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1. TINTRODUCTION

The flowing medium in a gun tube typically is a mixture of a
compressible gas with burning solid propellant grains. Details of the flow
are important for weapons development, but only bulk properties can be
routinely measured, such as the trajectory of the projectile, the pressure
history at a fixed station, the heating of the gun tube, etc. Therefore, a
need exists for a detailed mathematical model of interior ballistics two-
phase flows.

A complete mathematical description of the flow could provide the
motion and combustion history of each propellant grain and of the gas flow
between the grains. The corresponding local governing equations are easily
established, but they cannot be solved numerically because of the great
number of grid points needed to describe a flow with wmany moving
interfaces. ‘The computational work can be reduced only be sacrificing the
detailed description of the flow. To that end one considers mean values of
the two-phase flow that are derived from the local properties of the gas and
grains. The governing equations for these average properties are
established by averaging the local governing equations.

This report presents a complete and consistent mathematical model of
three—-dimensional, transient interior ballistics (gas-solid) phenomena in
which the total effects of the gas phase viscosity, turbulence, and heat
conduction on the average variables are included. In contrast, most
existing models neglect viscous and heat conduction effects, and, thus, can
characterize only the wave propagation in a two-phase flow. The theory of
the model is complete and consistent in that all the averaged variables,
equations, initial and boundary conditions, regions of definition of the
variables and correlations are precisely defined and derived using the same
averaging. The need for such an approach is due to the complexity of the
multiphase, multidimensional viscous flow field and a lack of detailed
experimental data. Under such conditions, models formulated on
phenomenological arguments are often unreliable. Also a phenomenological
derivation seldom provides precise error bounds. A theoretically derived
model permits one to investigate with more confidence ballistic processes
that cannot be observed 1in detail because error bounds are precisely

formilated and can be tested. Furthermore, a careful mathematical
derivation of the model can reveal restrictions on the model itself. The
presented mathematical model possesses the following features: (n The

averaging process 1insures a sufficient differentiability of the average
variables so that the governing partial differential equations are
defined. (2) Appropriate averages are used for quantities that are defined
over volume and for those that are defined over a surface. (3) The regions
of definition of the average variables are given. (4 Te necessary
auxiliary conditions to the governing equations, e.g., initial conditions
and boundary conditions, are consistent with the averaging process used to
derive the governing equations. (5) Terms that are modeled by correlations
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possess simple physical interpretations. Estimates are given for the
difference between the theoretical definitions of the correlations and the
expressions actually used. (6) Whenever the contribution of a term is
neglected in an equation, a corresponding error term 18 established. (7)
Because the equations are to be solved numerically, attention 1s given to an
appropriate form for numerical solution. (8) The model represents a two-=
phase (gas-solid) flow in which the solid ignites and burns, and it also
simulates other phenomena which occur in a viscous, heat conducting interior
ballistic flow.

Previous work on two-phase equations for interior ballistics has been
done by Gough,1 Kuo et al.s2 Fisher and 'I‘rippe,3 and Krier et al.* The
primary purpose of these works was the investigation of the wave propagation
within the gun tube during the early phases of the interior ballistic

phenomenon. Gough's equations were later augmented to include gas-phase
viscosity and heat conduction, and used in a computer program developed by
Gibeling et al.5 Our equations are different because we have used a

different averaging process, chosen a different set of dependent variables,
and changed some correlation models that provide experimental input to the
theory. Furthermore, our approach differs from the ones mentioned above
because it 1s based solely on a consistent mathematical theory.

The averages in thils report are computed by weighted averaging over a
finite wvolume. Gough1 used instead a welghted averaging over an infinite
space~time domain with an unspecified weight function. The rationale of our
choice 1s based on the observation that any averaging smooths out local
details. 1In order not to lose too many details, one should, therefore, use

Ip.s. Gough, "The Flow of a Compressible Gas Through an Aggregate of Mobile,

Reacting Particles,” Ph.D. Thesis, Department of Mechanical Engineering,
MeGill University, Montreal, 1974.

2. K. Kuo, J.H. Koo, T.R. Davis, and G.R. Coates, "Transient Combustion in
Mobile, Gas-Permeable Propellants,” Acta. Astron., Vol. 3, No. 7-8, pp.
574-591, 1976.

35.B. Fisher and A.P. Trippe, "Mathematical Model of Center Core Ignition in
the 175mm Gun," Calspan Report V@-5163-D-2, 1974.

4. Krier, W.F. wvan Tassell, S. Rajan, and J. Vershaw, 'Model of
Flamespreading and Combustion Through Packed Beds of Propellant Grains,"
University of Illinois at Urbana-Champaign Report, TR-AAE-74-1, 1974.

S Gibeling, R.C. Buggeln, and H. McDonald, "Development of a Two-
Dimensional Implicit Interior Ballietics Code,” USA ARDC AMCCOM/Ballistic
Research Laboratory Contractor Report, ARBRL-CR-00411, APG, MD, January
1980, AD No. AD 387 4458.



Sect. 1
the smallest averaging domain that is compatible with the requirements of
the problem at hand. One requirement of the averages is that they should be
differentiable as many times as the ensuing governing equations indicate.

It has been shown by Delhaye and A.chard6 that line or surface averages of a
gas/particle mixture do not possess the required differentiability
properties, Therefore, the smallest domain for averaging is a three-
dimensional volume. Time averaging is not needed to insure
differentiability, if the weight function for space averaging 1is chosen
properly (see Section 2.2). If one, nevertheless, chooses to time average,
then the time average interval would have to be very small because we are
interested in an accurate characterization of a rapidly changing flow field.

The size of the averaging volume is important. The use of an infinite
volume for averaging is not appropriate in confined flows because for such a
volume the sum of the volume fractions of the two phases is not equal to
one. This creates problems for the formulation of the governing equations
and the boundary conditions, and for the interpretation of the results. The
problem with the formulation of the equations 1is eliminated by using an
appropriate finite volume average, while the others become more easily
tractable. We discuss the problems in Sections 4.4 and 4.6. If the weight
function in any infinite volume average is zero outside some finite distance
from the point at which the average is taken, then the resulting average is
obviously equivalent to a finite volume average. If the value of the weight
function is zero outside some distance which depends on the location of the
point at which the average 1is taken, then the resulting average 1is
equivalent to a variable finite volume average. In this type of average
additional terms in the partial differential equations for the average
quantities appear that represent the effects of the change of the averaging
volume in time and space. This complication is avoided in the present
report by restricting the attention to a fixed finite volume average with a
fixed weight function.

The average equations which are derived in Section 3 include the
effects of gas viscosity and of turbulence. Furthermore, the choice of
equations for averaging and the choice of dependent variables has a bearing
on the numerical solution of the equations. We have chosen a set of
variables that eliminates some possible numerical singularities, enhances
the accuracy of numerical differentiation, and separates important physical
processes for easier modeling. The choice of variables is discussed in
Section 4.2. We also have chosen the internal energy equation for averaging

6
J.M. Delhaye and J.L. Achard, "On the Use of Averaging Operators in Two-

Phase Modeling! in The
Vol. 1: Light Water Reactors, 0.C. Jones and S.G. Bankoff, eds., pp. 289-
332, ASME, New York, 1977.
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instead of the commonly used total energy equation. The reasons for this
choice are that it produces a clear separation of physical effects and a
more lucid modeling of two-phase phenomena. They are discussed in Sections
3.2.3 and 4.7.3, respectively. As a result of the consideration of viscous
effec:s and the choice of equations and variables, our governing equations
differ from those derived by Gough. Each set of equations has different
approximation errors and some of the required models of experimental
correlations are different.

