AD-A147 552 A SURVEY AND EYALUATION OF SOFTWARE QUALITY ASSURANCE 1/2
(U) FIIR FORCE _INST OF TECH WRIGHT- PHTTERSON AFB OH
L OF SYSTEMS RND LOGISTICS S P LAMB SEP 84
UNCLASSIFIED RFIT/GSH/LSV/84S- F/G 9/2

-

S RS A A Bae. St S

o e

2 i
""_'§8_ .."‘l?.';-: 22 //'4 .
. §
R f
== 18 |)
ez e e ;‘
. . i
\

e
- . =,
NN TS

e e L L R T R L L s A M s il i LEOTL " aoth Al ade SURA J0m bee e b ace e

..
.

.,‘\-.
AP

A SURVEY AND EVALUATION OF

SOFTWARE QUALITY ASSURANCE

THESIS = -
Steven P. Lamb e
Captain, USAF

AD-A147 552

AFIT/GSM/LSY/845-19

DEPARTMENT OF THE AIR FORCE iy
AIR UNIVERSITY £ o

AIR FORCE INSTITUTE OF TECHNOLOGY

DTIC FILE copy

ey .4 2 .
" . O.I ? -
4
. .
. ."p‘- »
o ¢ o P

Wright-Patterson Air Force Base, Ohio
[T Vi B el] 14 110 -
for puble ¢ L, =
e, SR gofuy cstmousai 1 \

..........................
' -’ - »
N e N N

e e s s e cTe e m e =w m » a
N P SR R SR SR NI B
o e e e e

R e N e T e e T e e e e e Y S T N N VY A VAN A TR T TE TV TEYY

| AFIT/GSM/LSY/84

.. 9.

et
3

Ty
AN

LN l' l‘ r,
»

“
LY

A SURVEY AND EVALUATION OF
SOF TWARE QUALITY ASSURANCE

THESIS

Steven P. Lamb
Captain, USAF

AFIT/GSM/LSY/845-19

— 5“ E ™o £
& e ,_’\
3 L S B 3
V..' s . R '
u, »\\ Y 1 y 113845
" L

Vo RN

[

Approved for public release; distribution unlimited

A O A AT A . 0 A I AR M A L e i Ui e I/ b R S b CIMER R B i R AR

The contents of the document are technically accurate, and

no sensitive items, detrimental ideas, or deleterious informa-
tion are contained therein. Furthermore, the views expressed
in the document are those of the authors and do not necessarily
reflect the views of the School of Systems and Logistics, the
Air University, the United States Air Force, or the Department
of Defense.

Accession For

NTTS GRA&IT
DTIC TAB

Uannnooanced Od
Justification —

ol

By

Distribution//_ﬂ
*‘Xvailability Codes
— iavail and/or
‘Dist Special

L

NN TIAI

e,

-

- - . - o’ - . . M N -
y CR TR SN O R TRt) AR AN
N T N A : IO VL

 JANACINE I A SOCAEIACRAC YA NN NS ML R M N SN SEFAEMETONF Sl AR DA N i N i d Tl ol Se £ 500 Sl Sl ol GRSl hl Rl Aotk TN S0 2 A A A
I

AFIT/GSM/LSY/845-19

A SURVEY AND EVALUATION OF
SOFTWARE QUALITY ASSURANCE

THESIS

Presented to the Faculty of the School of Systems and Logistics
of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Systems Management

Steven P. Lamb, B.S.
Captain, USAF

September 1984

Approved for public release; distribution unlimited

‘l
- a o
OGN

NN

Acknowledgements

I would like to take this opportunity to express my
appreciation to all the many people who helped make this
thesis possible. I am particularly grateful for the guidance
and advice of Major Ronald H. Rasch, who helped me focus the
thesis research. Also, my sincerest thanks to Mr. Michael D.
Bates for his guidance, assistance, and encouragement through-
out this thesis effort. Their willing attitudes, timely sug-
gestions, and genuine interests and concerns made this thesis
a special learning experience.

Thanks goes to the professionals who agreed to be inter-
viewed. Without their cooperation, this thesis would have
been impossible. Unfortunately, their names cannot be listed
as they are too numerous and the subject mafler is of such a
nature that it was agreed that no names would be used.

Special thanks are extended to Lieutenant Colonel Brian
S. Maass, Major Charles E. Beck, and Dr. Charles R. Fenno for
their support and interest in this project. Also, special
recognition goes to my fellow students for their moral support.

Finally, and most importantly, I wish to thank my mother
and father. As always, because of their love and support, I
was able to overcome many difficulties during this period in

my life.

Steven P. Lamb

ii

> ", L, " a ~ - y———— y—— -y - ~
A NICN iy LA AN A C N L ot it N e L D e e B S Aot ek S et S A A . TR e Rt it i S g s
SRR e

Table of Contents

Page
Acknowledgements . . . « & o ¢ ¢ ¢ o o e 6 o o o o . ii
List of FIQUres . ¢ ¢ o o o o o o o s o o o o o o o v
List of Tables . ¢ « ¢ & ¢ ¢ ¢ ¢ ¢ o o ¢« o o o o o o vi

AbstraCt . - . . 3 [} . [. . . .] o Vij.

I. Introduction . . . ¢ ¢ ¢« ¢ e ¢ ¢ 6 6 e e 0 o 1
Terms Defined . . . « « ¢« ¢ ¢ ¢ ¢ & ¢ o & 1
Problem Statement « ¢« ¢ ¢ ¢ o o & 4
Background . . . ¢ . ¢ ¢ s s e e o o o o 4
Research Question . . . « « ¢ ¢ ¢ ¢ o o & 9
Research Objectives « o « « & 9
Scope of Research . . . ¢ ¢ ¢ ¢ o o o o o« 9
II. Software Quality Assurance . . « . « ¢ .« ¢ . . 11
Wwhy the Need for Quality Assurance? . . . 11
Objectives of Quality Assurance 12
How Much Quality Assurance Is Enough? . . 12
Hardware vs. Software « ¢« .« & 13
Life Cycle Models . . e e o s o e 14
Quality Factors and Criteria e e e o o o 21
Quality Assurance Standards 24
Software Quality Assurance Program 31
Chapter Summary . . .« « ¢ o ¢ o o o o o o 60
III. Research Methodology . . . « ¢« &+ ¢ ¢ o ¢ o« o & 61
Data Collection + ¢« ¢« ¢« ¢« & ¢« o . 61
Data Analysis . ¢« + ¢ ¢« ¢ &« ¢« ¢ o o 4 e 64
Chapter Summary . . . « ¢ « ¢ ¢ o o o« o & 70
iv. Research Observations « « ¢« « « . . 72
Organization ¢« ¢« ¢« « ¢« ¢ ¢ « . . 72
Planning . . « « + ¢« v ¢ ¢« ¢ ¢ ¢« ¢ o o o & 75
Quality Measurement 76
User Involvement « « « ¢ o + « o« & 77
Testing . ¢ ¢ ¢ ¢ ¢ v v v e e e e e e e s 78
Documentation « ¢« « ¢ ¢ ¢ o o . 79
Techniques and Tools . . . + ¢« « ¢« « « o 80
Training . . « ¢« « ¢ ¢ ¢ 0 0 e e e e 0 e 80

iii

.. - - . .
a P S . - i - Lt e ¢ = 'm
A A S

I T PN P N R e

Page

Benefits Gained . . . « &« ¢ ¢ ¢ ¢ o ¢ o & 82
Chapter SUMMALY .« « ¢« + « ¢ o o o o = o & 82

V. Recommendations and Conclusions 84

Research Summary . .

Recommendations . . . ¢« ¢« ¢« ¢+ ¢ ¢ ¢ & o . 88
Problems Encountered« ¢« ¢ ¢« ¢« o o o 90 "
Further Research . . « « o o o« o o o o s 90
Coenclusion e s o e 4 e o s 91 ?

Appendix A: Directives/Mil-Standards/Regulations . 93

\Oo
~
]

Appendix B: Glossary of Techniques and Tools . . .
Appendix C: Sample Letter and Interview Guide . . . 105
Bibliography . . . & ¢ ¢ ¢« ¢ ¢ o o o o o o o o o o o 109

| e

4

L}
-’-' . . e e
° . AP T T S S
Nt) "l'l"]
o e cae, o K
" ry

Vita 3 L] [} . L3 . . 3 . L] . . lla

tndeitniatingouaicae

. e
" S
e BN
L P
& AT
-, -
- - -~. '-"
P
e
.»-'.'1
ad -
.‘-' . .-' -
'.:\ .:.:-::
SN et
® - - ‘.-
o' -
B
2 PR
. - - _—1
.. . .‘:_.1
AN " ':1
LR
- Y
nd . - .‘!
\ Y -I
- * S
2.

% v ' '{.l

List of Figures

Figure Page
1. Hardware/Software Cost Trends 5
2. Cost of Fixing Errors . . . « ¢ o ¢ ¢ ¢ ¢ o o & 8

3. Software Life Cycle « ¢ ¢ ¢ & ¢ ¢ o « & 15

4, Idealized Software-Hardware System
Life CYCIe ® L] L] L] L 2 L] L] o L] . L] - L d * ® L] * L] 18

5. Software vVerification and validation 19

6. Relationship of Criteria to Software
Quality FacCtors . ¢ ¢ & ¢ ¢ ¢ o o o o o o s o & 23

7. Relationships Between Software Quality
FAaCtors . ¢« ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o o o 27

8. MIL-S-52779A Software Quality Assurance
Plan . L] L] . L] L] . . . L] . L] L) L] L » L] L] L] . L] 33

9. IEEE Standard 730 Quality Assurance Plan . . . 34
10. Staff Organizational Structure e e e e e e e 37

11. Project Organizational Structure 38
12. Functional Organizational Structure 39
13. Matrix Organizational Structure 40
l4. The UDF in the Development Process & 51
15. NAVMAT Organizational Structure 74
16. DARCOM Organizational Structure 74

o ettt _
N T A T N e e

! . e e T e Tt e e L T e et ERERES
A.t._rLfk(A Lf;. L’.:..L‘.L.-L..;'.:{‘ "- (:‘.A (:!::(..{ .'-\‘. 'I.....-. - “P N L3 -‘:\l.\l- -I. ‘{}i“t.- -‘. :L‘:. l.:.-.\-.:.

\T'l‘_"r“‘\",\-r’.r‘f."_-‘}'l'.-‘-_i_ﬂ'.- PN~ ot dine ., b et T dness i R Bt i S S Sty St 4

..

~

:

AR IRRY IR

[It HRS PR

"o ,- ’l "c d l_‘ ‘.. .

N et

Table

List of Tables

Definition of Software Quality Factors . .

Criteria Definitions for Software
Quality Factors « « ¢ &« « ¢ ¢ o o« o o o o @

Advantages and Disadvantages of Bottom Up
and Top Do“n * L] * . L] L L] * L L] . L 3 - [2 L]

Quality Assurance Techniques and Tools . .

Relationship of Techniques to Quality
Assurance Functions ¢« &+ ¢« ¢« o .+ &

Technique Effectiveness in Assessing
Quality L] . ° . . . L] L] L] L3 L] L] L] L] L] . L] L]

Relationship of Tools to Quality Assurance
Functions L] L] L] . * L] . L] . L] - L] - L] L] . .

Tool Effectiveness in Assessing Quality . .

Factors Impacting Technique and Tool
Selection .« . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e« o e o o

vi

Page
22

25

44
54

55

56

57
58

59

4
1

- AT
. S L oeF
. RENRAR A
RN Ve
P I "

4
P AL Y

!

it
v L P
LJ deoe sl

...............

....................

AR R AN

ORI IUA 0 IR N A A T N A Sl Snd Nl o Vel 1 i KW R 0 S~ 0 08 e et 2 2 v L N N N
"t et

Rt
LA

''''''''''

AFIT/GSM/LSY/84S-19

Abstract
e E

S

~:—57 It is crucial to the success of mission critical computer
resources (MCCR) that software be delivered for operational
use with the minimum number of errors possible. For this rea-
son, the discipline of software quality assurance is needed.
This feseaxégx;zgzses on data collection by means of an exten-
sive literature review and personal interviews with civilian
and Air Force software development organizations. Then anal-
ysis was performed to determine what approaches would improve _ .
the quality of software before delivery to the Air Force for ;iﬁ}gﬂa
operational use. ¢

To provide the highest level of software quality, the
entire development process must include quality checks at each
step from design through acceptance test. An active software T
quality assurance program that identifies and corrects errors .
during the development process is necessary. This effort will iiafsﬁ{
lead to significant defects being identified and resolved R
early. If the quality of software is to improve, greater -
emphasis must be placed on software quality assurance as a
separate disciplin?;) Quality software cannot be attained by
following hardware oriented plans and procedures. Therefore,
,software conformance standards must be provided. Technology

o
is constantly changing and advancing, and provision must be — 2 /f]

vii

[
’
[
,
i
H

! O PR r s " o agmmemm ¢ s cve - -

..... ¥ -

made to update personnel in the state-of-the-art quality
assurance practices. Continual training is essential,%agth
for those personnel who have quality assurance background
and those who do not. The arguments for software quality

assurance are critical. 1In short, they are to combat error

and improve software quality to meet mission needs.

L e A Aol N P "
G N S A R BERNCVAIN AN

l A SURVEY AND EVALUATION OF
E SOFTWARE QUALITY ASSURANCE

I. Introductiocn

Historically, computer technology has been widely
exploited in the Air Force, both in command and control sys- - e

tems and in management support systems. In addition, this

technology has become an essential subsystem of modern air- ;;f?
craft, with regard not only to both offensive and defensive 5
weapon delivery, but also to navigation, to on-board moni-
toring of performance sensors, to automated ground support
equipment, and even to the actual flight control of the
vehicle (24:1). Therefore, computer hardware failure or
inadequate software can mean that an aircraft cannot fly or
carry out its mission, command and control systems cannot
communicate with each other, or important management infor-
mation is not received in a timely or accurate manner. Given
these problems, it becomes important to control the computer,

and insure the quality of computer hardware and software.

Terms Defined

Hardware refers to any and all physical machines forming
a computer (l4:102). This would include card readers, print-
ers, tape units, disk drives, central processing units, con-

soles, terminals, and so on.

EA
3
3
K.
B
<
)
X

. DR T U S R R TSI L IS S N I L AR A G L I I I T I S R S S PGS S S Cas e
O A A O T N o S e St e T S o T R S N NN 3

Software is defined as a combination of computer pro-
grams and computer data required to enable the computer hard-
ware to perform computational or control functions (5:98).
Software can be expressed in human readable form, such as a
source listing or other documentation. It may reside in
media only accessed by the computer, such as magnetic tapes
or disks. Also, it can reside within the computer memory
(5:99).

Quality is, at best, a relative and subjective measure-
ment. Webster's New Collegiate Dictionary defines quality

as a distinguishing attribute or characteristic (54:936).
Defining these attributes or characteristics becomes a prob-
lem because individuals interpret quality from their own
perspective.

For the purpose of this research effort, software qual-
ity is defined as the degree to which a software product
possesses a specified set of attributes necessary to fulfill
a stated purpose (5:99).

A current trend is that software quality and software
reliability are synonymous. Since quality is a set of many
attributes and reliability is one of these attributes, then
reliability becomes a subset of quality (40:129). By def-

inition, reliability is the ability of a software program to

perform a required function under stated conditions for a Lég
stated period of time (34:32). 3;‘

There are a host of definitions that apply to quality

assurance. The official Air Force position is that quality

= T o v e e g e A &
....... " = . . - - P Y™ PR A v M o L ara - 2
Nl P A A AR ARSI It A A I AU AR SOt CRCORRAC S A7 AT 4 FUACRATI AP S A T i i gy At Bl 2 &

?Zf}
assurance is a "planned and systematic pattern of all actions ;Z;;
necessary to provide adequate confidence that adequate tech- Lﬁfﬁ
nical requirements are established; products and services :;&7
conform to established technical requirements; and satisfac- 5§§f
tory performance is achieved" (18:7). This definition goes Eﬁﬁi

beyond earlier interpretations that stated quality assurance
should merely verify conformance to specifications. Another
definition proposed by the Institute of Electrical and Elec-

tronic Engineers states that quality assurance is a "planned

and systematic pattern of all actions necessary to provide
adequate confidence that the item or product conforms to
established technical requirements" (34:28). The bottom
line for software or hardware quality assurance is ensuring
the user's needs have been adequately satisfied.

Quality control is a mgnagement function whereby control

of quality of produced material is exercised for the purpose
of preventing production of defective material (20:5). This
differs from quality assurance because "a management function"
is only one of "all actions" necessary to provide quality.
Therefore, quality control is not as thorough as quality

assurance when discussing software; but it is an essential

part of quality assurance.

| . The software life cycle consists of a set of activities

occurring in a given order during the development and use of
; software (34:37). The time periods during which these activ-
ities occur are called phases. The software life cycle typ-

ically includes a requirements phase, design phase, code

Al ol Eh ey

.
............ e m s % e tm Ty T T, e e L te A e 8. e, e s o .. T S T . T TR Y Y A L oA hRg
T T e T e e T L T T e e e e et e S s PR TR L T S R N T SO IR UL UL L RIC TR -
SIS S5, S S S R S P R R R G L L NN) :.";'L:(‘c\' BTy

» ‘0 s ‘A‘l ‘l .l
~ IR R R

Sy -' -}"'; '.. '

.
L

~
TSRS

phase, test phase, acceptance phase, and operational phase
(9:40). At the current time a consensus has not developed
as to which phases comprise a software life cycle. Therefore,
the above example is only one of many that exist in today's

literature.

Problem Statement

At present, it is not generally possible to develop com-
puter software that is 100 percent reliable or error-free
(25:263). Therefore, when placed into operation, any unde-
tected or uncorrected software errors may result in severe
operational problems and possible mission degradation. Soft-
ware quality assurance is a way to improve quality through
reduced defects (41:356). This investment in early error
detection reduces later error discovery rates, saves the
much larger rework cost, and improves the Air Force mission

capability.

Background

In the U.S., the annual cost of software in 1980 was
approximately $40 billion, or about two percent of the Gross
National Product (9:17). Compared to the cost of computer
hardware, the cost of software is continuing to increase, as
shown in Figure 1.

Within the federal government, Dr. Jacques S. Gansler,
former Deputy Assistant Secretary of Defense for Material

Acquisition, also supports the relevance of software costs.

-) - - - - . v RS - .t e . N . LA I aC it e i . w - N -
R s T T e T T LT P A A T PR AR A RSP L A R St A Nl R o el S
)
N,
o
.v
r.

—

A

R

O}
O ety e

R et aTe"
. e
B te
'y v

LSRR

L"l

e
Pea U
AR AR
VAR
PO

I

0 e R o, e et

o] E

1. ...,‘A
e W,
L ARE AR,
e RORCACIR
0 A

I

L QU A
I N)
F SN S AL

- "'. ‘ 'l ".:';..,._.{ ';.",'n,‘-c,.‘!z
L NN P P N

«
REREN,
falale

N
SRR
RN
~
o
el
:'-.' Sy
-
O

T

T T YT

Dty areanases e -

LN ma ety satasaee

Y T T S e ey y——— o - e
T RIS e P o -y -y
F. e e e T T . - AEPARNMEL e DA et . VOV i e S e e Jit St Sints. et oy i e s 0 +

100 — g 1

0l HAROWARE
DEVELOPMENT/MAINTENANCE

SOFTWARE Il

wr DEVELOPMENT o

PERCENT
of

VARE

.
A RGA A
e

2 MAINTENANCE =i
AN AR
. . O A SN
N R I S "A‘:::,-,
oS e le "/:;fl}:@‘f -é.'(‘. VIR

LA R WO
R N
T e R S

« a L COel’s

Figure 1. Hardware/Software Cost Trends (13:74)

®

Software is big business within the Department of

Defense. The current annual expenditure on Defense

System software is now estimated in excess of three

billion dollars; yet even this substantial sum is

the tip of the iceberg (28:2).

In addition, a report to Congress by the Comptroller
General, General Accounting Office (GAO), FGMSD-80-4,
November 9, 1979, cites a continuing problem of developing
software with the federal government. The report reflected
the views of 163 software contracting firms and 113 federal
government project officers. The following is a summarized
account:

1. Cost overruns are common in more than 50 percent of the

cases studied.

. T T R A A S T

P IR S B o T T LRSI U S P P fat e N RIS I A
. . o . NCetes . .
et A T o e L) Ty "

U] A R S PO LY
A I S S P A T R T A R S T, W A e e RO

2. Schedule overruns occur in more than 60 percent of the
cases.
3. Of the nine contracts examined and the $6.8 million
expended, the results were:
a. Software delivered but never used: $3.2 million.
b. Software paid for, but never delivered: $1.95
million.
c. Software extensively reworked before use: $1.3
million.
d. Software used after changes: $198,000.
e. Software used as delivered: $119,000.
The GAO report concluded that "the government got for its
money less than two percent of the total value of the
contracts" (27:77-78).

Software cost is only one facet of the picture. Another
facet is unsatisfactory software performance due to software
errors. The need for error-free software in major weapon
systems is obvious, as stated earlier. But the impact of
"when" defects are discovered in the software life cycle
needs further discussion.

Defects in software are of two kinds. The first is a
design error, an inconsistency with design or specifications
which causes the software to do other than what is desired by
the user. The second defect is a logic error. This type of
error is in the computer program logic that cause the soft-
ware to operate inconsistently with respect to the written

requirements (27:22).

. % ...
.. o "Cl l‘
P LA

Wy
P
~dadat

"y
.'{l /l

)

l-' T .'. .
AN

“ . 0 .
'
L O
! *
. %o .
"'A
PR gy
LA

AR

LRy
N

Software error studies have reported design errors as

occurring most often, ranging from 61 percent to 64 percent.

