) 2368 (.643) 3682

Sﬁ Independent data 388 (.211) 246 (.134) 1207 (.656) 1841

;ﬁ Total 1204 (.218) 744 (.135) 3575 (.647) 5523

;f

;3 North Atlantic Ocean area 3W, FATJUN 1983

= 95% CI .175-.207 .111-.138  .666-.704

: Dependent data 296 (.194) 190 (.125) 1040 (.682) 1526

iﬁ Independent data 141 (.185) 94 (.123) 527 (.692) 762

Total 437 (.191) 284 (.124) 1567 (.685) 2288




TABLE III.

THE INITIAL FIVE BEST PREDICTORS FOR
EPI'S OF FOUR THROUGH TEN, FOR EACH
STRATEGY, WITH ASSOCIATED PP, ag, ajl
AND CE VALUES FROM THE NORTH PACIFIC
OCEAN DEPENDENT DATA, JULY 1979

Maximum-probability Natural-regression

Y

@

L s
[N

RSN J.\ \-.‘-_\-.\. e

v o N

EPI Predictor PP a a; CE a, aj CE

4  EHF .328 .684 .135 .497  .491 .467 .551

SEHF .315 .681 .135 .503  .478 .475 .569

FTER .317 .680 .135 .505  .482 .468 .568

CLIMO .296 .657 .135 .551 .471 .478 .580

RH .311 .649 .135 .567 .508 .442 .542

5  EHF .337 .697 .135 .471  .435 .538 .592

SEHF .319 .688 .135 .489 .535 .400 .530

FTER .314 .678 .135 .509 .539 .396 .526

RH . 312 .658 .135 .549 .449 .518 .584

CLIMO .295 .658 .135 .549 .418 .549 615

6  EHF .338 .695 .135 .475  .491 .467 .551

SEHF .319  .690 .135 .485 .478 .475 .569

FTER .318 .673 .135 .519 .574 .349 .503

RH .316 .661 .135 .543 .508 .442 .542

CLIMO .295 .659 .135 .547  .471 .478 .580

7  EHF .337 .693 .135 .479 .529 .415 .527

SEHF .319 .685 .135 .495 .523 .417 .537

FTER .320 .675 .135 .515 .523 .417 .537

CLIMO .297 .661 .135 .543 .435 .528 .602

RH .314 .659 .135 .547  .308 .654 .730

8  EHF .338  .688 .135 .489 .491 .467 .551

: SEHF .320 .681 .135 .503  .478 .475 .569

" FTER .320 .680 .135 .505 .553 .377 .517

X2 CLIMO .301 .663 .135 .539  .404 .567 .625

®. RH .315 .657 .135 .551 .508 .441 .543

%
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TABLE

.693
.686
.683
.663
.657

.696
.688
.678
.662
.658

...........

IIT (CONT.)

.479
.493
.499
.539
.551

.135
.135
.135
.135
.135

135
.135
.135
.135
.135

.473
.489
.509
.541
.549
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TABLE IV. FIRST-STAGE CONTINGENCY TABLE STATISTICS
A0, TS1l, AAO AND ATS1 FOR BOTH DEPENDENT
AND INDEPENDENT NORTH PACIFIC OCEAN, JULY
1979, DATA, FOR EPI'S OF FOUR THROUGH TEN
AND THE MAXIMUM-PROBABILITY STRATEGY, WITH
EHF AS THE FIRST PREDICTOR FOR EACH' NUMBER

OF EPI'S
Dependent data Independent data
EPI A0 TSl AAQ ATsl AQ TS1 AAO ATS1
4 .684 .36 .113 .17 .686 .34 .087 .16
5 .697 .35 .150 .17 .695 .33 .1l14 .15
6 .695 .32 .145 .13 .696 .30 .117 .12
7 .693 .30 .139 .10 .693 .28 .1l07 .09
8 .688 .27 .126 .06 .694 .27 .110 .08
9 .693 .36 .139 .17 .695 .34 114 .16
10 .696 .35 .149 .17 .695 .33 .114 .15
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TABLE V. FD(96), FD, RSS FD AND ay FOR STRATEGY

MAXPROB2, NORTH PACIFIC OCEAN, JULY 1979,

DEPENDENT DATA, FOR THOSE PREDICTORS

SELECTED AT EACH STAGE OF THE DEVELOPMENTAL
- MODEL USING FIVE EPI'S. FD(96) IS COM-

PUTED FROM 100 RANDOMLY GENERATED DATA SETS,

AS EXPLAINED IN APPENDIX A, AND PROVIDES

A MEASURE OF HOW MUCH ADDITIONAL PREDICTA-

BILITY MAY BE EXPECTED FROM THE INCLUSION

OF A NEW PREDICTOR. IDEALLY, RSS FD

SHOULD BE LESS THAN FD(96)

FD, of predictor added, on
—

Predictor

added FD(96) EHF DDWW HS510 RH RSS FD 29
EHF - - - - - - .697
DDWW .1399  .1494 - - - .1494 .699
H510 .1978  .2488 .2185 - - .3311 .704
RH .2423  .2606 .2087 .1515 - .3666 .746
THF .2798  .3290 .1464 .1678 .1907 .4408 .820
CLIMO .3128  .3558 .1727 .1823 .2551 * .882

*RSS FD was not computed for CLIMO as the choice for
the sixth predictor was between only CLIMO and SEHF.
It was more economical to compute contingency table
statistics for each and to choose the best predictor
from those results.
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e TABLE VI. CONTINGENCY TABLES AND RELATED STATISTICS FOR
Y BOTH DEPENDENT (3682 OBSERVATIONS) AND