The experimental correlations in interior ballistics are characterized
by a scarcity of data. This i1s one reason why corresponding mathematical
models have not been firmly established. In Section 4.7 we 1list a set of
correlations, most of which are included in Gough's work. Some improvements
and changes reflect the difference of our approach.

Even with the reduction of the problem size by the change from local to
average functions, one 1s faced with a formidable mumerical problem.
Typically, in a two-phase flow one has a set of eleven non-linear partial
differential equations. (Up to thirteen equations if a turbulence model is
included). In order to describe the three-dimensional flow in reasonable
detail one has to specify the eleven variables at a minimum of about 54,000
grid points. If the flow is specialized to axially symmetric, then the
number of grid points may be reduced to about 1,500. Therefore, one should
exploit the axial symmetry of the gun whenever possible. The proper
coordinates for flows with axial symmetry are cylindrical coordinates.
Therefore, we have listed in Appendix A all equations in cylindrical
coordinates for flows that are independent of the circumferential
coordinate.

2. ANALYTICAL BASIS

2.1 Assumptions

In the next three Sections (2.2, 2.3, and 2.4) we shall discuss some
properties of averaged functions and develop general formulas that are
needed for the derivations in Section 3. The averages to be discussed are
weighted space averages over a finite averaging volume. We do not try to
establish general properties of such averages but rather concentrate on what
is needed for a specific 1interior ballistics modeling. For that
application, the quantities to be averaged are the local properties of a gas
and of propellant particles within the averaging volume. We assume that no
other material is present in the tube.

The gas is assumed to be non-reacting and obeying a set of algebraic
equations of state that permits one to express all thermodynamic variables
in terms of two such quantities. The particular set of equations of state
considered are the Noble-Abel equation and a constant ratio of specific heats.



Sect. 2.2.1
However, most of the results are independent of the particular set of
equations of state chosen.

We will assume that the gas is viscous and in a state without shocks
within the averaging volume. This is necessary to have average equations
with the proper differentiability conditions. Particular differentiability
conditions of the local gas properties will be enumerated in Section 2.2.

If shocks are present in the gas flow, then one could average only over
the shock free regions and treat the shocks as explicit boundaries.
However, this approach has serious drawbacks because of the uncertainty of
the corresponding boundary conditions (see Section 4.6). Space or time
averaging is not the appropriate technique for the treatment of interior
ballistics flows with shocks or other internal discontinuities.

The propellant particles are assumed to be incompressible and
elastic. We shall neglect all effects of the rotation of the solid
particles, and shall assume that the grains do not fracture. Iike in the
gas, the local material properties within and on the surface of each
particle are assumed to be differentiable functions of time and space.
Particulars of the differentiability conditions will be enumerated in
Section 2.2,

2.2 Averaging Integrals and Their Derivatives

2.2.1 Averaging Volume Integrals. We define the averaging volume V(x)
as the inside of a closed surface S(x). Both are independent of time and
dependent on a spacial coordinate vector x as a parameter. For instance, if
V(x) is a sphere, then X may be chosen as the center of the sphere. About
the surface S(x), we assume that it has a well defined normal almost
everywhere, The shape and the size of the averaging volume are assumed to

be constant.

The particles are defined by corresponding surfaces, s i° Because the
particles are moving and burning, the Shi are functions of time, but they
are independent of the parametric coordinate vector x. We assume that the
particle surfaces, too, have well defined normals almost everywhere. We
define as S_ the union of all those particle surfaces s i that are within
the averaging volume V, including its surface Sy+ Accordingly, the
intersection S r]Sv can have a finite area. Most often, the area of the
intersection wfil be zero (Figure 1).

All averages wlll be defined by integrals over the space occupied
either by gas or by particles. In order to have a convenient notation for
the corresponding integrals, we define a phasic function 8 as follows
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FINITE AREA
INTERSECTION
OF Sy AND Sp

8207723 76RO AREA
55! INTERSECTION
25 oF Sy AND S,
\

Figure 1. Averaging Volume

0 if £ is inside a particle at time t (2.1)
B(t,g) =

1 1f £ is outside particles or on a particle surface at
time t.

We will also use a non-negative weight function g for the calculation of
averages. ILet

VG = [ g(-x) dV(£) = constant (Z242)
V(x)

be the integral of the weight function ("the weighted averaging volume").
Then the weighted volume fraction occupied by gas is

at0 =55 | 8E aVE) =ge [ B(t,E) gE-x) dV(E)
v aS(t,x) V(%) (2.3)

10
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The intrinsic average ¢ (t,x) of a function ¢(t,x) that is defined in the
regions occupied by gas is defined by

ale,) 46,0 =35 [ gEx) §(£,8) dV(E)
Vgas(t,x)

(2.4)

[ B(t,E) gE—x) ¢ (t,E) dV(E) .
V(x)

3~

Notice that, whereas g(t,x) is defined only within regions occupied by gas,
the average ¢ (t,x) is defined for all values of x (within limits outlined in
Section 2.3).

* *
A corresponding average ¢ (t,x) of a function ¢(t,x) that is defined
only inside the particles is given by

(e, 10 =5 [ [1-8(e,6) laE-08E,0)avE) . (2.5)
V(x)

Sufficient conditions for the existence of the average funcEion are the;
piecewise continuity with respect to x of the functions ¢(t,x) and ¢(t,x)
within their regions of definition. Obviously, the average of any function
of time only is the function itself.

2.2.2 Time Derivative of Volume Integrals. The averaging integrals
(2.3), (2.4), and (2.5) define functions of t and x. In this section we
formulate differentiability conditions of the average functions with respect
to time t.

Applying Ieibnitz formila (Truesdell and Toupin)7 to an averaging

integral (2.4) over V, . we obtain

g

7c. Truesdell and R. Toupin, "The Classical Field Theories," in Encyclopedia.
of Physics, S. Flugge, ed., Vol. III/1, Springer-Verlag, 1960.

L
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P P
e v(t,x,E) dV(g) = = [y(t,x,E)] dv(E)
ity &t,x) v {t,x)at [ ]
gas gas
+ [ [w(t,x,e@)) (v, +n_)] dasz)
S (t,x) fp 8P (2.6)
or P
%;- [ 8(t,E) ¥(t,x,8) dV(E)
V(x)
- s yave)+ Pl 0E()) (o en ) dS@@)
V(x) ot Sp(t’x) sp sp

where ;s is the velocity of a point of S, and ng, is the outward unit
normal oP S_ at the same point. (The "outward” normal points by definition
into the grains, Figure 1.) The surface integral is only over Sp and not

over Sv because the latter surface is assumed to be stationary.

The first integral on the right-hand side of Eq. (2.6) exists and is a
continuous function of x and t if 3y /3t is a continuous function of x and t
and a piecewise continuous function of £. The surface integral over Sp in
Eq. (2.6) exists if the surface velocity is finite. However, the area of
the surface Sp has discontinuities with respect to x and, possibly, with
respect to t, whenever the 1intersection Splj Sy has a finite area.
Therefore, the surface integral is a continuous function of x and t only if
Yy =0 on Sye

Because in our case
P(t,x,E) = g(E-x) ¢ (t,E) , (2.7)

we may formulate the following sufficient conditions for the continuity of
the time derivative of the averaging integral in terms of g and ¢:

g ;t’g) is continuous with respect

to t and piecewise continuous
with respect to £ in the domain
of definition of ¢,
g(&-x) is continuous in V, (2.8)

g€-x) =0 on the surface Sy*

12
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If $ denotes a gas phase local variable, then the first condition 1in Eq.
(2.8) applies only when (£,t) designates a point in the gas phase. If
$ denotes a solid phase local variable, then the first condition 1in Fq.
(2.8) applies only when (£,t) designates a point in the solid phase.