Logic errors were reported to range from 36 percent to 39

percent (29:13). The important point to note is the large ?ﬁﬂ%
ot \.:Z-.
Q] percentage of design errors. 22:&

Other studies show that software errors typically are {;EH
P not detected until late in the software life cycle. A study .
“ of large software development effort found that 54 percent
ﬁ of all software errors were not discovered until the accept-
i ance phase. The overwhelming proportion of these were design
% errors (1:352). When software errors are found late, require-
ments have to be revalidated, designs redesigned, software

and systems retested, and documentation rewritten (13:76).

The cost of fixing an error rises dramatically as the
software progresses through the life cycle. Figure 2 shows *
a summary of experience on projects at International Business
Machines (IBM), General Telecommunications Equipment (GTE),
the Safeguard software project, and several TRW projects.

The solid line in this figure represents the relative cost

of correcting software errors as a function of the life cycle
phase in which the corrections are made (9:39-40). Comparing
extreme ends of the software life cycle in Figure 2, one man
hour spent in finding and correcting a requirements specifi-
cation error during the requirements phase would be multi-
plied by 100 if the same error were discovered and corrected

during operations (38:488). Therefore, discovering errors

early in the software life cycle can yield large payoffs. :Lﬂ}

AN

7 Sy

ROV

b

Ko

......................... , e
e N B s N N N N NS S]

1000 T T 1 T

T
Larger software projects
" a I 1BM-SSD

o] ore

-+

100 [~ -
3 80%
* sl {Mld‘m(‘l‘ﬂw:umy) |
€ 20%
8
o—0
SAFEGUARD

g 20 ° fA 4
i 10 -

sp- -

]] | | R
Requirements Design Code Development Accsptance Operation
test test

Phase in which error wes detected and corrected

Figure 2. Cost of Fixing Errors (9:40)

This rising software error cost is further supported by
a DoD study that reported costs for Air Force avionics soft-
ware averaged about $75 per instruction during the develop-
ment phases while the cost of software maintenance during
the operational phase ranged $4000 per instruction. Note
here that software maintenance, in addition to correction of
errors, includes the updating and revision of software caused
by changes to the mission requirements (22:311). 1In addition,
J. H. Frame of IBM, in a talk entitled "Major Trends in Soft-

ware Quality: 1978-1985," said that correcting errors is 38

times more expensive during the test phase than during the

initial design effort (27:28). f;

Software quality assurance not only strives to prevent
faults from getting into the software, it also wants to find
and correct them as early as possible in the development

cycle.

! - Research Question

What approaches and/or techniques will improve the qual-

ity of computer software before turnover to the Air Force?

Research Objectives

l. Identify various methodologies used to ensure software
quality. L.

2. Compare methods used by civilian and Air Force organ-
izations to ensure software quality.

3. Critque the effectiveness of the methods used.

Scope of Research

Individual studies may be found on Software Quality
Metrics, Software Control During Acquisition, Software Doc-
umentation, and Microcomputer Software; but there is a notice-
able lack of studies concerning Software Quality Assurance as
the main subject. This thesis will increase the available
knowledge on Software Quality Assurance.

Because computer software encompasses a broad subject
matter, only the software associated with mission critical

computer resources (MCCR) is discussed in this research

effort. 1In general, mission critical computer resources
are involved with: S
RN
-')'"\:
9 Ry
L
T T L N e e T A e T A e N e N e N

...

Intelligence activities;

2. Cryptologic activities related to national security;

3. Command and contrcl of military forces;

4, Equipment that is an integral part of a weapon or weapon
system; or

S. 1Is critical to direct fulfillment of military or intel-
ligence missions (31:9).

Hardware issues are not within the scope of this research.
Hardware, perhaps because it 1s easier to measure, is con-
stantly reported upon in trade journals (27:1). Therefore,
any references beyond simple comparisons are not included.

Civilian and Air Force organizations used in this research
were chosen from Dayton, Ohio and Wright-Patterson Air Force
Base, Ohio. This was done because there is an extensive
indu;trial base dedicated to software development in this
geographical area.

The research effort was also limited to the time period
allowed by the Air Force Institute of Technology 15 month

graduate degree program.

- ., .
. ._l .-'O. '.' *
PN AR

Jl'!;'L o -0 ‘14'14.“‘. Pl

=

.......................
................................

D
.l

et Nt e e ae e R R R R S R S I e
o atats "‘s PR ORI ORI, ';"\ RPNy .’- MW WA ‘.':\:_.' ¥ ‘i' R Sy

I1. Software Quality Assurance

The information contained in this chapter is the result
of an extensive literature review on software quality assur-
ance. It is presented to increase the reader's understand-
ing of software quality assurance and provide a common foun-
dation for further research and discussion.

To begin with, software quality assurance is a rela-
tively new concept that has received a great deal of empha-
sis over the past few years. Industry and the government
have begun to realize a need for greater discipline in the

software development process (30:18).

wWhy the Need for Quality Assurance?

The arguments for quality assurance have been given
earlier. 1In short, they are to combat error, thus reduc-
ing life cycle cost, and improve software quality to meet
mission needs.

Another case for quality assurance is the social
motive. Computers and software are making an impact on
personal lives. Everyday, more and more personal records,
bank accounts, community services, traffic control, air
travel, medical services, and national security are being
entrusted to computers and software (9:19). This increas-
ing impact on human welfare presents a challenge to soft-

ware quality assurance.

R 4

(R A T
]

& sie Ta
v

”

KRR A

A
P SANIS

LA
L i

2

~
it

LR A R s e A I N AR AT S e o NI A S

Objectives of Quality Assurance

i As stated in Webster's New Collegiate Dictionary, an :wj
objective is defined as "something toward which effort is i
directed" (54:785). Therefore, the effort of quality assur- ;;2

i ance is directed towards the following objectives: ifi
1. Incorporation of software quality assurance into the ;;}

overall software program planning. %;%

; 2. Preparation and evaluation of standards that guide the : i

) preparation of software documentation, design, and code. Qﬁj

i 3. Evaluation of the software design process and design ;;ﬁ

j products for conformance to requirements. ;QJ
4., Monitoring of the software design for compliance with :?

design and performance requirements, adequacy of methods

i used, and positiv? evidence of compliance.

: 5. Review of software tests requirements, plans and pro-

cedures for compatibility and adequacy.

i 6. Monitoring of software tests for conformance with pro-

h cedures, and verifying that test results are documented. .

} 7. Implementation of a system for recording, reporting, and ;

E tracking software problems and for assuring the adequacy i

. of corrective actions (49:49). NE?

S

’ How Much Quality Assurance Is Enough? e

’J There are certain criteria that can be used in deter- r;{

,; mining increased or decreased software quality assurance E?E}

) effort. One is to perform a risk analysis of the impact of h?ﬁ

{' the software on the overall program. Whenever risk is great, 3::

O
R
)
R R S R O T N T N ;;;-;;s:;;-;i;{.‘llﬂ

an intensive quality assurance effort is merited (50:77).
For example, the quality assurance needed for the National
AReronautics and Space Administration (NASA) space shuttle
program is more critical, or higher risk, than for a remote

radar tracking site.

emphasis on quality assurance include:

l.
2.

5.
6.
7.

8.

Hardware vs. Software

.....
...........................

Other risk factors which serve as criteria for increased

Complexity of software applications.

Amount of software (potential for error increases with
size).

Stability of requirements.

Uniqueness of application. (Has this ever been done
before?)

Lack of experienced personnel.

Rushed development schedules.

Mission criticality of the software.

Unavailability of realistic test environment (50:77-78).

for many years. But even though the disciplines of hard-
ware quality assurance may apply to software, a new set of

conditions should be addressed by software quality assurance:

1.

Hardware quality assurance has been used successfully

Software components do not degrade with time due to wear
or fatigue. N
Unlike hardware, software failures are seldom preceded

by warnings.

13

E’;- B A R N A DA I R e Rt L It I SR AU S T eI A IO it SO ACIA I Rt it A I S A el _v?.:n
3 e
h)
E; 3. The use of standard components is much more prevalent in Eéi
& hardware. Eiﬁ
4, Hardware repairs restore the original condition; software ?1&
repairs establish a new configuration state. éé,
5. Hardware can usually be tested exhaustively; not so with . :EE
software. There are many more distinct paths to check in] f
software than in hardware. ;;%
6. Management has had a much better intuitive understanding .;;
of hardware than of software (25:11; 38:489-490). "
Life Cycle Models

Referring to a 1life cycle of software is the most common ;::
method of addressing software development. A review of the -

literature has produced‘an abundance of illustrations of the
true or ideal life cycle. For the puspose of this study, ;;;

the following six phases will be considered a software life

cycle: Requirements Analysis, Preliminary Design, Detailed

Design, Coding and Checkout, Testing and Integration, and

Performance or Operation (6). Figure 3 shows the software fﬁh

life cycle and the key outputs of the phases. :5:

The first phase to discuss is Requirements Analysis. R
During this phase both system and software requirements and el
their relationship are evaluated. Through analysis a deter- Tf;

mination is made as to what the software is to do in terms
of inputs, processing, outputs, and accuracy. The following
is a representative set of criteria (13:88) which may be

[~ applied during analysis:

14 R

(9) @19A) 34711 21emyyos ¢ ainbyy4

'&4-.‘ .
e

YJ0day
189}
J4en) 08
Juaen209
vo) 1434590 ubysag
uo§sIap aseg neg
Judendog
U0} 1034)4 53ds ubysag ._u.rﬂ.. n..om_
120044 $24np2304 aepa9u] ©0y 3934 §1 29dg
daenyjos d $JUaedi|nbay
-..“uuwa uamnI0g 830449161 n
sjun ubysag Juawnd0Q —
myjos patyeIg GO_ $3Q s—aou—bpugm
94RR3 0§ {9ad7-do} SIUawdL nbay
Suras 4813)08 a4eM3 §0S
ugIseL
INPNI049¢ oe..no»o pue
84¥13 08 04 3eab633u)
aemrs08 c"...uumu.w..v.u.: ubjsag
ITUL ubysag sysAjeuy
nIadYy Aaeuymi {344 Sjuama|nbay
voy3e3y pyienp | | s1em3)05
e | _
w0y 304nby juo) - _
1e288hy4 _ |
pry “ nI1ADY _ najady — ..u.>u¢_ najaay | napaay|
©0 12064 su0) SSau)pray - uby sag | —a_uoa_ uO0) I} 3} 2dS l ub) 530 |
.o..o..ue..u_ (®24344)

v

v

»..o...l:c.:.«

daem) ...m¢

.Uuuh«

a4 ANNERE. o A bk i

B S S _TLc.cASEE ¢ & v e _C.c_"

h...-._'b
L DT IR

U,
-
-

.
" -
2

o

a vy

Realistic: Requirements must be achievable within the

capabilities of the computer hardware.

Unambiguous: Requirements must be stated such that

they are definitive and not open to subjective inter-

h pretations.

3. Consistent: Requirements must be consistent with one

s another, with interfacing subsystems, and with those

-i at next higher and lower levels.

4, Necessary: Unnecessary or overly restrictive require-
ments will increase the cost and complexity of the

‘i software and will also impact the design, code, and

& testing schedules.

~ 5. Complete: The requirements must completely specify the

software product to be orovided in terms of accuracy,
timing, throughput, interface control, and input/ohtput.
The next phase is Preliminary Design. The object of

this phase is to translate the requirements into a software
design. The design will include mathematical models, the
allocation of the requirements to components of the software,
the relationship between these components, and the external
interfaces (6).

i Following Preliminary Design is the third phase, Detailed
Design. The purpose of Detailed Design is to extend the level
of detail by identifying individual software units. These

units must be defined in sufficient detail for coding and unit

testing. Also, they include functional descriptions, logical

. flows, algorithms, and constraints (6). ~

AR Al it el N i
: PR B R
oL P

k¥ “’ .
N L e
et ..

The fourth phase, Coding and Checkout, includes trans-
lating the detailed design into a computer programming lan-
guage. Usually it is a high-order language but it may also
be assembly language. Once compilation and assembly errors
are corrected, each individual software unit is executed to
remove obvious defects, und software tools are used to remove
the not so obvious defects. This procedure is considered the
Checkout (13:09-91).

Once coding is complete, the Testing and Integration
Phase begins. Here the developed software is tested to show
consistency with system and software requirements. The inte-
gration portion of this phase typically involves two forms
of integration. First, individual software units are syn-
thesized into subsystems and then systems. Second, the
entire software system is integrated with the computer hard-
ware (8:23).

The last phase of the cycle is the Performance Phase or
Operational Phase. This phase is conducted to determine if
the software indeed satisfies the specified requirements.

The key element of this phase is the environment. Any test-
ing and evaluation should be conducted in an environment as
operationally realistic as possible (6). Figure 4 shows the
relationship between a software life cycle and a hardware
life cycle within a major system development cycle.

Throughout the software life cycle there is on-going
assessment being performed commonly known as "verification

and validation."

17

ETATRCETSTATE T T

I ﬁ B R A A
P [[¢-. ..m...~.....n [} e
(9) 319A) 94171 WS3SAS SIBMPIBH-3IEMISOS PazZyreapl ‘¥ 3Inbry
INYNIINI
NOI AV43d0 NOLLVHLIINI 100322
ANWAOVI0 ONY iy
NOI120U0Y¥d 1531 3000 N91S30 S1SATvny
L [1 § _3 ___J
¥ LI) J L) 1 1
1591 153} pue IS3L Hun ubjseg ubysag sysh|euy
aurmi0gdag | YOIITINNU] y 6ujpo) paLInIdg Kavupw)|34g | Studwaaynbay
NS 1242 ns ns NS ns
/S
- - — . _
JYvML40S - -
aousuajuren | JUsmAd(deg 1595 pUe ~o
o Viarieiag |y oromenia | sonreistuny L] A
WIS NIN-nIS AM-n/S - warsds |+
wd)SAS WIISAS WIISAS - -
JYYMOUVH _ - -
o g — — - - — -
_ 3594 pue 1595 pun ubjs ubys syshjeuy
189 1 3} 1530 1590
ou..-_.:”?.us 53-.“ uoa.._ . -w....-..a-u pa1e1dg | Aseugwyiaug | sivowdsjnbay
V]
LY Y™ . MM LY] n/H
[. [1 2 h
v IMVNIINI VR ' INWGOTIAI0 3WIS TS | NOLAVGITWA L TWRL&INOD
! NO14V¥340 ! '] !
' ININA01430))) '
N0 1IN00Nd
L] i | ' '
' | | ' 1
€ NvsO 2 NvsSe 1 vso NOS

Cete e ety S
(NPT TS

18

e et
C BASAN
s (ORI

.
2

T e, DA e e Dagit-adiid ” —— ng . e g
NN . L Ly e e e T QT TRT W N T et T URE TG e T et et e e e B SN A A G PR e SO e M g el e pet ek g o S SR g e s o
° . e =

C RERURENERTS
I OEFINITION | el
| [svstem eme WHAT THE SYSTEM 1S SUPPOSED TO 0O '. =
REQUIREMENTS [e
| , | \
'_l o M ____ SOFTWARE DEVELOPMENT
' e e
I | |
. X Es:;';\:.:: ST WHAT THE SOFTWARE IS SUPPOSED TO DO I
REQUIREM .
il | .
: [e N | el
SOFTWARE o, | o
| DESIGN AND %% [
| TEST e, I .
| PLANNING Y | i“
| & ‘
'04 | .
! " CODING AND | | = Lo
I e o:‘etmmsur | |2 - .
| STING - g
| "e I g
% SOFTWARE b 1> e
I N INTEGRATION (K- oo
| 2 AND TEST | 15 - R
I | |& SR
| IS THE SOFTWARE DOING WHAT /~ SOFTWARE } RRe
| IT 1S SUPPOSED TO DO? VALIDATION L
i TESTING | et
L ! p__
——— e e e] e SR
RARDWARE .
SOFTWARE
INTEGRATION
kW i
IS THE SYSTEM DOING WHAT SYSTEM / o .
(T IS SUPPOSED TO DO? =i VALIDATION
TESTING e
Figure 5. Software Verification and Validation (13:86) y
4

Verification and validation is the systematic pro-
cess of analyzing, evaluating, and testing system e
and software documentation and code to ensure the i'“:
highest possible quality, reliability, and satis- g
faction of system needs and objectives (37:238).

In the past, this activity has proven to be a very effective

means for achieving high-quality software (45:659). As illus- ‘;:'

trated in Figure 5, verification is the evaluation process

19

R e e N T R e e et e T e
T T e AT T N T A T s
BRI AL A BE A AR AR A AT AL AP A IS P AT VAL AL PN, PR

S A R AL SN Ml AR St AT Sk S .
1 4 Iy

Losass, & L <

- O " .
0" e e oL
P

designed to ensure consistency and completeness of the product

at any phase within the software life cycle. Consistency is E:
concerned with measuring the degree to which a phase is in
agreement with the previous phase. Completeness is a measure
of the readiness to continue into the next phase. Also) o
illustrated, validation is directed at test and evaluation
to measure how well the product performs against established :i;

requirements (13:85). o

Including software quality assurance within all phases
of the software life cycle is essential to the development of
quality software (32:32). During the Requirements Analysis o

Phase, quality assurance should assist in the review of

- _.‘vy, Qb alntee panen
ettt F L A
RIS Y P A

requirements to determine acceptability. During the Design

Phase, quality assurance should work with software develop-

ment personnel to recommend and m;intain standards, proce-
%; dures, and plans that affect the remainder of the life cycle. §§
o During the Code and Checkout Phase, numerous monitoring :z

functions, such as software code review, are conducted to .g

verify compliance with standards. During Testing and Inte- %

gration, quality assurance should review test plans and pro- S
é: cedures. During the Operational Phase, quality assurance ?;
.é. performs a final review to determine whether all plans and §§
; procedures were in accordance with the requirements of the . Ei
ﬁ user (49). 3&
- .
? The following are benefits of including quality assur- RN

ance in a software life cycle: !

f"".'.\'.'.'.'-',';'.‘h'.\'.\‘.'-.:- ACIBR I AN NG P B SIS B A A AR5 DAC i/t e iyt R SR g0 A A g i e G R e St Jadiiuk Al g et S eve . "

........

l. Life cycle models with software quality assurance activ-
ities integrated can serve as planning guides so that
important areas are not omitted.

2. Fully developed life cycle models, with integrated qual-
ity assurance, provide a method of keeping track of
which activities are to be performed, and reports that

1 are to be written.

| 3. Software quality assurance personnel working with a life

cycle model will review and evaluate the approach, the

methods, the status, and the achievements during each
‘ phase of the software development. This allows for
early detection and timely correction of problems.

5 4. A life cycle model provides a significantly practical

tool for training software quality assurance personnel

(49:50-52).

Quality Factors and Criteria

The concept of software quality originates from a set of
attributes. Explicit attention to these attributes can lead
to significant savings in software cost (10:218). Therefore,
an understanding of the attributes of software quality can
lead to a better understanding of software cost. For the
purpose of conformity, the terms attributes, characteristics,
and factors have the same meaning when referring to software
quality (55; 10; 40).

Another reason for understanding software quality factors

is because they provide a means to define quality requirements.

RN
WY

|. 'h
AN
..
\.
1) -
21 ,\::.}'1
ey
l"’""‘1.. =
AN, PR A AL N I AL I I I T IR S PR A T L N A R R
L\l\‘-" WA A A AR T A R N A S R R R R O oy

R -y - T) o g T T g v
-‘.-‘-I-“ .‘,.‘..-'.l‘,-“. n-‘.:‘..-‘.},‘-,...:i_l.'.,'_:‘.-.-‘,' -. '_".'.'.’

TABLE 1
Definition of Software Quality Factors (40:129)

Correctness Extent to which a program satisfies its specifications and
fuifills the user’s mission objectives.

Reliebility Extent to which a program can be expected to perform its

Efficiency The amount of computing resources and code required by
& program to perform a function.

integrity Extent to which access to software or data by unsuthorized
persons can be controlled.

Usability Effort required to learn, operate, prepare input, and interpret
output of a program.

Masintainability Effort required to locate and fix an error in sn operstional
program.

Testability Effort required to test a program to insure it performs its
intended function.

Flexibilty ﬂhﬂnnmndwnndwmnqunﬁmdnmwym

Portability Effort required to transfer a program from one hardwere
configurstion and/or software system environment to an-

Reussbiity Extent to which a program can be used in other applica-
tions—releted to the packaging and scope of the functions
that programs perform. hd

interoperability Effort required to coupie one system with another.

This is important because experience has shown that poor
definition of requirements is a source of software design,
test, and operational problems (55:233). Refer to Table 1
for software quality factor definitions.

