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Efficient Computation of Reflector Antenna
Aperture Distributions and Far Field Patterns

1. INTRODUCTION .,

The classic subject of reflector antennas has received considerable interest , .

in the last few years. The reason is that an antenna system composed of a

reflector and a feed-array combines two very attractive features, namely the

inexpensive high gain of a reflector and the flexibility of an array for beam

shaping or scanning. A recent effort at the RADC/Electromagnetic Sciences , .

Division has been directed at developing computational capabilities for such *

antenna systems and studying a limited scan technique using a paraboloidal

reflector with a small planar array feed.

A basic component of such an antenna study is a computational method to ob-

tain the far field pattern corresponding to the particular antenna configuration of .'

interest. Since there are many design parameters including the feed-array loca-

tion and orientation, the array lattice, and the element number and excitation, .

this method must be computationally efficient in order to avoid prohibitive coin-

puter costs. But, the relative merits of a particular design can usually be judged

from a limited pattern sector, covering the main beam and close-in sidelobes of ,.*

the copolarized antenna pattern. This suggests an approach based on aperture
integration, which is highly accurate for the main beam region; and on the use of

scalar theory, which is a significant computational sikhplification.

(Received for publication 20 March 1984) '-a
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The subject of this report is the presentation of this computation method. We

believe the method to have two novel features, not previously reported in the vast
literature on reflector antennas. These are the use of analytic expressions

based on geometrical optics to map the radiation from the off-axis feed onto the
reflector aperture, and the use of a rectangular grid of aperture sampling

points, which simplifies the pattern computation. An attractive feature of this

approach is that in the process we determine the aperture distribution, which

often is of diagnostic value. Two different methods of aperture integration are
pursued, one based on summation of subapertures with constant amplitude/linear

phase excitation and the other based on the Fast Fourier Transform (FFT) and

sampling theory. 1

2. THEORY

2.1 Aperture Digtributfion

Consider a rotationally symmetric parabolic reflector fed by a small, planar
array with arbitrary location and orientation, as shown in Figure 1. The reflect-

or vertex is located at the origin of the x, y, z -coordinate system and the reflector ":'*.
axis coincides with the z-axis. The direction to the observation point is (o, *), . -,

where 6 and 0 are standard spherical coordinates. The reflector surface is

given by the equation,

2 2 2
4 Fz a x + y, z S D /16F (1)

where F is the focal length and D is the diameter of the reflector.

The feed array has its own local x'y'z'-coordinate system, whose origin is

located at (xfN yf, zf) and whose z'-axis forms the angle 0z with the positive

z-axis.
We treat the antenna in the transmit mode and apply to the feed the input

power P., which is divided into radiated power Prad and reflected power Pref"
From the feed we trace a ray tube of solid angle cross-section d(Q through its

reflection point on to the aperture, where it intercepts an area dA. Thus, the
complex aperture distribution is given by

1. Bucci, 0. M. , Franceschetti, G. , and D'Elia, G. (1980) Fast analysis of
large antennas - A new computational philosophy, IEEE Trans. Antennas
Propag. 28:306.
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Figure 1. Parabolic Reflector With Feed Array

P Pr~d ji f(S)1/ )e f (2)
4w dA J-

where the complex feed pattern f(S2) is normalized such that f()12represents
the directivity in the direction nl. k denotes the wavenumber, and s f and s a are

the distances along the ray from the feed to the reflector and from the reflector

to the aperture, respectively. Note that p is a "field quantity' and the intensity

IP 12 has the dimension of power per unit area.

The antenna pattern is easily obtained in terms of the aper'ture distribution.