The differentiation formula (2.6) is in terms of g and $

30(e,8) ol Pofune b B G -
£ BE — dv(g) = 37 £ Bgp dv é gh (u om0} dS . 2.2)
|5

~

*
The corresponding formula for functions ¢ that are defined within the
solid grains is

* 9 A
3 3 % * o~
] (1-8) g 3 gy - 2 [ (1-8) gp dv + [ gbp (u_-+n_) dS . (2.10)
at at sp sp
\Y \Y S
p
In the latter formula, the surface normal ng again points 1into the

grains. Because now we are integrating over the inside of the grains, the
sign of the last integral 1in Eq. (2.10) is opposite to that of the
corresponding integral in Eq. (2.9).

2.2.3 Spacial Derivatives of Volume Integrals. Applyang Leibnitz type
formula to an averaging integral (2.4) over V as One obtains

g

V. [ B(t,E) w(t,x,E) dV(E) =[ B V yaV + [ ynds+ [ yn_ dS
V(x) v S-S 86 v
v P v p
(2.11)

8

Gauss theorem (Fulks” p. 354) applied to the same integration volume 1s

[V yav= [ yndS+[ ¥ n _ds . (2:129
v & S8, s s, P

*We note that ¢ and ¢ could be scalars, vectors, or second order tensors.
For example, if | ie a vector, dots signifying the divergence of ¢ and the
dot product of ¢ should be used in Eq. (3.11). For simplicity, the use of
dots is8 omitted in Section 2 wherever ¢ and ¢ are not specified. The
understood presence or abgence of a dot should be clear form the context.

8. Pulks, Advanced Calculus, 2nd Ed., John Wiley and Sons, Inc., New York,
1969.

13
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Subtracting Eq. (2.12) from Eq. (2.11) one obtains

W By dv =/ W, + v€)¢ av - | ¢nspds + ¢nspds : (2.13)
\Y )Y S SJ]S
P v
Sufficient conditions for the continuity of the right-hand side of Eq.
(2.13) are

(Vx + VE) y(t,x,E) is continuous with respect to
x and t, and piecewise continuous
with respect to £ in the domain
of definition of ¢.
(2.14)

Yy =0 on S,

In our application we want some of the average functions to be
differentiable Fwice with respect to the spacial variables. By a formal
differentiation of Eq. (2.13) we obtain, assuming that ¢ = 0 on S,

W9 £ Bw§v s é BV + Vb dv -7 é ¥n S (2.15)
P

Next, we apply the formula (2.13) to the first integral on the right-hand
side of Eq. (2.*5) obtaining

v =
x{/6(\7x FVY v {,B(Vx+vg) (V, + Vv av
| (2.16)
- é v + Vg)WnspdS + ans v+ Ve)¢“sp ds
P p v

The surface integral in (2.15) is

7h é ¢nspds = é vy LI s . (2.17)
P P

Sufficient continuity conditions for (2.16) are

14
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(VX+ Vg) (VX +-V£)w is piecewise continuous with respect to
£, and continuous with respect to t
and x in the domain of definition of ¢ ,

(2.18)
(VX +-V£)w =0 on S, .
Sufficient for the continuity of (2.17) is that
wa is continuous with respect to t and
x and plecewise continuous with (2.19)
respect to £ .

Because Y (t,x,E) = g(&-x)$(t,£), we may express the continuity conditions
in terms of g(£-x) and ¢(t,f) as follows.

Sufficient for the continuity of first order spacial derivatives of the
averaging integral is that (see Eq. (2.14))

V£$(t,£) is piecewise continuous with respect
to £ and continuous with respect to
t in the domain of the definition of ¢ i

g (& —x) is continuous in V R (2.20)

g(e-x) =0 on S, .

The integration formula (2.13) in terms of g and $, if the conditions (2.20)
are satisfied, is

[ egle(e,e)ave) =V [ BEVAV + [ Epn_dS . (2.21)

V(x) *y S

P

*
The corresponding formula to (2.21) for functions ¢ defined within the solid
grains is

€ %¢

[ U115 V(e ,8) av(e) =V, [ [1-8lgé &v - [ g, ds

V(%) V(x) S, SP (2.22)

The continuity conditons (2.18) and (2.19) for second order derivatives are
in terms of g and ¢ as follows
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V.V $(t,5) is plecewise continuous with
E'E
respect to £ and continuous
with respect to t in the domain
of definition of ¢ ,

ng(g—x) 1s piecewise continuous (This
suffices because ¢ 1s (2\-23)
continuously differentiable due
to the first condition, Eq. (2.20)).

ge-x) =0 on S, .

The integration formula (2.15) 1s, if these conditions are satisfied,

[ BE.V $(t,E)AV(E) =V V_ [ BgpdV + [ gV, ¢n_dS - [ (V,.g)¢n_ dS. (2.24)
V(x)  °° X Xy(x) R

In summary, 1f the weight function g is chosen such that its first
derivatives are plecewise continuous, g > 0 in V, and g = 0 on Sys thenvthe
averaging 1integrals are contlnuously differentiable at least once if ¢ is
differentiable, and at least twice 1if a i1s twice differentiable within 1its
region of definition.

2.2.4 Averaging Surface Integrals. Some flow properties are only
defined on the surface of the propellant grains, e.g., the burning rate, the
regression distance, and the surface temperature. The corresponding
averages are computed by surface integrals.

The weighted area of the grain surface that 1s contalned in the
averaging volume 1is

sG = [ g(s(t,p)-x) ds(x) , (2.25)
S (t,x
p( )
where x = s(t,z) defines the surface and [ represents surface coordinates.

Contrary to the weighted averaging volume VG, the weighted surface area SG
is not a constant but a function of t and x.

Average surface functions are defined by

¢(c,x)=§—c [ g(s(t,n)=x)$(t,c) ds(z) . (2.26)
Sp(t,x)
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Sect. 2.2.4
We discuss the differentiability of the surface averages by considering
a single grain. let its surface s(t,z) be defined in Cartesian coordinates

by

x (t,z)
s(t,g) = y(t,%) . (2.27)
zg(t,z)

Then the surface element dS(z) is defined by (Courant and John)9
ds = z(t,z)dg A (2.28)

where dg isTthe product of the differentials of the components of z, Z(t,z)

= (det [(%?J (%g)])l/z, and 3s/37 is the Jacobian matrix of the function
s(t,z).

The contributions of the single grain to the weighted grain surface
area is according to Eq. (2.25)

g
2

SG; = {f ggs(t,c)-x) Z(t,c) dr . (2.29)
1

The time derivative of SG; 1is

3 3s 3z aC
5o (56, )= [ (¥ g3t 2 d + [ g3p d& + [ [ &z dC]-gg . (2.80)
s 8 sﬂSv

The integral {n the last term in KEq. (2.30) is to be taken over the
intersection C of the grain surface s with the boundary S, of the averaging
volume. If we assume that g = 0 on S, then the 1integral is identically
zero, and we dq not have to specify conditions for 3C/3t.

R. Courant and F. John, Introduction to Caleulus and Analysis, Vol. II, pp.
459~462, John Wiley and Sons, Inc., New York, 1974.

