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SIGNIFICANCF AND FXPLANATION
We consider a qgeneral class of parabolic equationsg describing phenomena

of non-linear diffusion. A prototype is the equation
uy - div(‘"u‘p.z"u) = 0N, p?2.

Estimates concerning the local and qlobal HSlder continuity of the weak

solutions are supplied. i
The main point here is to prove such results on the sole assumptions that

the coefficients are bounded and meagurable. On physical grounds this means

that a high degree of irreqularity is allowed on the structural functions

governing the diffusion, such as conductivity, porosity, heat capacity etc.

The local behaviour of such quantities is essentially unknown and

experimentally only certain rounded off averages can be measured. It is

therefore desirable to prove qualitative and quantitative facts about the

diffusion process without assuming any sort of regularity on these guantities.
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ON THE LOCAL BEHAVIGUKR OF SOLUTINNS OF DEGENERATE PARABOLIC
EQUATIONS WITH MEASURARLE COLRFFICIENTS
. +
E. DiBenedetto
0. Introduction
. . " . .
ve wil) prove interior and boundary llolder continuity for
vear solutionn of dogencrate parabolic equations with principal

part in diveraonce form, of the type

(0.1) u, - div a(x,t,u,vxu) + b(x,t,u,vxu) =0 in ¢ (QT)

where . 1s a region in nsq ' LT = o« (0,T) , 0 < T < « , and

vx denotes the gradient with respect only to the space variables

X . (xl, x2,...,x )

N
The functions a : m25‘+2 + IRN and b : IR2N+2 + IR , are

only assumed to be measurable and satisfying the structure condi-

tions

(Ay) alx,t,u,v u) + T u - Colvxulp - 4glxit) 4 p 2 2

[Azl ]ai(x,t,u,vxu)l - Cll\lxulp-l + ol(x,t) , 1= 1,2,...,8,
[a;) Ibex,t,u, v w| - Cylv ulP v o 0, t)

where, Ci i =0,1,2 denote given positive constants and oy v
i =0,1,2 are given non-negative functions defined on “T and

subject to the conditions (*)

where + g} =1 and q , r -1 and satisfy

O

*Department of Mathematics, Indiana University, Bloomington, IN 47405.

(')Throughout the paper the notation of (11) is employed.

Sponsored by the United States Army under Contract No. DAAG29-80-C-
0041. Partially supported bv National Science Foundation Grant
48-206-80, MCS 8300293.




(0.2) 1 N RS ] - Ty and
b§ P
(0.2) (i) a . (1,«] : I i L s — I_L___] v . {0 },':._l_)
] ’ ' 1-. [} p(l"t ) =1 ' 1 ’ v
1 1
i =1
0.2) i) G = e) 5 E . [ e) . . (0,1)
(11 p(l-'l) ’ ’ 1-x ’ H 1 ]
if N> 1, p N
(0.2) ... - N .. : R S =N
(ii1) q . [p(l-(l)' ] 7 r ¢ [1_'(11 | I "l € (&p“‘ll)

Given the structure conditions [Al}—[A3], the degeneracy of (1.1)

is of the same nature of

(0.3) u, = div(lv ulP%v)  in D'(a) , P2 -
Wwhen p = 2 , major developments, in the theory of local regu-
larity of (0.1) have been brought about by the discovery of the
Harnack inecquality of Moser [14,15], for linear elliptic and parabolic
equations with bounded and measurable coefficients. The Harnack
inequality can be used to imply the local HOlder continuity of the
solutions. The latter regularity statement had been proved pre-
S viously by De Giorgi (3] in the elliptic case and Ladyzcnskaja-
Uralt'zeva [11) in the parabolic casec.
In the case of an elliptic equation, the extension of these
results from p =2 to any p > 1 is quite direct and the theory

can now be considered fairly complete {16,17,19].




The parabolic case 1s complicated by the dissinmetry of the
space and time parts of the opcerator in (0.1), and at our knowledge
no reqgularity results arc available 1f p differs from 2. In
particular, non-ncgative weak solutions of (0.1) do not in gencral
satisfy the Harnack incquality. To sce this we consider the fol-

lowing explicit solution of (0.3), constructed in [1].

p*l
L4 '(ﬁ&)m} ,Ix] < R(0)
R(t)
(0.4) ulx,t) = <
0 ’ le 2 R(t)
-
r\:
1
(0.5) R(t) = ([Np+p+2] 9%3 gy NPFR¥Z g

This solution exhibits a behaviour similar to the solutions of the
porous medium equation; that is, it is of compact support in the
space variables for all t > 0 . Clearly for a cylinder Q inter-
secting the free boundary |x| = R(t) , the Harnack inequality fails
to hold (see also Remark B section 7 of (4] p.116). Neverthless

the solution u is CY* RV x{e,T)), Y0 < ¢ < 1 < = .

By a weak solutica of (0.1) in 2, + Wwe mean a function

eV, (e ¢O,T L)) » LPo,T ; WP(2)) , satisfying
’
. t

2
2T e
1 tl Q

(0.6) J ul(x,1)¢(x,1)dx
1

+ Ak, t,u,0,u) - Vo6 4 b(x,t,u,9,u)¢}dxdr = 0




°1,0 - .
for all 4 ¢ o (JT) such that by € LZ(JT) . and for all tl ,
ty 0 tl b, T

(A u Lot

Remark 0.1: 1f [A3) is replaced by the more restrictive condition
' ; . C p-1

(A5] Ib(x,t,u,v w)| - C,lY ul ta,(x,t)

then a local L- bound for u can be calculated by a simple
modification of De Giorgi-idoser technique (see for example [11]

page 102-109). The proof gives an explicit but complicated (due

to the mentioned dissimetry) bound of “uIIQ'Q over a cylinder Q in
terms of the “ullp,Q' over a larger cylinder Q' . We have chosen
to omit such calculation since they result from a variant of known
techniques.

With 349 we denote the boundary of & and set

I

(0.7) Sp 230 = (0,T] ; I = S.UR x (o} .

Clearly T 1is the parabolic boundary ot nT .

The statcment that a constant y depends only upon the data,
means that y can be calculated only in dependence of the various
constants appearing in [A;]-[A,] , Hullo'QT and the dimension N .

We can now state our main results.

]
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I. Intcrior rcygularity
Theorem 1 Let u ¢ Vz,p(”r) L"(”T) Lbe a weak solution of (0
and let [A;]1-[A,] hold. Then (x,t) = ul#,t) 1is locally HOlder
contiliuuois 1N ST and for cvery compact set K -« QT , there exist
a constant y depending only upon the data and dist(K,!I') , and
a constart a - (0,1) depending only upon the data, such that

_ . _ a _. :6/p
'U(xlltl) u(letz)l = \Y(lxl le + ‘tl t2| ) ’
for every pair of points (x),t;) , (x,.t,) « K

Remark 0.2: Since our arguments are local in nature to prove

Theorem 1, we do not need to have a solution in the whole QT

It is sufficient to nhave a "local" solution; i.e. u Véog(a

oo ) . p'

LloC(QT) , satisfying (0.6). Also we may assume @0 , ol '
loc,,

QZ € L(i'i-_(.),r) .

II. Boundary regularity

II-(a) Regularity at t =0

We assume that (0.1) is associated with initial data

{(0.8) u(x,0) = uo(x) .

and on ug assune

)

1)y

r
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lAG) X ¢ uo(x) is continuous 1in . with modulus of continuity
wo(’)

Clnce we assame that  u o« J{0,T 3 L (.)) , tie initial datum
(5.4) 15 taxen in the seonse of (0.6) whrre t) - 0
Theorem 2: Let u - C(O,T : Lz(u)) o LPo,T ; #P(0)) be a weak

solution of (0.1) which takes on initial data (0.8) and let [Al]—
[A6] hold. Then (x,t) = u{x,t) 1s continuous in 5 x [0,T] , and
for every compact set K ¢« q there exist a function o - wl(p)

r" - D!+ continuous and non-decreasing such that

1
!u(xl.tl) - u(xz,t2)| < “(lxl-x2' + |t1't2|p)

for every pair of points (xl,tl) ' (xz,tz) ¢ K < [0,T] . The

function w{-) can be determined in terms of the data and wo(') .

If in particular

J po—
wo(D) =9 . 0 ¢ (0,1) ,
then (x,t) - u(x,t) is Holder continuous in q x (0,T)] , and for
every compact set K - @ there exist a constant vy depending only

upon the data and dist(K,3a) , and a constant ¢ ¢ (0,1) depend-

ing upon the data and < such that
|U(X1,tl) - u(xz,tz)l : Y(le-x2|° k |tl-t2|”/p)

for every pair of points (x;.t;) , (x,.,t;) ¢ K x (0,T]) .




é
|
;
i
{

2
2emark 0.3 If x uo(x) is only known to be continuous in a
open suvset u' of . then the stated regularity can only be
claimed in the set o' » [0,7]

1I-(b) ..,...rity at S, (uirichlct data)

The boundary 34 is assumed to satisfy

[A7] da, « (0,1) , RO > 0 such that ¥Xy € 3R and every ball
B(xo,R) centered at Xg o with radius R <« Ry
measfaq n B(xO,R)] < (l-u*)measB(xo,R) .
We suppose that (0.1) is associated with Dirichlet data f£(x,t)
on ST (taken in the sense of the traces) satisfying
[Ag) (x,t) » f(x,t) 1is continuous on §& with modulus of

continuity wf(')

Theorem 3 Let u ¢ V2 p(QT) n L (QT) be a weak solution of (0.1)
—_— e ———— [4
associated with Dirichlet data f on ST , and assume that [Al]-

lA‘] and [A7]-[A8] hold. Then (x,t) - u(x,t) is continuous in
Q =~ (0,T] and V¥e > 0 there exist a positive non-decreasing con-

] , + +
tinuous function o ~+ wc(o) : M -+ IR such that

1
P

lulx,,t;) - u(xz,t2)| < wc([xl-le + ltl—t2| )

for every pair of points (xl,tz) ' (xz,tz) ¢ 7% le,T} o 1If in

particular
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P -
uf(l‘) = p ’ 8 ¢ (0'1) ’
then  (x,t) - ulx,t) is HOlder continuous in . - [«,T)] Ve > 0O ,
and there exist a constant 4 depending only upon the data and
¢ , and a constant r « 0,1, decpending upon the data and B ,
such that
5 8/p
julxy.tg) - u(xz.tz)l v lxyx, T o+ ltl-tzl )

for every pair of points (xl,tl) ' (x2,t2) e 2 % [e,T] .
Remark 0.4 1f the Dirichlet data f 1is only known to be contin-
uous in a open subset S' of S (open in the relative topology

of ST) then the stated regularity can only be claimed up to S*' .