The quality factors in Table 1 can be further broken
down into criteria. These criteria further define the
quality factor and help describe the relationship between
factors. The criteria are independent attributes of the
software by which the quality can be judged, defined, and
measured (40:130). The relationship of criteria to software

22

DAL AR A A S A A A A AT AL
RS

. opamet e e e, R
. PR .
. '.” ot L 1le
P IR R I
R N S0 .
R vt o
Ry
i

s, 4,5,
'A/I

B e SN ATAR L A Scty sas i S e T e e ———— — - -
AARRES AR ERE NS CROR AN . ANngiM i Vi ACERIA SR N SR iF LM 4 It AA A S A G Y -

[Traceswitity | | Consistency |

6

ST=2

| Execution etficiency | | Storsgeetticiency |

Input/output
rate

. Qperability

Seif-descriptivenass

[Generality | [Expenaviiity | | Seifdescriptveness

Simplicity | Modutanty | ||nmwmioll Seif-descriptiveness

Modularity) ence

Seif-descriptiveness Machine independence | Software system

Legend: <__ Factor
. Ccoeria

y Figure 6. Relationship of Criteria to Software Quality
Factors (40:131-132)

23

. Ot e T e M Y et - - T IR P P . e S e
B AN T ST SR UL S AP AT AL . Rl : .t St e
- Bctuliin, o 2o ":* > .'\‘L‘ P AITUANLIP ‘:‘.' A.-.A_.A- .A_L_A :..‘:h _.\.‘ _..'-L'&‘.‘ A"‘_A‘ “yals

Generality

Modularity Setf-descriptiveness

Modularity [Commumcations commonality 1 [Data commonality] ' 1
=Y
NEE

Legend. <> Factor
T Criters -

Figure 6. Continued ﬁa

quality factors are shown in Figure 6. The definitions of

=
these criteria are provided in Table 2. i;

An important consideration in identifying software ° TT

quality factors is some of them are in conflict with others i

(51:62). Figure 7 can be used as a guide in determining Z:

these conflicts. The following are examples of conflicts: g:

1. The use of assembly language and exploitation of special Sﬁ

hardware features can enhance Efficiency at the expense ﬁ:

of Portability.]

2. The use of detailed error messages enhance Testability ;i@

at the expense of Efficiency (51:62). fﬁé

Quality Assurance Standards .53

In the past, the establishment of conformance standards ‘ Fi

has been neglected for software development. Finally, this =7

]

24 4

N N N T A A A AN R RINB NN NENEREN RN N i

Criteria Definitions for Software Quality Factors

TABLE 2

(40:133-134)
Criterion Definition Related
Factors

Tracesbility Those attributes of the software thatpro- Correctness
vide & thread from the requirements to the
implementation with respect to the specific
development and operational environment.

Completeness Those attributes of the software thatpro- Correctness
vide full implementation of the functions
required.

Consistency Those attributes of the software that pro- Correctness
vide uniform design and implementation Reliability
techniques and notation. Maintainability

Accuracy Those attributes of the software that pro- Retiability
vide the required precision in caiculations
and outputs.

Error Tolerance Those attributes of the software that pro- Refiability
vide continuity of operation under non-
nominal conditions.

Simplicity Those attributes of the software that pro- Retiability
vide implementation of functions in the Maintainability
most understandable manner. (Usually Testability
avoidance of practices which increase com-
plexity.)

Modularity Those attributes of the software thatpro- Maintainability
vide a structure of highly independent Flexibility
modules. Testability

Portability
Reusability
Interoperability

Generslity Those attributes of the softwars that pro- Flexibility
vide breadth to the functions performed. Reusability

Expandability Those attributes of the software that pro- Flexibility
vide for expansion of data storage re-
quirements or computational functions.

Instrumentation Those attributes of the software that pro- Testability
vide for the measurements of usage or
identification of errors.

Self- Those attributes of the software that pro- Flexibility

Descriptiveness vide explanation of the implementation Maintainability
of a function. Testability

Portability

Reusability

........

........

TABLE 2

Continued
Criterion Definition Relsted
Fectors
Execution Those sttributes of the software thet pro- Efficiency
Storage Efficiency Those attributes of the software thetpro- Efficiency
vide for minimum storage requirements
during operation.
Access Control Those attributes of the softwere thet pro- Integrity
vide for control of the access of software
and datas.
Access Audit Thoes attributes of the softwere thet pro- integrity
vide for an audit of the access of software
and data.
Operabiity Those attributes of the software that deter- Usability
mine operation and procedures concerned
with the operation of the software. o
Training Those attributes of the software thet pro- Usability
vide transition from current operation or
. initisl tamiliarization.
Communicetiveness Thoss attributes of the softwere that pro- Usability
Softwere System Those attributes of the software that deter- Portability
Independence mine its dependency on the software en- Reusability
vironment (operating systems, utilities,
input/output routines, etc.).
Machine Those attributes of the software that deter- Portability
Independence mine its dependency on the hardware Reusability
system.
Communications Those attributes of the software that pro- Interoperability
Commonality vide the use of standard protocols and
interface routines.
Data Commonality Those attributes of the software that pro- Interoperability
vide the use of standard data representa-
tions.
Conciseness Those attributes of the software that pro- Maintainability

vide for implementation of a function with
a minimum amount of code.

26

.- i e A . . D e S e ad -— —~ -
e e N T T A T AT T A T I N N T R R I N R N N R R T T S T N N R Y Y VX T A)

i
W\

Relisbilicy °) M

i Efficency - o
Integrity a v““:’,d g
Usabiity olo|alo ‘,J"‘“
Maintainability olol|oO o | W ",ﬁ‘
Testabiity olo | O 0]o]«
Rexibility olo|o|lOJlo|lo]|o ?ﬁ“‘*« ;
Portability a o|o vﬁ:’;w <
Reusability o|lolo ololo|o M
interoperability (i o w
‘rlu”mdmhwhmh&.“mamtmhm
Q = High
Q elw

Slank = Mo relstionship or spplication dependent

Figure 7. Relationships Between Software Quality Factors
(53:147)

shortcoming was recognized and attempts are being made to
provide adequate standards (39:19).

IEEE Policy. The Institute of Electrical and Elec-
tronics Engineers (IEEE) established a subcommittee to
develop a software quality industry standard, IEEE Standard
730. The purpose of this standard was to "provide uniform
minimum acceptable requirements for the preparation and
content of Software Quality Assurance Plans" (12:45). The
concern here is that the basic plan of developing the soft-

ware should be well defined. This standard does not dictate

27

.

R A R T N e T e e
'J‘J\J.‘J"A"J\A\r"A!'.b‘.p‘.ﬂ?)\a\.b".h“.e"l\.a\.g\.‘a_\:ai'.a\:a}:h\g\ :A‘_‘.'A":L'!;‘:":‘.L";L' -i&:'.\:.’-,;' RIS L AL SN :':\'\-.:' e

A

e
S
% -
B
"s
~°,

what approach is to be used; however, it does identify com-
mon elements required for quality assurance.

Directives, Military Standards/Specifications, and

Requlations. The following list outlines current policy
that applies to software quality assurance. This is not an
exhaustive list, but instead is a list of "most commonly

used" policies:

DODD 5000.29 Management of Computer Resources in
Major Defense Systems

MIL-S-52779A Software Quality Assurance Program
Requirements

MIL-Q-9858A Quality Program Requirements

MIL-STD-480 Configuration Control-Engineering
Changes, Deviations and Waivers

MIL-STD-483 Configuration.Practices for Systems,
Equipment, Munitions, and Computer
Programs

MIL-STD-490 Specifications Practices

MIL-STD-1521A Technical Reviews and Audits for Sys-

tems, Equipment, and Computer Programs

AFR 800-14 Vol. I Management of Computer Resources in
Systems

AFR 800-14 Vol. II Acquisition and Support Procedures
for Computer Resources in Systems

The availability of information does not ensure that high
quality software will be developed. This information must
be used and faithfully followed. Appendix A gives a more
comprehensive list of government documents which may be
used in the quality assurance effort.

Test Oriented Quality Assurance. This type of quality

assurance is illustrated by provisions in MIL-STD-483 and

28

ak

'.',"-'.n
D T
P)
' wew)

W
-

K
._" L
4
RS

1
;
"

)

PRR Bager) ¥
......

MIL-STD-490. Basically, these provisions equate quality
assurance to a test program. They specify test plans and
procedures, categories and types of tests, and methods of
formal verification of a design requirement as part of a
test activity (19; 21).

The major pitfall of test oriented quality assurance is
you don't test quality into a software product, you design
and build it in., If a serious quality defect is discovered
during a formal test phase, it may be too late or too expen-
sive to properly correct it (51:2; 55:230).

Development Oriented Quality Assurance. Quality assur-

ance of this kind is best described as a narrow interpreta-
tion of MIL-S-52779A. 1In other words, it means to assure
that the software delivered under contract complies with the
requirements of the contract.

The pitfall of this approach is that if the contract
specifies poor quality software, the quality assurance pro-
gram will also assure that you get poor quality software.
You get what you ask for and pay for.

To offset this weakness, MIL-S-52779A must be supple-
mented by a great deal of early planning and quality speci-
fications (51:2-3; 55:230).

Life Cycle Oriented Quality Assurance. This style of

quality assurance is exemplified by an expanded interpreta-
tion of MIL-S-52779A as supported by the life cycle prin-
ciples from DODD 5000.29 and AFR 800-14. These documents

29

R T Lt S A ST L T SO P
RN

..........

R

) WA O.—._.D_L}A’:.A_A\

...

properly focus effort on the early requirements phases as the
appropriate place for planning and specifying attributes of
software quality. Life cycle oriented quality assurance pro-

vides the opportunity to reduce costs by assuring quality

LR AG an Al ok g

I software during software development (51:3; 55:231).

Joint Service Policy. The Department of Defense started

[a number of initiatives in the mid-1970s aimed at providing

better management of software. The services then developed ;‘

their own policies for acquiring and supporting computer §

resources (36:191). é
In January 1979, a subgroup of the Joint Logistics Com- ;“~:

manders (JLC) planned and conducted a software workshop to
determine if there was a basis for coordination and adoption
of joint service policy and standards (36:192). The subgroup

concluded that the services should develop common policy,

development standards, and documentation standards instead
of continuing to approach software development in a service ——
unique manner (39:19).

To further satisfy the purpose of the workshop, the

v .
el
Lttt e
R

.o, e
) .
PRI Y L)

subgroup defined a program to develop a military standard ;i“

for software development, MIL-STD-SDS, and a set of changes

.
v

)
AT
Jats's <a

to MIL-STD-483, 490, and 1521A (39:20). In addition, soft-

e e D
sttt e Ly
fatatacata s 4 b bbb

ware documentation standards were developed that identified ;'f
the types of documents needed to support mission critical
computer resource software (36:200). At this time, there is

not an approved or coordinated position of the Joint Logistic .:

o

Commanders.

[it et R SO i S e~ S M e i N R i e i e g 2 ot o v bl G ar it ;
[N N L A S OISt S g G g i S Sl S L |

The effort to adopt common joint service policy and i;ﬁ
standards is well under way. The potential cost savings iig
are significant. "No longer will industry be required to &Qﬁ
maintain multiple-management control systems. B8y providing Sﬁ%
a more uniform environment for software development, joint Eﬁ:
service programs should run more smoothly" (36:200). Efii
Software Quality Assurance Program i;g

S

Quality Assurance Planning. Planning involves the .

. + . developing and formulating a course of
action, and the output results constitute a plan.
It is the systematic identification of program 1
tasks, task schedules, and the resources required —d
for task accomplishment. Planning is necessary -
to achieve some degree of order in completing 5
activities scheduled in the immediate future and
for long-range activities that are forecasted far
out in time (7:47).

According to the definition above, the output of qual- [::

ity assurance planning is the formation of a plan. On a ;g%
broad scope, a quality assurance plan must indicate the g%ﬁ
particular activities that will achieve the required level :;:
of quality. This quality plan should include at least the u;;
following topics: ??
) 1. Organization: The organizational approach includes the :::
j definition of roles and responsibilities of each group igé
g in the organization. The independence and reporting §§?

lines of the quality assurance group must be clearly

established. iéi

2. Requirement Traceability: This defines the methodology fif;
to assure the requirements in top level specifications ?ﬁq

are satisfied in the lower level specifications. ;ﬁki
R

31 o

[A j.-,-
(ACFORR TN

PR e N I A N O AR A S D S P NN AP el e ol M S i S Sl

3. Documentation: The documentation must be defined to
assure formal, controlled communication, standards for
the document preparation, and the measurement of com-
pliance with standards.

4. Techniques and Tools: The application and verification
of the quality related techniques and tools must be
defined.

5. Formal Reviews: A definition of the reviews must be
made to assure readiness and how the reviews are to be
accomplished.

6. Test Program: The plan must specify the measures for
technical review of the test procedures and compliance
with prescribed standards.

7. Configuration Management: The quality assurance con-
siderations include a software library with control pro-
cedures to assure identification of the products and
prevention of unauthorized modifications, and definition
of procedures for the generation, disposition, tracking
and closeout of design and test discrepancies (48:195).

Two documents give assistance in developing software

quality assurance plans, MIL-S-52779A and IEEE Standard 730.

The first document, MIL-S-52779A, applies to the acquisition

of software either alone or as part of a complete system.

It requires the establishment and implementation of a soft-

ware quality assurance program. Figure 8 illustrates a

software quality assurance plan as proposed by MIL-S5-52779"

Pt .
ol
DAL
.
AN
S
-
0ve
.t
..

via, o
e
- h‘
. '.-
e
v 2
"‘.v.
ted
ST

-
J
A
]
4

r
PO

- -

. MR RER

Vet e

. ERCRC RN
o s ‘

. z e

v] PRI,
o e e,

. LS NS

» 8 PR
R N S

L4
A

M R Ty Te TP e W
B r'.t" 4 "f'u'"‘ "7
gty tiatete] ' e s N
VAL a'ala’a"d’

1. Work Tasking and Authorization Procedures "'“
a. Procedures and Schedules 5
b. Work Descriptions i
c. Status Reports e
d. Resources Estimates oW
2. Configuration Management
a. Baseline Establighment
b. Change Accountability
c. Audits -
3. Testing i
a. Analysis to Determine Testability
b. Test Plan/Procedure Review
c. Monitor and Certification of Test Results —
d. Tests vs. Requirements Traceability s
4, Corrective Action
a. Problem Reporting and Measuring
b. Trend Analysis
c. Corrective Action Assessment
5. Library Controls
a. Code Control and Related Documentation
b. Media Identification and Protection -
c. Change Control ~ o
6. Computer Program Design Review
a. Contract Compliance ;::‘j;f
b. Evaluation of Design Logic -
7. Software Documentation
8. Reviews and Audits ':.‘:
9, Tools, Technologies, Methodologies
10, Subcontractor Controls '.Z.f_‘:I
Figure 8. MIL~S-52779A Software Quality Assurance ~=
Plan (17) o
=
33 ':".j
e e S s

T_T"’T" ''''''''''''''''''''''' LI A D REE AN I Rt A S R NSRRI S AC R A Al St i A IR A A A g ."-_\‘.',_'\-:-
5 %
- i
- 1

r " -
i 1. Purpose ;iﬁ
2. Reference Documents ;3:%

e

3. Management T

a. Organization .o
b. Tasks F oy
c. Responsibilities v ;',j
o 4. Documentation ﬁﬁ;ﬁ
ig a. Purpose s
; b. Minimum Required Documentation: Software Fed
3 Requirements Specification, Software Design SRR
5 Description, Software Verification Plan Nes
£ c. Other: Computer Program Development Plan, s
P Configuration Management Plan, Standards and et
' Procedures Manual :”‘“
: 5. Standards, Practices and Conventions -
a. Purpose ;
b. Content: Document Standards, Logic Structure o
Standards, Coding Standards, Commentary Standards i

6. Reviews and Audits S

a. Purpose
b. Minimum Requirements: Software Requirements Review,
Preliminary Design Review, Critical Design Review,
Functional Audit, Physical Audit, In-Process Audits
7. Configuration Management
8. Problem Reporting and Corrective Action
9. Tools, Techniques and Methodologies
10. Code Control

11. Media Control

12, Supplier Control

Figure 9. 1IEEE Standard 730 Quality Assurance [?7
Plan (12) <

...........

.........

..........................

The second document to assist the planning effort is IEEE
Standard 730. This standard applies to the development and
maintenance of critical software (i.e., where failure could
impact safety or cause large financial or social losses).
Figure 9 illustrates a plan under IEEE Standard 730. An
early involvement in the planning process is the key to a
successful software quality assurance program (46:497).

Staffing and Organization. The success of any quality

assurance program begins with the personnel assigned to the
project. The most effective means of obtaining knowledge-
able quality assurance personnel is through the transfer of
well-respected and competent people from the development
group. This has many advantages, such as familiarity with
the type of software developed and procured, insight into

known weaknesses, rapport with in-house designers, and the

knowledge of how to operate within the organization (25:269).

It is not enough for quality assurance personnel to
merely possess the characteristics, for example, of good
systems analyst. They must have the respect of peers and
all levels of management with whom they must interface.
Also, they must have good communication skills and be able
to use logical persuasion. The success of the organization
will depend on the individual's ability to sell his ideas
for improvement (35:95).

An organization can set up a quality assurance depart-
ment in many ways. Figure 10 depicts a simplified view of

an organization with quality assurance placed as a staff

35

....................

@ e
R . e
. B PR PP
I AT
W T T T e

e tete 'y
PP W U WPl W}

A RN
ALY

function reporting to the General Manager. This structure
ensures that quality assurance will receive the attention
of the General Manager and ensures independence from other
departments. Figure 11 depicts a quality assurance depart-
ment embedded in the overall organizational structure of the
project organization. With this type of structure, coordi-
nation between projects and even with the General Manager
becomes difficult or time consuming. Figure 12 depicts a
functional organization with quality assurance placed on the
same level as other departments. This structure, with qual-
ity assurance as an independent function reporting directly
to the General Manager, provides good independent oversight.
As another example, Figure 13 depicts a matrix organization.
Under this type of structure, there is a top-level quality
department and lower-level quality assurance departments for
each project. A matrix organization allows independent
checks for each project falling under the General Manager's
control.

The need for independence cannot be stressed too highly.
Many times software is developed under the most demanding of
schedules. Requirements may be ill-defined or late, comple-
tion of the systems analysis may slip, or hardware avail-
ability may be delayed. Only one thing never changes, the
"end date." Under thes: circumstances there is pressure to
skimp on test planning, various documentation of the design,
library control procedures, test documentation, reviews and

audits. Only the devotion to quality of an independent

36

T A e e e AL L e e vt T T CTe e e
" N .-A"-..,-_ « _-"_- KA T .,\.. R .f..'/“.’ n"_'-"\ WA e s, e et (SN (R AN \.._ .

>

3
!
P

U . VT e
4 P SEE
[ettt tette
S et et e il
RSN P NS
o N . At n

* of

PR

.y 3.,'_‘1;_'0',‘1..1'_‘
r

'y s

e
‘l‘l
L

(]

s, t, -
ol o o o at

DR RERY 4'1.1
TR XAy
s tLens

o e e
~

a
"‘l'- I'C

. .: "
L

TRt |

I. '. l.
A,

s "’
w‘...»...c. Iy "
K
o
s
l.\!-
i
' -l\h.,
!
. 7.
: A
¢ 8In3anijs Teuorjezyuebig 44e3s °OT1 ainbt 4 x...,
3 x..,
z K
3 S
.
.
, INERJOTAAAQ 1S3l ¥® INTRAOTAARA
3 TEVMLIOS NOLIVEORINI TEVMOUVE ONTEAANIONE
~
”m
AMVANSSY

ALITVOD

PV AT IPR SN A

A Aats Vs

-

T

eV e alave

*aveTe

P

i At
n e

iCA

-
D S

W e T AN TL N

LG

A

(9) aIn3oni3ls teuotrieziuebig joaford -°T1 3inbyy
JAONVENSSV
ALITVOD ONISVHOUNd ONIUNLIVANNVH 1531 ONIYIINIONT
| [1 I |
YAOVNVH
102r04d
a 1Jarodd 0 103roud g4 103roud V 103rodd
I [I
SSANISNY AONVNI1d
SADIAMEAS SALIITIOVA TANNOSYAd Vo1 NEN 9 139ang
X ! L 1 = _
SAJ1410 AAVIS
WAOVNVH

38

AT AT A

e ®.
s

ot
'o-\‘ -‘.\

-
-

R

IR

(9) @in3oniis Teuogiezyuebig

TBUOTIOUN 4

*Z1 8anbr4

$103£04d

AONVNNSSV
ALITVAD

ONISVHOUNd

ONIUNLOVANRVA

1

ONIEIINIOND

SADIAY¥AS

SAILITIOVE

‘TANNOSYad

™VOZ'X —

SSanNIsnd
naN

JONVNId
9 130dng

1

T

]

$301440 44V1S

YIOVNVH
TVHaANdD

« %
:
L
B
.
.

N

v

PRI
. " nt e
WERAN

-
‘l

NN

“v
ML NS

39

-\-
(9) 31n3oni13s teuotrjezyuebig xtaijew -°¢1 8anbyy H

e N S AL Nt

]
.]
I >
" .\.-
k. .“-.-n
g JONVNASSY ALITVND - A
. g ONISVHO¥Nd - o
- 4 ONI¥NLOVANNVH -
4 ONI¥AANIONT -
3 Yy
..‘ .”..
- @ 103roud 0 103ro¥d 4 103roud v 1oaroud
:) i
. <t X
Wn- -.--
p, oy
3 ALITVOD ONISVHOUNd ONTYNLOVANNVH INIYAANIONT X
w“, ...-.x
ﬁ., ..-”1
5 (201440 FWOH) TVNOLIONAA x
: on i
v "IVHaN2D o
: o
m. "
: 3
”,. .HHJ
’ Y/

-

ar et ot .

' -
Sl
PRI,

.......................

functional activity can stop those who might compromise
quality in an attempt to recover schedule slippages or cost
overruns. Independence is the key (25:271-272).

Reviews and Audits. Controlling involves "the monitor-

ing of program activities to ensure that the end objectives
are being met" (7:48). Thus, controlling means to use checks
and balances on a periodic basis so that problem areas can be
detected as early as possible in the software development
process. Basically, this is accomplished through a combina-
tion of reviews and audits.