The aperture directivity in the observation direction (0,0~) is

2

jk~x cos 
2ýd

AN o + yasin0) cooe dy2
Ir p e . "'-.-,

a° dya %°a-a
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where V * (u.v~w) a (sin 8 coso0 sin 8 sin A. cos 0) is the unit vector in the

direction of observation and re (xa. ya za) is the position vector of the aper-
ture element dA. The gain pattern of the antenna system, which includes spill-
over losses but neglects reflected feed power, is

Go . Gap /I2 dA (4)

a ap rad

Similarly, the total gain, including spillover and reflected feed power is

Gt =Gap I/PitdA (5)

Equations (2) and (3) form the basis for the computer evaluation of the aperture

distribution p and the antenna pattern G
ap*

Returning to Eq. (2) we note that the feed characteristics are described
entirely by the feed far-field pattern f(fl). This requires that all points on the

reflector indeed be in the far field of the feed array. However, it turns out that
this condition iB not overly restrictive. For example, a lOO. reflector diameter

and 50k focal length allows up to 5.X feed diameters.

In order to obtain a correct value for the absolute gain G0 it is essential

that the feed pattern f(On) be very accurately known. The main difficulty lies in
determining the total radiated power Prad' which involves integrating the feed
pattern over 40 steradians. In Appendix A we derive the feed pattern correspond-
ing to two different feed-array elements: idealized cos G-elements, and realistic
circular waveguide elements.

The remaining quantities in Eq. (2), the mapping function d12/dA and ray
path lengths sf and ta, are purely geometric quantities, which depend solely on
the coordinates (xf. yf, Zf) of the feed center Pf and the coordinates (xa, Ya" Za) of
the aperture point Pa (see Figure 2). Unfortunately, they are nonlinear functions
of these coordinates and in order to derive explicit expressions for them we must
first determine the coordinates (XrN Yr Zr) of the ray reflection point P on the

paraboloid. We use the fact that the ray path PP obeys Fermat's principlc
and determine Pr by numerical minimization. Thus, we let the computer search
for the minimum of the total path length

a a + a Z minimum , (6)
a

8 -. ",4
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Figure 2. Ray Path From Feed
to Reflector to Aperture

where

= f(x )2 2 2 1/2

r"" "+(-'["

Sa f IN Xr ) + (yYr)2 + (z f- Z)] I/

z (X2 +v2 )/4F o or r ru

Za D /16F (7)

* * This proved to be a simple and efficient approach since fast minimization sub-

routines for the computer are readily available. The actual derivation of the

analytic expression for the mapping dQ/dA is discussed in Appendix B. This

concludes the derivation of the complex aperture distribution.

2.2 Far Field Pattern

We determine the far field pattern Ga by numerical integration of Eq. (3).

For this purpose we approximate the circular aperture distribution by a sum of

square subapertures with constant amplitude and linear phase distribution. Tis

clearly results in a rather jagged reflector rim, but since we are interested in

9
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an area integral this is of no consequence, as long as we make the division into

squares fine enough so as to adequately approximate the aperture area. In most

cases this represents a rather mild bound on the square size T. A more re-

strictive bound originates from the aperture distribution approximation. This

requires T to be small enough so that across each subaperture the distribution

can be approximated as

,:: p X a y a • p ( a n Y a ) Ji ¢lx n (x a 'X a n ) + •y n (Y a 'Y a n ) ]i • .
e (8)" .',,

where (xan- Yan) denotes the center of the n:th subaperture, and the x- and y-

"components of the phase gradient at this point are Vxn and yn" These compo-

nents are taken as the average phase slope between the centers of the two sub-

apertures on either side of subaperture n, which leads to

SCxn [ [arg P(xan+-, a ahn - arg P(xan - Yan)]/2-

yn = [arg P(xan. Yan+ ) - argP(X, Yan" T)]/2T (9)

At the reflector edge, where these expressions do not apply, we average only M

over the distance 7 between the centers of the subaperture at the edge and its

interior neighbor. With the approximation (8) the integrals appearing in Eq. (3)

now reduce to . ,

aperture a dA

"j"f Jxn(Xa -x an)+ y(ya -yan J k(ux a+vYa)
= f P e n e dx dyn ""E (an, Yan)- nda dYa"...":

subaperture n

2 T(ku+ ) '(kv+vPyn) ik(UXan+VYan)
2E P(X sine k sinc e (10)

* '."'''

and

f 1 1p2c 2 r Ip(x )12aperture dA an an (11)
n an' *

This completes the derivation of the far field pattern.