N INDEPENDENT (1841 OBSERVATIONS) NORTH PACIFIC
- OCEAN, JULY 1979, DATA, FROM STAGE FOUR OF

(s THE DEVELOPMENTAL MODEL. PREDICTORS ARE EHF,
koge DDWW, H510 AND RH, EACH DIVIDED INTO FIVE

. EPI'S, FOR (A) MAXPROBl, (B) MAXPROB2 AND

Y (C) NATURAL-REGRESSION

2

(a) MAXPROBIL

SO0

DEPENDENT DATA

A

o 3| 316 | 301 [ 2108 | A9F .75 ARO= .29
- -

- n Al= .13

; g

o O 29 79 29

w TS1= .44 ATS1= .28
Ky (e .

o 0 14 01
o w | 47 118 141 Ts2= - ATS2= -
&- TS12= 37 ATS12= .02
:‘: 1 2 3

£ OBSERVED

>

)

54 INDEPENDENT DATA

<

& AO= .70  AAO= .12
. L3 17s 162 | 1065
o ) Al= .15

= <

oy 3} 24 26 35

> w 2 TS1= .34 ATS1= .17
- o4

2 o

> w TS2= .09 ATS2= =-.06
v 1] 189 58 107
:-f,' TS12= .28 ATS12= -.10
:j- 1 2 3

g‘ OBSERVED

l.‘-.

-
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TABLE VI (CONT.)

(b) MAXPROB2

DEPENDENT DATA

238

2077

108

63

3| 228
.
(7]
<
O3 25
w
[+ 4
o
“1| s63

152

228

1

2

OBSERVED

INDEPENDENT DATA

3

3 135

136

1007

29

48

FORECAST

1 230

8l

152

2

1
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(3 o)

3
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u

AO= .75

013
TS1= .47
TS2= .18

TS12= 49

AO= .69
.16
TSt= .37
TS2= .09

TS12= .31

-

SRS

-

AAO= .29

ATS1= .32

ATS2= Q6

ATS12= 30

AAO= .09

ATS1= .20

ATS2= -.05

ATs12= —-05
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TABLE VI

(CONT.)

(c) Natural-Regression

DEPENDENT DATA

75

171

1773

501

279

565

FORECAST

240

48

30

1

OBSERVED

2

INDEPENDENT DATA

FORECAST

3

72

91

857

226

128

298

90

27

52

1

2

3

OBSERVED
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AO

.62

TS1= .27

TS2= .18

TS12= 37

AO .58

TS1= .19

TS2= .17

TS12= 5o

AAQ =

ATS1=

ATS2=

-.06

.06

.05

ATS12=_ 313

AAO=

ATS1=

ATS2=

ATS12=

-.21

-.02

.04

-.19

-

PR RGIOMLTG L6 G 0h Y5 A LR QL SN 1T NSO EC O C(Cii{li&i&i(ii




TABLE VII. LINEAR-REGRESSION EQUATION FOR THE PREDICTED
VALUE OF THE VISIBILITY CATEGORY (%), ¥
STATISTICS WITH RESPECT TO THE ACTUAL VISI-
BILITY CATEGORIES (Y) AND THRESHOLD VALUES ‘
FROM THE EQUAL-VARIANCE ASSUMPTION MODEL, i
NORTH PACIFIC OCEAN, JULY 1979. NOTATION '
IS AS IN APPENDIX B.

y = 3.78586 + .04118(EHF) - .91412(FTER) - .01592(RH)

Class conditional distributions (i.e., distribution of y for
a given y).

Number of Frequency Mean Value Standard
observations of of deviation of
y ofy y (p) y (m) y (o)
1 816 .222 2.077 (ml) .348
2 498 .135 2.263 (mz) .382
3 2368 .643 2.568 (m3) .353
Tl = threshold between y = 1 and y = 2 = 2.506
T, = threshold between y = 2 and y = 3 = 1,768
Ty = threshold between y = 1 and y = 3 = 2.048

State conditional distributions for visibility category 1
(y =1), II (y = 2) and III (y = 3) depicting threshold
values and means.
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- TABLE VIII. CONTINGENCY TABLES AND RELATED STATISTICS
o~ FROM LINEAR REGRESSION, FOR BOTH DEPENDENT
- (3682 OBSERVATIONS) AND INDEPENDENT (1841
% OBSERVATIONS) NORTH PACIFIC OCEAN, JULY
f 1979, DATA
= DEPENDENT DATA
.
L9 - -
= 5| 389 342 | 2131 | AO= .69 AAO= .14
-
.
A n Al= 14
W < A
(3 02 0 0 0
- g TS1= 35 ATS1= .17
o o
= “ | 429 156 237 T52=0.0 ATS2=-.16
TS12=.,28 ATS12=__13
o 1 2 3
o OBSERVED
J
INDEPENDENT DATA
N
X AO= AAO=
‘ _ 3| 189 176 | 1076 -69 .11
(72} A1=
p .13
‘32 0 0 0
w TS1= 34 ATS1= .16
o
o TS2=0.0 ATS2= -.15
1 199 70 131
TS12= .26 ATS12= -.13
1 2 3
OBSERVED
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TABLE IX. THE INITIAL FIVE BEST PREDICTORS FOR EPI'S
OF FOUR THROUGH TEN, FOR EACH STRATEGY,
WITH ASSOCIATED PP, ap, a; AND CE VALUES
FROM THE NORTH ATLANTIC OCEAN AREA 3W
DEPENDENT DATA, 15 MAY-15 JULY 1983,
WITHOUT LINEAR-REGRESSION EQUATIONS AS
PREDICTORS