Corollary 0.1: Consider the boundary value problem

(0.9) u, - div S(x,t,u,vxu) + b(x.t,u,vxu) = 0 in QT
(0.10) u{x,t) = f(x,t) , (x,t) ¢ ST
(0.11) ui(x,0) = uo(x) , X ¢ 2,

where x » uo(x) satisfies (A6] and (x,t) » f(x,t) satisfies
(Aal and assume that (A7] holds. Lvery bounded weak solution

of (0.9)-(0.11) (in the sense of identity (0.6)) is continuous

In particular if Ug is Holder continuous in § and

n QT .

L ——
f is Holder continuous on S

"
T then u is Holder continuous

o]

in T

o

[

e e
W i




HEPRODUCFD AT GOVERNMENT £ XPENSE

corilarity at o S (Vartational data)
L - 1 - - J0 — s e it
Sooascopre heroe that

. 190 Cl mantfoll an m“'l ,
sl Lormally the problem
. gy ~div a(x,t,u,vxu) + b(x,t,u,?xu) = 0 in QT

. Ld . »
[EE d(x,t,u,v‘ U) *n (xlt) = g(x,t,U) . On S
X S T
T

' i ai{x,0) = uo(x) , X ¢ 1,
Wit e N = (n , Nn ,...,n_) denotes the outer unit normal to

5 X X X

T 1 2 N

on the function gix,t,u} we assume
i5:01 g 18 continuous over ST =~ IR and admits an extension
‘ -
alx,t,u) over .p Such that
3 = 3~ p~1

- ¢ 9 | byttt t,u) - ui- +
(7.15) ,——-axi Glx,t,u) 0 v i1 s glxton) 0 Cyluyg Cy

toor twooiven non-negatlive constants C3 ’ C4 .
By a weak solution of (0.12) - (0.14) we mean a function

J satisfying

2,p
( i “2 [ . . .
19.16) , uedx + j (-ue o+ alx,t,u,7u) - Y
. tl t1 )
t2
+ bi(x,t,u,v_uleidxd:r = [ [ g(x,,u)edodr ,
* L1 3.l

¥
3

r



REPRODUCED AT GOVERNMENT £XPENSE

10
sLeer o b denotes the HN'xAvaunlr on A, tor atll L Wl'o(ﬂl)
g -
“ue o that Py LR(QT) . und for all tl ' tz satisfying
t t, T .
Theorem 4 l.et u . Vz,p(“T) o L (“T) be a weak solution of (0.12)~

0143 1n the sensc of identity (0.16). Then (x,t) =« ui{x,t) is
< i v continuous in L ox [v,T) tor all ¢ - 0 , and there exist
tant Y. depending only upon the data and ¢« , and a con-
<ttt {0,1) drpending only upon the data, such that

ulxyety) - oulx b))y (|x —x, it e [t,- ‘x/p

Xy ety 20t UIX17%) 17%2 )
15T« sery pair of points (Xp0t1) o (x,0t,) « Q> {¢,T] .

Tf 1n addition x - ug(x) is HOlder continuous in I , then

g 1nodalder continuous in QT and the constant Y, can be taken

indepenaent of o » Whercas the tolder exponent ) will depend

AlsG gpon the Holder exponent of uy -

wemark 0.9 When p = 2 the integrability conditions in [A3]

conncide with the requirements imposed in (11}, and these are

Arwino to be the best possible [10].

wemarr 0.6 If the functions G(x.t,u,vxu) and b(x,t,u,vxu) are
atffcrentiable and satisfy further restrictions then one can prove
tnat (X, t) -~ v,u is Holder continuous in BT ; in fact such a
result holds also for systems (see [6,7)). The point here is of
course to prove the stated reqularity only under the hypothesis
that a and b are measurable. An extension of our results to

systems, due to the generality we consider, is not expected. It is

in fact false evun in the elliptic case (see (8] for a survey).

el T |
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L)
Remark 0.7 The proof prescented herce shows that the sarious Holder
constants and exponents in Theorems 1-4 are continuous incrcasing

functions of p . As p » + thesc estimates deteriorate, but

they are "stablce" as p » 2

Remark 0.8 one of the applic-ations of the a priori knowlcdge of
a modulus of continuity of solutions of (0.1), is the derivation

of L, _ bounds for |v u| , (see (20]).
loc b3

Remark 0.9 Existence theory for boundary value problems as-
sociated with (0.1) is based on Galerkin approximations and it

is developed in [1l1].

Remark 0.10 It should be noted that we have been unable to deal
with the case 1 < p < 2 .

Euristically the results will follow from the following fact.
The function (x,t) -» u(x,t) can be modified in a set of measure
zero to yield a continuous representative out of the equivalence

class u ¢ V if for every (xo,to) ¢ Qg there exist a

2,p(QT)
family of nested and shrinking cylinders Qn(xo,to) around (xo,to) R
such that the essential oscillation wp of u in Qn (xo,to)
tends to zero as n + = , in a way determined by the operator in
(0.1) and the data.

The key idea of the nroof is to work with cylinders whose di-
mensions are sulitably rescaled to reflect the degcnerécy exhibited

by the equation. This idea has been introduced in (5] and further

developed in [ 7).
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£

In the present situation the arqurients are more complicated
with respect to the ones iIn {7]. This is due to the fact that,
unlike the solutions of porous mcediua type cquations (see [4,7])
where the singularity occurs at only onc value of the solution (say
for example for u = 0} , in our case the equation may be )
degenerate at any value of u

To render the paper as self contained as possible, certain
known calculations have been reproduced.

In part 1 we prove the interior regularity. We introduce cer-
tain classes & (QT,M,y,r,é,x) ,» along the lines of a similar ap-
proach of ({11!, and prove that local weak solutions of (0.1) belong
to them,

Then we show that Bp(QT,M,y,r,é,x) is embedded in
Clgéa/p(nT) , thereby proving Theorem 1.

We prove the boundary regqularity by following a similar pat-
tern in part II. The methods of this part will rely heavily on
those of part I and in fact we will limit ourselves to describe
the modifications of the proof of interior regularity to achieve

regularity up to the boundary.

Acknowledgment: This work was completed while I was visiting the

University of Florence, Italy and the Institut fiir Angewandte
Mathematik of the University of Bonn W. Germany. I am grateful to

both institutions for their support.
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Po dhe clasees By vl bz 2
Let 0 be an open sct oin mN and for O T «  let
: N . ) ~ ‘ l = ¢ R
. (0,7) . 1f  (xg,tg) ¢ Qn we let B(R) . 'x € AR
1d
Q(Rl") B(R) > {LO—"'tO‘) [ v ’ 0

We let R , ¢ be so small that Q(R,v) « QT . Denote by

{x,t) - -{x,t) a piecewise smooth function defined in Q(R,t) ,

such that 0 - ¢ - 1 and ¢{(x,+) =0 for x ¢« 3B{(R) .

For a bounded measurable function u defined in Q(R,1)

introduce the cut functions (u-k)t , k ¢ R and let H2 be

a:.v number satisfying

+

(1.1) ;\(u-k)",}q'mR,o)«w H < ¢

where § 1s a given nositive number.

Define also

(1.2) ¢, (uek) vy = ent

We say that a measurable function u : lp

class Bp(nT,anr,é,x) if

(1.3) u. oo, ; L2 o tPo,T ; wP(a))

(1.4) l[u[la’nT
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and :f for all QI(R,p) - n,r and all ¢ as ahove, the functions

(u-k) satisfy the iptegral inecqualitices

(1.5) suap $( [(u—k)‘]zg“(x.t)dx + ” lvx(u_k)’ﬂ’ FPax as
R AR, )

[(u—k)']2 Lp(x,to-t)dx+ y('JI

[ (u-x) )P 17,6 [F dx dx
B (R) Lom,o)

-

+ [J [ (u-k) ¥ 2 Cp—lctdxtir
Q(R, p)

to . L [Ba+
+ v J [meas A)'( R(T)]q dt .

g~

2 + b4 o
(1.6) sup v (H S, (u-k}) ,v)¢ (x,t)dx

to—o«.tst JB(R)

0

[

| AU IR I PRI
B(R)

+ . 3 b4 -
+ v I[ W(H—:(u"k)_'\’)IWU(H-p(U‘k) :V)|2 plvxz-ldedT
2(R,p)

. to . = |Basa
+ Ljtn !’-—I [ (meas A, R(r)lq dr '
v \Y to.p [




wherce we have denoted with A; p(t) the sct
, R

AL (L) {x ¢ B(R) | (u(x,0)=-k) . 0}

The various parameters in (1.5)~-(1.6) are as follows.

1\] £ and y are arbitrary positive numbers
(m) k is an arbitrary real number subject only to the restric-
tion
4
(1.7) Hiu=k) ~ | <8
=,0(R,0)
[c) «x is an arbitrary number in (0,1) and g , r are larger

than one, are linked by

1 N N
(1.8) = %+ — = 5
r Pq p
and their admissible range 1is
(108) (1) q . (p:“‘) e X [PZ,“’) ’ if W= l
NP .
y — r « ,*)] + if 1 « b « N
p2 .
(1.8)(111) q ¢ (p,=) , 1 ¢ (N,m] ;i If 1 N < p .