10o
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We want to comment on an alternative approach to the present pattern cm
putation. Since the aperture distribution is known over a rectangular grid of

sampling points it is tempting to use a FFT to evaluate the aperture integral on o

the left-hand side of Eq. (10). At the outset of this study we felt that the spatial

variations in the aperture distribution would be so slow that a constant amplitude/

linear phase approximation would allow a much lower sampling rate than an FFT

approach and therefore would be computationally much more efficient. This in

fact is the basic idea in the well-known Ludwig algorithm, 2 which uses linear

approximation for both the amplitude and phase functions.

At a later stage however, we became interested in the approach of

Franceschetti et al. who employ the FFT to compute pattern values at a very

sparse set of directions, roughly one value per beamwidth. and then use sine-

functions to interpolate the pattern at in-between directions. Since the pattern

is a bandlimited function it follows from sampling theory that this interpolation

"is highly accurate. In the implementation of this approach we imbedded the

sampled original circular aperture distribution in a square one, with zeros

filled in over appropriate sections. The side D' of the square was a parameter

that we chose slightly larger than the reflector diameter D. since in the FFT

this leads to more closely spaced pattern samples and improved accuracy in
the interpolation. As will be shown below with the aid of an example, this method

of aperture integration is about 20 times faster than the previous method.

A final comment as to the limitations of the aperture field integration method

may be in place. Two questions can be distinguished: (a) over how large an

angular sector around the reflector axis and (b) over how many sidelobes around

the (scanned) main beam can the method be expected to provide reasonably nc-

curate patterns?. -"

These questions are discussed in Appendix C. In regard to the first question

it is concluded that out to angles of about 4/ý2Fh' beamwidths from the reflector

"axis, the aperture integration method can be considered equivalent to the more

accurate reflector current integration method. Thus, for a typical reflector with

D = 100LX and F/D = 0.5, this would indicate a sector of * 10 beamwidths around the

axis. However, our method should give meaningful results over a sector several

times larger than this, since we can expect rather graceful accuracy degradation.
To address the second question we compare our method with the Geometrical

Theory of Diffraction (GTD) solution for the field diffracted at the reflector edge. *

The result is that the two methods agree over a region of about (1/4)D/X side-

lobes on either side of the main beam. Thus, this number can be considered to "

be a bound on the number of sidelobes obtainable by the aperture integration

2. Ludwig, A. C. (1968) Computation of radiation patterns involving numerical
double integration, IEEE Trans. Antennas Propag. 16:767.

11 ...-. .-



method. Although we feel that this bound may be a bit optimistic, it does serve
as an order of magnitude indicator.

. APERTUR• BLOCKAGE

The effects of aperture blockage are readily analyzed since this only requires
setting the aperture distribution equal to zero over the blocked region, before the
far-field is computed. Presently, provisions are available in the computer pro-
gram that allow circular or pie-shaped blocked regions.

Frequently however, an order of magnitude estimate of the blockage effect
is more convenient. To this end we consider the feed shadow as a field super-
imposed on the unperturbed far field and compare the radiation intensities in
these two fields. These intensities are determined by the power/gain product PG.
and therefore the blockage limited sidelobe level

(P 
, 

G) p 12 2
blockage center Ablock

Lblock -- (P aperture 1pa.
average ap

W A2 4-.--
1 'P'center d

er ("- , (12-)

10laverage

where d and D denote the feed and the reflector diameter, respectively, Y7 is the

aperture efficiency and IPcenter / Paverage I is the radiation intensity at the
aperture center relative to the average intensity.