The purpose of a review is to examine the system require-
ments and design to assure appropriate technical progress
according to plan. The purpose of an audit is to determine,
through investigation, compliance to and adequacy of estab-
lished specifications and standards (6).

Naturally, the number of review points depend on a num-
ber of variables such as size of the system and makeup of the
quality assurance organization. But the general consensus is
that reviews must be predefined, occur at key points in the
development process, be understandable and complete, and are
conducted in accordance with prescribed standards.

The IEEE Standard 730 proposes a certain minimum number
of reviews which should be conducted during the software life
cycle (12:48). These include:

1. A software requirements review to ensure the adequacy of
the requirements stated in the software requirements

specifications.

41

TR T T

......

R -
PR B I S S I I I AT

" .‘...\.._;_‘ e e, _.\.. -_.‘:'..-‘_‘:--.:. '~t‘~.-:’»:~'.'.-:"-,"-. FRRARRNLTL PR DA R

B SRR

P T U i

TV T T T e T e e T e
e A A B
St P L

Few w w
[h PR
o PR

LRI

- r v
'-""
P

R e

2'

MDA ASAICCR AR IO S IS4 S W At b A A N i SR, SN A" K\ IO s\

A preliminary design review to evaluate the technical
adequacy of the preliminary design of the software.

A critical design review to determine the acceptability
of detailed software design.

recommended audits consist of:

A functional audit, held prior to software delivery, to
verify compliance with all requirements specifications.
A physical audit to verify that the software and docu-
mentation are internally consistent and ready for
delivery.

In-process audits to verify consistency of the design,
such as peer audits.

Several Air Force regulations, specifications, and

standards provide guidance on conducting reviews and audits.

In particular, MIL-STD-1521A provides guidance for the

following formal reviews and audits (16):

1.

System Requirement Review (SRR): Conducted to determine
initial direction and progress in defining system
requirements.

System Design Review (SDR): Concerned with evaluation

of the total system requirements.

Preliminary Design Review (PDR): A review of the top
level software design in response to the software
specifications.

Critical Design Review (CDR): Concerned with the crucial
review of the detailed design of the software prior to

the start of software coding.

42

.-.
Ly
‘.
-
e
.

CERY

%

R AP P
g dgndo bt b

Tl R I A A
' ! SR
e F VLV

LI R
IR

nores

"‘-"1':.
e,
P
ALRS,

4, £
AN

v P
.)
Lo s
..)
. s o

Jve "a:l R

IR NRAPLY ST U

A CAR AN i M T 0 £ S/ A N e g A N, F et DA g bet i At e e Sul oo st e e P M

o ‘.O.I
L 2

5. Functional Configuration Audit (FCA): Ensures that the
delivered computer code actually does what is asked for
Zﬁ in the specifications.
e 6. Physical Configuration Audit (PCA): Ensures that the
support documentation accurately and clearly relects
the software.
7. Formal Qualification Review (FQR): Verifies that the
;Z actual performance of the software as determined through
test complies with its specifications.
Using these reviews and audits, the developing organization's
technical progress can be monitored. They also reveal the
technical progress of the phases in the software life cycle.
Referring back to Figure 3 gives a basic look at how the
_i reviews and audits fit into a software life cycle.

Software Testing. The test design, which forms the

;f testing philosophy, is usually based on two methods, bottom
- up and top down (6). Bottom up testing begins by testing
each software routine or module as it becomes available from
the development group. Routines are then combined and tested
until the entire software product has been tested. Top down
testing begins by integrating and testing the highest level
routines. After these routines are integrated, the process
is repeated for routines at the next lower level until all
the software is successfully integrated. The advantages and
disadvantages of each approach are summarized in Table 3.

Unit testing, performed by the software development

group on each routine, is the lowest of software testing.

43

.:.;-\-;\--_‘.'\:.,...._w\-‘-\-_‘-’q\q --------------- T T AT A At N Lt T A T e T et et et T et A e AT

..........
................

Lo AN AN M AN AN R

GG AR
Lt i v L
. . toe > . .

i AL

8 TR
.................

TABLE 3

Advantages and Disadvantages of Bottom Up and Top Down (§)

Bottom Up

Advantages

High risk routines tested early

Utility routines are developed
early and tend to be common
to the program

Easier to control testing
conditions

Development of top level
structure can be delayed,
allowing selection of a specific
machine to be made later

Dummy routines simple to develop

Disadvantages

Testing difficult because
interface problems and system
requirements not addressed
early

Hard to maintain visibility of
entire software system

Difficult to change because
interfaces may be "kludged"

Data base structure not
addressed early can result in
"kludged" data base

System cannot be executed
until late in testing

Top Down

Advantages

System executes early in
development and testing

Data structures and interface
problems addressed and
resolved early

Testing can be done in
parallel at more than one
level

Easier to maintain visibility
of the entire software
system

Disadvantages

Low level high risk modules
not developed early

Multiple utility routines may
exist or redesign may be
needed to use common utility
routines

Developing top level structure
early may force project to
specific machine(s) too early

Dummy routines must be
developed

Testing conditions may be hard
to control

Coding of top level routines
may begin before the design
is completed

Error conditions may be more
difficult (costly) to
exhaustively exercise

It is intended to make each executable section of code, rou-
tine or module, as error-free as possible and is oriented to
finding errors which commonly occur in the development of
software (6).

After routines have successfully completed unit testing,
they are combined and executed in integration tests. In a
typical project, the responsibility for software integration
testing will be divided between the development and testing
groups. The lowest level of testing may be conducted by the
programming teams that developed the software. Tests not
conducted by the programming teams are executed by individ-
ual test teams (6).

Independence of the test team becomes important here,
and can be accomplished by using an independent verification
and validation (IV&V) process. Ouring the IV&V activity,
deficiencies will be discovered. The software development
group must not receive direction form the IV&V team to cor-
rect the deficiencies. Rather, the deficiencies should be
given to the quality assurance management for action. This

is done to preserve the independence of the IV&V team

(45:660).

Tests performed by the test teams require more formal

documentation of the testing effort. Four types of docu-
ments are usually required: test plans, test procedures,
test execution reports, and test results analysis reports.
These documents encompass the planning, execution, and

analysis of the test process (13:92).

...

Software quality assurance should become invclved in

testing in a number of areas. Before the testing begins,

AN 3 PAASAARRAAARSE PR M)

quality assurance should ensure that all software, hardware,

LA ol

and the testing environment are under c~trol. It should RO

A

witness loading and running of the software and ensure the RS0
test results are retained and discrepancies noted. Ffinally,

quality assurance should participate in the post-test anal-

PGSR At
[od
»
'l
e)

ysis and certify the test report on satisfactory completion :ff4

(48:198).

MIL-S-52779A, the specification for software quality
assurance, contains a comprehensive list of software testing
procedures. These procedures consist of:

1. Analysis of software requirements to determine
testability.

2. Review of test requirements and criteria for
adequacy, feasibility, and traceability and
satisfaction of requirements.

3. Review of test plans, procedures, and speci-
fications for compliance with contractor and
contractual requirements and to insure that
all authorized and only authorized changes
are implemented.

4, Verification that tests are conducted in
accordance with approved test plans and
procedures.

5. Certification that test results are the actual
findings of the tests.

6. Review and certification of test reports.

7. Ensuring that test related media and docu-
mentation are maintained to allow repeat-
ability of tests (17:3-4).

Many software producing organizations do not understand

software testing techniques, or the importance of continuous

46

- .- s T AT A AT AT A, W Y Ve, w W ™ v T
[R N O Y kT S A A R R R AN A K P S S K A) Dl S gt B, 3l S St & [el G ek Al g W N N Sad g e g B g |
.

testing. But by increasing the awareness of software testing

through training programs and encouraging test development

throughout the software life cycle, these organizations can Epg
"','::.':

minimize problems with the software and maximize software 3%%
AR

quality (15:14). RYRE
[

Configuration Management. Configuration management con- !gﬁ

N

sists of identifying the configuration of the software at ifﬁf
discrete points in time. The purpose is to systematically R

monitor changes to this configuration and maintain the integ-
rity and traceability of this configuration throughout the
software 1ife cycle (47:31). Quality assurance, through

configuration management, should enforce the following:
1. Configuration Identification: The functional and phys-

ical characteristics, or configuration, of the software

is identified by and documented in a series of specifi-
cations. RN
2. Configuration Control: In the configuration control .:mj
process, changes to the established software specifica-
tions are classified, evaluated, approved or disapproved,

released, implemented, and verified. The purpose is to

i assure that the software configuration used in critical
N
E phases of testing, acceptance, and delivery is known and
i compatible with the specifications.
: 3. Configuration Status Accounting: Status accounting is ‘;5°
N NN
. the recording and reporting of data concerning the soft- SE%
: -.‘Zu. «
; ware's configuration identification, proposed changes to s
2
47 0N
s
............. NN

. . PN COAGN A A A A R I SR R L R g
Ay, ,.\ \ '—) .,\ 'b -._,.'-;-,_,x’s_“-.:,\l.i._,\,_;._. o, ;. \} ~.' :,\:,\. -~ -.".-._,,,~‘_. -.‘\:,\ \ \n,\;_j@:;.‘ ‘\'\‘;\i\

e
e T cras e ~atar - RN P b . NI b A
- LR R I IPRC I R P A M L L N N R S N R O

i; its configuration identification, and the implementa-
ji tion status of approved changes (52:1.4). ;:
ii Library Control. A key element in the quality assur- Zj
Ei ance program i the software library which provides visi- é;
. bility and control of software and software documentation. _ EE
z; Documentation and software storage, retrieval and change N
7€ processing are essential activities in a software library :
- (51:28). 2
o A subcategory of library control is concerned with ﬁ?
organization and protection of software media (e.g., card ;i
decks, magnetic tape and disk). Loss of information due to ;ﬁ
- defective media can be disastrous and cause project delays ;?
(11:47-48). 1Included in this category of "media control" is: Ef
,:' l. Storage and protection of card decks, tapes, disks, etc. EE
if 2. Media duplication and verification procedures. gz
?S 3. Media conversion materials and procedures. 'iz
j 4, Media identification and level of revision systems. N
Another subcategory of library control deals with E;
"documentation control."” It would be self-defeating to '
ensure the correctness and completeness of the requirements s
’ and design documentation if that documentation could be E;
§E modified without proper control. Few software projects é%
" proceed to a successful conclusion without some changes to 2
T; the original requirements and design. Because of this, pro- Eg
?f cedures for the orderly and controlled insertion of changes gﬁ
3 must be defined, documented, and followed. By documenting EE
Eg every change, no matter how minor, the requirements document égg
X
A 48 N
:':.; .;’,-.;\ oy L :;-."-.-'-.-'-.-’-,;.,;.,-._--._-'.‘ '.;f~;~‘.‘f.;-’,;.'\'-:.:-;_:-\'-'_:-'.;.'.;.:,;"_:..;..:_'-':,'-.:_:,.:.-.:! ,:.:_;:_:_t "-ii-:-{-‘_-:f'.;°j-l'-_~:-.-'-: _..:-.._

P Chalt it e e e N e s e A T CICEAAr1

reflects what the final product will be during all phases of
development. This gives the quality assurance group a con-
tinuous and updated point of reference against which actual
software behavior and structure can be compared to determine
correctness (46:497).

Software Documentation. Perhaps the weakest link in

software development is documentation. There are a number of
sources of information which provide guidelines concerning
software documentation, such as MIL-S-52779A and 1EEE Stand-
ard 730. The military specification calls for referencing

in the quality assurance plan all documentation standards and
programming conventions and practices utilized on the soft-
ware project (17:3). The IEEE standard calls for identifi-

cation of the documentation governing the development and

verification of the software and an explanation of how the

documents are to be checked for adequacy (12:47). Software g%w
quality assurance must realize the requirement for good doc- ;E#
umentation and take steps to ensure that documentation which ‘71
accompanies the developed software is complete, clear, and E§i§
accurate. 3]

An effective mechanism to ensure complete documentation
accompanies the developed software is by using a Unit Develop- -
ment Folder (UDF) methodology. This documentation methodology R
consists of a notebook with a table of contents and formal

schedule for entering information into the notebook for each yﬁﬁ

major software unit (6). The ultimate aobjectives that the A

i

; ¢
l"s‘.'l \..\:.\'I‘- (1 8

IR e O e A IR ACI A W) W SN AL A S T Wt W S £ o E AR A N o d R 2T 0% -l i ol AR SR P

con
isf
1.

Fig

Folder in the total software development process.

rep
dur

the

completed (6). The following is a sample outline for a Unit

Development Folder:

"oty LR S S AL N P e

Lo

TR LT LT LY TTRTTN - Gad PRy
P
-

tent and format of the Unit Development Folder must sat-
y are:

Provide an orderly and consistent approach in the
development of the units of a program or project.
Provide a uniform and visible collection point for

all unit documentation and code.

Aid individual discipline in the establishment and
attainment of scheduled milestones.

Provide low-level management visibility and control
over development process (33:251).

ure 14 illustrates the role of the Unit Development

The Unit Development Folder is a readily accessible
ository for all important documentation and notes created
ing the software development process, and becomes part of

final documentation package when the software project is

1. Cover Sheet
2. Schedules and Milestones
3. Requirements
4, Design Description
a. Preliminary Design

b. Code-to Design

c. As-Built Design :f
d. Interface Considerations i
i

>0 NN

D

I R AN AR e e e

‘41 ainbr4

- Q‘.'..—'.‘ .

..
Y ‘.
el Catta s ot

-‘\- .

NS

.:.. :

‘I.‘ .'-.;‘ L4

LAUYNIRIING
NOILYDI 319348
NOOSILON 19n00Nd

P

l“l
AR AL

-JN

51
(4

5
E
N\

WOVVOTIVA

ONILSRL 2iNN

= o
P A A A A A

onesg " "
oWV 3009 -4
b oA
N NS
v
a
.. . o\
¥ %
s SININIVINO W .
¥, IYVMLIOS oy
f\ .
¢ SANINIVINDIV M
ﬂ\ NIISAS -
.-)

-
" e v

S
AR A

D T A e B A I DA A A P Tt I i P P TR A R R At SRR R

i

ATARIN

S

fg
e
o
5. User Instructions T
7y
6. Unit Code Listing)
7. Unit Test Plan i
e
8. Test Results o
R
9. Notes X

10. Reviewer's Comments

...
Pttty
l.,;_,

>.
R
B
.

Quality Assurance Techniques and Tools. Experience has

indicated that good techniques and tools can serve as power-
ful aids in design, development, test, and maintenance of

software (44:52). The difference between techniques and

tools is very clear. Techniques consist of procedures
arranged to simplify the evaluation process. Tools, on the .5f
other hand, are defined as automated aids used in evaluation E%;
of the developer's software or procedures (43:210). JE
Software quality assurance employ the methods of inspec- Ez
tion, analysis, demonstration, and test. Inspection confirms éﬁ‘
compliance with stated requirements by examination. Analysis ;ﬁ
studies in detail to confirm an answer or result analytically. '33
Demonstration provides tangible and visible evidence of com- :fi
pliance for review and comparison against stated objectives e
(43:210). Finally, tests are performed to find errors. ;g?

Quality assurance techniques and tools can be classified
based upon the method they support. Table 4 list available) e
techniques and tools by category. Of course this list is not

all inclusive. For ease of further discussion, a glossary

defining each technique and tool is provided in Appendix B.
Also by using tables, each technique and tool is related with

52

...

........

A A S SARLNC ST L ARG AR, TR Gl At W i L At A Rt A Sttt e g w £ Ty v T T
-
NS
v-.'..“]
’:‘.':':

usual quality assurance functions; and how each technique -
and tool supports the evaluation of software quality is 2l
illustrated. 2‘_;:.‘_-1
£2d
First, Table 5 shows which technique supports various Lrj_‘,:.-f=4
Hﬁﬁ

quality assurance functions. Next, Table 6 displays the
degree of support each technique provides for assessing
software quality factors. Third, Table 7 shows which tool
supports what quality assurance function. Lastly, Table 8
displays the degree of support each tool provides for
assessing software quality factors. '

As the tables indicate, there are many techniques and
tools available to improve software quality. One of the
major tasks in developing an acceptable software quality
assurance program is to select those techniques and tools
in the most efficient ana cost-effective manner (43:226).
Selection should be done ohly after careful analysis of the
objectives desired by the techniques and tools, and analysis
of the criticality of the function to be evaluated. As an
aid, Table 9 provides a checklist method for analysis.

Techniques and tools can be a valuable and useful

addition to a software quality assurance program. But,

they should be well documented and thoroughly tested. If ?"ﬁ
the technique or tool itself is not validated, how can it :%f
be used with confidence to validate other software or to ii?
enforce standards (56:149). i%?

NN

I4

y

]

s’
P A4
)

NPT

L0007

53

s

’
s P

TR IR P RSO B SRS NS S S Rt R M 0 A N iU AU A AN i i A R ey RN AL " 0 At Sl /Al Pl Syl Nl

...............
..... e

’ TABLE 4

I Quality Assurance Techniques and Tools (43:211)

Class Inspection Analysis Demonstration Test

- Tech-| Auditing Anaslyticsl modeling | Functional testing | Algorithm evaksation
. nique Code inspection Correctness proof | Walk-throughs test -

snalysis Logical testing
Simulation Path testing

Static anelysis Stress testing
Symbolic execution

~ Tool| Consistency checker| Accurscy study Dynamic simulator} Automated test
Editor processor Hardware monitor | generator

L Standards analyzer | Consistency chockq Standards snslyzer] Debugger
Cross-referencers | Test bed Dynamic analyzer
& Data base analyzer Dynamic simulstor
s Decision tables Flowcharter
Dynamic anslyzer Hardware monitor
Editor Instruction trace

¢ -
CARRERER
s "

T
T,

Hardware monitor Software monitor

o Interface checker Test drivers, scripts
-, Interrupt analyzer Test-result processor
- Logic analyzer

- Simulstors
Software monitor
Static analyzer
Structure analyzer
Timing analyzer

Sup- Language processors

MIS
{Com- Standards

1
g

._‘A.. lv

_ mon) Text editor e
: . ;.f:-.
s. ::::
~
Y e
-~

I Doy

54

Earat A 2 L

-~

-
R I I I T R I S R S PR A

-

".A‘.';":;“.\".-f'_i‘:l\i"':\:\

L i A e
- -

LY atd s o
R N

X X X X X *
x
x X X x

x

XX xXX
x
x

X MU XX XXX XXX XXX

syBnosyi-nem -
uonNNaxe JNOQWAS *
Bunse) sseng -
sisAjeue onels -
uoliezipsepuels -
suonegnung
Buimeiney -
stsAjeue jeuonouny-1sod
Bunssy ey
Bunsel 1eaibo °
Bunsa) jeuonouny -

sisAleue vonndexy

895S€0 BoUSieAINb] *

sisAjeue eu0id-10053
uonsedsul ubiseq
§00.d 58011901507
uonsedsul 8po)
Bunpny

Busiepow resukfeuy

1891 UoitenjeAe wrpoByy -

Q‘O*Nn?mchama
p—gpasiph g 1L S SR Angh . S L4

.

~-NMTOON®

J08453u099ng
supne pue
SMNASY

vogmuswnaoqg
ubisag

SjonUcd
gy
uouse
aAR8110)

Sunsat | x x X
(.77

uoneunBiyua)

3

Buryses y40M

Suruusyd Ayenp

sonbruydse)

vonauny

(€£T122€Y) suofiouny

3JuBINSSY

A3tTENnD

S 318v1l

03 sanbyuyoa] Jo diysuogieray

55

—_—

~

ataray

-

¢
a

I

v

«”
.

«Ve
p.)

e

fem Y T et m t
et W) e T
. .,

~,
N
-

o«

- \..'v'.

SNLN
S

RIS

LN

Y .'.."_’_.“

v

Ty

..
-t

AN

S

e

Lt

)

TR
RS

ot

-

sl

Py

.
3

NS

ad

RV

Pt e T Ve Ta T T

AT A AT w T e e TR

.

w,

-~ ¥ e

h

SEDUBANDNYO MO —)
SSOUBAIIDD}O WMPSN — N

SSIUBANISYL YBiy — 1y

5

sybBnoay-yem -
UoIINJ8Xe JNOqWIAS *
Bunse) 581§ °
sisAjeve onels -
uonezipiepuRlg °
uonenwig -
Bumaiey -
sisAjeue jeuonouny-1sod °
Bunsar yied -
Bunse) feanbo -
Bunse) jeuonouny -
s1sAjeue UONNDPX] °
sasse ssusjeainby -
sisAjeue ouosd-10113 °

uonoedsul ubisag
joosd $38U138410)
uondedsul 8po)
Bupipny

Bunepopy [RonAjeuy

=§§?§:§E§.

~NMeUo~NDd R

OF’N!’)QWONQQ&
e e e s e e -

ApGesN)|S 1 T B I T d d DD D SISTIT T IS

Apqeise) | ST XTSI TITSTSTSIIZIIETSZS

ApQeIPpY| T T T TZITSEITIZTESTIIIIZIIZIIII

ARGEO | d 2 B E AT VS STETIETETITISLES

ApQOUPON| & d T ZE ST L L ZEJIJZTSTSTIZTISS

Apqeumiuey] 4 ST ST IT N LNFTELSTESISTISSES

Ao 4 1 B I I T IBEFITISAZTSTZIZTES
AuwyIl3 334 SITEITZTITZIITIXISS

o) ES TS TXSESITISSSITIIISSS

sonbysey

Auedosd Agenp)

(v1Z:ev)AyTTEend Durssassy UT SS3UaATI098443 anbyuyda)

9 378vl

[RN

56

i

'~
-
-

et et A .
PN,

CRICRENIEE LR

.-\.._.-’s~ \q «" " $-

WA

- -."-‘_.. "

LSS

-
o, o

)

- - . - =, . . - . - . TN, - B - . - £y - o - -
PO S e I R T e et e Tt M - L R N T I O R e LT < L ot el ol R poll are aiee TR o
- N L. S - B e N T [P AP A A e ..'."1
» -
.