Remark 1.1 Thesne classes can be considered as an extension of the
classes BZ(QT,M,Y,r,é,t) introduced in {(11]. Besides the fact

that p 2 2 the new requirement here is tne integral inequality

(l.6).
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They may also be viewed as a parabolic vercion of De Giorgi
classes, fundamental in the reqularity thceory for quasi-minima
(.
The following two facts cstablish the conncction between local

solutions of (0.1) and the classes 8p(uT,M,y,r,6,r)

Proposition 1.1 Every essentially bounded local solution of (0.1)

4
oelongs to Bp(QT.“.Y:l':é:()

. . - . ; asa/p
Embedding theorem Bp(uT,M,Y,r,é,K) is embedded in Cloc (QT) '

for some a - (0,1) .

The proof of Theorem 1 will result by combining these two facts.

Proof of Proposition 1.1 Introducing the Steklov averagings

of w . v2,p(QT) '
t+h
r % J w(x,s)ds , t ¢ (0,T~h}
t
wh(x.t) = ¢
0 ’ t » T - n
.
( 1 t
i I w(x,s)ds , t ¢ (h,T]}
t-h
wE(x,t) =
{0 s £t < h,

comer -
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a4 standard argument  (see for example (11]) implies that (0.6) can

Leoequivalently formulated as

+ la(x,t,u,” u)]E Vo4 [b(x,t,u,?yu)]ﬁ ;?dxd'

(1.9) % %
~

o
[N)
f:ﬁ
~C
o1
J

for all ¢ . WP (;T) and h « tl < t2 «< T - h

In (1.9) choose the test functions

(1.10) ¢ = :(uh-k) ¢

Estimating the various parts of (1.9) witn this choice of text

function we have

t

. ( d s P 1 02 p
(i) J t o7 upluy-k)7 o dxdr = —2-J ((u,-k))" % (x,t)dx
Jary Y- T

0 B (R)

- % )( [(uh-k)”“]ch(x,to-»’f)dx
B(R)
2
_ B eyt p-1 -
2 H ((uh k) '} ¢ r.tdxdb .
QL
where
et o oB(R)  (t.-
z 0 p,t] , t . (to",),tol

Letting h - 0 we obtain for alil t o« [to—p.tol
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4 '?
(1.11) J{ ¢ 3y uh(uh—k) Lodxdro» —;— J [ (u-k) lf,})(x,t)dx
t L(R)

1 2.2

- 2 f - - P . -
2 f Wk} )% T by - dx - B ” [(u-k) "} P lgt dxd: .
B(R) t

Q

We estimate the remaining terms by letting h + 0 first, and then

using [All - [A3].

(1-12) ff 5(x""u'vx“‘)[Wx(“—k):"p * P(u'k)iip-lvxC]dxch
t

Q

* Co “ 19, (u-k) * [PeP(x, 1)dx ar

Qt

- JJQO(X.T)Cpx[(u-k):>0]dxdz

Ot

*,P- + P-1
- pC, ” 19, (u-k) * [P Lu-kyte v claxar

Qt

: P-1
-p JJ ¢, (u=k) "¢ Ier.ldxd1 .

Qt

Here y (I} denotes the characteristic function of the set [ .

By Young's inequality




- ) 4 - !,Y"’l . *l,
CarpCy Y sk T e, T g
Jt
’\0 (( . LS S f .
- “P l»x(u-k) Pootdxd e y(('.o)}(’ [ (u~k) l}'i'-‘xc,lpdxdt '
2t Qi
and

vyt Pl
(b) p” ¢, (u-k) "¢ ]Vx(]dxd*
t

h‘l’ xl(u-k) *>0)dxdr .

: L u-k) '} P)v ¢ Paxdr +
X ;
t

t

|
v Q

Combining this in (1.12) we deduce

(1.13) a(x,1,u,v u)itaxdr , o lv_(u-k)*|P:Pdx d-
AN ) xh X S J x S ax d-
t
Q Qt
-y JJ [(u‘k)nlplvxﬁ(pdxd' -y J!(¢o+¢§) )X“U-k)!>01dxdt
t
G o*

Finally

(1.14) “ Ib(x,v 0,V u) (u=k) “cPlaxar - czu lvx(u-k)’lp(u-k)’;"dx as
o Q
+ JJ Ozl(u-k)flcpdxd\

Q

Now if we impose on the levels k the restriction

15=._1._C0
- c, 4 '

(1.15) k= -k P o Loy :

we deduce from (1.14)
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f s A S
(1.1¢) “{ b ix,:,u,v u) (u-k) o Vjdxdr - ”lvx(u-k) | "¢ dx dr
Ot

Q

+ )” ¢ox{ (u-k)*-0)dx dt .

o

Combining these estimatcs and observing that

1s arbitrary we obtain

(1.17) sup J [(u-k) *12¢P(x, t) dx
to—pstﬁto B(R)
c
0 +
g ” |v, (u=k)* | PcPax a
Q(R,¢)

< J [(u-k)’]ch(x.to*o)dx
B(R)

+ v ][ [(u-k)!]plvxclpdx dr
Q(R, “)

I8 . -
+ f) l(u—k)”lzcp lc dx dt

Q(R,:

+ YJJ [00*0;)*02]x[(u-k)1>0)dx dr .
Q(R, p)

t . (to-;),tol
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By Holder's incquality

rr p. I -h :) i- . 1] p' i
JJ {10+3l *‘2}x[(u k) -0)dx d-: ['.0+¢l *i,ll, .
q: IJT
Q(R, )
to ) 9'1 rf !'-'l
J {meas Ak R(1)] q I art r
t0°p !
Set
(1.18) q = agf P(l+c) ; r = Yéf P(l+x) ; x = % Ky o

From (0.2) we see that g , r satisfy (1.8), and from (0.2)(i)
. . et . _
(0.2)(111) it follows that their admissible range 1is (1.8)(i)

(1-8) (54"

Substituting this last estimate in (1.17) we see that u

satisfies (1.5) since obviously without loss of generality we may

assume that Co/% =1

We turn now to the proof of (1.6). For simplicity we set
+ 3 *
v(H™, (u-k) ",v} = ¢{(u-k)") ,
and in (l1.9) select the test function
2 tyyr P
(1.19) ¢ = [v ((uh-k) | I Al

where x » cp(x) is a cutoff function in B(R) which vanishes

°1,°

on J3B(R) . It is apparent that ¢ ¢ wp (QT) and that
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2 a0 ) = 20w 0?0 Lo

Therefore such o ¢ 18 an admissible test function in (1.9). Ls-

timating the various t.rms we have

(1.20) I - JJ g; uhlwz((uh'k)t)]'CP)dx<ix = L w2 Pax
{ (R)~{t}
o

(
- J wchdx ’
B(R)'(to-ol

and letting h + 0 we have

I, -~ J WZ(H’,(u—k):,v)cp(x)dx
B(R)x{t}

~[ wz(Hi,(u-k)’,v)cp(X)dx
B (R) *{ ty=¢}

for all t ¢ [t,-0,t

ol -

In order to estimate the remaining terms we let h + 0 first

0

and then use [Al]—lA3].

. -+ . ' 2 P P
(1.21) g :I[ a(x,r,u,vxu)vx¢dxd1 > 2 LO JJ(1+¢)W |vxu| ¢ dxdr

Q ot

- 2 u (1+v) v 2 4o (x,0) ¢ Fax ar
Q
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]
@]
«
1
y—
“
P
Fal
'
—
<]
x
el
(o7
x
Q
-

By repeated application of the Young's inequality we deduce

(1.22) J 2 ¢, H (1+0) o' 217 0P axar

Qt'

>

(1+w)w'2¢o(x, yePdxdc - v(p)”w(w')z'plvxquxdr
Qt

©
(F ————

- v(p)” w(w')zai & axar .
ot

For the lower order terms we have

!vxulp(hw v'2u "L Pay g,

P N——

(1.23) ZIIib(x,x,u,qu)ww'cp}dxdt < 2czI
ot 2

+ 2”¢2w'cpdx dr .
ot

Next observe that w"l = H: - (u-k)i 4 v < 28 Dby virtue of (1.1),

and
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4 . 1
¢ s fn(H /v) ; ' « =
Therefore recalling (1.15) we have
b '2
(1.24) ZJJ b(x,l.u.TXU)ww'c!dxdr - Co J; Iqulp(l'V}V Cq”‘d‘
t
Q ot
i b (0 Lt .
* 2= nin) ¥ P eax[(u-%k) " -0) dx dx
Q(R,c)
Collecting these estimates we deduce
)
|
(1.25) | % Pax sj v2cPax
B(R)=x{t} B(R)!{to—x}
+ v al~‘l2‘p|v c[pdxd1
v ] X
Q(R,)
Y H* p’ +
Q(Ro")
where we have used the fact that v-l ' v_2 < v P gince p 2z 2.

Treating the last integral as before the result follows.

The proof of the emoedding theorem will be the object of sections




; ; 2
pPort 1, Intcrior rezularity 5

2. Preliminarices

Let the point (xo,tox pe fixed throughout, and consider the

cylinder
N,
Nr P~ -ﬁt (p-2)
(2-1) QR - B(R) 4 (LO—R ’ to) .
Set

+ - .
L = ess sup u ; v = eSs inf u,

Nk N«
QR Q2R

and let w be any number satisfying

¥ -y = ess oscu .
Nk
Q2r

2M

™
€
v

Let s* be a positive integer to be fixed later and set

p-2

st
(2.2) g = (g';**) .

Construct the cylinder Q: given by

8 x -orP
Qg ° B(R) (to oRF , to) .

{2.3)
p h X (P-2)
P e -
o If w > 2s R"VP , then 0Rp < R P and we have the
inclusion
;] N«
QR < QR .
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Inside Qg we consider subcylinders of the type
3N g DT
(2.4) Qp  B(R) -~ ft=-nr',t} , n -0,
where t - t and t - nR;" th - BRP . The length of these sub-

0 0

cylinders is determined by the choice of n
2 0)
(2.5) n = — ' So < s* ,

where Sy is the smallest positive integer satisfying

(2.6)

The structure of the proof is based on studying separately two
cases. Either we can find a cylinder of the type 5;‘ where u is
"mostly® large, or such a subcylinder cannot be found. 1In both
cases the conclusion is that the essential oscillation of u in a
smaller cylinder around (xo,to) decreases in a way that can be
quantitatively measured.