For a typical example we choose an aperture distribution p = (1 - r 2 ), cor-,...-

responding to a pattern with -25 dB sidelobes. In this case n = 0.75 and

Sc 2average 3 and therefore,

Lblock = 4 (d/D) (13)

This relation, which is depicted in Figure 3, shows that in this particular case
the blockage sidelobes may be ignored so long as d/D < 0. 15.

12..
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L bMock (d0)

-20

-40

d/D -::

-60
0.02 0.05 0.1 0.2 0.4

Figure 3. Blockage Limited Sidelobe
Level Lbloc4 vs Feed/Reflector Diam-
eter Ratio d/D

4. ILLUSTRATIVE EXAMPLES OF COMPUTED PATTERNS

In this section we demonstrate the accuracy and the efficiency of the computa-

tion method with the aid of a few examples. Only single point feeds are considered

since the case of an array feed simply constitutes a superposition of such cases.

Patterns shown are computed with the piecewise constant amplitude/linear phase
aperture distribution approximation. Computer run times for this approach and

the FFT approach are compared in a final paragraph.
As a first case we consider a focal-point fed reflector. The feed has a

l/(1+cos 9) field pattern which results in a uniform reflector aperture distribution

and a far field pattern ideally proportional to 2Jl(x)/x. where x = (kDsin 0)/2. As-

suming a reflector diameter D = 200k and aperture sample spacing T=4A we corn-

pute the pattern shown in Figure 4. As can be seen, the sidelobes closely follow

the theoretical pattern envelope, which is shown by a dashed line. The differences

from the theoretical values are shown in more detail in Table 1, column "Scalar

Field". Down to the -30 dB sidelobe level the differences are less than about

0.2 dB, they increase to about 1.5 dB at the -40 dB level. Agreement between

theoretical and computed aperture directivity is equally good, the values being".

55. 96 and 55. 99 dB, respectively. This accuracy was considered satisfactory and

therefore no patterns were computed with finer aperture sampling, which presum-

ably would have given still better accuracy at the expense of longer computation

time.

1.3%'
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Figure 4. Pattern Computed for a Uniform Aperture D a 200X With T =4X-

To evaluate the quality of our scalar approach to a vector field problem we

also computed the vector far-field patterns of this antenna with an independent
3

computer code SAM*, developed by Franceschetti and D'Elia. The code assumes

a feed consisting of a balanced Huygens source again with a field form factor
1/(1 + cos 0) and uses reflector current integration. The sidelobes in the E- and L

H-planes are indicated by circles in Figure 4 and are also given numerically in

Table 1. Clearly, for the on-axis case the polarization dependence is small,

since the two patterns differ by only 0. 01 dB. From this data we infer that the
SAM code is highly accurate, so that it can serve as a reference even for off-

1 -,... "~

axis scanned beams.

To evaluate the accuracy degradation with increasing aperture sample spac-

ing 7, we recomputed the patterns using - - 8X and r - 12,X, respectively. The
resultant patterns are shown graphically in Figures 5 and 6 and numerically in '-,-t

*One might ask why we developed an alternative to the SAM code. The two rea-
asons are that (a) its structure is complicated and we were unsuccessful in in-..--"
corporating an array feed, despite lengthy phone conversations with G. D'Elia ',.
"in Italy and (b) we felt that the scalar approach would ,rovide acceptable data
with less computer run time.

3. Franceschetti, G., and D'Elia, G. (1982) SAM Program. Computer program
for offset paraboloidal reflectors, Material from Reflector Antenna Theory, ".
Computation, and Synthesis course. University of Southern California,
Los Angeles, Calif.. May 1982.