17



Sect. 2.2.4

Sufficient conditions for the right-hand side of Eq. (2.30) to be a
continuous function of x and t are

gc?t is piecewise continuous with respect to g
and continuous with respect to t s
ng is continuous, with possible exception of
isolated singular points (281
g=0 on S,
ng =0 on S, g

The first condition in Eq. (2.31) is satisfied i1f the grain surface has a
normal almost everywhere. The next two conditions on g(£-x) are essentially
the same as encountered before in the discussion of volume averages. The
last condition on g is new, and it needs to be introduced if 3s/3t is not
equal to zero and the intersection s() s,y has a finite area. (See the
comment to Eq. (2.6).)

Next, we consider the spacial derivatives of S5G;. One obtains
according to lejbnitz type rule

@
aQ

v (56,) =j vV.EZd *[ [ m2dd 4 (2.32)

s sfs

@

X
v

The right-hand side of Eq. (2.32) obviously ic continuous if the conditions
(2.31) are satisfied.

If the averaging volume contains several gralns then SG is the sum of
the individual‘SGi. The sum is continuously differentiable if each of the
grains satisfies the first condition in Eq. (2.31), and g satisfies the
other three conditions.

We now turn to the surface average function ¢(t,x), defined by Eq.
(2.26). We notice that ¢ is a continuous function of all its arguments, if
the conditiong (2.31) are satisifed and the surface function g(t,;) is
continuous with respect to time and piecewise continuous with respect to
. We assume that 5 possesses these properties and reformulate Eq. (2.26)
as follows

¢ 1 (s6) =1 (J goé ds) . (2.33)
i i Spi
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The time derivatjve of the left-hand side of Eq. (2.33) is

IQJ

(8G) + (SG) %% . (2.36)

L =¢

[+ 3

2

The first term 1in this expression 1is continuous under our assumptions.
Therefore, also the second term (and 3¢/3t) 1s continuous, 1if the time
derivative of the right-hand side of Eq. (2.33) 1s continuous. The
contribution of each term on the right-hand side of Eq. (2.33) to the time
derivative 1is, via Eq. (2.30)

3s ¥ )
Ry =/ (V@) 2dza+] gtza
8 : 8
pi pi
L . (2.35)
+[ gscda+[ [ egézad T .
s

R i is a continuous function of x and t 1f in addition to the condition
(2.31) ¢ also safisfies the condition

£

1s a continuous function of t and a
plecewise continuous function of ¢ (2.36)
on each Spi'

QL
ot

Because ¢ and (SG)t’ in Eq. (2.34), are continuous functions if (2.31) and
(2.36) are satisfied, these conditions are sufficient to 1insure that ¢ (t,x)
is continuously differentiable with respect to time.

In order to 1investigate the spacial differentiability of ¢(t,x) we
differentiate Eq. (2.33) with respect to x. On the left-hand side we obtain

L, = ¢Vx(sc;) + (sc)vxq; S (2.37)

On the right-hand side of Eq. (2.33), each summand produces the expression
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1=/ (v,8) $zdg +[ [ gz acjv.c . (2.38)
Spil. E;piﬂsv
y is continuous if the conditions (2.31) are satisfied. Because
¢V_(SG) is continuous, the conditions are sufficient for continuous
di?ferentiability of ¢ with respect to the spacial coordinate.

Second order spacial derivatives of surface averaged quantities do not
enter the governing equations. Therefore, we do not formulate existence
condition for these derivatives.

2.2.5 Differential Equation for Surface Averages. All surface
averages satisfy a differential equation for material properties. We shall
derive the equation in this section.

let U(t,x) be an arbitrary velocity vector and let g satisfy the
conditions (2.31). Then one can combine Eqs. (2.30) and (2.32) obtaining
for the sum SG of all individual SGi.

3? (s¢) + pv,_ (s6) = I(ng)-(U = ) 2dg + [ g g . (2.39)

S S
P P

The integrals on the right-hand side are taken over S i.e., over all grain
surfaces contained in the averaging volume.

A correspopding formula can be derived for the product (SG) ¢ from Eqgs.
(2.34), (2.35), (2.37), and (2.38) with the result

g? ((se) ¢) + u v, ((s6) ¢) -fs (v g)e (U - 53%) $ Z dg

P (2.40)

°’l

N

[-%]
-e-<

+/ g
S

P

+/ g
5

Next, we eliminate the derivatives of SG between Egs. (2.39) and (2.40),
obtaining the differential equation

3% L ¥,e-L (G- _ 38y,
s D¢ = fs B~ 2 g SGfS(cp .¢) (U - =) (Vgg)ZdC

(2.41)
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The first integral on the right-hand side of Eq. (2.41) is by definition the
surface average of 3$/3t. The other two integrals are generally assumed to
be small and neglected for interior ballistics problems. We notice that
both integrals vanish 1if ¢ = $ on the propellant surface, i.e., if the
property $ is identical for all grains. If U is taken as the average grain
velocity, the term U-3s/3t may be small, e.g., if all grains have the same
velocity and dp not burn, because 9s/3t 1is equal to the sum of the local
grain velocity and local surface regression velocity. The term 3Z/3t is
zero if the grains are not burning.

If we neglect the last two integrals in Eq. (2.41) and use Eq. (2.26)
to define

_ 1 3%
b= fsg-a—t—dS(c) (2.42)
p

then the differential equation, Eq. (2.41) simplifies to

3¢ =
sF U gl= 4> (2.43)

where <¢> is a model for é.

For the velocity U one chooses the average grain velocity, assuming
that by this choice one of the neglected terms can be kept small while not
introducing another dependent variable.

2.3 Regions of Definition of Average Variables

In this section we describe regions of definition of the average
functions. In principle, the averaging volume V can be of any shape and
size. However, in order to preserve an axial symmetry of the averaged
quantities, the volume V, the weight function g, and the reference point x
associated with the location of the volume, all must be chosen with certain
symmetry properties. Instead of trying to formulate a general averaging
volume with the desired properties, we give two examples of admissible
averaging volumes.

The simplest example of an averaging volume is a sphere with the
reference point x in its center and a weight function that depends only on
the distance from its center. Let the diameter of the sphere be £.

Another example is an orthogonal circular cylinder with the reference
point at its center and with an axis parallel to the axis of the gun tube.
To be specific, we assume that the height of the cylinder is 2%/3 if & is
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Sect. 2.3
the diameter of the cylinder. In this example, the weight function depends
on the radial as well as on the axial coordinates within the cylinder, and
the volume of the averaging volume is the same as that of the spherical
averaging volume.

In both examples, the quantity £ is equal to a diameter of the
averaging volume. In general, we may assume a characteristic length
2 assoclated with any particular averaging volume. The size of the volume
and, therefore, the size of 2, is restricted by two requirements. First,
the averaging volume must fit inside the gun barrel and, second, we want it
to be larger than the largest grain %B order to insure that gas 1s present
within every averaging volume. let D be the largest diameter of a grain
and let D, . be the inner diameter gf the gun tube. Then in the two
examples £ must satisfy the conditions

*
(Dp)max <% < (Dgypdpin - (2.44)

One would obtajn similar restrict&pns for the characteristic length of any
averaging volume. We assume that Dp and D, ., are such that the inequalities
in Eq. (2.44) can be satisfied by a margin if % is properly chosen.

The position of the averaging volume (and its reference point) inside
the gun tube 1is restricted. If a constant averaging volume intersects a
boundary, then the sum of the gas volume fraction o, as defined by Egq.
(2.3), and of the corresponding particle volume fraction is not equal to
one. Consequently, the definition of averages by Eqs. (2.2) through (2.5)
cannot be used 1f a non-zero intersection occurs, and the location of the
averaging volume is restricted to positions without intersections between
the averaging volume and boundaries. (See also Section 4.6) This means
that the reference point x cannot be moved arbitrarily close to all
boundaries. If the averaging volume is a sphere with the diameter %, then x
is restricted to locations that are at least £/2 away from the breech, the
walls, and prdjectile base. In the second example (cylinder), x may be
located at points that are at least £/2 away from the tube walls and £/3
away from the breech and from the projectile base. (bnsequently, because of
the finite size of the averaging volume, none of the averaggd quantities are
defined in the boundary regions. If the grain diameter D is large, then
the regions where the averaged quantities are not defined can be a
significant part of the interior of the gun tube.