Maximum-probability Natural-regression

EPI Predictor PP %0 %1  CcE % %1 cE
4  E850 372 .697 .125 .482 .514  .446 .526
SHF .376  .691 .125 .493 .512  .455 .521
DTDP .344 .685 .125 .505 611 .304 .474
E925 .359 .685 .125 .505 .505 .453 .537
SMF .334 .682 .125 .511 .606 .301 .487
5  E925 .367 .702 125 .472 .564  .379 .494
E850 375 .700 .125 .475 .576 .370 .478
DTDP .344 .699 .125 .477 . .528 .409 .535
SHF 379 .698 .125 .479 .567 .383 .483
SMF .337 .686 ~.125 .503 .526 .409 .539
6  DTDP .353 .710 .125 .456 .568 .360 .503
E850 .374  .699 .125 .477 .609  .324 .458
SMF 341 .699 .125 .477 .563 .360 .514
E925 .363 .695 .125 .485 .595 .334 .476
SHF .374 .693 .125 .489 512 .455 .521
7 DTDP .356 .716 .125 .443 .514 .429 .542
SMF .348  .706 .125 .463 .590 .325 .495
E850 379 .699 .125 .477 .561 .389 .489
E925 .364 .692 .125 .491 .547 .400 .506
SHF .376 .691 .125 .493 .548  .407 .497
s 8 SMF .352  .714 .125 .448 .543 .386 .528
L DTDP .356 .712 .125 .451 611 .304 .474
i E850 .378 .700 .125 .475 .588 .355 .469
[ SHF .379  .691 .125 .493 .512 .455 .521
e E925 .364 .685 .125 .505 577 .360 .486
o
Py 98
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DTDP
SHF

E850
E925

10 SMF
DTDP
E925
E850
SHF

TABLE IX (CONT.)
.352 .714 .125 .448 .563
.351 .708 .125 .459 .568
.382 .700 .125 .475 .541
.376 .699 .125 .477 .550
.369 .699 .125 .477 .537
.357 .719 .125 .437 .526
.354 .710 .125 .455 .581
.369 .702 .125 .471 .564
.380 .700 .125 .475 .576
.381 .698 .125 .479 .567
99

'''''''''
.........

.360
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N TABLE X. FIRST-STAGE CONTINGENCY TABLE STATISTICS A0,
s TS1l, AAO AND ATS1 FOR BOTH DEPENDENT AND

o INDEPENDENT NORTH ATLANTIC OCEAN AREA 3W, |
" 15 MAY-15 JULY 1983, DATA, FOR EPI'S OF FOUR |
o THROUGH TEN AND THE MAXIMUM-PROBABILITY
) ' STRATEGY, WITHOUT LINEAR-REGRESSION EQUATIONS
i AS PREDICTORS '
U
Qi Dependent Independent
N
< Best
o EPI Predictor A0 TS1 AA0 ATS1 A0 TSl AA0 ATS1
5
. 4 g850 .70 .32 .05 .15 .69 .30 -.01 .14
o 5 g925 .70 .30 .06 .13 .71 .30 .05 .14
=~ 6 prpp .71 .32 .09 .15 .71 .29 .05 .13
-~
o 7 DTDP .72 .31 .11 .14 .71 .28 .07 .11
O
< 8 SMF .71 .28 .10 .10 .73 .29 .13 .13
5 9 SMF .71 .26 .10 .08 .73 .26 .l1 .09
L 10 SMF .71 .26 .69 .08 .73 .24 .15 .06
;; '
=
.
.
°
o
\:;
g
> 100
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TABLE XI. SAME AS TABLE IX, EXCEPT WITH LINEAR-
REGRESSION EQUATIONS AS PREDICTORS

Maximum-probability Natural-regression

EPI  Predictor PP 49 21 CE 20 ! CE
4 BM1 .443 .753 .125 .370 .662 .282 .394
BM3 .427 .742 ,125 .392 .665 .270 .400

BM2 .395 .713 .125 .450 .516 .455 512

BM7 .389 .705 .125 .465 .512 .461 .515

E850 .372 .697 .125 .482 .514 .446 .526

5 BM1 .438 .749 .125 .377 .589 .380 .442
BM3 .433 .749 .125 .377 .590 .374 .446

BM2 .400 .727 .125 .421 .566 .387 .482

BM7 .396 .716 .125 .444 .564 .393 .480

E925 .367 .702 ,125 .472 .564 .379 .494

6 BM1 .449 ,752 .125 .372 .628 .332 .413
BM3 .433 .746 .125 .383 .625 .328 .422

BM7 .404  .725 .125 .425 '.604 .338 .453

BM2 .399 .723 ,125 .429 .517 .454 .512

DTDP .353 .710 .125 .456 .568 .360 .503

7 BM1 .452 .745 ,125 .385 .650 .303 .397
BM3 .434 .740 .125 .394 .575 .393 .457

BM2 .406 .728 .125 .419 .554 .406 .486

BM7 .404 .721 ,125 .434 .480 .505 .536

DTDP .356 .716 .125 .443 .514 .429 .542

8 BM1 .453  .753 .125 .370 .606 .358 .431
BM3 .441 .742 .125 .392 .601 .358 .440

BM2 .405 .724 .125 .427 .585 .364 .466

BM7 .406 .723 .125 .429 .575 .378 .472

SMF .352 .714 .125 .448 .543 .386 .528

-----------
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TABLE XI (CONT.)