We will need the following two embedding lemmas known from the

literature.

Lemma 2.1 (De Giorgi [3]) Let u ¢ wl'l(B(R)) and let ¢ , k ¢ R ,

t > K . Then

N+l
(2.7) (1-k)meas AY _ < CR J
%, R T a

. +
meas{B(R)\}\k'R

|vudx ,

+ +
k,R\Pe,R
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where C depends only upon the dimension N

rRemark 2.1 A similar lcmma holds more generally for convex domains

(see [111)-

For notational convenience we set

. Lm0, T:LP () o LP o, T:HP ()

v lag) =
§ (ag = L@, TiLF ) 0 1P (0, T;H5 () -
p P P
hutl : esssupju(*,t) |l + v ull
JP(QT) 0stsT P, TR
P P
and define Hatle = ““\\v (o)

Q
Lemma 2.2. Let u ¢ VP(QT) , then

sC iy
where ¢ does not depend on 4 nor on QT , and where q .+
are subject to the conditions (1.8) - (1.8)(111).
The proof results from a straightforward adaptation of the

arguments of [11} page 74, carried for Pp * 2 .

From Lemma 2.2 we deduce two corollaries.

o
Corollary 2.3 Llet 1 ¢ VP(QT) , then

s Cliv .
“u”p(l-q—gg),ﬁ,r “ “ vp(n'l‘)




Cprollarz_Z.d Lct

D
i

PJQT

Remark 2.2

These Corollaries still hold if

28

LA p
N+ ,
C(mcas[u#O]‘;T) Hulje .
VI}“T)

u VP(QT) and

does not necessarily vanish on i .

In such a case

C depends on QT via
1
5 TN/P N+p
= C{(1 — .
measf

With C we will denote a generic non negative constant depending

only upon the various parameters in the classes BP(QT,H,y,t,G,u)

and independent of

e

also meas I © |l

., w ,» 8" . For a measurable set I we write

3. The first alternative

Lemma 3.1

R , s*

[(x,t) « Gg‘lu(x.t) w4

then either

There exists a number

(0,1) independent of . ,

ﬂot

such that if for some subcylinder Eg

=n
_s-—’——l < GOIQRI'
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%} ) 1+ r' - ) (p=2)
(3.1) R > (~§7) , or
2
_n
(3.2) U(X:t) 2 U + Sw*l ’ V(xlt) . QR/Z-
2 0
Proof: Ve assume that (3.1) is violated so that Q; < Qg‘ and
fix a cylinder 5& for which the assumption of the lemma holds.
Let
R_ +R
R R T = .0 n+l _ R 3R -
Rn'-.z*-zT{,Rn — :—+-2-;‘—;2-,n 1,2,... .
We will write (1.5) over the pair of cylinders 6% and 62 ,
n
by choosing the function ¢ so that ¢(x,t) =1 for (x,t) ¢ 55
n
and vanishing for t =t - n Rs . In this case
2n+1 2n+1 2n+1 /250 p-2
[v ¢ s ; 0s g, sC = C (u
X R t an Rp
As for level k we take
k = -~ + —*— ,n=1,2,....
n so+1 8,0

2 2

In this setting (l1.5) can be rewritten as




-, 2 - D
(3.3)  sup Hu-k D THY gR 0+ NV tu-k ol
{-')f_{p' tt n PtQR‘
n N}
s \ P72
np _ 2
« C 2—P— [[ [(U—kn) ]pdxd1 + («u/z 0) JJ [(U-kn) )
R =n
QRn Rn
_t-.- £ E(l+()
v C J AL o (o) [9ar

The choice of levels kn is justified since

]](u-kn)-]l 8 = s &

We estimate the various terms in (3.3) as follows. First

5, p-2
JJ I(U-kn)-) Paxar + (w/2 > J [(u-kn)—lzdxdr
an Qn
Rn Rn
t
. (_:_[;)p J 1A, o (1)]ds
S
2 E—nRﬁ
Next for all t « [E-nﬁr‘:,fl
-2
0y P p
-2 2 -
Ny 12w e (B) ekl
n 2,B(R) w p/B(R))
Ik )71l (e)
= n || (u- - .
n P-B(R )

n

30
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Using these remarks in (3.3) and dividing by "

i &y + Lo, -k )T HP
n X n

(3.4) sup e ) b .
T-nRlstst BB IR, PR
n n
np P t
2 w ) 1 , -
s C =—\—= = A (1) ]dr
8 8 X ’R
R g 0 .f-an n’’'n
n
(€ - z f—;—(lhc) E;-(1+.<)--1
+ c\= I Ay g (1) |2 ar n .
E‘Y\Rp n" n
n
The change of variable 2z = 5%5 , transforms GR and 6§ re-
n n

spectively into
_ . _ P L= . — _

Setting also V(x,p) = u(x,t+nz) , inequalities (3.4) can be written

more concisely as

(3.5) R ¢ 22 (=) ia,l
. v- <
n = P s n
Vp(Qn) R 2 0

b P |4
= Frasw ZQ+)-1

where we have set

A (2) = {x ¢ B(R.) j vix,2) < Kg) i ALl = I IAn(z)idz .

-Rn
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Lot x e @n(x) be a piccewisce smooth cutoff function in
_ . . . ,n+2
B(R ) which cquals once on B(Rn+l) and such that llx'nl 2 /R
Then (v-kn)_¢n « vp(an) and by Corollary 2.4.
-.P - P RiT -0t
(3.6) |l (v-x ) |l o = |l vk ) :n||p 5 =Cla_| Il tv=k ) '“”'3 @)
pl n"l ’ n p n
N_f_é N 29(n+2) i
ccla NP k) TIL o TP vk ) Tl :
pn n
Since
. P 50 P 2'P(n+l)|}\ l
”(v-kn) )} o 2 ]kn-kml] ]Aml] 2 (w/27) n+l
PePne1
we deduce from (3.6) by making use of (3.5)
|
14— P X P
A_| TON+P S+5 [ (O = =(1+«x)
np !] n N+p 9 gqz)f
(3.7) |a | < C4 —_ + [A_| (I [A_(z)] Z)
n+l n n
L &P &P
n
s. &P
2 0 F(l*hc)-l
« \— /) n
w
Vle set
_ 'Anl 1 0 g g
Yn = W ; Zn = TE—(R—D)—I' (J p'An(Z)‘ d2> .

~R
n

.
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Then from (3.7) in dimensionlcss form we¢ have

1+_£L _JL. 1
. np R N+ v
(3.8) Yn+1 Cc4 Y, + Yn Z, '
whelo used the 1i1nequality

p
s B
0 (l+4<)-1
(22) - LI

which follows from the definition (2.5) of n and the fact that
we have assumed that (3.1) is violated.

on the other hand, by the embedding lemma 2.2

x_-k_,)F -1 -
Zoe1®n” n+l) S (B(Rn+l)‘ itv=kp) I

q:ran+l
-1 - P
s BRI ek el
14 ’ n
-N - 2p(n+2) _
¢ RN v-k )t T HRIZS SO .
2.) R ’
P n n

Then using (3.93)

{(3.9) 4
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From lemma 5.7 of [11] page 96, Yn . Zn +0 as n + o ,
provided
,1+pf .
Vi od A *0
where ‘0 1s a small constant depending upon C , p , x only and

idependent of R, o

Therefore the lemma is proved if we choose ag sufficiently

small depending only upon Ag -

We suppose that the assumptions of lemma 3.1 are verified

for some subcylinder 6; and construct the cylinder

R P R P
The length of such cylinder is at least n(§> and at most 6(5 '
so that setting for simplicity o = % we may write
8 ~ P
Q - sz = B(zp) x {to-a(zp) ’ to}
where
—p-2
~ 28 P -
(3.10) 8 = \7 » Sg = S < s*
Tl u- T+ =2 » o
Lemma 3.2 Assume that H =[{(u-(u" + —7)) IIW'Q <53 - Then
0
2 2
for every ay ¢ (0,1) , there exists a positive integer
8, = slbjyy,x,é,r) independent of o and R such that either
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Nr. 1+x 1.+
— 14 (%=—=-=) (p~2)
(3.11) RP . (-:-) r P , or
2 1
(3.12) meas{% « Blp) | ulx,t) < u  + -i%{}< ﬂllB(o)I
1
2

~ R, P
for all t ¢ [to'e(I) ’ to]

Proof: We will employ inequality (1.6) over the cylinder Qgp .
As a cutoff function (x,t) » r(x,t) we take a function independent

of t , such that ¢(x) =1 on B(p) and |[v¢]| s o-l . We observe

- w

- 3(20)p =t - n(g-)p , by lemma 3,1 u > u + <+
0
2

that for t = to

and therefore ¥n 2 1

- - - - oy L
w(H , (u=- (¥ +-—57)w_*—1-)) , _s'gTrT')(to 8(2p) ") 0

2 2

Next for v = —~—~ , from the definition (1.2) of v(*) we have,

5.+Nh
,°0
since H ¢ 80+1
2
w(ﬂ'.(u-(u' * == s“’m) s (n-1)tn 2 .
2 0 2 0

Moreover a quick calculation gives

N OO e TRy [ - A
. 2 9 2 0 2 9

.
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Using these remarkhs in (1.6) we have

(3.12) j wzof,(u—(u'*-;fi1”7 ”Euiﬁ)dx
B(o) it 2 2
C w \P-2,8
< (n-l)( la, |
P S/ 2¢
2
/s,+n\p p
0 S (l+x)
+ cnl2 ' RV |B(o) | -

w

Let n be a positive integer to be selected and set 8 = Sg +n.
Then recalling (3.10) if (3.11) is violated the right hand side of

{3.12) is bounded above by

C(s*)n|B(p)| .