In the remaining regions, the porosity a and all averages pertaining to
gas properties' are everywhere defined by Eqs. (2.3) and (2.4), respectively.

Average properties of propellant grains are defined by Eq. (2.5). The
definition provides a value for the average function only 1f a < 1, i.e., if
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there are grains within the averaging volume. The limitation also holds for
surface averaged quantities, defined by Eq. (2.26). The surface averaged
quantities are grain properties and they are defined only if there are
grains within the averaging volume.

Another average deggndent variable which is introduced in Section 4.2
is the weighted number m of grains in the averaging volume that is defined

by
* *
m(t,x) = VG (l—u)/vp(d) , (2.45)

where 3 is the average regression distance of the grains and v (3) is the
corresponding gr%}n volume, given by a correlation function. Azcordin& to
the definition, m is indeterminate in regions without ggains, becagse d is
not defined in those regions. We notice, however that m + 0 and V.m + O as
X moves to a position where the averag}ng volume contains no grains.
Therefore, we may de£ine a continuation m = 0 in regions without grains.
With this extension, m is defined in all those regions where gas properties
are defined, i.e., everywhere, except in boundary regions.

2.4 Averaging Weight Function

The averaging weight function g(y) is defined inside the averaging
volume V and on its boundary S,. It has the following properties (see
Sections 2.2.2, 2.2.3, and 2.2.4)

g> 0 in V g
g=20 on S, ,

(2.46)
Vg continuous in V with possible exception of isolated

singular points 5

Vg =0 on S .

Next, we give examples of functions g(y) that satisfy these conditions
for the two examples of averaging volumes mentioned in the previous
section. let 'y =&-x, i.e., let the point of origin of the coordinate
vector y be at the center of the averaging volume. (In both our examples
the center coincides with the reference point x.)
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If V is a sphere with the diameter £, then we may define the weilght
function by

g(y) =z (2+n) (Z"‘n) (4+n) (l = zyz) l4+n , F5E _%< y < 2/2 (2.47)

with an arbitrary n > 0. The weighted averaging volume VG is for this g(y)

2/2
V6 =[ gdv=t4r | g(y>y2dy = %n (%)3 A (2.48)
\Y 0o

As a second example we chose a cylinder with the diameter £ and height
22/3. let r and z be the radial and axial coordinates within the cylinder,
with the point of origin at the center of the cylinder Then we may define
with arbitrary positive m and n

(24m) (2+n) (3+n) (1 - }JL-%) S e H) EE (2.49)

I\JI)—-

g(r,z) =

The weighted averaging volume VG is for this choice of g

£/3 /2 4 .4y 3
Ve =[gav="ur [ [ g(r,z)r drdz = gn(f) , (2.50)
\ o o

i.e., equal to the volume |V| of the cylinder itself.

In both examples, we have weight functions with a maximum at the center
of the averaging volume. The functions are continuous but their gradients
possess discontinuities. The weight function for the spherical averaging
volume has a discontinuous point at the center of the sphere. The second
weight function has a singular gradient along the line r = 0 and on the
plane z = 0. Therefore, if the flow includes phenomena that require surface
averaging one should use a different weight function for the cylindrical
averaging volume. (For volume averaging, piecewise continuity of Vg is
sufficient.)

The following two weight functions have no discontinuities. They are
chosen such that the weighted averaging volume is the same as before, i.e.,
equal to the volume of a sphere with diameter 2.
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A weight function example for a sphere is

2
g(r) = —— [cos (ﬂ{%) + 1] = (2.51)

n2—4

A weight function for the cylindrical averaging volume 1is

2
=) L 2 4 4
g(r,z) = 7 [cos (2/2) + 1] [cos (2/3) + 1] : (2.52)
=4
Numerous other examples can be constructed, e.g., based on the
functions
= - (L y2myl4n .
g(r) = (1 (2/2) ) (2.53)
Mm T 14n
g(r) = [cos (-z-m)] (2.54)

and corresponding for the dependence on z. Particularly, functions of the
type (2.53) with large integer m and small positive n have properties that
are desirable according to Section 4.2.1.

3. CONSERVATION EQUATIONS

The mathematical description of a two-phase flow field is composed of
two sets of local conservation equations (one for each phase), a set of
local constitutive relations for each phase, and interfacial or jump
conditions which relate locally the two phases only on the interfaces. As
in other two-phase models of interior ballistics, all chemical reactions are
excluded. Burning of the grains 1is represented by a transfer of mass,
momentum, and energy from the solid phase to the gas phase. Furthermore,
the effects of body forces on both phases are assumed to be negligible. By
averaging the local conservation equations according to the definitions and
formilas determined in Section 2, and by using the 1local interfacial
conditions, we derive the coupled set of average two-phase equations. The
details of this procedure are given in this section. The average equations
in vector form are derived in three spatial dimensions and time. The
governing equations for axially symmetric flow in cylindrical coordinates
are listed in Appendix A.
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3.1 Iocal Equations

3.1.1 Iocal Conservation Equations. The flow field is assumed to be
composed of two disjoint phases: gas and solid grains. The gas is assumed
to be compressible, viscous and heat conducting. The local couservation
equations for the gas are the Navier-Stokes equations (Tsien, pp. 3~16)10

30

a—t-+ Ve (OU) = 0 5 (3-1)
268 4 g Giny = - v+ vE 3-2)
208 49 Gi) = - P+, -0, St

where 5, E, and u are the density, specific internal energy, and the
velocity vector, respectively. The constitutive laws €or the viscous stress

tensor ﬁ, the heat dissipation function 51, and the heat conduction vector
Q are

ﬁ=2§ﬁ+(i’——§-i) Vem I, (3.4)

s L omli sl Boo v.2

¢1 = 2u E:E+ (O - §-u) (Veu) s (3.5)

Q= -k VT , (3.6)
where

B=0.5 vo & G (3.7)

~

and J, A, K are the shear viscosity coefficient, the bulk viscosity
coefficient and the heat conduction coefficient, respectively, that may
depend on the local temperature T. The local pressure and temperature are
given by equations of state of the form p = p(o,e) and T = T(o,e) .

10g, s. Tsien, "The Equatioms of Gas Dynamics, " in Fundamentals of Gas
Dynamiecs, " H.W. Emmons, ed., Princeton University Press, Princeton, NJ,
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Fach solid grain is assumed to be incompressible (the density of a

~

*
grain p = constant) but deformable. The local conservation equations for
the solid phase c3g be expressed in a form similar to those of Egs. (3.1)

1
and (3.2) (Prager)

5 % * %

ie () +Ve(p u) =0 s (3.8)
* * * * % *

a_t P YA ELD (3.9)

where u is the local velocity vector of the grain. For our purposes, the

~

*
solid phase stress tensor II represents the total stress within the solid

grain. A constitutive law for I,I‘ could be based on Hooke's law. Although
the local angular momentum of the grains could be significant, it is assumed
that the average effect of the angular momentum is small and can be
neglected. Consequently, the local conservation equation for the angular
momentum of a grain is omitted.