9  BML .453 .752 .125 .372 .689 .250 .372
BM3 .442 .744 .125 .387 .685 .248 .38l
BM7 .410 .723 .125 .430 .540 .427 .493
BM2 .405 .721 .125 .434 .547 .414 .491
SMF .352 .714 .125 .448 .563 .360 .514 }
o
10 BML .456 .749 .125 .377 .704 .235 .356
BM3 .444 .749 .125 .377 .647 .301 .404
BM2 .411  .727 .125 .421 .576 .377 .471
BM7 .407 .721 .125 .433 .564 .393 .480
SMF .357 .719 .125 .438 .526 .409 .539
102
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TABLE XII. SAME AS TABLE X, EXCEPT WITH LINEAR-
REGRESSION EQUATIONS AS PREDICTORS AND
BM1 IS THE PREDICTOR FOR EACH NUMBER

OF EPI'S
Dependent Independent

EPI A0 TSl AAQ ATS1 A0 TS1 AAO ATS1 .
4 .75 .45 .22 .32 .74 .43 .17 .30

5 .75 .42 .21 .28 .75 .41 .17 .28

6 .75 .41 .22 .27 .75 .40 .18 .26

7 .75 .37 .20 .22 .75 .39 .19 .25

8 .75 .45 .22 .32 .74 .43 .17 .30 _

9 .75 .44 .22 .31 .75 .42 .18 .29

10 .75 .42 .21 .28 .75 .41 .17 .28

-'
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TABLE XIV. FD(96), FD, RSS FD AND ag FOR STRATEGY

MAXPROB2, NORTH ATLANTIC OCEAN AREA 3W, 15
MAY-15 JULY 1983, DEPENDENT DATA, WITHOUT
LINEAR-REGRESSION EQUATIONS AS PREDICTORS,
FOR THOSE PREDICTORS SELECTED AT EACH STAGE
OF THE DEVELOPMENTAL MODEL USING FIVE EPI'S.
FD(96) IS COMPUTED FROM 100 RANDOMLY GENERATED
DATA SETS, AS EXPLAINED IN APPENDIX A, AND
PROVIDES A MEASURE OF HOW MUCH ADDITIONAL
PREDICTABILITY MAY BE EXPECTED FROM THE
INCLUSION OF A NEW PREDICTOR. IDEALLY, RSS
FD SHOULD BE LESS THAN FD(96).

FD, of predictor added, on
r )

Predictor
added FD(96) E925 U700 DVDP STRTFQ ENTRN RSS FD 20
E925 - - - - .- - - .702
U700 .1518  .1510 = - - - .1510  .706
DVDP .2147  .1581 .1494 - - - .2175  .733
STRTFQ  .2629  .1557 .1904 .1427 ~ - .2844  .813
ENTRN .3036  .1665 .1556 .1734  .1387 - .3178  .918
PS .3394  .1897 .1779 .1492  .1971 .1495 .3887  .950
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CONTINGENCY TABLES AND RELATED STATISTICS FOR (
BOTH DEPENDENT (1526 OBSERVATIONS) AND INDE-
PENDENT (762 OBSERVATIONS) NORTH ATLANTIC
OCEAN AREA 3W, 15 MAY-15 JULY 1983, DATA,
WITHOUT LINEAR-REGRESSION EQUATIONS AS
PREDICTORS, FROM STAGE FIVE OF THE DEVELOP-

TABLE XVII.

MENTAL MODEL. PREDICTORS ARE SMF, D850,
RH, UBLW AND ENTRN, EACH DIVIDED INTO EIGHT
EPI'S, FOR (a) MAXPROB1l, (b) MAXPROBZ AND
(c) NATURAL-REGRESSION

(a) MAXPROBL
DEPENDENT DATA

AO = =
8 11 | 1039 .98 AAG= .95
[,
0 Al= 01
<<
o 5 178 0
w TS1=.95 ATS1= .94
o)
T 283 1 1 Ts2=.91 ATS2= .90
TS12= .95 ATS12= .92
1 2 3
- OBSERVED
L
E INDEPENDENT DATA
%
S AO= .70 AAO= .04
i - 68 61 452
* wn =
E @ A1 .16
5 © 9 21 38
» g TS1= .34 ATS1= .19
5 o
_ w TS2= .15 ATS2= .03
64 12 37
TS12= .27 ATS12=-.05
1 2 3

OBSERVED
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TABLE XVII (CONT.)

(b) MAXPROB2
DEPENDENT DATA
3

a 0 o | 1021

[72]

<

© 2 o | 183 10

w

[+ 4

o

w .| 296 7 9

1 2 3
OBSERVED
INDEPENDENT DATA
3| 54| 52 408

p—

7]

<

OS2l 14| 23 57

[+ 4

o

[V
3 1 73 | 19 62
o
o 1 2 3
' OBSERVED
- 109
r

)}

AO

Al

TS1=

- TS2=

TS12=

At=

TS1=

TS2=

TS12=

.98

.01

.95

.92

.95

.66

.19

.33

.l4

.27

AAO = 33
ATS1=.94
ATS2=-90
ATS12=92
AAO= _ 10
ATS1= .18
ATS2= .02
ATS12=-.05
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FORECAST
N A

-

(2]

FORECAST
N

-k

DEPENDENT DATA

(c)

TABLE XVII (CONT.)