We bound the integral on the left hand side of (3.12) from below

by extending the integration to the smaller set

1 (x + Blp) | ulx,t) < u + ——} .
; 0
; 2
Oon such set, since H > *3‘12 we nave
2 0
( so+2
. 2f - -y - w - w R 2| w/2
] v (” ’ (u (U + so*i)) ’ Sa"}_]> 2 in So+n-l
1 2 2 Vg2
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Therefore for all t « [t, - B(E)P t.]

0 2 70
(3.12) AT (e)| © c(s*)——— |B(o)]

oot sin:p (n-3)
0
2
To prove the lemma we have only t.¢ c..oo5€ n S0 large that
C(s*)n
b Ol.

(n=3)

Remark 3.1 The number 5, = Sl(a) claimed by lemma 3.2 depends

upon vy,x,8,r and s* . The number s* is not fixed as yet. It
will be fixed later independent of w , R and therefore we can say
that $1 is independent of w and R .

Without loss of generality we may assume that 8, > s* .

Lemma 3.3 Suppose the assumptions of lemma 3.1 hold and assume

that H > —§§:7 . Then there exist an integer s > s* indepen-
2

dent of 4, R such that either

+
R aeEE-h (pe2)
(3.13) RP . (——-) r o p or,
25
(3.14) ulx,t) > u  + == vix,t) 3(5 x {t.- (B.)p t.)
. ’ 3] 25 ’ ’ € 8 0 n 3 v 0 .
p_+p
= e _‘Z— ry = ..___—._n n+l = 2 30 =
Proof Let o = 3 + L °n 3 3t 5377 Fn=1,2,...,

and consider the cylinders
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We observe that these cylinders decrease in the space variables
but their length is unchanged with respect to n . This 1is due to

the fact that lemma 3.1 gives information on the level
~ P - P
to - e(%) =t - n(%) . and such information we want to exploit.

We assume (3.13) is violated and write (1.5) over the pair of

~ ~

— f
cylinders Dﬁ and Dn as follows.

We choose a cutoff function ¢ independent of t such that

t 1 on B(En) and |vx;| < 2"*2/9 . Then the term involving Gy

in (1.%) is eliminated. As for level k we choose

kK = u + + —2 , N = 1,200

where s is the number claimed by lemma 3.2.

- ~ R = R
By lemma 3.1, u > u + —g; for t = to - 9(7) =t -n(i ‘
and therefore we have 2
p
-, 2 ~ R _
J [(u-k,) ) cp(x.to-e(f) )dx = 0 .

B(pn)

From (1.5) with the indicated choices we deduce
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_ 2 .. P
A i . 3 - -~
(3.1%) Sup,, I tu=kp) [\ I 5 2 HJX(U k) I _n
L -E (%) et 2.Blry) POy
0 Y2 0
n t r
_ 0 it \E(] +r)
C < _ Itu=~¥_) it ~ + C J 1A (t)jq de r
. n p,Dd - r.P kn “
n to'e(i)
- slR)P
For all ¢t ¢ {to 6(2) P t0]
2 251 p-2 _p
I (k)" _(t) 2 -;—) f (u-kp) I Y
2.B(on) P'B(°n)
- _ P
z 8 |[(u-k,) ] _ (e .
pcB(On)

y this estimate below, divide by ¢ and make the change of

wWe carr
variables
t-to
Z B —
2]

The cylinders Dg and E;’ are transformed into




-
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_ rR\P - -~ p
D, = Blo ) * (—(\5) ,0) : B oB(T) - (-(g) , 0}
Sctting also vix,z) = u(x,to+7z) » inequalities (3.15) can be
rewritten as
. P np - P
(3.16) vk ) TH0 Czp”(v—kn) I
VEJ(Dn) ¢} P.Dn
+
0 E 9(1+.<)(51 E*‘ 1]
P~/ -5 (p-2)
vel |2, (2) % az) ‘Z-.r) = oe
b
R
(7)

with the obvious definition of An(z)

Using

(3.16) we may repeat an iteration process in all ana-

logous to lemma 3.1 and conclude that there exist \p > 0 inde-

pendent of

(3.17)

then either

or

R and + , such that if

meas{ (x,2) « D, | v(x,2) < uoo+ —ﬁ—} s XllDl| ’

2 1
N 1,{(1+-< -_];Y'(p-2)
N r o p,
51+I
2
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~

Scaling back to the cylinder Dz and choosing 4 = Ay in
1
lemma 3.2 we sce that we can choose sy = sl(“l's.) so that (3.17)
holds. This proves the lcmma.

We summnarize the recsults obtained so far.

Proposition 3.1 There exist ag ¢ (0,1) and a positive integer

s independent of w, R , such that if for some cylinder of the

form 6;’ with n given by (2.5)

(3.18) meas{ (x,t) e 5; I u(x,t) < w4+ —g;) < aolagl
2

then either

N«
3.19 2 RP T ;= 1 (AR L -]'1
( ) w S £ l} ( T p) (p-2)
or
(3.20) ess8 osCc u s w(l --%;) .
on 2
R/8

Proof If a cylinder satisfying (3.18) exists, then by lemna 3.1

and lemma 3.2, the set where u < u~ + =, relatively to
~ P 2
B(T) x {to -e(g) ,to}, can be made arbitrarily small provided

(3.21) H = “(u-(u'-+_;i__))'H
8. +1 R R P
2 0 -,a(z)-(to-ﬁ(z) 1ty}
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Then by lemma 5.3

P ‘At B(B)L—E(Rpt}
(3-22) uix, ) sl‘;—l” . Ving, ) . 8 '{ 0 'i) ’ o
2
Since n - v - v from (3.22) we also have
ess inf u’ U+ lé ;i 8 = sl + 1
Q 2
R/8
and hence
. + - w 1
ess 0sC U = ess sup U - ess inf u < yw -y -—s=m(1-—§) .
Qn Qn Qn 2 2
R/8 R/8 R/8

On the other hand if (3.21) is violated, since obviously

- w

H =< —go’l , we have
2
ess inf u 2 u + s:+1 - s:+2 >+ ;% ,
QR/B 2 2

from which the conclusion follows.

Remark 3.2 The various constants in (3.18)-(3.20) are independent
of w and R . the number 5y depends upon s* as shown by lemma

3.2. The number s' will be fixed later independent of w, R .
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4. The second alternative

We assume in this section that the assumptions of lemma 3.1

are violated, i.e. for every subcylinder 53
(4.1) meas{ (x,t) ¢ Qp |ulx,t) < v + -53} > ap 124
2

Since if 8y 2 2 we obviously have

we will rewrite (4.1) as

(4.2) meas{(x,t) ¢ Qp | nix,t) > wto- =) < (1-00)|6;| .
0
2

valid for all cylinders 62 c Qg . The parameters 6 and n are

thogse fixed in (2.2) and (2.5). 1In this section we will determine

the value of sg*

Lemma 4.1  Let 6; < Q; Dbe fixed and let (4.2) hold. Then there

exist
- - %0
t* ¢ [E-nRP, t-— nrP)
such that
l-a
A*+ . (ev) | s ( — 0 IB(R) | .
v -—,R 0
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— - “p
Proof 1{ not, for a.e. t ¢ [t-nkp, t-'TT an]
1-u
| _ 0
R . R(t)! . \__._71_/‘0 5 |B(R) |
1] "SO'
2
and
a
E-Toan
meas{ (x,t) - 52 | ulx,t) > A I lA+ (1) fdr
S0 P u+ -2 _,R
2 t-nR so'
2
=n
> (1~°0)'QRI
contradicting (4.2).
As before we let
+ +
A T e L I Tt
0 ® 2 0
2 ¥R 2
so+l
Lemma 4.2 Let 6R © Qp be fixed, and assume that ut > w/2 .

There exist a positive integer m independent of w and R , such

that either

+
e L\ ee2)
(4.3) R = 5,
2
or
a . \2
(4.4) ;,** (t)‘ < [1—('—9)] IB(R) |
_ w R 2
u so+m'
2

for all | lt-jr an. E] .

T e
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Proof wWe will employ inequaltiy (1.6) over the cylinders
- x Y . * = - x
Q;{ : B(R) fte,t) QR-OR : B(R-0oR) [ev,t]
Here t*

is the number claimed in lemma 4.1 and ¢ ¢ (0,1) 1is

arbitrary. We take also

where m has to be chosen. The cutoff function ¢ will be inde-

pendent of t and such that g =1

on B(R-oR) and |9¢| s (oR)™Y

With these choices (l1.6) can now be written for all
te [t*,t] as

(4.5) I Gt -t -2t s:m dx
0
B(R-oR)x{t} 2 2
2{ ..+ + w + W
< J v (H y (u=(u - so)) ' -;0-;',;1 dx
B(R)x{t*} 2 2
t
+ < ) J J Wz H .(U-(u "'";“’))+ ’ sw+m
(OR)™ ¢4 B(R) 2 0 20

g . +m
2 0 2 0
B,+m \ P - X P
0 -2 S,+Mm t = {1+x)
2 + +,°0 + q r
+ C ” (H ) enb 2 ] |A e (1) |*dr
w t* u __80'
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The various terms in (4.5) are estimated as follows. First we

observe that

+ 4 w + w
viH , (u-(u -NEEJ) ' *go‘m min2
2 2
-2
Y-t ooyt w 2-p , [ w \P
iwu H v(u (D so)) ’ so+m so
2 2 2
s.+tm
+.°0
l,nHz s min2 .

Next from the definition (l1.2) of ¢ we see that v = 0

on the set {} < u+ - ;%{] . Tnerefore by using lemma 4.1 the first

20
integral on the right hand side of (4.5) is estimated above by

l-a
[ ot -t -2t s ax s n? ‘"221‘-7;;9'2 (B(R)] -
B(R) = {t%) 2 0 2 0
. -— p 250 p-2 p
Since t - t* < nRY = | =— R¥ , the second integral is estimated

w

by

C
= m|B(R)| .
P m|B(R) |

g
i Finally for the last term we have the estimate

; 1+
K
‘ Sytm Pl1+{ r

1+
p) (p-2)1

RNK

! Cm|{B(R) |

w
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1f (4.3) does not hold, this last term is majorized by

Cm|B(R) |

Putting together these remarks, from (4.5) we have for all

t ¢« [t*,t)]

21..+ + w +
(4.6) J ¥ (H r(u"(u ‘T)) [} 3w+m ax
0 0
B(R-0R)x{t) 2

o

l=a
2, 2 0 C
s m° tn 2(%:;;77 |B(R) | + - m|{B(R)| .