3.1.2 1Iocal Interfacial Conditions. The interfacial conditions relate

the two disjoint phases. The interface between the gas and solid is
considered a singular surface across which mass, momentum and energy is
transferred. The conditions that are valid on the interface can be

expressed as (Truesdell and Toupin) :

e &z * x o~
nep (u - usp) = nep (u - usp) 5 (3.10)
nep (u usp) u np nell = nep(u usp) u ne Il s (3.11)

~

~ ~ ~ l ~ -~ ~ -~ -~ ~ ~
nep (u usp) [e + 7 ueu] + poru +neQ - nelleu

1 ¥
u

* ¥ o ¥
=n -p(u—usp) [e+7 3 (3.12)

HW. Prager, Introduction to Mechanics of Continua, Ginn and Company, New
York, 1961.
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~ x
where ug is the local interface velocity, n is a unit normal, and Q is the
local hegl conduction vector within the grain.

The local interface velocity ;sp is defined in terms of the 1local

~

regression rate d of the grain surface
ug (6@ = u(e£@) +n d(t@) (3.13)

where ¢ 1is the surface coordinate vector, d> 0 and g p is the unit normal
to the grain, outward with respect to the gas.

3.2 Averaging of the Iocal Conservation Equations

3.2.1 Derivations of the Average Gas Continuity Equation and Porosity
Equation. To derive the average gas phase continuity equation, we multiply
Eq. (3.1) by B8(t,£)g(E-x), integrate over the averaging volume V(x) and
obtain

[ B(t,g)gE~x)
V(x)

3p (t,E) D
3t
(3.14)

+ [ B(t,E)gE—=) Vg-lp(t,ﬁ)ﬁ(t,s)] avg) =0 .
V(x)

Using formilas (2.9) and (2.21) with respect to the first and second
integrals of (3.14), respectively, we have

o

[ B dV+V_ . [Bpudv+ [go (u- Esp)-nSp s =0 . ((3.15
v v s

p

By the definition of a volume averaged quantity (2.4) and the interfacial
mass flux condition (3.10), Eq. (3.15) can be written as

S

%E-(a(t,x)p(t,x)) +-V-(a(t,x)[ézﬂ (t,x))
(3.16)
9 p
p Pyt =
s ng(u— Sp)-nSp ds =0
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because p = p = constant and VG = constant. In Eq. (3.16) p 1s the average
gas density and the quantity is the average of the gas momentum density
55. We define the average gas velocity vector u as the ratio

u(t,x) = (£,x)

S . (3.17)

Using this definition of u, the local regression rate, defined by Eq.
(3.13), and the definition of the average surface function (2.26), we can
rewrite the average gas continuity Eq. (3.16) as

* SG(t,x)

3 lalt,0p(t,0)] + Ve [alt,x)p (£, 0)u(t,x)] = p =g Ae,%) - (3.18)

The derivation of the average solid phase continuity equation proceeds
in a similar fashion to that of the average gas continuity equation.
Multiplying Eq. (3.8) by (1-8)g, integrating over V(x), invoking formulas
(2.10) and (2.22), and using the definition (2.5) of an average solid grain
property, and (3.13) of the local regression rate, we have

& (ve(1-a)p) + v-(ve(1-o) [pu]) -5 fgads =0 . (3.19)
S
P

*
Using the surface average definition (2.26) and the fact that p is a
constant, Eq. (3.19) can be written as

ig-t— Cl=a) 5 @siltTcni= %g a . (3.20)

Hence, for incompressible solid grains, the average continuity equation for
the solid phase, Eq. (3.20), is the governing equation for the porosity a.

We notice that, if the density is constant or depends only op time,
then the average velocity is given directly by Eq. (2.5), e.g., u. The
different definition of the average gas velocity via the average momentum
density by Eq. (3.17) 1is advantageous when the density depends on the
spatial coordinate,

The average gas continuity, equati?n, Eq. (3.18), 1s coupled to the
solid phase by the source term p(SG/VG)d. As expected, the amount of mass
added to the gas phase is exactly the amount liberated from the solid
phase. If the grains are not regressing (not burning), then the average
regression rate d and the source term are zero. The surface average
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SG and the surface average regression rate d are two new unknowns. To
restrict the number of unknowns, d is replaced by a correlation (denoted by
<d>) which is obtained from experiments (see Section 4.7.7). To understand
the error involved in such a substitution, we rewrite Eq. (3.18) as

s6

Ve <d(t,x)>

g—t-lapl + Ve [apu] = 3
(3.21)

+3%ﬂ§£ym%mam@»ﬁm~dmwﬂ :

P

The bracketed term on the right-hand side of Eq. (3.21) 1is the error term
and 1s equal to

L

LT la(eE@)) [ gE@m0 as@)] - <ace,0> (3.222)
il

spi

12 3
by the mean value theorem for multiple integrals (Apostol) and where g, is
some point on Spie From expression (3.22a), the following inequality can be
derived:

s [ & & as@ - <© < max|de,£)) - <aCe0>] . (3.22b)
s i
P

Thus, a sufficient condition for the error to be_small is that the

difference between the local regression rate d over each surface and the
value of the correlation <d> at point x is small. A common expression for
> is given by Eq. (4.100). If the error given by Eq. (3.22a) 1is not
small, another correlation for <d> must be used. In practice, the error is
assumed small and Eqs. (3.18) and (3.20) are written with d replaced by
<>, Furthermore, an additional formal error could be introguced by the
modeling of SG. However, this is avoided by the definition of m in terms of
SG (see Section 4.7.8).

3.2.2 Derivations of the Average Gas and Solid Momentum Equations.
The average gas momentum equation is derived by multiplying the local
momentum equation, Eq. (3.2), by the function Bg, by integrating over the

12T. Apostol, Mathematical Analysis, 1st, Ed., Addison-Wesley Publishing Co.,

Ine., New York, 1957.
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averaging volume V(x) and by applying formulas (2.9) and (2.21). The
results of these operations can be written as

a g ~ ~ NN N
3t f Bgpu dv f g punsp-uSp ds +Vx- J' Bg puu dV
\Y S \Y
P
+J' gn-SEEdS=-—VfBgBdV+V-J’Bgfde (3.23)
S 5P v Xy
P

-fg(n p~ns-ﬁ)dS g
P

We use the definition of an average gas property (2.4) and the definition of
u (3.17) in Eq. (3.23) to obtain

¢ [a(t,x)p (t,x)ult,x) ] + Ve [a(t,x) [puy] (t,x)]

=-v {VG [ Bgp av} +v-{—-— [ gl av} (3.24)
v \
1 ~ ~ ~ ¢~ ~ ~
T J; g{nspp £ nspoll + nsp-p [u - usp] u} ds .
p

~ v

The term [puu](t,x) represents the average of the tensor puu. Because
the average quantities p and u are already defined, we can denote the
fluctuations of the values of the local variables from the value of the
average variables as

0 "(t,E,x) = p(t,E) = p(t,x) ,
and (3.25)
a'(t,E,x) = u(t,g) - u(t,x) .

If we substitute formilas (3.25) into the integral representation of alpuu],
we obtain

VG [ Bgouu av =apuu+—J' Bgou'u' dv . (3.26)
v
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The difference between the first term on the right-hand side of Eq. (3.26)
and the 1left-hand side, 1involves a volume average of the product
of velocity fluctuations. We define this difference as the turbulent stress
tensor of the flow. Thus, turbulence in this report is defined as volume

averaged fluctuations. The turbulent stress tensor HT models the quantity

~ o~

-1l [ Bg pu'u' dvV = puu - [puu] . (3.27)
a VG v

We shall not discuss particular turbulence models in this report. A model
is proposed in Glbeling et al.5 lting the integral representation of uu
and applying the mean value theorem for multiple-integrals (Apostol), we

can rewrite the right-hand side of Eq. (3.27) when Vgas is a connected set
as

[ut,x)ult,x) - ult,E)ult,E)] p(t,x) , (3.28)

~

where £ lies in V - and 1s different for each component of the tensor uu.
From Eq. (3.28), a good model of the turbulent stress tensor for
compressible flows is one which models the significant differences between
the tensors uu and uu. With respect to the errors generated by such a model

HT in Eq. (3.24), we want the errors in the vector

V-{aIIT - [apuu - afpuu]} (3~29)
to be minimized by the model.