Natural-Regression

10

1031

15

179

281

1

2

3

OBSERVED

INDEPENDENT DATA

54

56

407

30

28

91

57

10

29

1

2

3

OBSERVED

110

AAO =

ATS1=

ATS2=

ATS12=

AAO~=

ATS1=

ATS2=

= -
L

.93

.93

.81

.90

-.15

.16

.01

ATS12=- 10
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TABLE XVIII. SAME AS TABLE XVII, EXCEPT FOR FIVE
EPI'S. PREDICTORS ARE E925, U700, DVDP,
STRTFQ AND ENTRN

(a) MAXPROB1

DEPENDENT DATA

AO= 92 AAO= .74
- 3 36 49 | 1027
7)) Al= 05
g
R 21 135 4
w Ts1= .77 ATS1= .71
[ <
o 7
w 239 6 9 TS2= .63 ATS2= *9
. TS12= 75 ATS12= g3
1 2 3
OBSERVED
INDEPENDENT DATA
AO= AAO=
5] 54 60 | 460 $12 09
.
n Al= .16
-4
(&)
w 2 19 20 27 | 1s1= .35 ATS1= .20
[+ 4
o
e TS2= .14 ATS2= .02
1 68 14 40
T512= .29 ATS12=_.02
1 2 3
OBSERVED
111
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TABLE, XVIII (CONT.)

(b)

DEPENDENT DATA

FORECAST

(A)

N

b

MAXPROB2

11

12

970

148

283

30

1

2

3

OBSERVED

INDEPENDENT DATA

FORECAST

43

49

426

12

21

44

86

24

57

1

2

3

OBSERVED

112

AO= .92

Al= .05
TS1= .79
TS2= .65

TS12=.78

AO .70

Al= .17

1s1= -39

TS2= |14

TS12= 32

AAO= -74

ATS1= 73

ATS2= .60

ATS12= .67

AAO= .03

ATS1= 23
ATS2= .02

ATS12= .01
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TABLE XVIII (CONT.)

(c) Natural-Regression

DEPENDENT DATA

FORECAST
N W

-

986

AO .88

h

A1= .12

76 142

54

TS1= .72

217 5

TS2= .44

TS12= .51

1

2
OBSERVED

INDEPENDENT DATA

(2]

FORECAST
N

-t

3

41 52

424

39 31

75

61 11

28

2
OBSERVED

3

113

AO .68

Atl= .23
TS1= .34
TSs2= .15

TS12= 27

........

AAO= .63

ATS1= g5

ATS2= .36

ATS12=,28

AAO= -.05

ATS1= .19
ATS2= .03

ATS12=-_05
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TABLE XIX. CONTINGENCY TABLES AND RELATED STATISTICS
FOR BOTH DEPENDENT (1526 OBSERVATIONS) AND
INDEPENDENT (762 OBSERVATIONS) NORTH ATLANTIC
OCEAN AREA 3W, 15 MAY-15 JULY 1983, DATA,
WITH LINEAR-REGRESSION EQUATIONS AS PREDICTORS,
FROM STAGE FOUR OF THE DEVELOPMENTAL MODEL.
PREDICTORS ARE BM1l, U850, D500 AND V830,
EACH DIVIDED INTO FOUR EPI'S, FOR (a) MAXPROB1,
(b) MAXPROB2 AND (c) NATURAL-REGRESSION

(a) MAXPROB1
DEPENDENT DATA

AO= 79 AAO= 34
+-3 97 120 | 990
» Al= .12
g
02
w 6 21 > TS1= .50 ATS1= 39
- ]
° TS2
w = ATS2=-
1| 193 49 | 45 .10 -02
TS12= 49 ATS12= 12
1 2 3
OBSERVED
g INDEPENDENT DATA
N2
i
= AAO=
N 5| 45 74 | 499 AG= .78 -29
- =
- ) Atz .13
& <
K Q
o w2 4 > 4 | 1s1= .51 ATS1= .40
I o
- w T$2= .05 ATS2= -.09
s 1 92 15 24
- TS12= 37  ATSI2= 09
" 1 2 3
o OBSERVED
r_—.f'
N
‘e,
114
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TABLE XIX (CONT.)

(b)

DEPENDENT DATA

FORECAST

MAXPROB2

3 77

109

967

21

216

60

64

1

OBSE

2

INDEPENDENT DATA

FORECAST

3

RVED

3| 36

68

481

1 102

18

40

1

2

3

OBSERVED

115

AO

Al=

TS1=

TS2=

----------------

.79

.12

.51

.10

TS12= 42

AO

Al=

TS1=

TS2=

TS12=

.78

.12

.51

.08

.39

13
& e

Lo e .

e, R -

AAO= .34
ATS1= 40

ATS2=-,02

ATS12= .16

AAO= .27

ATS1= .40
ATS2= -.05

ATS12= 12
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2 TABLE XIX (CONT.)

(¢) Natural-Regression

5 DEPENDENT DATA

:i: AO= .72 AAO= .11
R 3 35 82 875
8 al= 25

131 87 | 147 | ts1= 39 ATS1= .24

FORECAST
N

P
et 08 8 iy
B e

130 21 18 TS2= .19 ATS2= .0"7

s 4
-k

:‘. : ' TS12=.33 ATS12=.02
o 1 2 3
L OBSERVED

- SRS

(I (
PR -

INDEPENDENT DATA

s 0
o

W h Y

AO= .69 AAO= .01

AN
Fatuty i

24 49 427

@
W

- Al= 26

s

N

- 53 38 87

e 2 TS1= 40 ATS1= 26

FORECAST

"

TS2= .16 ATS2= 05

L)
ot 8

64 7 13

-—h

)

TS12= .30 ATS12=-.01

iy 1 2 3
OBSERVED

116
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EACH.