We estimate the left hand side of (4.6) below by integrating

over the smaller set

w

B(R-0R) n [u > ' - —“—](¢)
2
Then on such a set, since ut > —35;1 we have
2
W
8. +1
H+ (u=-~( +--—3’-—) e 2 Ain —Z—g——— = (m-2)tn 2
v U v 80 ’ 80+m ! w *
2 2 soﬂn—
2




Carrying this estimate in (4.6)

1-1
' 2,2 9
(m—2)21n22 (N _ (t)‘, - m®an® 2l |B(R)]
1 + - “'_____ — R i Ao
M < +m P R-0
, 0
C
+ =mlBR)
P )|
e 2 2
and dividing by (m-2)" wn" 2
(4.7) At ()« [T y |B(R) |
: + “ b Am-2 1-2./2
Y K 0
2
v Lo 1]B(R)l
oF
On the other hand
] ’ ’ [
AT, (ty| - {a, (t)| + |B(R) B(R-0R) |
-~ - - 1‘( 1] -"“g"_'R‘UR
so4m so+m
2 2
lA’, . (t) * No|B(R)]
Y] - ‘s‘o—;'"i,R-OR

Combining this with (4.7)

(‘ 8) }AQ ( ‘ ‘ m 2 -uo R =
' oo YR v m-2 | {1-a,/2 * P N N*‘J{B“‘H

for all t . IL',{I

48
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Choose o so small that oN . g-ag and m so large that

|
®f
e

2
m .
() = rsp/a tiveg) 5 4=

then for such a choice of m

(4.9) ga** __L_'R(t)' s [1 -(?iq)z]a(a)i .

80+m

Remark 4.1 Since 3, is independent of w , R , the number m
is independent of w, R . The number s* which determines the
length of Qg is still to be chosen. We will choose it later
subject to the condition s* > 8 t M .

We will set

The arguments of lemma 4.1 and 4.2 are carried under the assumptions
that (4.2) holds, and we know that (4.2) holds for every cylinder
of the form 62 c Qg .

Since s* > s, we have \p = 2

a s, (p~2) -
(4.10) 1 -—2"-)2 0 ‘ ].+u.1 28* (p-2)
0
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s.+1
Corollary 4.3 Assume that H* Cw/2 0 . Then cither
+
N 1+(£%"--l) (p-2)
(4.11) RP . —;-— p , or
2 2
!
+ 0
(4.12) A, (t)! - —2- ]!B(RH
b = '—w‘b:R
s
2

a
-0 ogP
for all t « [t0 —j-eR ‘ tol

6,’; satisfies (4.2) and lemma 4.2

Therefore the conclusion of the

Proof Every cylinder of the type
holds for every such cylinder.

lemma holds forall t satisfying

a

- - -_0 p
t o« [to (6 - (1 =) n)RY, tol .
Because of (4.10) and the definition of 6 and n
%0
® - (1"2‘ (m > 30

and the Corollary follows.

From now on we will focus on the cylinders

Q®an) = BR) = (t. -2 6’P, t.)
R0’ * 0o 3 R RO
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Lerma 4.4 Assume that (4.12) holds. Then for every By ¢ (0,
there exists a number s* (which determines the length of Q;) ’

independent of .+ and R such that either

N« 14 1 +
== . 1+ — "3 (P-2)
(4.13, RP 2 (=) P , or
2
2] + w 2]
(4.14) meas Qx,t) ¢ QR(ao) u(x,t) > u "‘g?} < BOIQR(ao)I .
2

Proof We write inequalities (1.5) over the cylinders _Qg(ao)

and QgR(uo) as follows. We choose a cutoff function ¢ such
i 8 _% P, .
that 7 1 on QR‘“O) and ((x,to TTQ(ZR) ) 0

1 e Vel s 7!

T

0 s Lt S C(uoeRp)-
As for the levels k we take k = u' - J% ‘where s8* 2 n 2 s,
2
and s, is the number claimed by Corollary 4.3.
Negelecting the first term on the right hand side of (1.5) and

using the indicated choices we have

P
(4.15) j[ |vx(u-(f'-;%)fj ax dt

6
Qp tag)

RP
)
Qyg (o)
C + w + 2
+ P JJ ( (u-(u - =) ] dxd=
a 8R 2
0 % (s,
Qrl%g
t r B (1+x)
0
+C j Ia*, e Tae)"
u “T"aR
%0 o] 2
t 8 (2R)*
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We estimate tac right hand side of (4.19%) as follows
. z [ f + w + B . Cflw p - .
(1) T [ (u=-(u =~ =)) | dxar - -——(——») 1Q . (14)
rP }L () 2 Hp 2" R0
Yokt
{11) Recalling the definition of o
2 2 p~2
M tat C \ L&
ST -Gt -t axar 5 J%) (—g;) Qg (ag) |
o aRrP )J 2 RV\2 2
"0 ] ( )
Yr{0
t r < 1+ 1.+
0 = (l+x) Pl )
+ ) g C 2] Nk r P
(i11) J AT, R(t)rldt < ;ElQR(uo)lR 8
83 9] - ==
_ 0 5P ,0
tO 3 o(2R) 2

Carrying these estimates in (4.15)

2 p-2
fJ ct oot P acar - ity T
(4.16)h} 1V, (u= zn)) | dxdx P \2“) (2“) (23.

1+x _

.'
pix -1
+9 T P RNE}IQg(uo)[ .

Next we use lemina 2.1 over B{(R) for all the levels

a
t . [to -»§-0Rp,t0] . As for levels 1t , k we take

l=u-’in7k=U"—“n':I'-
2

N

Notice that for all t « lto"fg ORP, t

4.3 we have
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. ug 2
meas {B(R) A, (0} 2 (=) [BRI]
u -_\:-IR
it
a
Therefore (2.7) in this sotting gives YU « lto --§-6Rp, tol
w + !
(4.17) (;H)\Au* -JL.R(t)\ < CR {7xu(dx
n’ + +
2 Ak'a(t)\ki'n(t)
vie majorize the right hand gide of (4.17) by
: 1 p=i
+ P + + P
2 - v (u-x)" (P A, R(t1\3, Rl .
. )y }7ul j V9% R R,R
R 14 ’
Ak,R(t)\A"R(t) B(R)
%0
Integrating (4.17) over [to-jf GRP, tol and setting
ty R
S L
I n’
te” 3 R 2
we have for all n z S, + 1
i p-l
4. .‘.“.-A < XX - +— hd P P 2 - P
(4.18) (2n) n CR . \Vx(u (v ;K:I)) ¥ ax dt ALy AL .
QR(GO)
£_  power, estimate the integral on the rignt

we take the o-1
16) and divide by (72" P/P"1 to obtain

hand side by using (4
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+
1+, 1
- - . 58* Pll+y(—=-2) (p-2)]
AT it T )

w

1
IE:T [An—l'-An]

lag (ag)
Since s* - n > S, if also (4.13) is violated, the gquantity in

brackets is bounded independent of w, R , s* and we deduce

n-1 n

1
_-%' 8 p-1
(4.19) AY sC|QR(00)|p (A__, -A_]

These inequalities are valid for all n > s, and n s s* .,
We add (4.19)n for n = s, + 1, s, + 2,...,8% .

The right hand side can be majorized with a convergent series

and therefore we obtain

LT T

(4.20) (s*-s s Clf (ag)

and
C

0
gt 5 p-1 IQR(GO)I .

[s' - (srl] P

To prove the lertma we take 8* so large that

A

(4.21) -—~—~-——EEI s Bg -
[}'-52-{] P

Notice that if B8, is independent of w and R , also s* |is

independent of w and R .
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Remark 4.2 The process described by lecmma 4.4 has a doublc mean-

ing. On one hand, given 80 . determines a level k = u+ - X

and on the other hand (recalling the definition (2.2) of &) de-

termines the cylinder Q; . That is, given 8, « (0,1) , the mea-
»

sure of the set where u > u+ - w/2s can be made smaller than

8 only on a particular cylinder Qg(uo) related to the level

0

*
u* - u’/25

Lemma 4.5 Suppose the conclusion of Corollary 4.3 holds. Then

s* can be chosen so that either

*
He RTCALLINE (p-2)
(4.22) RP sl r P or
25+
4.23 (x,t) s u' - —2 (x,t) 6
(4. ) u(x,t) U 28 1’ vi{x, € QR(GO) .
)
R +R
: = +
Proof Set Rn = ; + f% H Rn = ~2—%——-ﬂ - % + ;%%5 , n=1,2,...

We will write inequalities (1.5) over the pair of cylinders

Qg (oo) and Q% (ao) . The cutoff function ¢ will be taken so
n n

a
that ¢ 1 on Q% (oo) ’ ‘(x'to"Tg eRﬁ) = 0 and
n

lvel s 2™2/R ;0 s Ly S c2"/erP .