TETE &
.3 2tel
o A
- . A
P L]
L A

TABLE 7

Relationship of Tools to Quality Assurance
Functions (43:218)

Function

management

MR AHKHKAHKAMMXANXHKHKHKAHKHKHXIAHHXRKHXHXHKXXXXXNX X XXX |Testing

Documentation

standards

Reviews and

Subcontractor
trols

Configuration
audits

tasking
Corrective
action
Library
controls
Design
standards

Work

Accuracy study processor;
Automated test generator
Comparator X
Consistency checker
Cross-reference
Data base anaslyzer
Debugger

Decision tables X X
Dynamic analyzer
10. Dynamic simulator
11. Editor

12. Flowcharter

13. Hardware monitor
14. Instruction trace

15. interface checker
16. interrupt analyzer
17. Language processor
18. Libraries X
19. Logic analyzer
20. MIS X | X
21. Requiremnents tracer X
Simulator
Software monitor
Standards X X X
Standards analyzer

. Static analyzer

. Structure analyzer
Test bed

Test drivers, scripts

. Test-result processor
Text editor X X X
. Timing analyzer

Shbnthe Eaiaansbandidey PPt gl g gl g0
B .

PRINONIWN =

KX XX X
x %X X

RE8RBENRIRRBN

O RAFCANLK

- e s LE.T,TTee Y. Y T VLT T

57

L e
.
D

CeA e et e R Ty et e Tan e ot an e Tam e Tt T T T T T T T e e e N e ettt Tttt Sy
e e T T y SRR L Sy S T RN R LU NN W RO
A s

bo.
TABLE 8 :ﬁ
. T
Tool Effectiveness in Assessing Quality (43:219) =
L
e
3
Quality Property i
; &
3 > te
Tools g Slal- 3 §13 % §]
¢ | § § 5|3 § § g S
8 8| & 3 x|~ g R
1. Accuracystudyprocessor| M | L | L lu |l lwlefe -
2. Automated testgenerator] M | L L L L L H H L Ly
3. Comparator tjLfeleioeimimicel]t N
4. Consistency checker HitL]lLt]lL|ltlL|iH{M]L e
5. Cross-reference ML LM M]L|IMILI}IL o
8. Data base analyzer MIiL|ILIMIM[{M|IM[M] L o
7. Debugger MM LILIL|IL]JH]LTL .
8. Decision tables MlL|IMIL]|IL|L|IM|M]L -

9. Dynamic analyzer H{Hl MMl |M]L "
10. Dynamic simulator HIM | L{LiL]L|H]L]L iy
11. Editor ML LIMIM|L|IMIM]L o
12. Flowcharter HiLt]lLvimMiMIimMm|mM]in]H s
13. Hardware monitor M| H L] L LiL]IH M L T
14. Instruction trace LMl LjL]lLluLeiH]IMm]L e
15. interface checker HIL[M|{M[M|L[H[LI]L ~—de
16. Interrupt anatyzer HIL|IMIMIMILIH]L L P
17. Language processor HIM| M H]|H]H]|HIH} N -3
18. Libraries (R I I 18 TR IO S T B A" o]
19. Logic analyzer MM LlLlL|L|HIM]L]
20. MIS HiLtioepepuelelieleldeo ha
21. Requirements tracer H L Li M MM MI]IH L —d
22. Simulator HIHIMI M| MIMIM[{M|H A
23. Software monitor M| H L] L LjL H|M L e
24. Standards H|H|[H|H]|H|H]|H]|H]|H
25. Standards anasyzer H|L|M|H]|H|{M|M]|M]M HOX
26. Static analyzer HiLIM[M|IM][LIMIMIM
27. Structure analyzes HIMILIMIMIMIMIMIM .
28. Testbed H|H|H]H]|H|H]|H]H|HN >
29. Test drivers, scripts ML LiL]lLlulHin]lL o

30. Test-results processor M L LI M|IMIM|IMI|H H

31. Text editor MIL|LIH]H]IL]LU]IH]|H
32. Timing analyzer H| L MIM|IM]LIH]L L N
Legend: H —High etfectiveness . 1
M — Medium effectiveness T—.j
L—Low effectveness N
: f-:::,-
: 1
. iy
- -
58 o
o
. o
T OUT I et S

N . I N T T e RO LT S AT A LN
1.'.';'4‘1'0_'..:'_‘;!’:'_{;"‘:_ ata “a L;_;.{;f:.’:;f:f;f.;’:;’;&‘.:f)f:t:t.\ e A e e e T W ‘j

MAJPRAELNATIS Jak S | R o ol S e g 4 SR
. L PR TR AT M AS

. [. .,..-.--.- ., I

L R E R B A LR .

. B K PR RN AN LAY i

{poynuenb veeq enbiuyse) Jo 100} 6yl
Bursn 10 BuIJORASP YIIM POIBIDOSSE SHSU OY) BABH

2UOIS126p 8] DI} POIOIDR) LBOQ B3N (00) JO SUON

-2ondwt Yimo1B Bunu pue Buizis lenuerod eyl eaey

292.1n0%9Y

LI0H)
eBenBuw 10pi0 yBiH ® pue senbiuyses Bunuwess
-o0xd usepow Buisn pedojeAsp ueeq $j00 8Y) BARH

tAitewnso) peytienb ueeq 1001 eyl eAeH

21011U03 UONEINGYUOI J6pUN $)00) 8Y) B1Y
Jolqejieae UOREIUGWINJOP Jesn B1enbepe

81 PUR PEIUBINJOP SBNLIUYDA] PUE $]00) 81 81y

Awenp)|

218U Enueod oys efieusw

©0) UeNe) LBeq suoNNeSsid e1enbope sAsY ‘10U j)
25UNSI 1BUM QUM PUB AUBW MOY ‘08 J|
2s190josd

JOYI0 UO pesn uoeq onbrunjde) 10 100} 6} SBH

eoueedxy

21 08N AUM ‘10U §) JIUBWISSAUI UO UINIES JO SUINOL
uj peynsni 9 enbiydel 10 10O O JO e3N BYYL ULD

Wjeueq /180y

3 S8.1%0p 8Y J) U0} Bqe
-1de320 Ly JBI0ISND 8] OF PAIBANEP g I UBD ‘08 §|

d9sn 04 Apeel enbiuyde) 10 |001 oyl 8§

Aupqepery

2Q0{ 941 Op 01 ASES POHIPOUs ©q 1) UED ‘10U §|
X591 01 1O} PALINE SNDIIYIS) 10 1001 O 8

sojoN

oN

soA

KIDJUID UOIIENOAT

J01204

(LZZ:¢¥v) uoT3oaTas Too} pue anbjuydal Buryodoedwy siojoey

6 378Vl

59

- ooy P - Ty T T T YT, ' - ~—wr
E ''''' T A ST T SRR A A R A C A MRS M T A S SN I N SO

Chapter Summary

aaa ate et e ol

c e e e B
LT T e
A AR AR
e e T
P T T I .
eet T
TN T S

The preceding sections are the result of a comprehensive
literature review, and present the current views on software

quality assurance. qé}

N PR R
" %y 2 Sx 0y tats

Primary problem areas that lead to schedule delays, cost ; s
overruns, or software products that fall short of their ~
desired goals have been discussed. In addition, the compo-
nents of an effective quality assurance program have been
outlined and individually discussed.

In summary, the role of software quality assurance is
to guide software development; however, everyone involved

must participate in development if quality software is to be

developed. With proper guidance, software can be developed

that will satisfy user needs and garner the commitment of

, 8 MEAIIUIR A A uR

< AR L REN .‘_
e W

. PPN N
., -
PN

everyone involved because they had a part in developing it.

-, 1
- .o <
y L
3) i
:-:;\'::‘
RN
8 SR
OGRS

60 i

III. Research Methodology

This chapter discusses the procedures used to collect
and analyze available information in order to satisfy the
research objectives proposed in Chapter I. Specifically, it
focuses on data collection by means of a literature review

and personal interviews, and criteria for data analysis.

Data Collection

The first research objective deals with identifying

various software quality methodologies. In order to satisfy

this objective, an extensive literature review and personal
interviews were performed.

Literature Review. The literature review provided an

information baseline for further research endeavors, and

consisted of the following sources:

Aad

e e
s

o

1. Air Force Institute of Technology (AFIT) Libraries. In e

these libraries many computer and engineering journals

S .
PR A
l'l" ¥

.

o),

S

. s,

were located. The most beneficial journals were those

e Aot t

by the Institute of Electrical and Electronics Engineers
(IEEE).

o e
e £olemalsls
] z,'.'.;"..’
L. NN

.
Al S

2. Defense Technical Information Center (DTIC). Extensive
use was made of DTIC to gather information from all areas

of the DoD relating to software gquality.

3. National Aeronautics and Space Administration (NASA). NN

i/
‘.
PO R F PORC,

" ..
N .
o e,
.
s
WA A
B .

The information obtained from the NASA search was, for

the most part, too technical for use in this research.

ORI AN IR RN A A A s D e e v e SRy M AR M AT RTINSOt Nl Al i s S SP A AL 3 e e

SN Y
-. - l‘ l.

;; But a few DTIC documents were located from the NASA

j‘ search that were not identified by the DTIC search.

E§ This is difficult to explain sinre the same key words

E§ were used for both the DTIC and NASA searches.

= 4. Air Force Publications Library. The Wright-Patterson
Air Force Base, Aeronautical Systems Division (ASD)
publications-library provided information from Air Force

i: regulations. This proved very useful defining the Air

g Force position.

: 5. Military Standards and Specifications. The Wright-

: Patterson Air Force Base, Air Force Weapons Laboratory

;3 (AFWL) technical library contributed references from

military standards and specifications used in this
- research effort.

Interviews. After considering the intent of the research
effort, the level and nature of the data needed, and the
availability of adequate respondents, a "personal interview"
approach was chosen to complete the data collection. Usually

the interview approach is the only practical way to gather

opinions, intentions, or knowledge (26:213). Once the
approach was selected, the communication mode was developed.
The communication mode involved a series of questions tﬂ
used as an interview guide. These questions were developed . H
with the awareness that sequencing, wording, respondent sen-
sitivity, and content influence the instrument development

process (26:Chapt 8). In particular, question content had

2" AN A R TR TR TS, VUL PR S N W WAL DR AN/ L R R oS A N S, iy PR s e i O G o~ G e G = D I ABr o R o~ e by albut e M. My v - B B =
3 e
- s

the greatest impact on the process. To overcome this problem,

the following questions were considered:

1. should this question be asked?
} 2. Is the question of proper scope? E{i
3. Can the respondent answer adequately? ;;;
2 4. Will the respondent answer adequately? ;3?
a The interview questions were designed around the liter- g?;
ature review from the previous chapter. Primarily, the sec- =i

; tion on the software quality assurance program made up the b
é basic framework for the interview questions. Routine ques- "
: tions such as name, position, and experience were then added. ;;i
AR sample of the interview guide and cover letter is included :ﬁi
in Appendix C. iﬁ;
Before any interviews can take place, the organizations ;ﬁ;
é involved with the interview process must be chosen. The g?
3 criteria for selection included the following: .f
) 1. The organization must have an active quality assurance ‘i;i
4 program in existence. &;1
E 2. The organization must be involved in software development .ﬁg
in some way.
é 3. The organization must be accessible to the researcher. ié&
Ay 4, The organization must be willing to provide information. Eﬁé
i 5. There will be both civilian and Air Force organizations :;S
:E chosen. ;§§
{ Using the above criteria, the following civilian organ- g%g
KRR
. izations were selected: Eé;
3
: 6

i

JH B N R N NN N NSRARNERER N A i e SR T e

CORYCRCIRIC ke M S s PEiA
3
D

l. TRW Defense and Space Systems Group

2. SOFTECH Incorporated

3. NCR Corporation
In addition, the following Air Force organizations were
chosen:

1. ASD/BIM Directorate of Projects

2. ASD/EN Computer Resources Focal Point

3. ASD/PMDQ Quality Assurance Division

4, ASD/YW Deputy for Simulators

After the organizations were chosen, a preliminary
interview was scheduled with a senior manager from each
organization. Actual interview respondents were selected
with the advice of the aforementioned senior manager. The
preliminary interview also servied as an opportunity to test
and validate the interview questions. The interview guide
and cover letter were distributed prior to the interview to

allow preparation by the senior manager.

Data Analysis

As the research objectives in Chapter I are subjective
in nature, it follows that the research analysis will be
primarily subjective. In addition, since the research covers
a potentially large variety of concepts, each with its own
uniqueness, the information does not lend itself to statis-
tical analysis.

Criteria. Before any analysis can start, criteria must

be established on which judgement may be based. After

AT T TR P T AR g viy

e T e T ST G - ———y
FT\.- AR ARG ALY AP dPa M INCAE I S P RIS SNt e BNcin i g on et o f U o i o imn S R—d Sor-$. 5Dt Do At s e s e Jre e s B Aom 2o s NCg/

bl

reviewing the available literature, it was decided that the

LA A 45 o g p o S

opinions represented in the literature was the most effec-
tive method of identifying the criteria needed for analysis.
Those topic areas that recur most often in the literature

were selected as the criteria needed for comparing and cri-

T Y W WY

tiquing. To be more specific, the following criteria were

chosen:

v

1. Planning. Planning is essential for the successful
achievement of any project. It is critical that all
planning be documented, such as in a quality assurance
plan, so that knowledge will not be lost during the tran-
sition of personnel. Also, planning must start early in

software acquisition and development. This allows early

detection and correction of problems. Furthermore,
higher management must be involved with the planning
process, so that decisions can be made based on complete

information. 1In addition, user involvement is imperative

for complete requirements definition. 1In fact, user :?

involvement is essential throughout the software develop- éi
ment process to assure the highest quality product possible. Eii:
; 2. Staffing and Organization. The success of a quality assur- .
E ance program begins with the personnel assigned to it. f?
i Members of the quality assurance staff should have a rela- 'ff
g tively high level of technical expertise and a thorough Eﬁiﬁ
5 understanding of good software quality assurance practices. g&g
i In addition, as a group they must report directly to the Ei%f
g program or general manager. This allows for knowlegable é&%ﬁ
v
5 e
N S S TR SRR e e

T o B T A R R T o R Y N A P TR TS

N &8
3
}} people to advise higher management on potential problems a
e and possible solutions to those problems. Also, the :i
~§ software quality assurance staff must have direct author- | Ei'
.t ity over the software product by being an independent EE(
N group within the organizational structure. This allows, ;-
;ﬁ as much as possible, unbias decisions to be made and E?
i; unbias information to be gathered for analysis. é%
) 3. Reviews and Audits. Through a combination of reviews and ;;
Ej audits control is maintained. Reviews and audits must be gg
éi predefined, occur at key points in the development proc- %E
t‘ ess, be understandable and complete, and are conducted in ;i
:3 accordance with predefined standards. Again, a key point %;
'? to mention is the importance of documenting the.results ;%
" of all reviews and audits. How else can new personnel or i;
é; even management know what is going on unless the documen- ij
%; tation is complete? Also by using reviews and audits, an gg
organization's technical progress can be monitored through -
:‘ the software development phases.
‘§? 4. Software Testing. Testing is a structured activity that g?
‘: occurs throughout software development. By increasing :
f? the awareness of software testing and encouraging test ;S
5 development, organizations can minimize problems with the E%
j software product and maximize software quality. It is :ﬂ
;g crucial that independent verification and validation be ;éﬁ
§§ used. Without it, confidence in the software product is g%
- Jeopardized. Also, quality assurance personnel should be E:
;S involved. This establishes a control that might be missing \:.3
oy "ty
: 66 :.j
o =
B e i cr i | Y
T A BN B T A Y RN AT MGG, Y Dt O MR A \ ';'"-."‘{-'s'f{-'{*-l-'-'.°-Z~‘§"-'."-C"\'"-Z~‘-Z-"-Z*;-‘C-‘-'(“.\"{":;3

SN A AN A IS DI i M N AN AL MU D Wl M W SRt Nl VT N Sl Yad el A S ¥ R SRS AR £ S R s e et

if software developers did everything themselves. Finally
the issue of documentation, without it the test results
would be known to only a select few and management would
be lacking important analysis information.

Library Control. vital software library responsibilities
include media control and documentation control. Protec-
tion of software media is necessary to prevent loss of
information due to defective media or uncontrolled modi-
fication to the media. Likewise, documentation control
ensures the correctness and completeness of the software
documentation is maintained. Without these control meas-
ures, the integrity of the software product would be in
question.

Documentation. As mentioned before, documentation is
critical to understanding the software development proc-
ess. Everyone must realize the requirement for up-to-date
documentation and take steps to ensure that complete,
clear, and accurate documentation accompanies the software
product. Understanding what standards are available is
essential in developing good documentation. Therefore,
referencing all the necessary standards in one document

is an invaluable aid to the software developer. Another
aid to ensure complete documentation is the Unit Develop-
ment Folder methodology. This methodology provides a

collection point for all unit documentation and software

cade.

PV

PR v

7. Techniques and Tools. Good techniques and tools can
serve as powerful aids in all the software development
phases. But they should be well structured, documented,
and thoroughly tested. If not, how can they be used
with certainty to validate other software?

8. Training. As previously mentioned, quality assurance
personnel should have a thorough knowledge of quality
assurance practices. An effective way of developing this
knowledge is through training programs. Two such pro-
grams where effort should be focused are initial training
and on-going training. An initial training program will
allow new personnel to acquire the "bare essentials.”
Whereas an on-going training program will benefit every-
one by keeping them educated in the mast current practices
used today. Anyway you look at it, quality assurance can-
not grow or develop if there are not trained personnel in
the field of quality assurance.

To have an effective quality assurance program, an organ-
ization must satisfy all the criteria mentioned above. This
criteria establishes the minimum requirements and does not
limit an organization from increasing its quality assurance
program. To summarize the criteria discussed in this section,
the following list is provided: '

1. Planning.

a. Planning is documented.

b. High management is involved.

68

DRSNS B SIS W vt VoA A AV L DU S O, SN, 240, 3, I GRS /e o o et S e S S e

g - — -
F’.-‘- A e S T T T T T e e T T T T IO W I Caflr e

......................

c. User involved.

d. Started early in software development and acquisition.
2, Staffing and Organization.

a. Technical personnel included that are trained in

I . quality assurance practices.

b. Reporting is directly to program or general manager. *?{
f c. Independent staff with authority over software product. ;
I 3. Reviews and Audits. A
. i;::
a. Reviews and audits occur at pre-defined points. R

b. Results are well documented.

i 4. Software Testing. &E&i

{ a. Independent verification and validation is used.

b. Results are documented. ;:ﬁ;
c. Quality personnel are involved. ST
5. Library Control.
a. Controlled access is essential for software media.
b. Documentation changes are controlled.
6. Documentation.
a. A Unit Development Folder approach is used.

b. All software standards, specifications and such are

referenced in one document.

7. Techniques and Tools.

i a. Techniques and tools used are validated. S
E b. Techniques and tools are documented. .ﬁi
E 8. Training. :éﬁ
i a. On-going training is conducted. LT;“

: b. An initjal training program is established.

I R S N, Sl e S S Nl W M N 1 i RSN ST RS L g S £ A O Seie e it M p A I T "':‘7‘.'_“

................

Comparison. The second research objective deals with

comparing software quality methods used by civilian and Air

Force organizations. This objective was answered by compar-
ing the civilian interview data and the Air Force interview
data against the literature review data. All comparisons
were accomplished using the criteria previously mentioned
and deviations from the criteria were summarized.

Critique. The final research objective pertains to
critiquing the effectiveness of the software quality methods.
To complete this objective, all data collected was critiqued
using the criteria mentioned before and areas needing improve-
ment were identified. Next, recommendations and conclusions
were developed to offer suggested ways to strengthen the

quality assurance program.

Chapter Summary

The contents of this chapter established the methodology
. used to collect and analyze the research data, and consisted
Ei of the following:
- l. Collecting data on current quality assurance practices
by means of:

a. A literature review.

e 8 & " .‘ " .
AL ST

b. A series of structured interviews.

2. Apalyzing the data by:
a. Comparing the civilian, Air Force, and literature e

review data.

70 =

R e e A et e e e e e e e e R o T AN
NP AN BEACAGA B RER AT R B - E el . .

LA IR T S R A A S N A S SRS, 1~ b St

i b. Critiquing the collective data for effective software
quality methods.
In summary, a well established research methodology is
a road map to successful research by telling us were we went

and how we got there.

E 71
\
\

A T N A et e e T .
E" NN O N Nt T N N T e I N e e A T T N T e Mt T o N I P NN

Ty

T T TV IV TG .Y i Matet v 'y

. a e e v T T e e T A Ty e S e T i Al e ™ am "._ RO 'v\"j"‘.'—“, 7y "R 'f?,_?.-f'_‘.‘_..‘i".' -
Pyt AU ARG AT IS A SRl S AT ARSI R A SN e S _H.‘;-,.

IV. Research Observations

This chapter will present the results of the comparison
made between the civilian interview data, the Air Force
interview data, and the literature review data. To prevent
the possibility of compromising proprietary information,
direct reference to specific organizations will not be made.
Instead, summary references will be limited to "civilian

companies" or "Air Force agencies."”

Organization

Organizations for software quality vary as do the organ-
izational titles. Titles range from Quality Control to Qual-
ity Assurance to Product Assurance and others.