(a) MAXPROB1
DEPENDENT DATA
31 112 130 965

-

("))

-4

O

o 2 10 13 9

[+ 4

o

[V

11 174 47 66
1 2 3
OBSERVED
INDEPENDENT DATA

Y 3| 56 79 | 484
s 0

g

8 2 1 0 3
[ [« 4

o
d “
o 1 84 15 40
o '
L -
F;; 1 2 3
- BS
. OBSERVED
:;
<
v 117
(R
X

AO= 75
Al= 13
TS1= .43
TS2= ¢
Té12=.33
AO= 75
A1= |13
TS1= .43
T52=0.0

TS12= .30

SAME AS TABLE XIX, EXCEPT RESULTS ARE FROM
STAGE TWO IN THE DEVELOPMENTAL MODEL AND
PREDICTORS ARE DIVIDED INTO EIGHT EPI'S
PREDICTORS ARE BM1 AND U500

AAO= 23
ATS1= .29
ATS2=_ o7
ATS12= 2
AAO= 17
ATS1= .30
ATS2= -.14
ATS12=-.01
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(b)

DEPENDENT DATA

........

MAXPROB2

118

943

FORECAST
N

1 203 66

93

1 2

INDEPENDENT DATA

>
N
.

3

OBSERVED

4, .I .l ’A
it

WPy g
;’vllrl'l

76

f
w

46

470

et et

RO

PTREA]
L

i
PR
] v
W
ot

FORECAST
N
o
o

2
L]
.

95 18

T,y YV .y
s L)

¥
[
b

o .
.' .l .1 .
A

55

PR R

;‘l .

1 2

et S SoINOND

A

Ry

LA A

R AL
S o‘~
CARTE

3

OBSERVED

118

TABLE XX (CONT.)

AO

.75
Al= .13
TS1= .45
TS2= _03

TS12= 36

AO .74

Al= .13
TS1= .44
TS2=0.0

TS12= 33

AAO= .23

ATS1= 331

ATS2=-,11

ATS12=,06

AAO= .16

ATS1= .32
ATS2= -.14

ATS12= 02
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TABLE XX (CONT.)

S

(c

Natural-Regression

DEPENDENT DATA

FORECAST

W

N

-k

59 97 873

170 76 156

67 17 11

1 2 3
OBSERVED

INDEPENDENT DATA

FORECAST

32 64 431

74 25 90

35 5 6

1 2 3
OBSERVED

119

................

AO= .67
Al= .29
TS1= 21
TS2= .15

TS12=.22

AO= .64
Al= 31
TS1= 23
TS2= 310

TS12= .18

AAO= -.05

ATS1= .02

ATS2= .03

ATS12=-.15

AgD= -.15

ATS1= 06
ATS2= -.03

ATS12= -.18
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0
1:\
;ﬂ} TABLE XXI. LINEAR-REGRESSION EQUATIONS FOR THE PREDICTED
Q: VALUE OF THE VISIBILITY CATEGORY (Y), FOR BOTH
ﬁ{ REGRESSION METHODS, Y STATISTICS WITH RESPECT
N TO THE ACTUAL VISIBILITY CATEGORIES (Y) AND
L; THRESHOLD VALUES FROM BOTH THRESHOLD MODELS,
N NORTH ATLANTIC OCEAN AREA 3W, 15 MAY-15 JULY
ﬁb 1983. NOTATION IS AS IN APPENDIX B
e
1 A. Definitions:
f; I1 - Linear regression method 1: single equation,
N three visibility categories
- LR2 -~ Linear regression method 2: Decision-tree; two
\ equations, two visibility categories each

a = All predictors were made available to the

regression model.
. b -~ Only the best predictors from the Preisendorfer
Q‘ (1983 a,b,c) methodology were made available
. to the regression model.
- A - Quadratic threshold model (Case III, Appendix B)
‘ B -~ Equal variance threshold model (Case I, Appendix B)
A
B. LRla

j{ y = 2.81132 + .16201(EAIR) - .00237(E850) - .07319(T925)
.:E:; - .16179(E925)
L Class conditional distributions (i.e., the distribution of y
- for a given y).
:ﬁj Number of Frequency Mean value Standard
o observations of of deviation of
[ Y of y Yy (p) ¥ (m) y (o)
;:E: 1 296 .194 2.014 (m)) .434
o 2 190 .125 2.324 (m,) .379
l'\-
[ ) 3 1040 .682 2.652 (m,) .352
e
P
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TABLE XXI (CONT.)

LRlaA

Tl = threshold between
T2 = threshold between
T3 = threshold between

(second threshold value,
See Appendix B)

LRlaB

Ta = threshold between
Tb = threshold between
Tc = threshold between

of the pair,

y

Y

Y

l and y

= 2 and y

1l and ¥y

1l and y

2 and y

l and y

=2 = 2.275
= 3 = 1.839
=3 = 2,008

was of no interest.

= 2 = 2,368
= 3 =1.768
= 3 = 2,060

State conditional distributions for visibility category
I (y=1), II (y = 2) and III (y = 3) depicting

threshold values and means.

.078
1
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X
=
R TABLE XXI (CONT.)
-
C. LR2a
1 4
0 Equation 1: y = .90305 + .06122(EAIR) + .11284 x 10~ 4(D850)
- .08438(E850) - .04083(T925)
«:::j
> Class conditiona distributions
Number of Frequency Mean value Standard
g observations of of Deviation
; Y of y y (p) y (m) of y (o)
s 0 486 .318 -479 (m,) .222
<
o 1 1040 .682 .776 (m,) .209
= ) LR2aA: T, = threshold between y = 0 andy = 1 = .4979
o LR2aB: T_ = threshold between y = 0 and y = 1 = ,5110
o State conditional distributions for combined visibility
L . . categories I and II (y = 0) and visibility category III
. (y = 1) depicting threshold values and means ’
.0751
.0501
>
»
[~
-]
(o]
.0254
I l SN
0 .5 1.0 1.5

Predicted value (Q)
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TABLE XXI (CONT.)