Substituting Eq. (3.27) into Eq. (3.24), wusing Eq. (3.13), and
algebraically manipulating the result, we have
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%E [apu] + Ve [apuu] = = aVp + Ve (all) + Vs (all,)
*x SG * o 1 ~ =
+ p va-u(d) [VE- L g(nspp nsp-H)dS + p Va]
P
) L — x* X . ¥

- {W J‘S g[nsp.p(u usp)u nsp-p(u-usp)u] dS}

p
* o * %

+{yz [ e duds - 52w (3.30)
S
P

+ {V'[%E- £ Bg(puu—saa) dv - aHT]}

- {4z {1 Bgp dV - ap]}
+v-[éG {Isgﬁ dv - all} ]

where p and II are the conctitutive models for the average pressure defined
by [fVBngV]/[aOVG] and the average viscous stress tensor defined by

[fVBgﬁdV]/(a-VG], respectively. In general, it is simpler to model the
average pressure and viscous stress tensor than to actually integrate the
local constitutive laws. Fach term in Eq. (3.30) which is enclosed by
braces is an error term. We now shall discuss each error.

* ]
The errors in the models p, I, HT, and those introduced by u<d> are
represented by the last four terms on the right-hand side of Eq. (3.30). If

VgaS is connected, the errors in the last two terms can be written as
Vs ['\%(‘; [ Bgp dV - ap] = V{a(t,x) [P(t,g(X)) - p(t,x)]} (3.31)
\
and

B 3 [‘}—G [ Bgll dv - o] =V-{a(t,x)[ﬁ(t,g(X)) -n(t,x)]} , (3.32)
v

where E(x) are the mean value points in Vgas(t’x) which, in general, are
different for p and for each components of the tensor . The models p and
T as well as the errors (3.31) and (3.32) are discussed in Sections 4.7.1
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and 4.7.2, respectively. For the gas momentum equation, the best
approximations for p and I are the ones which minimize both the differences
in their values and their derivatives.

The error in the turbulence model was discussed previously in this
section.

The second braced term in Eq. (3.30) can be written as

* SG - :' * .
d 4= 1 ,G [ & U( £@@)) d(e,6()) ds(z) - u(t,x) <d(e,x)>}  (3.33)
i sp
i
If both, u and d which are defined on the graln surface are functions of t
only, then expression (3.33) is zero and no error exists. When this is not
the case, one can bound (3.33) using the mean value theorem for multiple

integrals by

* . * .
lo VG| e lu( e, )) dCe,x) - ue,x) <ace,x)>| (3.34)

where Ci is different on each surface spy - Expression (3.34) can be bounded
by

o 2 {a<c,x>max|:’i(t,e:<ci)) - aCe, | + [ute, 0| [<ace, 0> - a0}
i

(3 .35

Thus, the error 1in replacing S f gu d dS with u<d> consists of two
parts. One error involves the approximation of d with <d> and is discussed
in Section 3.2.1. The other term is small if the wvalues of the 1local
particle velocity at the grain surfaces are near that of the average
particle velocity at x; that is if the fluctuations are small. If both

.
d' must be

{an

(=3 14

terms are not small, then a correlation of the fluctuations
modeled and included in Eq. (3.30).

The term
oTe é g [nsp-p(u—usp)u - nsp'p(u-usp)u] ds (3.36)
P
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can be rewritten using the mass flux jump Eq. (3.10) and regression rate
definition (3.13) as

[ g W=-u) dds , (3.37)

or using the momentum flux jump Eq. (3.11) as

1 ~ 3
ve L8l =n, ») = nge

p

*
mj] ds . (3.38)

On the interface between the gas and the particles, we assume either that
the normal stresses are equal (the integrand in Eq. (3.38) is zero), or
equivalently, that the gas and particle velocities are equal (the difference
in the integrand in Eq. (3.37) is zero). In the special case of no burning

d =0, the error 1is =zero. When the above assumption 1is not true, the
expression (3.36) must be modeled by a correlation.

From Eq. (2.21) with $ = 1, we have the relationship
Va = = — f gn dS . (3.39)
Using the formla (3.39), we have the equality

i < @
=1 - . +
Ve é g[nspp g, m] ds + pVa

P (3. 40)

~ ~

_— 1 — I L]
= g £ g[nsp(p p) R m] as .
P

We define the surface integral on the right-hand side of Eq. (3.40) as the
drag force. The drag force is modeled by the correlation D which is
discussed in Section 4.7.5. The error incurred by this approximation is

{Sf g[nsp(a -p) - nsp.ﬁ] ds - D(t,x)} : (3.41)
p
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This definition is consistent with Ishii'sl3 development but 1is
different from Gibeling et al.5 and Gough's1 which is defined in terms of
the surface integral of the weighted fluctuation of the normal total gas
stress tensor; nsp-(n-ﬁ) = @y (p-E). For the special case when the average
viscous stress tensor is zero (the inviscid two-phase model), our definition
and those of Glbeling et al.” and Gough1 agree. We recognize the fact that
Eq. (3.41) is a formal definition which may not correspond to an
experimentally determined drag force. In such a case, other effects
included in the experimental drag force would have to be subtracted to
obtain the correlation corresponding to D.

The derivation of the average solid phase momentum equation parallels
that for the average gas momentum equation. We multiply Eq. (3.9) by
(I8)g, integrate over the averaging volume V, use formulas (2.10) and
(2.22) and the definition of the average of a solid grain property (2.5) to
obtain

g—t [(1ma(t,x)) (t,x)] + 9 [(1=)) [p;Eu;Eu;EI (t,x)]

~

*
=y s £(1—s>gn(t,a) dv} (3.42)
Ny ;(; Y F s / i =
gn_ e*p(u-u u - gn_ e .
Sp sp sSp Sp sp

x % * ’
Because p is a constant, |pu|(t,x) = p u(t,x) and [puu|(t,x) = p qu_(t,x).
By adding and subtracting V[(l-a)p}, by using Eq. (3.39), and replacing

*
n Il on the surface with its equivalent via the momentum flux interfacial
jump condition (3.11), we can rewrite Eq. (3.42) as

13
M. Ishiz, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, France
1975,
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[isaped +ol Cl-atalun) ) &= =vp

IQJ

[+

t

1 *
+Vx.{VG {] (1-8)gl dv + (1-a) pI}

1 * k. x
+ VG fs g nSp-p(u usp)u ds (3.43)
p
1
tve L o
S
P

P -n —n-ﬁ ds
p® ~ "spP sp]

g[ nspop(u usp u usp°p u usp u] S 3

1
tve

n—

p

where I is the identity tensor. Eq. (3.43) can be rewritten as

3 *% *kk *
-a—g[(l-u)pu] +V-[(1-u)puu] == (l-a)Vp + V-[(l-u)II]
* X GG * o 1
+ Ve[ (1)} -p ygu <& + 35 D
1 s IO e *¥ o *
+ {ﬁ fs g[ nsp-p(u—usp)u - nsp°p (u-usp)u] dS} (3.44)
P
1 * ko *x SG * o
+ {V— gn +p(u usp)u ds +p V—u(d)}

GIS sp
P

+ (v [p a0 @o- [wa) - a-) 1))

+vlGe [ U8)gh av + (L-w)pl - (-]}

1 ~ ~ 1
+ {V.[(-VE fs g[nsp(p p) op m} ds e D}
P
*
where NI is the constitutive model for the average stress tensor for the

solid phase and represents

L b [ a-s) I%dv+ I (3.45)
1« VG v & P k .