"There appears to be a trend in civilian industry towards
combining many of the functional disciplines into the same
organization to take advantage of their related influences
on software quality. This combining of disciplines provides
a much better use of resources since the same individual
could perform several related tasks that were previously
fragmented. The Air Force agencies, for the most part, were
fragmented into different functional disciplines.

This fragmentation contributes tn the lack of a strong
voice in making software decisions. In addition, it hinders
the development of a unified gquality assurance position that

would maximize software benefits.

72

T T T PP oY

LA T LRI MRS i el i Al gt ad Onglt i

In industry, where top management felt software quality

was important, the quality organization reported directly to

the top management official. 1In U.S. defense contractor

organizations, quality assurance is independent of manufac-

turing and reports directly to the top management official.

Whereas quality assurance in the Air Force agencies was tied
to manufacturing.

Even among the military services, the quality assurance
organizations and the level in the organizational structure
vary. In the Naval Material Command (NAVMAT), as illustrated
in Figure 15, the Deputy Chief of NAVMAT for reliability,
maintainability and quality reports directly to the NAVMAT
Commander. Each of the Naval Systems Commands below NAVMAT
also have a quality organization. At that level, a matrix
concept is used (Ai:ZI)Q

The Army also has a strong and disciplined organization
for quality assurance. As indicated in Figure 16, this
organization reports to the Commander of the Development and
Readiness Command (DARCOM). Each subordinate product command
has a quality assurance organization for development and
another for readiness. Quality assurance in DARCOM is organ-
ized to assure and assess quality at all phases of the acqui-
sition process (42:22).

In contrast, the Air Force agencies had small quality
assurance staffs. These staffs were located three levels
below the Commander and reported to the Depute for Contracting

and Manufacturing.

73

....“
...... R S

R .y e
LI PN T L A R A
A WAL IR 1S W RLVARA

e S e e T T o o o T R s e e T S A e T TS s T E T E

£

COMMANDER

DEPUTY CHIEF FOR RELIABILITY,
MAINTAINABILITY AND QUALITY ASSURANCE

DIVISIONS
: Mﬁ?ﬁ%ﬁ?ﬁiggzng QUALITY MANUFACTURING
ASSESSMENT ENGINEERING ASSURANCE TECHNOLOGY

Figure 15. NAVMAT Organizational Structure (42:21)

ARMY
COMMANDER
DIRECTOR OF
QUALITY ASSURANCE
DIVISIONS
PRODUCT QUALITY SYSTEM
QUALITY ENGINEERING ASSESSMENT

Figure 16. DARCOM Organizational Structure (42:22)

74

..

There appears to be a direct correlation between the
influence of the quality assurance organization on manage-
ment decisions and the level in the overall organization.

Quality assurance in the Army has an independent and

DAC ARV ADA s - (MMM (¢ Do e
g

equal voice with other functional organizations. Within the

Air Force Agencies, the quality assurance organizations are

normally too low in the overall organization to be influ- E;ﬁ
RIS

ential. Because of this, quality assurance has neither an —
b

equal nor independent voice. ﬁ%ﬂ
i

Planning)
r--—-l

It was observed that quality assurance planning, within | S—

the civilian companies, included developing design require-

ments and criteria which are often published in company

g e e et a s
. VAt L e
* «_ € LAY o
. N
'~ - et et
. .
< LU WA
s I

handbooks or procedure manuals which supplement industry or *

government standards. These efforts relect the experiences, ;fs

lessons learned, and proven techniques for assuring a qual- Eiﬂ

ity product. :::
The Air Force agencies generally did not have as disci-

plined an approach to assuring quality. The primary control ;;J

document used was MIL-S-52779A, Software Quality Assurance

Program Regquirements. The intent of MIL~S-52779A is not to

specify a particualr way for a company to organize. Instead,

the purpose is to specify important software development

F functions that must be accomplished by cortractors in order ;f
X to assure quality (6). With this approach, an inherent weak- Eﬁ;
[
§ ness becomes obvious, just because functions are specified DoRe
. o
N R
s:', NN
N 75 Sy
i e
. LIS
e N e B e T e S S N N g

T T T ————— T T T T A A A A AR RN 0 TR TR TS
:3, 3
3 doesn't mean that the contractor has the ability to assure
FE the quality of the software product. An early review of
. the contractor's quality plan is needed. gﬁ
X Quality Measurement 5?
| Measurement of quality begins by determining the con- 2#\
tractor's capability to produce the software product and the i
effectiveness of his quality assurance program to assure a
. quality product. The civilian companies surveyed evaluate o5
% a sub-contractor's total capability for producing and con- i%
; trolling conformance to the requirements. The sub-contrac- éﬁ
- tor's past performance is also considered as a strong indi- 1
i cation of future performance. 1In addition, there is a éﬁ
= tendency to select the best performers even though they may .
_; not be the lowest in develgpment cost.) o
E} In the past, Air Force evaluations of a contractor's EE;
E; capability, quality assurance system, and quality management %i
were often performed only by evaluating the contractor's ::
Quality Assurance Program Plan during source selection. Eii
Often the influence to incorporate needed changes to the E&
g contractor's system is lost because these changes are not oy
T; detected early in the competitive environment. After con- fﬁ%
; tract award, such changes are difficult to implement even s%
: though the contractor's system is obviously deficient and 'Ef
E% the change will result in improved software quality.
: Currently, a review of the bidder's software develop-
- ment capability and capacity has been defined and used by]
g 76 R
: o
R R G) R L ATy G T S R

b

F‘._'f*."\. T A T T T T T T T Ty oo ey

L S e R N N a R W R A T,

some Army and Air Force acquisition organizations. The Soft-
ware Development Capability/Capacity Review (SDC/CR) covers
software project management, management tools, development
tools, and personnel (4).

Within 30 days of receipt of proposal, the source selec-
tion organization will schedule a SDC/CR to be held at the
primary software development contractor's facility. All
contractors who will have substantial software development
responsibilities for the pruposed system should be available
for the review. The review will be limited to two working
days and will take place no later than 60 days after the
beginning of source selection. The SDC/CR is an integral
part of the source selection process and is included in the

evaluation for contract award (3:1).

User Involvement

The Air Force agencies agreed as to the extent of user
involvement needed during the software development process.
The user should be involved throughout the process, espe-
cially early in the planning phases. But the civilian com-
panies had differing viewpoints. One viewpoint was similar
to the Air Force agencies, since both groups are affected
by the same regulations and standards.

Another viewpoint was from those companies not involved
with DoD software contracts. They believe since the user is
a source of new requirements, the user should be involved in

writing the functional specifications. But users are not

AT T T AT e T R R T T T T T e L e T e N S N R T N Y T N T N Y S N T T T S TS R I P K s e e N A
B - - . . - PR .

= directly involved after the specification has been written. éf

This permits more management control over the development

effort. Instead, users are allowed to submit changes. These

PINIPIR Y At S .1
',-',',"f',"f K

changes must go through a control board for review. This

allows management to control and coordinate the changes.
Even though there are varied positions on user involve-

ment, one point must be clarified. The Air Force pays for

its user involvement through increased software contract bids.

Testing

Whenever specific quality levels are required, verifi-
cation testing is considered almost sacred. Only by such
testing can management have confidence that the software will
perform as intended. Testing is an iterative process and

seldom if ever will the first time through pe successful.

.
4

P o i

Civilian companies have found out that numerous field fail-

ALN)

[l i 1

- ures are the direct result of failing to perform test and

evaluation adequately.

In contrast, the Air Force tends to push state-of-the-art
advances because of operational requirements. As a result,
problems may arise in perfecting these new techniques and
cause schedule delays and cost impacts which often result in
cancelling testing that could have identified these problems.
The irony is that when these inherent problems are not iden-
tified and eliminated early, then schedule and cost impacts
tend to be even greater. Such schedule anc cost impacts

O further encourage shortcuts and the introduction of even more

78

a0 £.2 ade aid

W.A_ia..' P 00 e et M T B I 0 A AT Bk YL 1a PR It it i SO B e v -0 ol Pials P iy

-

e 9]
TR AN

problems, and the circle continues. Therefore, the more a t;‘
Y
L

new software product advances technology and performance,

o
"

’ r
o Bt
d v et

LA

X YO
d ceetie
oy S

the greater the need for the application of quality assur-

..,.
%
B9

/
Ay

&0
A

2

ance principles and techniques. Yet, the more likely they

LLAd

i

i

Y
»
,Y,

will not be used due to cost and schedule considerations.

Documentation

There are many problems or shortcomings connected with
software quality documentation. To begin with, many regu-
lations and standards used for software development are based
on procedures developed for hardware. Also, references made
to other regulations and standards are extensive and cross
referencing can be considerably time consuming. Finally,
there is a problem associated with too many regulations,
standards, andeguidelines. If personnel are flooded with .
directives, there is confusion regarding which to follow and
the tendency may be to ignore the directives and improvise.

Therefore, to alleviate these problems, a consolidation
of relevant information from all necessary regulations into

one general software quality document will provide distinct

advantages. First, a standardized plan will enable DoD to

X}
0
L]
L

develop a standardized strategy with regard to software

AR
‘.'. l“‘..l' ".
b -gep

o
A%

EPA

quality assurance. Next, DoD and contractors will become

accustomed to standard operating procedures for evaluating

the quality of software. And finally, control on the part
of DoD will be more visible.