Equation 2: y = .01229 - .18917 x 13 (U1000)
- .02088(T500) + .1339 x 10 3(U500)
+ .15259 x 104 (D925) - .32705 x 10”2 (STRTFQ)

+ 7.50153(DEDP) - .03279 (DVDP)

Class conditional distributions

Number of Frequency Mean value Standard
observations of of deviation
Y of y y (p) vy (m) of v (o)
0 296 .609 .319 (mo) .186
1 190 .391 .503 (ml) .194
LR2aA: Tl = threshold between y = 0 and y = 1 = ,5102
LR2aB: Ta = threshold between y = 0 and y = 1 = .,4972

State conditional distributions for visibility category I
(y = 0) and II (y = 1) depicting threshold values and means.

0754
.0501
- o
fond " -
[’} ™ r' heS
c 4 [
o ¢
o I
[}
.0251 Mo/ " LR
H Vo
iTa E
i ARV EANCE
Y=1. l ONH
.-.',' I” S=- / X
N
e, ° 0 .5 1.0
'®. A
EZ Predicted value (y)
o
%
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TABLE XXI (CONT.)

D. LR2b
Equation 1: y = .89952 - .04830(E850) + .02472(SHF)

+ 2.17081 (DTDP) + 6.81684 (DEDP)

Class conditional distributions

Number of Frequency Mean value Standard
observations of of deviation
y of y y_(p) y (m) of v (o)
0 486 .318 .496 (mo) .220
1 1040 .682 .768 (ml) .201
LR2bA: Tl = threshold between y = 0 and y = 1 = ,4922
LR2bB: Ta = threshold between y = 0 and y = 1 = .5119

State conditional distributions for visibility categories
I and II (y = 0) and visibility category III (y = 1)
depicting threshold values and means.

.075,

.0501

Density

.0261

o .5 1.0 1.5
Predicted value (9)
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TABLE XXI (CONT.)

"~

Equation 2: y = .71769 + .11439 x 10" >(v700) - .47810 x 10~ 2 (STRTFQ)

+ 4.5433(DTDP)

Class conditional distributions

Number of Frequency Mean value Standard
observations of of deviation

Ve of y y (p) y_(m) of y (a)

0 296 .609 .337 (mo) .164

1 190 .391 .476 (ml) 177
LR2bA: Tl = threshold between y = 0 and y = 1 = .5208
LRabB: Ta = threshold between vy = 0 and y = 1 = ,4978

State conditional distributions for visibility category I
(y = 0) and II (y = 1) depicting threshold values and means.

075,
.050
2
‘®
c
Q
. o "
3 ! ot
% .025 "
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TABLE XXII. CONTINGENCY TABLES AND RELATED STATISTICS
FROM LINEAR REGRESSION METHOD 1 (SINGLE
EQUATION), QUADRATIC THRESHOLD MODEL, FOR
BOTH DEPENDENT (1526 OBSERVATIONS) AND
INDEPENDENT (762 OBSERVATIONS) NORTH
ATLANTIC OCEAN AREA 3W, 15 MAY-15 JULY 1983,
DATA, WITH ALL PREDICTORS AVAILABLE TO THE
REGRESSION MODEL
LRlaA (Table XXI)
DEPENDENT DATA
A = =
sl 152 | 151 | 996 0= .75 AAO= .21
[
n Al=  ,12
-4 5
O 2 0 0 0
w TS1= .38 ATS1= .23
[« 4
o 0 ~.14
w | 144 39 as | TS2=0. ATS2=""
TS12= 27 ATS12=-.07
1 2 3
OBSERVED
& INDEPENDENT DATA
-
h ..
A
oo = AAO=
» a €9 80 498 AO .75 .18
L -
2
T ) A1= 12
aa «
o o 0 0 0
-, w 2 TS1= .39 ATS1= .25
.- [+ 4
:‘. (o]
- - w TS2=0.0 ATS2= -.14
EZ' 1 72 14 29
E; Ts12= .27 ATS12=--05
>_::': 1 2 3
o OBSERVED
.-"--.
‘-'...
b..‘..
i..\_
.f:' 126
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TABLE

FORECAST

FORECAST

XXII1I.

SAME AS TABLE XXII,

EXCEPT USING THE

EQUAL-VARIANCE THRESHOLD MODEL

LRlaB (Table XXI)

DEPENDENT DATA

INDEPENDENT DATA

3| 135 | 147 | 984
o 0 0 0
1| 161 43 56
1 2 3
OBSERVED
3| 65 78 | 492
0
) 0 0
] 76 16 35
1 2 3

OBSERVED

AO= 75
A1= -12
TS1= .41
TS2= 4 ¢

TS12= 39
AOG= |75
A1= .12
TS1= .40
TS2= 0.0

TS12= .28

AAO= 22
ATS1= .27
ATS2=_ 14
ATS12=_ (3
AAO= .17
ATS1= .26
ATS2= -_.14
ATS12=-.04




...........

o TABLE XXIV. CONTINGENCY TABLES AND RELATED STATISTICS
N FROM LINEAR REGRESSION METHOD 2 (DECISION-
v TREE) , QUADRATIC THRESHOLD MODEL, FOR BOTH
“ DEPENDENT (1526 OBSERVATIONS) AND INDEPENDENT
l* (762 OBSERVATIONS) NORTH ATLANTIC OCEAN AREA
. 3w, 15 MAY-15 JULY 1983, DATA, WITH ALL

: PREDICTORS AVAILABLE TO THE REGRESSION MODEL
N

f LR2aA (Table XXI)