The levels k are taken to be

+ w w

- - * '] n'l,z'... .
n 23'+1 23 +n
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In this setting (1.5) can be written as

2 )
(4.24) sup -k O e+ (9 ek ) Ty
% _p nU2,B(R xon
to-3 "R tet, n p'oin(uo)
,Pn P _ 2
c “— {Jl -k H 7| + o7t [{(u-k )'Il :}
p n n
R P,2% (a,) 2,2° (ap)
RO R O
%o . 5 . Easo
+C J Ay g ()7 ax .
oo p n’"n
tO-TBRn

We estimate the various terms in (4.24), recalling the de-

a
e . _ 0. .=p
finition of 6 as follows. First for all t e (to TeRn' tol

2 P
H(u-kn)*u (L) 2 GH(u-kn>+H R £
2,B(R) P,B(R )
Next
p _ 2
(o "1 + o jamk ) Y|
¢) ¢]
p.? (a,.) 2,0 )
R @0 R o
t
w \P IO '
- 2(5) My, (0181
[V}
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Then from (4.24) dividing by U
+ |p -1 +
(4.25) sup I tu-k )i _o(ey v s Tle tusk) 1
% op p/BIRy) .03 (ag)
tO—T ORn't'to R.". 0
np P i
2 w 1 +
iy O I L
R 2 a n'n
- O4rP
to - 3°Rn
t r P +c 1.+
1 . Iq (14x) P(—;—"E)
+ = ] |a (t)|* dt
0 kn,Rn
a
0.oP
t ——3——9Rn

The change of variable 2z = 3(t-t0)/aoe , transforms Qg (ao)
n
and Qg (ao) respectively into
n

: « (-RP . 5. : B(R) x (-RP
o, = B(Ry = (-RE, t5) i Ty = BR) x {-Ry, 0

a
We also set Vv(x,2Z) = u(x, t0'+—§-ez} and,

An(z) z {x ¢ B(Rn) | vix,z) > kn)

0
A= J |A, (2)ldz

P
Rn




Then (4.25) can be rewritten more concisely as

p p
(4.26) -k I % PP Ay
Vp(Qn) R 2
1%
0 g_ : {(14«) p(lh( _él;)
+CJ (A, (z) |7 dz g P

-rP

n

Let x + ¢ _(x) be a cutoff function in B(in) which equals

one on B(R ) and |v_¢ | s 2n+2/R Then (v-k )+c € G (G )
n+1l x'n : n n P n

and by Corollary 2.4

1Y P P
(4.2 llev=k ) I s vk e I _ = ¢ ANP [rv-k ) e lle
PiQ ., p:Q, v,
P
p(n+2)
< c aN*P (Il (v—kn)"n .+ 2 5 |l (v—kn)"ll .
Vp(Q ) R P:Qn
Using (4.26) we find
P np P 1+—2—
(4.28) vk )l o ) B
1 " el RP \2% "
, "Yn+l
P_ Eo\2aeo pdie-iy

0 L
, N+p q r r )
+ C An LRP |An(z)[ dz i}

n
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Since
+ P 1 P
I tv=k ) I Lol A '
n P, 2 28 n+l
recalling the definition of ¢, from (4.22) we obtain
i LS B
pn 1+ 0 (1+x)
(4.29) An,y >S2—a " NP . coPh AP (J (a_(z))%az |* .
P n n n
R -rP
n
+
l+x 1
(2'.)9{1‘*( I 5) (p-Z}
L T .
Set
r
A 0 3 3
- n_ . - 1 q r
Y, -'Q—T,zn BTR) f 1A (2|7 dz]" .
n n -gP
n

Then proceding as in the proof of lemma 3.1, if (4.22) is vio-

lated we have the recursion inequalities

P 1*N+p N+p ,l+x

n

Yn*l s C2 {Yn + Y Zn }
pn lex

Zn+1 s C 2 (Yn + Zn } .

It follows from these, with the aid of lemma 5.7 of [11) page 96

that Yn . zn-o 0 as n -+ = if

l4+x
Yl < BO H z1 s 80
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where
_N+tp _ N¢p _lve EE\
(4.30) sg:mezm P 2 4. ey * 2 ‘dJ

Therefore to prove the lemma we choose B8, according to (4.30) and
then s* so large that (4.21) is verified for this choice of By -
Arguing as in Proposition 3.1 we can now summarize the results

of this sectijion.

Proposition 4.1 There exists a positive integer 8* independent

of w, R such that if (4.2) holds for every cylinder 6; c Q: '

* -
8 = (2s /..:)p 2 , then either
.N—‘-& <+
(4.31) R e R R E R S
i or
(4.32) essoscu s wil -—E%TT) R
QS (ap) 2
rR/2'%0

where a is the number claimed by Proposition 3.1 and

0 (an) : B(R/2) * (t.-D6 &), ¢
/2707 ° 0 3 2 T

R
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5. _Prool of the Cmbedding theorem

First we remark that the proof presented only uses the fact

. . U 25. p-2 .
tnat tne cssential oscillation of u  in QR e ono= ) is
less titan .. Since this is not a priori guarantecd we uscd the
device of introducing the cylinder Q:‘ (see (3.1)) to claim that
if Qg is not included in Qg‘ .

N
«
f_'ssoscus“’szs RP .
Nx
QR

Keeping this in mind we now iterate the process described, over a
sequence of nested and shrinking cylinders.
Let 5 = max{s;s*+l} where s is the number claimed by Pro-

position 3.1, and set

= -—l-‘ =—N-—K =
o = 1 5 % p- S =2

All these numbers are independent of w , R . Setting

co(P-Z) so(p-Z) a

2 = min{2 ;5 280 em2)y

both Propositions 3.1 and 4.1 can be combined by stating that in

either case we have the following alternative. Either

60
(5.1) w S COR or
(5.2) €88 O8C U s wh, o w
) 0 1

Q 0

where
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o
0 o0\p-2 p
0 aety . fe - (Z2F7(RY )
Q - B(g) {;0 " (8/ ' Yo -

Opviously (5.2} remains valid if we take the essentail oscil-
o

lation of u over a cylinder contained in Q 0
We set R0 = 2R , and
R, = "0 -1 n
1 [s*-o -2 e 0o’
0 2—7 1
"o
Then the cylinder
8 s* p-2
1. _ p . - (2
Qp. °© B(Rl) x {tO &Ry to} P9y (= )
1 1
%
is contained in Q and we have

esseosc us wy =Yg oo
1
Cx
1

Therefore the process can be continued starting from the cylinder

(2]
le . By iteration we define sequences
1

! 25‘ p-2
! R. = 28 ; w, = ess osc u ; 8, = (———
H 0 0 N« 0 w
Q 0
R
0
*
1 25 ’2
£ e = .« 0O = & —
Rn nRo i ¥ "0%n-1 "' 'n (lﬂ )p
C1 n
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v
and the cylinders Qp" = L(R) » {tg-o RP, ty)
n
For them the following iteration holds.

Either
%
(5.3) wy s CoRL or
(5.4) ess :sc Us e = N ey
n
QR
n

The theorem is now a straightforward consequence of lemma 5.8

of {11] page 96.

Part 1I Boundary regularity

We say that a function u : ﬁT + R Dbelongs to the class
Sp(nTur,M,y,r,é,x) if u satisfies all the requirements listed
in section 1, with the only difference that the cylinders Q(R,?*)
may intersect T , and the various integrals in (1.5)-(1.6) are
extended over Q(R,?P) n nT and B(R) n 0 . We impose an extra
requirement.

The cutoff function (x,t) + ¢{(x,t) wvanishes on 3B(R) ,
or on the parabolic boundary of Q(R,p) , but it does not vanish

on I'. Because of this, a function u belongs to BP(QTUF,M,Y,I,G,K)

if (1.5)-(1.6) hold for all the levels k for which

(u-k)!cp = 0 on T .
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Given such a requirement it 1s immediate to sece, vy following
the same arguments of scction 1, that a weak solution u  of (0.1)

defined in belongs to Bp(fz,r T,M,y,r,é&,v)

..‘T ’
The proof of regularity up to the boundary is based again on
inequalities (1.5)-(1.6). In fact it is much simpler since we may

simplify such inequalities by making use of the information coming

from the boundary data.

6. Proof of Theorem 2

(]

« Q be fixed and let R > 0 be so small that

Let xo

B(R) « 7 . We consider also the cylinder
Q(R) = B(R) x {[0,RP] .

As before we set

wt o= ess sup u ; ¥ = ess inf u ; w = ess gsc u .
Q(R) Q(R) Q(R)

If the initial datum u, satisfies [A6] we set

+ - .
u = €SS sup u ; vo = ess 1inf uo H wo = eSS 0S8C uo B

0 B(R) © B(R) B(R)

Let 59 be the smallest positive integer satisfying
(6-1) —2321— s § ,
2 0
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where & 1is the number introduced in (1.15). We consider the

following two cases.

Case 1 The inequalities

+ w + - -
(6.2) Moo= g Sup o + %0- > vy
2 2

both hold, or

Case 2 at least one of (6.2) is violated.

In case 1, subtracting the second inequality from the first

we obtain

{(6.3) ess 08C u s 2 ess OScC uo
Q(R) B(R)

To examine Case 2, suppose for example that the second of

(6.2) is violated. Then
(6.4) (u-(u” +-2)) " (x,0) =0 , ¥x ¢ B(R) , Vs 2 sq -
2

Let x -+ g(x) be a smooth cutoff function in B(R) which
equals one on B(R-OR) , o ¢ (0,1) and such that [V t] s or)~L
Then proceeding as in section 1 and making us of (6.4) we deduce

that the following two inequalities hold.
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- . -2
(6.5) sup _ fl(u-(u + =) |
0- t<rP 2 2,B(R-0R)
Rp[ v (u-(u~ ‘“))'lpd d
+ v u-(u + — xd-
0 'm(R-oR) ¥ 25
! ” [ (u-(u” ”))'|pd d
u=-(u + — XxXar
(or)P 2°
2(R)
P r B
rRP (1+x)
+ y I A (T)lqd1 r .
0 u +—'£S—'R
2
(6.6) sup J wz(ﬂ_'(u-(u--ﬁ’—‘-‘—)é-))-,\))dx
Ostst 2

B{(R-oR)>{t}

P I B

R - (l+x)

+ L (in E}’J |a™_ (0|9 |* .
vP v \0 oo+ 2R

25

These inequalities hold {in view of (6.4)) for ail s » SH
The proof can now be completed as follows. First, using (6.6)
and the procedure of lemma 3.2, given any ay (0,1) we can find a

positive integer 5, such that either
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— 5.+1 +
P 1 .-l 1+ 1
(6.7) R 2w/2 HE S = 14+ (-—;—"’5) {p-2)
or
(6.8) (x,8) « B(R/2)x[0,RP] Julx,t) « u” + 2o
1
2

s a|B(R/2) = [0,RP)} .