37




Sect. 3.2.3
*
and HT is the constitutive mode]l for the average solid phase turbulent

stress tensor. In analogy to HT, HT models the tensor (see Eq. (3.27))

~

*k *
''u' dav . (3.46)

* *
e i, ) = ol & )] o= -L u
_0

=

f (1-8)g
Vv

%
We recall that by definition I denotes the total stress tensor for the solid
grain. The quantity defined by Eq. (3.45) is the difference between the

average total stress in the solid phase (the integral of (I—B)gﬁ/VC over the
averaging volume) and the stress caused by the average gas pressure (-pI).
The resulting stress 1is the stress caused by the grains themselves, for
example, by the compactification of the propellant bed. Consequentlx, we
call the expression (3.45), the average intergranular stress, and I the
average intergranular stress model. As with the average pressure, viscous
stress tensor, and turbulent gas stress tensor, it is simpler to separately
model the intergranular stress, the solid phase turbulent stress, and the
drag. The errors incurred by these models are represented by the last three
braced terms in Eq. (3.44).

The remaining error terms in Eq. (3.44) (those enclosed by braces) are
the surface integral involving the velocity or stress jump, and the surface
integral representing the source term. These terms are discussed in the
derivation of the average gas momentum equation (see the analyses beginning
near Eqs. (3.36) and (3.33), respectively).

3.2.3 Derivation of the Average Gas Internal Energy Equation. The
average internal energy 1s needed to compute certain quantities, e.g., the
pressure and temperature via the equations of state for the average
quantities. The average 1internal energy can be obtained in either of two
ways. First, by adding the local internal energy equation to the equation
for the local kinetic energy, an equation for the local total energy can be
written. Following a similar procedure to those given in Sections 3.2.1 and
3.2.2, we then can derive an average total energy equation. Finally, the
average internal energy value 1s obtained as the difference between the
average total energy, and the average kinetic energy determined from the
average velocities. The second way 1is to average the local internal energy
equation, Eq. (3.3), directly. The former procedure is the most common.
However, we use the latter approach because several terms which must be
assumed small or modeled by additional correlations can be avoided, and the
terms which must be modeled, have simpler physical interpretations, and
therefore, are easier to model. An example of a term that can be eliminated
by the second method but is present in the first is
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[ 8(t,E) g(&=x) [p(t,E)ult,E) u(t,&) - p(t,x)u(t,x)eult,x)] dv
A
(3.47)

= [ Bgp u'eu dv .
v

The non-negative integral (3.47) is the average difference between the local
kinetic energy and the dot product of the average velocity times the
density. An example of a term that can be modeled more easily in the
average internal energy equation is the dissipation term. 1In the average
internal energy equation, the term ¢ represents the average conversion of
viscous work by the fluid into heat only, whereas, in the average total
energy equation, the corresponding term Ve(ll*u) models the average
conversion of viscous work of the fluid into two quantities, heat and
kinetic energy.

The average internal energy equation is derived in a similar fashion as
the average gas continuity equation and gas momentum equations. We multiply
Eq. (3.3) by Bg, integrate over the averaging volume V(x) and use formulas
(2.9) and (2.21) to obtain '

a ~w v - N ~ ~ ~ ~
3T £ Bg pe dV + V £ Bg pue 4V = é gnsp p(u—usp)e ds
P
- [ Bgpveudv + [ 8gd dV - V. [ 8g Qav (3.48)
v v v

= Is g Q'nsp ds .
P

We define the average specific internal energy e similar to the average gas
velocity, that is, as the quotient of the average internal energy density
and the average mass density p:

e =.E|£:_’E)_. (3.49)

p(t,x)

Using Eqs. (3.13) and (3.49), Eq. (3.48) can be written, after some
manipulation, as
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9 e . - Ve
5;-(ape) + Ve (apeu) apVeu + aQL + aQT Ve (aQ)
* SG ° 1 ~
+p-\75e <d> ~ VG fs gQ-nSp ds
P
1 ~
+V°[apeu—a] +[§IE {’Bgtbl dv —abe—abe] (3.50)
+ Ve [aQ e [ 8gQ dv] + [apVeu - [ BgpVeu dv]
VG v VG v
* SG‘ ° 1 vv:'
0 g @ ir e fs ged ds] ,
P

where ¢ ., th, and Q are the constitutive models for the average dissipation
function, turbulent dissipation function, and the average heat conduction,
respectively. , The average energy release by the propellant during burning
is denoted by e(t,x). The term apeu—a@ , which is - (1/VG) fsgsg':x' dv,
is analogous to that in Eq. (3.26). This term is zero if either &' = 0, or

u' = 0, i.e., if e or uis a function of time only. However, in turbulent
flows, this term can be significant. A model of t?z term as the gradient of
the energy variable is given by (beci and Smith. In interior ballistics

the term is probably large, because for moving and burning grains the
extrema of e' and u' are likely to correlate. We denote the model of this

term by Qp. The term IS (ga- nsp/SG)dS represents the average heat flux into

the particle from the gas and is modeled by the correlation <e>. The models

for QLand ¢, Q and Qp, and e and <e> are discussed in Sections 4.7.3,
4.7.4, and 4.;.8, respectively.

We now can rewrite Eq. (3.50) as

14T. Cebeci and A. Smith, Analysis of Turbulent Boundary Layers, Academic

Press, New York, 1974.
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%E (ape) + Ve(apeu) = —ap Veu + aQL + aQT - Ve (aQ - (aQT)

+ 8 A -Le

VG VG

+{gs [ 88 [ ,(6,8) -0 (£, -0, (r,0)] v}

VG v
- {veds [ BglW(t,E) - Qt,x)] aV} - {Ve[(a [peu] - apeu) - aQ]}
\'
- {% [ e[ Wee)ng, - <e>] ds} (3.51)
SP
+{d [ selp(, 07 u(e,®) = B(e,£)E(E,D)] av)
V .
15 L [e @ - g5 fs ged ds]}
P

where the terms enclosed by braces are error—type terms.

The first four error terms depend on a model and are discussed in the
appropriate model section (see Section 4), The remaining two terms can be
written by following similar analyses to these in the average gas momentum
equation derivation as

l ~ ~
e é Bg [pV-u = pV-u] dav

a(t,x) p(t,x) [Veult,x) = Veu(t,E(x))]
(3.52)

+a(t,x) Veu(t,£(x)) [p(t,x) - p(t,E(x)]

and

P le<i>-5 | gedas] |
%
(3.53)
< |S gg | <> - d| + d max |e(t x) - e(t,E(g ))|}

i
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where £(x) 1s a point in Vgas(vgas 1s assumed connected) and gy is a point
on the surface 8o1°

The error represented by Eq. (3.52) consists of two parts: the error
made by using the divergence of the average velocity for the divergence of
the local velocity, and the error made by using the average pressure
correlation for the local pressure, If both p and Veu were functions of
time only, the error would be zero. If the term is not negligible, then a
correlation that models the average fluctuations of pVeu from pVsu must be
included. Most often the term is neglected, but a model may be necessary in
some turbulent flows. Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>