79

TR A A A A A e P TR TN ILE S S R A Y ot
AR AR AN LIS AN PR IRTRES R AR OO S g 01

~~~~~~~



T b bt B N A V- A NI NS A AN YA S i)

The groundwork in this direction was undertaken at the
Joint Logistics Commanders (JLC) software workshop held in

1979. Recommendations and plans for implementation are

developed, but no final document has been coordinated

y between the services.

Techniques and Tools

Neither the civilian companies nor the Air Force agen-
cies extensively used software techniques and tools. The

civilian companies deeloped their own tools to fit the

B A

software situation. Very few commercially produced tools
were used. A noted weakness in this approach was the lack
of formal tool validation and documentation. Only by
repeated use were any defects in the tools corrected.

Within the Air Force agencies only a few tools were .
used, especially in simulation. These tools were purchased

commercially and due to the competitiveness of the market

were verified and validated by the producer. Probably the
: most effective technique the Air Force agencies used was

the checklist approach to evaluate procedures.

- Even though software tools abound, their use should
) only be considered where it will prove to be more cost
effective and more accurate to have the task automated
. rather than performing it manually. r -
: RN
Training R
- ',:'_'..:
5 Training and training programs in the U.S. military ;51
. services and agencies range from extensive to almost non- gi{
H 2
; N
80 .'.n.‘.;
P
R0
- . $“-
; xR
\ . o -. e ‘. ." .j ' .;h-." \;_--" A .}\‘n_'.}'f,:. S NAR T ..'-. «,F:' et d" I-._\ A R -. TR AT AT S PR TR TL ."; 1




existent. The Defense Contracting Administration Service
(DCAS) has two excellent quality assurance training programs.
One is an individual certification program whereby quality
assurance speclalists are certified in one or more areas.

The second DCAS training program is a formal intern program.
This program is three years in length and consists of both
classroom and on-the-job training (42:36).

On-the-job training is received by personnel to assist
them to develop the skills needed to perform their assigned
tasks. Both the civilian companies and the Air Force agen-
cies relied heavily on this method of training. In addition,
their software quality assurance training has primarily cen-
tered on reading any available guidebooks.

The need for training cannot be over emphasized. 1If
software quality assurance pers;nnel do not ahve the tech-
nical expertise to ensure that requirements are met, the
resulting effects on the software product may be devastating.
But if adequate training is provided, many benefits can be

seen:

1, Training in the use of software tools and techniques will

enable personnel to perform software quality assurance

functions as a group separate from and independent of

any other group.

e

| N
with skill and confidence, and ensure that projects are %ﬁgﬁ
Roses

A

l 2. Trained software quality personnel can perform activities
:
' completed within time and cost constraints.

81

L s
U ARSI LA AP TR S L L S S

Y N * a2 e AT AT W AT LR APy RO
TN AT XINNTNTAIN W I A Y SR HEA R A B ASURCS CR PN |

MR




3. Training programs strengthen the professional level of

the personnel.

Benefits Gained

A number of benefits gained through the implementation
of a quality assurance program were gathered while conducting
the interviews. The follﬁwing list is a composite of those
benefits:

1. It has provided increased management visibility into the
development process through reviews and audits.

2. Project risk has been reduced through more disciplined
and thorough testing.

3. Quality assurance records have been centralized. These
include problem reports, deviations and waivers, reviews
and audits, and test and inspection reports among others.

4, 1t assures certain elements of quality in every phase of
the software development.

5. The substantial reduction in the amount of rework has
lead to a significant savings in life cycle costs.

6. It allows delivery of computer software whhiich meets all

contractual requirements.

Chapter Summary

In developing this chapter, a comparison was performed
between civilian, Air Force, and the current literature on
software quality assurance. Using the criteria established

in Chapter III, a comprehensive account of the different




" "%V = ~——r -
f;'.'..f. N N R o r VoV TV Iw T Y

|

viewpoints was presented in preparation for the next chapter,
where the recommendations and conclusions are offered.
Throughout the data collection ahd the analysis, one
theme kept surfacing over and over. Software quality
assurance, in itself, does not create quality in a product,
instead it becomes a necessary part of everybody's job to

ensure the user gets the highest qdality product possible.

»
(]

L3
LW AN

8 3 o, ..-'M

«aT.ToeTHEEE KON Ty T WEENE T: »YTINTY Y
P
’

oy N SAA

-

e’ "

-

A A AT PI  r  LTr R S O S PR UL L S AL G
PR LA R



TR T AT e T AT LTI AR

V. Recommendations and Conclusions

This fifth and final chapter is the culmination of the

research effort. It endeavors to present inferences and

-. -' . .‘ ’

7

recommendations warranted by the nature and depth of the

% research. In addition, this research purports not to pro-
vide the entire solution to the software problem as stated
in the first chapter, but to provide a contribution to the 2]

ultimate solution. i;ﬁ

Research Summary

Whether software is developed internally or by a con-
tractor, the program or general manager must ensure that the
software and its related documentation are of the highest

quality possible. The most effective means of achieving

5 these goals is a comprehensive quality assurance program. :gg
2 Research has indicated that the minimum key elements for a iié
successful and effective program are planning, staffing and =
organization, reviews and audits, testing, library control, iiz
techniques and tools, documentation, configuration management, igf
and training. In addition, it was observed that there was a ;3;
common theme to the successful programs, both civilian and g%ﬁ
. military. That theme was there must be a disciplined approach gij
to implementing an effective quality assurance program. ;%;
é This section is grouped into categories in order to pro- EE?
: vide for a logical presentation. These categories include Sﬁi
. policy, organization, and education/training. %ﬁ:
3 A
o8
NN A e e e e L N a g e S o




I TRI o Ko e A 0.l i A A P St A L A S S AR ANE AN P RN el t ot ol e B g R e
%

EF:

Policy. Although military and civilian teamwork along §§§

with excellent management have resulted in a few-highly suc- ?35

cessful software projects, these effective management prac- E%g

tices must be incorporated and used on a broader basis. The é%g

. implementation of current guidance in DoD directives and EEE
military regulations (e.g., MIL-STD-1521A, MIL-S-52779A, .

MIL-Q-9858A, AFR 74-1) is often incomplete or not effective. ;Ei

In order to ensure proper emphasis is given to quality assur- iiﬁ

ance, a unique service-wide regulation that integrates the ;E?

tasks and functions defined in current regulations, standards, éﬁ%

etc. should be developed and approved. This quality assur- %EE

ance regulation will not only provide for more effective use 53:

of scarce software resources, but its approach will aid in ;é?

d ) minimizing risks and achieve the required performance at the éEf
lowest possible cost. * %gi

Included in this regulation should be sections explaining g%g

each element of a software quality assurance program. The iff

1 weakness in current regulations is that only select elements, iés
such as quality assurance plans, are discussed. Without ade- gg%

A quate consideration given to each element of software quality EE%
assurance, there cannot be an adequate quality assurance pro- 5&

gram developed. Once this objective has been obtained, then g%g

. the work of implementing software quality assurance practices E%
throughout the software development process will be performed ji

with greater facility. \E%
Organization. The recent trend has been to combine many Ei:

of the functional disciplines into one organization, reporting SE:

.

‘ A

.Q - .- » rd - " ' - -‘ W o o .. '.t "I '.. - ". ... o N
. aon, s SRR A N -.‘\u o~ ':3'-.!\'.-.".&". oS ",;_,', "N .-3. ,\ N \."-,".a.'_y.x.s.s.a. RN



- 'AD-A147 552 A SURVEY AND EYALUATION IJF SOFTHHRE QUALITY RSSURRNCE /2 .
(U) RIR FORCE INST OF TECH WRIGHT- PRTTERSUN AFB
L OF SYSTEMS AND LOGISTICS S P LAMB SEP 84
UNCLASSIFIED RFIT/GSH/LSV/B'&S 19

wy




®

Y
SRSV DA S

T
PN

alea Nad

-
A

-

AN L oy

LA

-

ERIPRIPIIAIA T oby e Tl Sall Sed S A AT

S,

-t

=

|

'
'

.
0

=
1.6
=

s e

|




e TV N PN M B

o

—— SOy o & < A A B St St et & ~-l
e Rl S e T Y T e Tt I e R T v T e SR VAL

POLE S R OIS Ry (g R Nty Rk Ot sl madl wnd v ot

to top management. The Army (DARCOM) and the Navy (NAVMAT)

both have this type of structure. There is no quantitative

data to prove that these organizational changes have resulted

in improved product quality; but increased attention to qual-

ity assurance is definitely a by-product of these changes.

The organizational changes will also eliminate the

current Alr Force fragmentation which exists. In addition,

the following advantages will result from the changes:

1. It enhances front-end involvement during design and
development phases.

2, It combines similar functions which are interrelated.

3. It provides clear and direct lines of communication.

4, It reduces duplicatio? of efforts, multiple interpre-
tations, and conflicting direction.

5. It provides for continuing visibility and attention to i
quality assurance by top management. i

Education/Training. 1In comparing training available

within the Air Force to that available to the Defense Con-
tracting Administration Service (DCAS), it was otvious that

the Air Force agencies interviewed lag far behind. ODCAS has
two well established programs which concentrate on quality

assurance and the related disciplines. The Air Force agen-

X FAALS s SN

’
e %
' » A .
o 14
250y 8 g

cies have virtually no formal training programs. As a result,
there is an obvious requirement for education and training
to assure that the work force remains current in quality

assurance practices. .

e
L4

L

86

~
.

.
.4 b WY

{ »
:’(":'
A B

R




To begin with, all levels of management must have a

strong appreciation for the benefits to be gained from a

b_..
quality assurance program and they must continuously support jﬁqﬁ
PN
the program if the full value of the benefits is to be .{Hﬁ
f .;-:.'_::1
derived. To achieve this goal, a short, intensive, on-site P

training program presented by an authority in quality assur-
ance should be offered to top management, and should be under
way at all times.

In line with raising management appreciation for quality
assurance, there is a need to implement a formal training

program to upgrade the skills and capabilities of the quality

assurance work force. This formal approach can take the form
of a certification program. There are advantages to certifi-
cation programg. First, they will provide a level of depth
at the technical level that will give the quality assurance
personnel the expertise and confidence necessary to deal with
contractor personnel. Next, they will be geared to govern-

ment systems and provide standard training. Finally, certi-

fication programs will encourage further in-depth training.
Another significant area which needs to be addressed is

the establishment of orientation instruction. This type of

instruction is necessary regardless of the amount of training

or technical expertise obtained by personnel. Orientation

: instruction will provide personnel with a brief description f{ﬁ%
of the system, the specifications applicable to the systenm, R

and the work already accomplished. N

\::-.'::\

S

.P - A .

OO ST W ‘\'\'-..\'.‘.. .
s ST A e




Finally, there should be an Air Force Institute of

Technology (AFIT) Education with Industry program established.

This will provide access to "corporate" knowledge and experi-

‘a'elay
‘.."v"-'f

ence not obtained in the Air Force due to its personnel rota-

v e
Sy % Uy
, y

tion policy.

The education and training programs described above are
needed to upgrade the skills of personnel involved with soft-
E= ware quality assurance. These programs will also provide the

basis for Air Force career development.

Recommendations

Based on the research performed in this thesis effort,
the following recommendations are offered in hopes of
enhancing the quality assurance process:

1. Combine disciplines in one organization reporting to top

EE management and having line function responsibilities, EE
‘ not staff function responsibilities. It is important ta ;f'
emphasize that line managers are the focal points in s

management control. They are persons who judgement are .;f

incorporated in the approved plans, and they are the fi

= persons who must influence others and whose performance *j
E; is measured. Staff people collect, summarize, and pre- E%;
; sent information that is useful in the process. However, g;
- the significant decisions are made by the line manaders, ;}V
not by the staff (2:21).

. 2. Top management must continue to re-emphasize the impor- ;i{
- tance of quality assurance within the organization and NG
- o
7 88 1

"’ e CYRE IR S S . AP SR R R S S S B ) T e e W - R S R « T e ATt E a® e " n ' A %' a%. ta T a® e Tttt
A A A A A T N, -..\ AT P T T T WAL SR A R RO ..

Y




p PR T SR S AR AR SN, 5 B it Gt I s o Aty LA i e AT St R M i il M M S S e e N - pr i Bt . -y Ad

display a positive philosophy of commitment to the qual-
ity process. As has been discussed, without top manage-
ment acceptance, quality assurance programs produce a
less than desirable output.

3. Education and training programs must be developed to

assure availability of qualified personnel. These pro-

grams should include the following:

a. Intensive top management seminars.
b. Certification programs.
c. Orientation instruction.
d. Education with Industry programs.

4. A unique software quality assurance document should be
developed for joint service application. As a minimum,
the elements of a quality assurance program should be

addressed. While extensive progress has been made by

the Joint Logistic Commanders (JLC), much work needs to ::;'__",E:.
be completed before a single document finds its way into Sii]
use. .J!-l

S. Clear and concise documentation is an on-going problem Cii;
at any software developemnt facility. All efforts should -*5}
be made to review documentation and assist where possible
to improve any deficiencies.

6. Techniques and tools, whether uniquely developed or pur-
chased commercially, should be verified and validated as
thoroughly as the actual software product. The rationale

of repeated usage cannot be accepted as validation. All

89




o

Bt l’t'

b At

aspects of the technique or tool should be documented in

N

2 order to develop confidence in the software product.

,3 7. The philosophy of Software Development Capability/Capac-
A

§ ity Reviews (SDC/CR) should be incorporated into soft-
[

ware development contracts. So far, this review has
proven successful in evaluating a contractor's software
capability prior to source selection. As a result, many
potential problems can be prevented when inadequate

software contractors are eliminated early.

Problems Encountered

As with any research effort of this size, problems

occurred that should be mentioned to help explain any short-

comings. To begin with, the amount of time and effort needed
to complete the literature review took away from the time
available to do the field work and subsequent analysis. In
addition, proprietary information was encountered while con-
ducting the interviews. Due to the sensitive nature of this
information, no direct reference was made to any specific

company or organization.

Further Research

In this section, two major areas for further research
are discussed. These are quality assurance and training.

Quality Assurance. As this research has indicated,

software quality assurance is an area where software develop-

ers must place a great deal of emphasis. It is felt that

v
o oot

1A " V.

PP
4 % 'v.'b"

F Y= "2 ",", "n'-
. '."'.'x'Z‘-‘g hy ,‘-T & e

R .v"- t.‘\‘n‘.‘\'-

IR W S

-

DS SRy o
PRy R

L
.-

¥




SRR RN N IS A

LA L At U SRt e ™ e T = st gt e & g g ys i e Bgpe -t S v e i e

another approach should be undertaken to further study soft-
ware quality assurance. One way research could be conducted
is by sending questionnaires to personnel in quality assur-
ance departments at other companies in the software industry.
The questionnaires should be designed to determine how soft-
ware quality assurance is managed. from this, the Air Force
would be able to evaluate the different methods and develop
quality procedures for the software the Air Force purchases.
Training. Technological advances in software develop-
ment are resulting in improved quality assurance practices.
This is creating the need for software quality assurance
personnel with more specialized skills. Therefore, training
should be a major goal of any quality assurance organization.
This research effort has found that formal traiﬁing is often
neglected. Further study should be conducted as to the
benefits and possible cost savings that could be derived from
quality assurance training and education. In addition, types
of training programs should be discussed so as to offer the
widest spectrum of training possible. Also, different Air
Force organizations involved with software development should
be researched to determine the requirements for training pro-

grams in software quality assurance.

Conclusion
It is critical to the success of large weapons systems

that software be delivered to the field with the minimum

91

.....




L VAL

. T S

%7 _J VA
P L PN

B 0 KRARMRNS WAy | SUSHNAN

{‘.! 3 N

o

RN AN

N b AN

A AAS

»
v,

)

PPNt gt F Il A

. s
Yy

number of errors. For this reason, the discipline of soft-
ware quality assurance is needed.

To provide the highest level of software quality, the
entire development process must include quality checks at
each step from design through acceptance test. An active
software quality assurance program that identifies and cor-
rects errors during the development process is necessary.
This effort will lead to significant defects being identified
and resolved early; defects that would normally lead to major
schedule and cost impacts on the development effort.

If the quality of software is to improve, greater empha-
sis must be placed on software quality assurance as a sepa-
rate discipline. Quality software cannot be attained by
following hardware oriented plans and procedures, such as
MIL-Q-9858A. Therefore, software conformance standards must
be provided.

Technology is constantly changing and advancing, and
provision must be made to update personnel in the state-of-
the-art quality assurance practices. Continual training is
essential, both for those personnel who have quality assur-
ance background and those who do not.

Software quality assurance "is expected to employ the
best possible techniques and practices, assuring that the
products delivered as weapons systems are the best that
modern software technology can produce" (23:118). There is

no room for anything less.

92

" Bt et ” e d o v W— ey —
(A A A A A e A R NI ORISR R AR LA A T I T ISR, A T AN C]



S T T T N N T T N T i RS NCANE S N SN T e g, e 9 AP Ar i St e S0 Jand e i) b e s ol R

NN A A RO R M : RS R S R DI AR T ik S e ) of ul i T T 0y
i
2%

Appendix A: Directives/Mil-Standards/Requlations

This appendix identifies the government documents, by
type, that impact the quality assurance effort, and is pro-
i , vided to supplement the research.

Department of Defense Directives/Instructions

- DODI 4105.65 Acquisition of Automation Data Processing
=‘ Computer Program and Related Services
DODI 5000.31 Interim List of DoD Approved High Order
Programming Languages
- DOGDI 5010.21 Configuration Management Implementation
= Guidance
L.
g DODI 5010.27 Management of Automated Data System
Development
. DODI 7041.3 Economic Analysis and Program Evaluation B
i' for Resource Management
DODD 4105.55 Selection and Acquisition of Automated
Data Processing Resources
o DODD 4120.21 Specifications and Standards Application
. 000D 4155.1 Quality Assurance
L DODD 4155.19 NATO Quality Assurance
%} DODD 4160.19 Department of Defense Automatic Data
Nl Processing Equipment Reutilization Program
R DODD 5000.1 Major System Acquisition
Z; DODD 5000.2 Major System Acquisition Process
i DODD 5000. 3 Test and Evaluation
{? DODD 5000.19-L Acquisition Management Systems and Data
< Requirements Control List (AMSDL)
&7 DODD 5000.29 Management of Computer Resources in Major
) Defense Systems
Ef DODD 5010.19 Configuration Management -
o o3
o 93 o
7




T e

g 4
a8 .

K AP

DODD 5100.40

Responsibility for the Administration of

the DoD Automatic Data Processing Program

Military Standards/Specifications

MIL-STD-1098
MIL-STD-480

MIL-STD-481

MIL-STD-482

MIL-STD-483

MIL-STD-490

MIL-STD-499A
MIL-STD-781

.

MIL-STD-881A

MIL-STD-882

MIL-STD-1521A

MIL-STD-1535A

MIL-STD-15538B

MIL-STD-1588
MIL-STD~1589C
MIL-STD~-1679
MIL-STD-1750A

Quality Assurance Terms and Definitions

Configuration Control-Engineering Changes,
Deviations and Waivers

Configuration Control-Engineering Changes
(Short Form)

Configuration Status Accounting Data
Elements and Related Features

Configuration Management Practices for
Systems, Equipment, Munitions and Computer
Programs

Specification Practices

Engineering Management

Definitions of Effectiveness Terms for
Reliability, Maintainability, Human
Factors and Safety

Work Breakdown Structures for Defense
Material Items

System Safety Program for Systems and
Associated Subsystems and Equipment

Technical Reviews and Audits for Systems,
Equipment, and Computer Programs

Supplier Quality Assurance Program
Requirements

Aircraft Internal Time Division Command/
Response Multiplex Data Bus

JOVIAL (J3)
JOVIAL (J73)
Weapon System Software Development (NAVY)

Sixteen-Bit Computer Instruction Set
Architecture

94

TV T N




P T R N A O T T T A Mt Sk Pl S St vt g o/t
A A A N A R DAY S A T O

MIL-STD-1760

MIL-STD-1815
MIL-STD-1862
MIL-STD-SDS

MIL-STD-SQAM

MIL-Q-9858A
MIL-S-52779A
MIL-5-83490
MIL-HDBK-334

-------------------------------------------

Aircraft/Stores Electrical Interconnect
System

Ada
NEBULA 32 Bit Instruction Set Architecture

Defense System Software Development
(Preliminary Draft)

Software Quality Assessment and Measure-
ment (Proposed)

Quality Program Requirements
Quality Assurance Program Requirements
Specifications, Types and Forms

Evaluation of a Contractor's Software
Quality Assurance Program

Regulations/Manuals

AFR 70-1 Procurement of AF Assigned Items

AFR 70-18 Local Purchase Program (AFSC Supplement)

AFR 76-15 Procurement Quality Assurance

AFR 300-1 Automatic Data Processing Program
Management

AFR 300-~2 Management of Automatic Data Processing
Systems

AFM 300-6 Automatic Data Processing Resource
Management

AFR 300-10 Computer Programming Languages

AFM 300-12 Procedures for Managing Automatic Data
Processing Systems

AFR 310-1 Management of Contractor Data

AFR 310-2 Management of USAF ADP Program

AFR 800-14 (Vol. 1) Management of Computer Resources

in Systems

95




A e s T B e s e e T T T T AT v T o%

AFR 800-14 (vol. 1II) Acquisition and Support Proce-
5 dures for Computer Resources in Systems
. AFM 172-1 USAF Budget Manual
L AFCMDP 800-2 Acquisition Management - Contract
2 Management Guide
. AFCMDR 70-16 Supporting Contract Administration
;. AFCMDR 70-24 Subcontract Management Program
f: AFCMDR 74-1 Procurement Quality Assurance Program
Ei AFCMDR 84-1 Production Manufacturing Operations
fi AFCMDR 178-1 Contractor Management System Evaluation
:l Program
;3 AFCMDR 800-1 Acquisition Management - Contract
i: Management Engineering
- AFCMDR 800-3 Embedded Computer Resources
f& AFCMDR 800-11 AFCMD Memorandum of Agreement Managemen.
b System
Fi AFSC Sup 1 (AFR 300-10) Computer Programming Languages
|-
: AFLCR 800-21 Management and Support Procedures for

Computer Resources Used in Defense Systems

AFLCP/
AFSCP 800-34 Acquisition Logistics Management

T

i

i'._-

A

i:{.

3;\'

A0

N

L Shar

el

» i

=

'."_ ‘.._‘-

;_‘-. R
. LRTAN

y!, N
- -

.7 7]

e -

N

K

96

o5




............................

Appendix B8: Glossary of Techniques and Tools

This appendix defines the technigues and tools employed
i in a quality assurance program. The following glossary is

. neither all inclusive nor totally complete (43:212-225).

b Technique Glossary

1. ALGORITHM EVALUATION TEST: A technique used to evaluate
critical algorithm trade-offs (i.e., speed versus size
versus precision) before the design is finalized. Often
called "the hardest out first method", the technique
creates a detailed design based upon trial coding
results for key algorithms. The algorithms are often
extensively exercised in a simulated environment to
ensure mission requirements are satisfied.

2. ANALYTICAL MODELING: A technique used to express math-
ematically (usually by a set of equations) a represen-
tation of some real problem. Such models are valuable
for abstracting the essence of the subject of inquiry.
Because equations describing complex systems tend to be
complicated and often impossible to formulate, it is
often necessary to make simplifying assumptions, which
may tend to distort accuracy.

3. AUDITING: A formal technique employed to examine and
verify through inspection either the status of a program
and its documentation or the adherence of project per-
sonnel to established procedures. Scheduled audits are
normally contractually imposed and pericdically held.
Unscheduled audits are utilized at random intervals to
assess compliance with quality requirements.

4, CODE INSPECTION: A disciplined technique used for
inspecting the code and identifying errors. Partici-
pants have well-defined roles and criteria for eval-
vuating the code. If errors are identified, the code
is reworked. Follow-up procedures are used to ensure
that the errors have been corrected.

5. CORRECTNESS PROOFS: A technique used to prove the
correctness of programs using means similar to those
employed to prove mathematical theorems. Axioms and
theorems derived are used to establish the validity of
the program with respect to a precise specification of

its purpose. X
- -\
97
NP
== o
—
e
............. < . e en ey
R Ay AN R T A LT R e e T e e e e T T L e S, et p e Y
IR, VLRI, RN A AR A Y a gt e VPRI Y A e e RN LYY \J. l.\-\-:\'.\f'h hes ..\':S‘.




DESIGN INSPECTION: A disciplined technique used for
inspecting the design and identifying errors. Partici-
pants have well-defined roles and criteria for eval-
vating the design. If errors are identified, the design
is reworked. Follow-up procedures are used to ensure
the errors have been corrected.

ERROR-PRONE ANALYSIS: A technique employed during
coding to identify areas of the program that have
required abnormally frequent correction and change.
These areas can either be reworked or subjected to an
extensive test effort.

EQUIVALENCE CLASSES: A technique used to automatically
identify a complete set of test cases for a program.
The set is interpreted in terms of inequalities involv-
ing program variables that define a set of conditions
necessary for the particular program flow to actually
occur.

EXECUTION ANALYSIS: A technique employed during test

to investigate program behavior errors and to identify
areas in the code that were either untested or not fully
tested. The program is executed and statistics are
collected. Test results and the statistics are then
analyzed to insure that each interface, functional and
test requirement has been correctly mechanized by the
code. .

FUNCTIONAL TESTING: A technique used to demonstrate
that the software performs it specifications satisfac-
torily under normal operating conditions, computing
nominally correct output values from nominal input
values.

LOGICAL TESTING: A technique used to confirm that the
code performs its computation correctly. Items vali-
dated by logical testing include arithmetic (i.e., pre-
cision, accuracy, etc.), error handling, initialization,
interfaces, and timing.

PATH TESTING: A technique used to confirm that certain
test-effectiveness measures based on the program's
control topology have been realized. The technigue
assures that a sufficient number of statements, branch
paths, and subroutine calls have been exercised during
program execution. It also helps identify a complete
set of test cases for the program.

POST-FUNCTIONAL ANALYSIS: A technique employed after
completion of functional testing to identify function-
ally weak areas in the program. The recorded test SN

»

98

» - - : .-" .-. . Y . . . - .
- .‘: 'I .4 '.‘ P ‘F ‘-A‘- ‘.k{L “.. "k"‘ "A'




14,

15.

16.

17.

18.

19.

results are analyzed and the quality of the final
product is determined.

REVIEWING: A technique employed to examine and verify
through inspection either the status of a program and
its documentation or adhe.ence of project personnel to
established procedures. Scheduled reviews are normally
contractually imposed and periodically held. Informal
reviews are held frequently to assess in detail the
technical adequacy of the software product.

SIMULATION: Simulation is the process of studying
specific system characteristics by use of models exer-
cised over a period of time and a variety of conditions
for the purpose of evaluating alternatives, timing,
system capacities, performance, and constraints within
the confines of that system. Simulation can be used by
quality assurance throughout the life cycle. It can
assist in evaluating conceptual trade-offs. It can
also be used to model the environment and provide real-
istic test inputs to a program being examined.

STANDARDIZATION: A technique used to create an author-
itative model against which products and/or procedures