Second, using (6.5) and the procedure of lemma 3.3 we deduce

that either (6.7) holds or
(6.9) ulx,t) > u~ + =225, Vix,t) ¢ B(R/4)x[0,RP]
1
2

These facts are much easier to establish than the corresponding
onesin the quoted lemmas. In particular in establishing (6.9) no
shrinking occurs in the t-direction. This is due to (6.4), and the
relatively simple form of (6.5)-(6.6).

Combining these remarks and recalling the definition of Q(R)

we deduce that

Ne

(6.10) ess OSc u < max {n ess osc u ; crP ; ess OscC uo) ’
Q(R/4) Q(R) B(R)

where
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s,+1
poy - 1 . - 1 . -1 = 1+K -l * -
n =1 Sl#l ; C = 2 HEN 3 1+ T p) (p-2) .
2
3ince this estimate can be reproduced over a sequence of
cylinders Q(R/dn) n=1,2,..., with the same constants n , C ,
, standard argquments imply Theorem 2.
7. Proof of Theorem 3
Let (xo,to) ¢ sT be fixed and consider the cylinder
€ . _ p—‘_
where
Nx -1 1+ 1.7
= — (p-2) ; & =1 + -= ~-2) .

¢ B (p-2) ( T p) (p-2)
We let R be so small that t, - (2R)P7¢ > 0 and define

+ - . + -
(7.1) w = ess sup u ; u = esg inf u ; w= y - u = ess osc u .

€
’ Qr " O 0 " 8¢ QR " O

If the boundary datum f satisfies [A8] we let

(7.2) u; = ess sup f ; u; = ess inf f ; wg = €8S OSC f .
Qr " Sy Qpr ° St Qr n Sq

Define also the cylinders




-
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Q¥ = B(o) * (ty~00F tg) , 0 <0 ¢ 2R

[y

6 - _ - P
QD(al’az) = B(D"OID) * (to e(l 02)0 ’ to}

vhere oy ¢ (0,1) , i = 1,2 ard

8%\ p-2
(7.3) 6 = ('2 )
w

is a large positive integer to be chosen.

and s*
If 6 2 (2R)® we have

N«

-

€
(7.4) o s 22 0RP 2 . 5 (2) P .

1f (7.4) does not hold, then 6 < (2R) ¢ and

2] €
Qpr < R -

We will assume that such inclusion holds, in what follows.

Defining s, as in (6.1), we may also assume that at least

one of the two inequalities

+ w + - w -
(7.5) v~ -;; S Mg ;U o+ —;; 2 Mg
2 2

does not hold. 1In fact if both are satisfied we have

ess osc u s 2 esg osc £ .

(7.6)
QR QR " 8¢
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Let us assume that for cxample the first of (7.5) is violated.

Then Vs - Sg

RN S ., of
(7.7) (u- (. )s)) 0 on ST f QZR

Proceeding as in section 1 and using (7.7) we see that the

following inequalities are valid Vs : Sy and V0 < ¢ < 2R .

{(7.8) sup 'l(U~(u* __%é))+||: N -
to—(l-oz)egztsto 2 +Blp=0,0)n
+ lvx(u-(u"-_%))“ P

2 p.Qg(cl.uz)nﬂT

Y
(0,0 P

<

P

+ w +
(u-(u - —) i

{ v s ) “p'Qo”QT

2
+ Bu-(u” =) | )
P [
ozep 2 zlopnﬂ,r
%o E g(ln)
+y J lA ., Q4+ .
t _epp ] -;-s'lp

s' - +__Ml_ + N 9
ince (u-(u 28)) vanishes on S, 7 Q,, , we may extend

0
(u—(u+-i%))* with zero outside Qp » 0 < 0 s 2R , and therefore
2




the domains of integration in (7.8) may be considcred to be
Q¥ (0,500 . Q% 4 Blo-0y0) -
By virtue of assumption [A7] , for all t ¢ (to— epp,tol

W

Ix « Blo)Jutx,t) > u' =] < (1-0,)|Blo)| ., ¥o s 2R .
2

Consequently the assumptions of lemma 4.4 are verified, and

given By € (0,1) we may find s8* ¢ N such that either

Eﬁ& +
—w__ P e 14 (1) .
(7.9) ~a++T < R t € 1+ (5=-3) (p-2) ,
or
%] + 2]
(7.10) [(x,t) ¢ Qg | uix,t) > u —;%;l < Bglagl -

Remark: The choice of 8* will determine also the size of the
cylinder Qg (see (7.3)). As shown in lemma 4.4. such a choice
can be made a priori, independent of w and R .

Finally by the method of lemma 4.5, and using inequalities
(7.8), we conclude that either (7.9) holds or

ulx,t) s u* - ;;%;T ) WX, t) e 02/2 .

Combining the various alternatives presented, wve nave

71
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(7.11) €ss 0Sc u © maxi{n ess osc u ; CR P ; ess osc f)

{] . 4 €
Crs2 "9 Qr Qr " 5
" 1 . st+]) -1 1+x 1 +
} where o= 1 - 25*¥T ; C o702 P 0T =1+ (5 =g (P-2)

Interation of (7.11) yields Theorem 3.

Remark The proof of Corollary 0.1 follows from the previous
arguments except for proving regularity at points (xo,O)e 3ag x {0} .

The latter case can be demonstrated by a straightforward adapta-

& tion of the previous methods.

8. Proof of Theorem 4

The proof is essentially the same as for the interior requ-
larity and it is based on the arguments of sections 2-5, except

that rather than working with cylinders of the type

Q(R,r) B(R) x {ty-r, t;} we will be working with cylinders
C(R,p) = B(R) n Q x (to—D,to) .

First we indicate how to derive inequalities analogous to
(1.5)-(1.6).

Let Xy € 3@ be fixed and consider the portion of the boundary

3 given by
Sg(R) = a2 n {|x~x°| < R} .

1
Since 2aq is of class C and our arguments are local in nature,
we may assume, without loss of generality that SO(R) lies on

the hyperplane XN * 0 and that for example
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B(R) n 0 ¢ {XN > 0} .
If (xo,to) ¢ Sqp consider the cylinder
(8.1) C(R,0) = {B(R) n 8} x {ty-p, tot o

where p > 0 is so small that tg —p>0

Let (x,t) +» ((x,t) be apiecewise smooth function defined in
Q(R,») such that 0 < ¢t s 1 and z{x,*) = 0 for x e¢ 3B(R) . We
observe that (¢ vanishes on the lateral boundary of Q(R,p) and
not on the lateral boundary of C(R,0) . We write (0.16) is terms

of the Steklov averagins and take test functions of the type
* (u -k) *¢P
where k ¢ IR satisfies the restriction

21
=k "l e (r, gy = 8
and &8 is defined in (1.15). Performing exactly the same calcu-
lations and limiting processes described in the proof of Proposi-
tion 1.1, we arrive at inequality (1.5), with the domains of inte-
grations being now B(R) n g and C(R,0) , and with, on the right

hand side the extra boundary integral




74

0 { +
A = J ‘ +g(x,1,u) (u-k)‘cpdo d: ,

This last integral is estimated by making use of assumption

[Alol and the fact that u . LQ(QT) as follows.

A= JI div(:S(x,x,u)(u-k)!cp)dxdf
C(R,r)

Sy ” {(u-k)’(ap+(p—l)cp'lwxcp + |vx(u-k)’|;9)dxdx .
C(R, )

By Young's inequality, Ve > O

AS e J[ va(u-k)ilpcpdxdt + ” |(u-k)t|p|vxclpdxd‘!

C(R, ) C(R, p)

%
+ yv(e) I [meas Ai R(x)]dr .

t.-o

0

where
Ay Rft) = (x ¢ BR) n 8 | (u-k)'(x,0) > 0) .

Combining these estimates, we see that the following inequa-

lities are valid

A T
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( .
(8.2) Sup J l(u-k)ilch(x.t)dx + IJ \vx(u-k)’lpcp dxd1
L7 <ty a(r) A CiRo)
2 p
s I [-k)®) ¢ (x,t -r)dx 4 ‘IJ { (u-k) 1P (o ¢ |P axadr
B(R) "4 C(R, o)
t r
*)2 P~ 0 s\ 2+
C(R,0) ty-o ’
t
0 :
+ Yy I {meas Ak'R(t)]dr .
tg®

In order to derive an inequality similar to (1.6) we proceed as in
the proof of Proposition 1.1 and in addition we treat the boundary

integral

[
to-p so(n)

gix,t,w)ve'c¢Pac ar ,
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by transforming it into an interior integral over C(R,r) as

indicated above. As a result we obtain the inequalities

' (8.2) SU‘s J WZ(H:l(u°k):lV)Cp(xrt)dx
to-r' t- to B(R) 0

s J wz H:,(u-k)!,v);p(x,to-O\dx
B(R) ni

+ + + 4 2- F
e[| vt et et | Plot| axde

C(R, p)

r R (14x)

2 t
+ L fin B 0 (meas A 119ar)*
vp v t.~-¢ k/R
. 0

t
+ 0 [meas A’ (r))ar
k,R
Co‘p

With these inequalities at hand, the proof can now be completed
exactly, step by step, as in the proof of interior regularity.

The only significant modification regards the proof of the recur-

sion inequalities (3.8)-(3.9) in lemma 3.1 (and similar inequalities

é
!
|
!
!

in lemmas 3.3 and 4.5). For these we used the embedding of Corollary

(]
2.4 valid for functions u « Vp(C(R,P)) . In our case (u—k)’;p does
not vanish on the lateral boundary of C(R,p) and therefore we must
use (2.8) with the constant C given by (2.9). We observe however

that for domains of the type (EB{R) n Q) x dp,O} . the constant
in (2.9) is independent of R .
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Finally the last modification occurs in the use of DeGiorgi's

inequality (2.7) (employed in lemma 4.4).

Now such inequality holds for convex domains (see Remark 2.1)

and therefore (2.7) holds with B(R) replaced by B(R) n 0 =

B(R) n (xN > 0) . The remainder of the proof stays unchangeu,.

]
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