< DEPENDENT DATA

\

0 AO= 76 AAO= 23
o - 31 105 118 945

% » Al= 13

" L ¢

° O 9 11 28 19

L~ w TS1= .43 ATS1= .30
. [+ 4

i © ' 13 00
N w | 180 44 76 | TS2= - ATS2= -
. TS12=.36  ATS12=-06
:‘_-f 1 - 2 3

% OBSERVED

S INDEPENDENT DATA

v

R 52 68 | 474 | AO= 73  AAO= 14
® 3

.. LY

- 7] Al= .14

<

~ o 11 8 6

N w2 TS1= .38  ATS1= .24
\..: m

® (o]

hd w TS2= .07 ATS2= -.06
. 1 78 18 47

N TS12= .30  AT§12=-.01
> 1 2 3

- OBSERVED

®

>

'.f-'
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TABLE XXV. SAME AS TABLE XXIV, EXCEPT USING THE EQUAL-~
VARIANCE THRESHOLD MODEL

LR2aB (Table XXI)

DEPENDENT DATA

AO = .76 AAO= .23
3] 96 | 116 | 938
v Al= .13
<
3]
Lu2 15 30 26 TS1= .44 ATS1= .31
@
uo. Ts2=- .13 ATS2= .01
1 185 44 76
TS12= .37 ATS12=_07
1 2 3
OBSERVED

INDEPENDENT DATA

a| 49 67 | a6a | A° .73 AARO= .11
[
2 Al= .14
O 12 9 13
w2 TS1= .38 ATS1= .24
[+ 4
o)
w TS2= .08 ATS2=-.05
1 80 18 50
TS12= 39 ATS12=_ o3
1 2 3

o OBSERVED
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TABLE XXVI. CONTINGENCY TABLES AND RELATED STATISTICS FROM
LINEAR REGRESSION METHOD 2 (DECISION-TREE) ,
QUADRATIC THRESHOLD MODEL, FOR BOTH DEPENDENT
(1526 OBSERVATIONS) AND INDEPENDENT (762
OBSERVATIONS) NORTH ATLANTIC OCEAN AREA 3W,
15 MAY-15 JULY 1983, DATA, WITH ONLY THOSE
PREDICTORS IDENTIFIED AS BEST BY THE
PREISENDORFER METHODOLOGY AVAILABLE TO THE
REGRESSION MODEL

LR2bA (Table XXI)

DEPENDENT DATA

AQ = .75 AAO = .20
|-3 116 127 952
7] Al= .13
<
O 2 5 10 13
:: TSt= .41 ATS1= .27
o N
u..1 175 53 75 TS2= .05 ATS2= -.09
TS12= .32 ATS12= .01
1 2 3
OBSERVED

INDEPENDENT DATA

=
-
9
b

2 AO= AAO=

= 3| s4 72 | 475 -3 .14
[ -

wn Al=

E::._ P4 .l4

o 1 7

;Ei g 2 4 TS1= 40 ATS1= .26
tff o

rQ' uw TS2= o1 ATS2= . 13
- 1 83 21 45

o TS12= .29 ATS12= -.02
n 1 2 3

. OBSERVED

[ ]

.-4'."
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o
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TABLE XXVII.

SAME AS TABLE XXVI,

EXCEPT USING THE

EQUAL~-VARIANCE THRESHOLD MODEL

LR2bB (Table XXI)

DEPENDENT DATA

3
- 105 116 933
(7))
< .
©
uJ2 8 14 23
[+ 4
o)
[V
11 183 60 84
1 2 3
OBSERVED
N INDEPENDENT DATA
&
t, 3l 51 71 465
-~ -
- 7
b -4
s.; ‘: 0
w2 5 3 10
Pﬂ [o 4
9 . o
SN T
o 1 85 20 52
o
o 1 2 3
£ OBSERVED
.
L:,'

AO

TS1=

TS2=

TS12=

AO=

TS1=

TS2=

TS12=

.74

.14

.42

.06

.33

.73

.14

.40

.03

.30

AAO= .19
ATS1= .28
ATS2= ~=-07
ATS12= 02
AAO= L1l
ATS1= .26
ATS2= -.11
ATS12= -.02
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Fig. 2a. The behavior of contingency table statistics
for dependent (A0--dashes, TSl--solid) and
independent (A0--chaindots, TSl--chaindashes)
data, as the number of EPI's is varied, for
the North Atlantic Ocean area 3W, 15 May-15
July 1983, when predictors are chosen based upon
the maximum increase of ap in the dependent
data, for (a) a single predictor (SMF), (b) two
predictors, (c) three predictors, (d) four
predictors, and (e) five predictors. Numbers
in parentheses represent the number of EPI's
which was fixed for the indicated parameter so
that the number of EPI's for the next predictor
could be varied.
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Fig. 2c. Same
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2b. Saae as Fig. Za, except for two predictors (Sir (o)
and DTDP) .
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P

0.9
N

L

0.4
.

0.2
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) as Fig. 2a except for thre= oY 3
(S4F(5), DIDP(16) and PS). k ez prelictors
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Fig. 2d. Same as Fig. 2a, exceE for £our predictors
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, Fi1y. 2e. Same as Fiy. exceq for rive predictors
; (S4F (b) , LTOP (16), PS(12),UBLH( 0) and V43)).
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h;: Fig. 4. The bebavior of functional dependence (FD) as
s determined from 100 randomly generated data sets
;ﬁ (Preisendorfer, 1983c) for EPI's of two through ten
;: for (a) the North Atlantic Ocean area 3w, 15 May-
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5§. data (3682 observations). Plotted are FD(96)
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