can be compared in order to determine their quality.
Software items for which standards can be easily estab-
lished include documentation, languages, designs, and
structured programming.

STATIC ANALYSIS: A technique employed during test to
identify weaknesses in the source code. The syntax of
a program is examined and statistics about it are gen-
erated. Items such as relationships between module,
program structure, error-prone constructions, and
symbol/subroutine cross-references are checked and
violations of established rules are anlyzed.

STRESS TESTING: A technique employed to confirm that
the code performs its specifications satisfactorily
under extreme operating conditions, computing nominally
correct output values from worst case input values
(i.e., singularities, end points for the range of data,
etc.)

SYMBOLIC EXECUTION: A technique that employs symbolic
data to confirm that the software performs properly.
Symbolic execution allows one to choose intermediate
points in the test spectrum ranging from individual
test runs to correctness proofs. Its results can be
used to develop a minimum set of test cases.

99

| S
0

A

...i
U
- 4
L
R T
f;_;q
DN
o
L

-y
-




20. WALK-THROUGHS: A technique used for reviewing the
design or code and identifying errors. The responsible
programmer discusses his product with his peers and
solicits their constructive advice. Product modifica-

: tions are then made at the discretion of the programmer

- to correct problems identified during review.

ii Tool Glossary o

1. ACCURACY STUDY PROCESSOR: A computer program used to
perform calculations or assist in determining if program
variables are computed with required accuracy. The
processor accepts mathematical equations and data as -
inputs. It then uses the data as variables in the ~
equations and solves them.

2. AUTOMATED TEST GENERATOR: A computer program that
accepts inputs specifying a test scenario in some oy
special language, generates the exact computer inputs, e
and determines the expected results. -

3. COMPARATOR: A computer program used to compare two
versions of the same computer program under test to
establish identical configuration or to specifically
identify changes in the source coding between the two

5. CROSS-REFERENCE: A group of computer programs that
provide cross-reference information on system compo-
nents. For example, programs can be cross-referenced
with other programs, macros, parameter names, etc.
This capability is useful in problem-solving and test- o
ing to assess impact of changes to one area or another. -
This capability should be provided in most compiler -
environments.

versions. -

Y . il e
4, CONSISTENCY CHECKER: A computer program used to deter- o
mine 1) if requirements and/or designs specified for v
computer programs are consistent with each other and -
their data base and 2) if they are complete. o

6. DATA BASE ANALYZER: A computer program that reports
information on every usage of data, identifies each
program using any data elements, and indicates whether
the program inputs, uses, modifies, or outputs the data
element. Any unused data is printed. Errors dealing N,
with misuse and nonuse of data and conflicts in data N
usage are identified during the analysis. ¥

N
R LA

7. DEGUGGER: Compile and execution-time checkout and
degug capabilities that help identify and isolate

100 e

.........................................................................
..............................

...........




program errors. They usually include commands or
directives such as DUMP, TRACE, MODIFY CONTENTS, BREAK-
POINT, etc. Some debuggers operate at the source level
and others at the object level with some additional
source information.

DECISION TABLES: A mechanism used to represent infor-
mation on program conditions, rules, and actions in
tabular form that can be automatically translated to
executable code by a processor. Decision tables are a
tabular representation of the design which can be used
to clarify the control flow of decision alternatives
by presenting the information in a concise and under-
standable format.

DYNAMIC ANALYZER: A computer program that instruments
the source code by adding counters and other statistics
gathering sensors and produces reports on how thoroughly
the various portions of the code have been exercised
after the augmented code is executed. Dynamic analyzers
provide information useful for tuning, optimization, and
test case design.

DYNAMIC SIMULATOR: A computer program used to check out
a program in a simulated environment comparable to that
“in which it will reside. Closed-loop effects between
computer and environmental models are gained when the
various models respond to inputs and outputs. The sim-
ulator allows the environment to be stabilized at a
specific configuration for any number of runs required
to observe, diagnose, and resolve problems in the oper-
ational program.

EDITOR: A computer program used to analyze source pro-
grams for coding errors and to extract information that
can be used for checking relationships between sections
of code. The editor can scan source code and detect
violations to specific programming practices and stand-
ards, construct an extensive cross-reference list of
all labels, variables and constants, and check for pre-
scribed program formats.

FLOWCHARTER: A computer program used to show in detail
the logical structure of a computer program. The flow
is determined from the actual operations as specified by
the executable instructions, not from comments. The
flowcharts generated can be compared to flowcharts pro-
vided in the computer program design specification to
show discrepancies and illuminate differences.

HARDWARE MONITOR: A unit that obtains signals from a
host computer through probes attached directly to the

101

R



Ty
e

14,

15.

16.

17.

" INTERFACE CHECKER: A computer program used to automat-

computer's circuitry. The signals obtained are fed to
counters and timers and are recorded. These data are
then reduced to provide information about system and/or
program performance (CPU activity, channel utilization,
etc.).

INSTRUCTION TRACE: A computer program used to record e
every instance a certain class of operations occurs and L
triggers event-driven data collection. 1In some cases, .=
this creates a complete timed record of events occurring :
during program execution.

ically check the range and limits of variables as well
as the scaling of the source program to assure compli-
ance with interface control documents.

INTERRUPT ANALYZER: A computer program that determines
potential conflicts to a system as a result of the
occurrence of an interrupt.

LANGUAGE PROCESSORS: Computer programs used to trans-
late high-level or symbolic instruction mnemonics into
computer-oriented code capable of being executed by a
computer. Compilers, assemblers and meta-assemblers
are example tools used for program development. Pre-
processors have been developed to support implementa-
tion of modegyn programming techniques.

LIBRARIES: A collection of organized information used
for reference or study. Many varieties of library
systems can be implemented. Some manage the storage
and distribution of the computer program in both source
and object form. Others manage the computer program, i
its documentation and related test data. o

LOGIC ANALYZER: A computer program use to automati-
cally reconstruct equations forming the basis of a
program and to flowchart assembly language programs.

MANAGEMENT INFORMATION SYSTEM: Consists of a computer :
based information system (a particular combination of AN
human service, material service, and equipment service) o
for the purpose of gathering, organizing, communicating, e
and presenting information to be used by individuals for ’
planning and controlling an enterprise.

REQUIREMENTS TRACER: A computer program used to provide N
traceability from requirements through design and imple- e
mentation of the software products. Traceability is ol
characterized to the extent that an audit trail exists
for the successive implementation of each requirement.

102




.............................................

22. SIMULATOR: A computer program that provides the target
. system with inputs or responses that resemble those that o

would have been provided by the process for the device D
l being simulated. The simulator's function is to present »
data to the system at the correct time and in an accept-
able format.

detailed statistics about system performance. Because o
software monitors reside in memory, they have access to »
all the tables the system maintains. Therefore, they

can examine such things as core usage, queue lengths,

¢ and individual program operation to help measure S
performance. L

p
ﬁ 23, SOFTWARE MONITOR: A computer program that provides e

STANDARDS: Procedures, rules, and conventions used for |
prescribing disciplined program development. Architec- ]
ture and partitioning rules, documentation conventions, 2z§€
language conventions, configuration, and data manage- i
ment procedures, etc., are typical examples under this 1
category. 3

94

STANDARDS ANALYZER: A computer program used to auto-
matically determine whether prescribed programming i T
standards and practices have been followed. The pro- RN
gram can check for violations to standards set for such R
conventions as program size, commentary, structure, etc. IS

TR
e et

STATIC ANALYZER: A computer program used to provide
information about the features of a source program.
This type of tool examines the source code statically
(not under execution conditions) and performs syntax
analysis, structure checks, module interface checks,
event sequence analysis and other similar functions.

STRUCTURE ANALYZER: A computer program used to examine
source code and determine that structuring rules set
for either the control or data structure, or both, have
been obeyed.

TEST BED: A test site composed of actual hardware
(hardware test site) or simulated equipment (software
test site) or some combination. A hardware test site
uses the actual computer and interface hardware to check
out the hardware/software interfaces and actual input/
output. The program execution is confirmed using actual
hardware timing characteristics, but the output is
limited and test repeatability is a problem. A software
test site uses an instruction level and/or statement
level simulator to model actual hardware. A software
test site permits full control of inputs and computer

103 .'-'_:j:jl




r_‘;-‘- -—re Cl 3 g - < LR . g - DR > - g . B At MR AT AP LA S SR S vl s Sah Jirdn i

characteristics, allows processing of intermediate out-
puts without destroying simulated time, and allows full
test repeatability and good diagnostics.

29. TEST DRIVERS, SCRIPTS: To run tests in a controlled
manner, it is often necessary to work within the frame-
work of a "scenario" -- a description of a dynamic sit-
uation. To accomplish this, the input data files for
the system must be loaded with data values representing
the test situation or events to yield recorded data to
evaluate against expected results. These tools permit
generation of data in external form to be entered into
the system at the proper time.

30. TEST-RESULT PROCESSOR: A computer program used to
perform test output data reduction, formatting, and
printing. Some perform statistical analysis where the
original data may be the output of a monitor.

31. TEXT EDITOR: A computer program used to prepare docu-
mentation and perform work-file edits (erase, insert,
change, and move words or groups of words). The pro-
gram requires a facility for on-line storage and recall
of text units for inspection, editing, or printing.

TIMING ANALYZER: A computer program that monitors and
prints execution time for all program elements (func-
tions, routines, and subroutdnes).

104




€200 S R S ARSI MDD AL NI AT A Pl A MEREAN PR M N el S

Appendix C: Sample Letter and Interview Guide

OEPARTMENT OF THE AIR FORCE
AR FORCE INSTITUTE OF TECHNOLOGY (AU)
WRIGHT-PATTERSON AIR PORCE BASE, ON 48433

MAr3 LS (Mr. Michael D. Bates, 233-484%)

ar®n OF

waecr Software Quality Assurance

b

1. A master’s degree candidate (Captain Steven P. Lamb) in

— the Systems Management Program at the Air Force Institute of
Technology (AFIT) is conducting research under the guidance
of the AFIT graduate faculty (Mr. Michael D. Bates). Captain
Lamdb has defined a research objective which will determine
approaches to improving the quality of computer software
before turnover to the Air Force. Based on this objective,
he will be able to provide recommendations on the content of
an effective quality assurance program.

2. To achieve the objective, Captain Lamd needs to interview
people who Know rour organization’s software quality assur-
ance program. May we have your permission for Captain Lamb
to interview the people you designate? In addition, would
ryou send Captain Lamb any printed information, such as organ-
izational charts, that support the interview Quide Captain
Lamb plans to use. Our contact point for this effort is

Mr. Bates, AFiT/LSY, Wright-Patterson AFB, Ohio, 43433.

3. 1 would appreciate your cooperation in helping Captain
Lamb complete this research project. 0f course, we will
amalgamate the responses so that none are attributadle to an
individual. Thank you for your help.

i S

. SMITm, Colonel, USAF 1 Atch
Do Interview Guide
Sch of Srstems and Logistics

N
AR FORCE —A GBEA® wav OF S ERCX
. s‘.
[ '\.:
A Y
105 S
.“.-..h\.
-...I“'Q
\‘ -

TN R e -, TR TR TS U
N N N A T T N T T A R e T N et




Lac
e
.
RS
e

AL

Interview Guide

Background

1.
2.
3.
4,

Name.
Position.
How many years have you worked here?

In what field is your formal training?

Quality Assurance Planning

5.

6.

7.
8.

Wwhat planning exercises, documents and such are used to
assure quality software prior to the start of a project?

What problems are encountered during the quality assur-
ance planning process?

Who are the key people involved in this planning process?

Is user involvement in the software development process
encouraged? If so, how?

Staffing and Organization

9.

10.

11.

12.

13.

Where does the quality assurance goup fit in the organ-
ization?

What type of authority does the quality assurance group
have over the software product?

What education and training do the personnel in the
quality assurance group have?

wWwhat functions are performed and/or controlled by the
quality assurance group?

How many people are permanently assigned to the quality
assurance group?

Reviews and Audits

14,

Is a schedule developed for conducting software reviews
and audits during the development life cycle?




15.

16.
17.

If so, when is this schedule developed and where is it
documented?

Who performs the reviews and audits?

How are the results of the software reviews and audits
documented and published?

Software Testing

18.

19.

20.

21.

Who performs the software testing throughout the devel-
opment life cycle?

wWwhat is the organizational relationship between the
quality assurance group and the testing group?

Who certifies that the test results are the actual
findings of the tests?

What documents are used to control software testing?

Library Control

22.

23.

wWhat safeguards assure no unauthorized changes are made
to the developmental software?

wWhat would be considered "controlled materials"?

Software Documentation

24.

25.

What standards are followed when preparing software
documentation?

Is a Unit Development Folder (UDF) approach used to keep
track of documentation for each software unit or module?

Quality Assurance Technigques and Tools

26.

27.

28.

Techniques consist of procedures arranged to simplify
the evaluation process (e.g., walk-throughs, audits,
etc.). Are quality assurance techniques used?

Tools are automated aids used in evaluation (e.g., edi-
tors, simulators, etc.). Are quality assurance tools
used?

Where are quality assurance techniques and tools iden-
tified?

107

.
D
. ',
e
.
e
'
S
W
e
e
O
.
S .
.
ATIRN
My
Ve

h P N AR L LI PCIEN
0 g USRS e e e
N I SIS IR OISR
% BN W L0080

2"
(]
Y,
-
el

4 %
[

h Y
..f

22,

[
L]
s,




29. Are quality assurance techniques and tools verified as
to their usefulness prior to implementing?

s T I T YPI
N R 3 P

Training

30. What type of training do new quality assurance personnel
receive?

31. If a new software product is designed, how is the user
trained?

N ITA NN

Follow-up Considerations

P v
o,

ﬂ 32. Who handles problems with software after release?

33, What methods of feedback are used to obtain information
from the user after release?

'Fj‘..'-""“ o

Conclusion
34. 1Is there anything you would like to add?

35. Are there any questions I can answer for you?

-‘fp’c‘.'
R

U bl EN NS AS S o) DR

108




10.

11.

12,

Bibliography

Alberts, David S. "The Economics of Software Quality
Assurance," Jutorial: Software Testing and validation
Techniques. 348-357. 1IEEE, Inc., New York, 1978.

Anthony, Robert N. and David W. Young. Management Con-
trol in Non-Profit Organizations. Homewood IL: Richard
0. Irwin, Inc., 1984.

Aeronautical Systems Division. Software Development
Capability/Capacity Review. Instructional manual.
ASD/EN, Wright-Patterson AFB OH, May 1984.

Babel, Philip S. Joint Service Acquisition Management
Initiatives. Report. ASD/EN, Wright-Patterson AFB OH,
May 1984.

Baker, Emanuel R. and Matthew J. Fisher. "A Software
Quality Framework," Concepts, 5: 95-107 (Autumn 1982).

Bates, Michael D. Lecture materials distributed by the
Department of System Acquisition Management. School of
Systems and Logistics, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, February 1984.

Blanchard, Benjamin S. Engineering Organization and
Management. Englewood Cliffs NJ: Prentice-Hall, Inc.,
1976.

Boebert, W. Earl. "Software Quality Through Software
Management," Software Quality Management, edited by
John DO. Cooper and Matthew J. Fisher. New York:
Petrocelli Books, Inc., 1979.

Boehm, Barry W. Software Engineering Economics.
Englewood Cliffs NJ: Prentice-Hall, Inc., 198l.

----- . "Quantitative Evaluation of Software Quality,"”
Jutorial: Models and Metrics for Software Management
Engineering. 218-231. IEEE, Inc., New York, 1980.

Boeing Aerospace Company. Software Acquisition Engi-
neering Guidebook: Software Quality Assurance. Report
No. ASD-TR-78-47. ASD/ENE, Wright-Patterson AFB OH,
January 1979 (AD-AQ82 425).

Buckley, Fletcher. "A Standard for Software Quality
Assurance Plans," Computer, 12: 43-49 (August 1979).

109

--------




13.

la.

15.

l6.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Bunyard, Major General Jerry Max, USA and James Mike
Coward. "Today's Risks in Software Development -- Can
They Be Significantly Reduced?" Concepts, 5: 73-94
(Autumn 1982).

Burch, John G., Jr. and others. Information Systems:
Theory and Practice (Third Edition). New York: John
Wiley and Sons, Inc., 1983,

Campanizzi, J. A. "Structured Software Testing," Qual-
ity Progress, 17: 14-15 (May 1984).

Department of Defense. Technic:l Reviews and Audits

for Systems, Equipment, and Computer Programs.
MIL-STD-1521A. Washington: Government Printing Office,
21 December 1981.

------ Software Quality Assurance Program Requirements.
MIL-S-52779A. Washington: Government Printing Office,

1 August 1979.

------ Quality Assurance Program. AFR 74-~1.
Washington: Government Printing Office, 1 June 1979.

----- . Confiquration Practices for Systems, Equipment,
Munitions, and Computer Programs. MIL-STD-483.
Washington: Government PrIn%Ing Office, 31 December 19570.
----- . %uality Assurance Terms and Definitions.

098

MIL-STD- . washington: Government Printing Office,
4 April 1969.

----- . Specifications Practices. MIL-STD-490.
Washington: Government Printing Office, 30 October 1968.

DeRoze, Barry C. and Thomas H. Nyman. "The Software
Life Cycle -- A Management and Technological Challenge
in the Department of Defense," IEEE Transactions on
Software Engineering, 4: 309-318 (July 1978).

Dobbins, James A. "Software Quality Assurance,” Con-
cepts, 5: 108-118 (Autumn 1982).

Drezner, S. M. and others. 7The Computer Resources Man-
agement Study. Report No. R-1855/1-PR. Rand, Santa
Monica CA, April 1976.

Dunn, Robert and Richard Ullman. Quality Assurance for
Computer Software. New York: McGraw-Hill, Inc., 1982.

Emory, C. William. Business Research Methods. Homewood
IL: Richard D. Irwin, Inc,, 1980.

110 s




DI N

Frank, Werner L. Critical Issues in Software. New York:
John Wiley and Sons, Inc., 1983.

Gansler, J. S. "Keynote: Software Management," Computer )
Software Engineering, edited by Jerome Fox. Brooklyn NY: o
Polytechnic Press, 1976. RS

Glass, Robert L. Software Reliability Guidebook. i
Englewood Cl1iffs NJ: Prentice-Hall, Inc., 1979. i

Grinath, Arthur C. and Phil H. Vess. "Making SQA Work:
The Development of a Software Quality System,” Quality
Progress, 16: 18-23 (July 1983).

31. Grove, H. Mark. "DoD Policy for Acquisition of Embedded R
Computer Resources," Concepts, 5: 9-36 (Autumn 1982). b

iy A

32. Hannan, James. "QA Needed for Effective Software,"
Government Computer News, 3: 29+ (April 1984).

33. Ingrassia, Frank S. "The Unit Development Folder (UDF): -
An Effective Management Tool for Software Development," lf@
Tutorial: Software Management. 249-262. IEEE, Inc., e
New York, 1979.

34. Institute of Electrical and Electronics Engineers.
Standard Glossary of Software Engineering Terminology.
IEEE Std 729. 1IEEE, Inc., New York, 1983.

35. Knight, Garney M. "Organizational Planning for Software
Quality," Software Quality Management, edited by John D.
Cooper and Matthew J. Fisher. New York: Petrocelli
Books, Inc., 1979.

36. Klucas, Lieutenant Colonel Casper H., USAF and others.
"Joint Service Software Policy and Standards," Concepts,
5: 191-201 (Autumn 1982).

37. Lewis, Robert 0. "Software Verification and validation wonr
(V&V)," Software Quality Management, edited by John D. 1
Cooper and Matthew J. Fisher. New York: Petrocelli SR
Books, Inc., 1979. el

38. Lloyd, David K. and Myron Lipow. Reliability: Manage- ‘3&1
ment, Methods and Mathematics (Second E€dition). Redondo -
Beach CA: Published by the Authors, 1977.

© gy

39. Marciniak, Colonel John J., USAF. "A Perspective on PO
Military Software Standardization Efforts," Second A
Software Engineering Standards Applications Workshop. Sl
19-23, IEEE, Inc., New York, 1983. ,




......................................

40. McCall, James A. "An Introduction to Software Quality
Metrics," Software Quality Management, edited by John
D. Cooper and Matthew J. Fisher. New York: Petrocelli
Books, Inc., 1979.

41, Poston, Robert M. "Software Quality Assurance Imple-
mentation,”" The IEEE Computer Society's Sixth Interna-
tional Computer Software and Applications Conference.
356-357. IEEE, Inc., New York, 1982.

.; 42. Product Quality in the Operaticnal Environment. Research

< report. HQ AFSC, Wright-Patterson AFB OH, November 1979.

' 43. Reifer, Donald J. "Software Quality Assurance Tools and

i' Techniques," Software gualitﬁ Management, edited by John

O. Cooper and Matthew J. Fisher. New York: Petrocelli

Books, Inc., 1979.

44, wwa-- . "A Glossary of Software Tools and Techniques,"
Computer, 10: 52-59 (July 1977).

45, Rubey, Raymond J. "The Effect of Standardization on
Avionics Software Quality Assurance," IEEE National

Aerospace and Electronics Conference. 656-662. IEEE,
Inc., New York, 1979.
46, —===- . "Planning for Software Reliability,™ Proceedings:
- Annual Reliability and Maintainability Symposium.
o 495-499. 1IEEE, Inc., New York, 1977.
47. Srinivasan, C. A. and Paul E. Dascher. "Quality Assur-

- ance Program: A Method to Improve Software Management,"
Hospital Financial Management, 35: 24-26+ (June 198l).

48. Stamm, Stephen L. "Assuring Quality Quality Assurance,"
Datamation, 27: 195-198+ (March 1981).

49. Systems Architects, Inc. Improving Software Quality
Assurance Methods. Report No. RADC-TR-82-106. Rome
Air Development Center, Griffiss AFB NY, April 1982
(AD-Al1l6 980).

50. System Development Corporation. Software Acgquisition
Management Guidebook: Software Quality Assurance.
Report No. ESD-1R-77-255. Electronic Systems Division,

Hanscom AFB MA, August 1977 (AD-A047 318).

51. TRW Defense and Space Systems Group. Airborne Systems
Software Acquisition Engineering Guidebook for Quality

Assurance. Report No. ASD-T1R-78-8. ASD/ENAI,
Wright-Patterson AFB OH, November 1977 (AD-A059 068).




52.

53.

54.

55.

56.

TRW Systems Group. Software Development and Configura-
tion Management Manual. TRW Software Series No.
TRW-55-73-07. December 1973.

Walters, Gene F. "Application of Metrics to a Software
Quality Management (AM) Program," Software Quality Man-
agemerit, edited by John D. Cooper and Matthew J. Fisher.
New York: Petrocelli Books, Inc., 1979. A

Webster's New Collegiate Dictionary. Springfield MA:
G. and C. Merriam Co., 1979.

white, Benjamin 8. "Planning for Software Quality,"

IEEE National Aerospace and Electronics Conference.

Yeh, Raymond T. Current Trends in Programming Method-
ology. Englewood Ci1Iffs NJ: Prentice-Hall, Inc., 1977.

113




- P LEPR s ards ) AP
e e e e S e e s e e R e T L L LT L T Y.

L "'..‘.~.' P
LA R X -
ERRRT RS R

y VITA
P
3 Captain Steven P. Lamb was born on 26 August 1952 in EZ
Eﬁ Amarillo, Texas. He graduated from high school in Widefield, g%
= Colorado, in 1970 and attended Southern Colorado State College . Ei
;E from which he received the degree of Bachelor of Science in 25
§ Education in March 1975. In September 1979, he was commis- Fi
- sioned in the Air Force through the Officer Training School =
N program at Lackland Air Force Base, Texas. Following training, ;i
he completed the Computer Systems Development Officer Course iﬁ
at Keesler Air Force Base, Mississippi, in January 1980. He ;;
was then assigned as Chief, Communications System Segment z;
Configuration Management Office, Headquarters North American Eﬁ%
,5 Aerospace Defense Command, Cheyenne Mountain Compléx, Colorado, ?E
until entering the School of Systems and Logistics, Air Force §§
Institute of Technology, in June 1983.
-
E Permanent address: é;
t; 4825 Astrozon Blvd., Lot 191 §§
' Colorado Springs, Colorado 80916 -
.4 R
2
~, ,.:'.
; =
: e s ne o esen e t

. A T Y M et T et et .t a .
O R N N T, G N Mgty

e e e ey =
R R




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

.......

REPORT DOCUMENTATION PAGE

e, REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

15. RESTRAICTIVE MARKINGS

2e. SECURITY CLASSISICATION AUTHORITY

2b. OECLASSISICATION/DOWNGRADING SCHEDULE

4. PERFOAMING ORGANIZATION REPORT NUMBER(S)

AFIT/GSM/LSY/845-19

6a. NAME OF PERFOAMING ORGANIZATION
School of Systems
and Logistics

b, OFFICE SYMBOL
(If spplicadie)

AFIT/LS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

8. MONITORING ORGANIZATION AREPORT NUMBER(S)

Ta. NAME OF MONITORING ORGANIZATION

8c. ADDRESS (City, State end ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

T5. ADDRESS (City, State end ZIP Code)

Sa. NAME OF PUNDING/SPONSORING OFFICE SYMBOL
ORGANIZATION (it applicebie)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Sc. ADORESS (City. State and ZIP Code)

10. SOURCE OF FUNDING NOS.

PROGARAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Clessificstion)
See Box 19

12. PERSONAL AUTHOR(S)
Steven P. Lamb, B.S., Captain, USAF

13a. TYPE OF REPORT 130, TIME COVERED
MS Thesis emOM_________TO

14. DATE OF REPORT (Vr., Mo., Dey) 16. PAGE COUNT

1984 September 125

. —
16. SUPPLEMENTARY NOTATION

""'_.‘ Sy &y

Dean for Ressarch and Professicnal Develepment

17. COSATI CODES
FIELD GAOUP

SUB. GR.

18. SUBJECT TERMS (Continue on

wfiio-Sovessinsituio=si-Sosinivyr=taroy
reverseViktigindatrunyt A0 number)
| Quality Assurance, Quality CJ#&ro!,
09 Software Quality, Software Reliability,
Software Manggement

A SURVEY AND EVALUATION OF
SOFTWARE QUALITY ASSURANCE

Title:

Thesis Advisor:

19. ABSTRACT (Continue on reverse if necessary and identify by dlock number)

Ronald H. Rasch, Major, USAF

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED K] same as mer. O omicusens O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22s. NAME OF AESPONSIBLE INDIVIDUAL
Ronald H. Rasch, Major, USAF

0D FORM 1473, 83 APR

--------
-----

COITION OF 1 JAN 73 (8 OBSOLETE.

22¢. OFFICE SYMBOL

AFIT/LSB

22b. TELEPHONE NUMBER
(Include Area Code)

513-255-4020

UNCLASSIFIED

SECUAITY CLASSIFICATION OF THIS PAGE

e CRJCRIP INE PR " . N -‘b-.‘_ R ’ _,."~.‘- . . . SRS .
A B TN T e T e s N AM‘_.\‘A‘J' R YOI e .‘.A'.::'d‘.'

PO

’a




It is crucial to the success of mission critical
computer resources (MCCR) that software be delivered
for operational use with the minimum number of errors
possible. For this reason, the discipline of saftware
quality assurance is needed. This research focuses on .
data collection by means of an extensive literature
review and personal interviews with civiliart and Air
Force software development organizations. Then anal-
ysis was performed to determine what approaches would
improve the quality of software before delivery to the
Air Force for operational use.

To provide the highest level of software quality,
the entire development process must include quality
checks at each step from design through acceptance
test. An active software quality assurance program
that identifies and corrects errors during the devel-
opment process is necessary. This effort will lead
to significant defects being identified and resolved
early. If the quality of software is to improve,
greater emphasis must be placed on software gquality
assurance as a separate discipline. Quality software
cannot be attained by following hardware oriented .
plans and procedures. Therefore, software conformance
standards must be provided. Technology is constantly
changing and advancing, and provision must be made to
update personnel in the state-of-the-art quality
assurance practices. Continual training is essential,
both for those personnel who have quality assurance
background and those who do not. The arguments for
software quality assurance are critical. 1In short,
they are to combat error and improve software quality
to meet mission needs.