14
ft. ,% .'. %

ft . :. - . f.ft t tf.ft tf f ..ftft * t t



E- CfJ LL C.IkO 0 C~4 4

CU -* S S 4 i

0)

-4-0-.C 0) Co~ ~ -3 V

w t-C coo 0 0~ CV toO

.54 o040 0 n E-

.4 9S

-0.5oi to c OO 0 M t 
4 ~ m 0

0 C4 Cq co) 0) m co4

ul 0

0 Q.M kO 0 0 CD 1. CO a)Ul-4

4 -4 C03 m cI) m e

4) 4*4 -C4 .4Co to Ct- cc=

wo..
Q A,.. .*-%O:~U'C4 o



L0

0-

-20-

-40--

..60+- I I -4 ii
-10 -9 4-7 -6"5-54-3-2 -1 -01 2 3 4 5 6 7 8 9 10

BEAMWIDTHS D(u-u0 )

Figure 5. Pattern Computed for a Uniform Aperture With Aperture Sample
Spacing Increased From Tr 4X to .,r 8X
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Figure 6. Pattern Computed for a Uniform Aperture With Aperture Sample
Spacing Increased to 7- z 12X
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Table 2. Apparently, the accuracy degrades rapidly even though the present

uniform aperture distribution constitutes a particularly simple case, which is

perfectly resolved by the constant amplitude/linear phase approximation.

In a second example we scan the beam approximately 10 beamwidths by -o..-

moving the feed off-axis to a position xf -5. 861X, yf = 0. zf - 99. 828X, while

keeping it pointing at the reflector center. The feed pattern and reflector re-

main unchanged. Using again an aperture sample spacing r, 4X we obtain the

u- and v-plane patterns (through the main beam position u= -0. 05, vo 0)

shown in Figures 7a and 7b. As a reference we also show the sidelobe levels

obtained with the SAM code. No distinction between the feed polarization being

parallel or orthogonal to the scan plane is made, since this results in differ-

ences - 0. 03 dB in sidelobe level. A numerical comparison of sidelobes ob-

tained for the scalar and vector field patterns is provided in Tables 3a and 3b.

In the u-plane. Table 3a, where no depolarization occurs, we note again good

"agreement between the two approaches, the difference being 5 I dB for sidelobe

levels down to about -30 dB. In the v-plane, Table 3b, we note that depolariza-

tion becomes significant. If we compare the pattern of only the dominant

0-polarized field component, we find that the sidelobes are consistently lower

than those of the scalar pattern. This is due to the power lost to the 0-polarized

field component. When we add the powers of these two polarizations, as is done

in the column labeled Vector Field, IE + JE 12 in Table 3b. we find much0improved agreement with the scalar pattern. The differences are -s 0. 5 dB down

to the -30 dB sidelobe level.
Finally, we illustrate the efficiency of the FFT far-field pattern computation

with one representative example. We consider the same reflector, D = 200X,

F/D i 0.5, as before with the beam scanned 10 beamwidths off-axis. The aper- ...

ture sample spacing r = 4X and for the FFT we use 64 X 64 samples, which makes

the zero-filled aperture diameter DO "2 250). This choice for D' results in com-

parable accuracy for the aperture integration methods based on the constant

amplitude/linear phase approximation (denoted "subapertures") and on the FFT, .

respectively. The computer run times for the two methods are compared in

Table 4, which lists seconds of CP-time on a CDC Cyber 750 computer. Time

for the 64 x 64 FFT alone is about 0. 6 sec CP-time, which shows that 50 percent

of the time is used for the pattern interpolation.

..
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Table 3a. Sidelobe Positions and Amplitudes in u-plane Cut Through Main
Beam - Comparison of Scalar and Vector Field Approaches. Main beam
scanned to u 0. 05.. ".a0

Scalar Field Vector Field
Sidelobe Position Ampli Position Amp Diff

No. (D(u-uo)] (-dB) [D(u-uo)J (-dB) (6 dB)

-8 -9.3 31.3 -9.3 31.0 -0.3

-7 -8.2 28.0 -8.3 29.0 1.0

L -6 -7.2 26.1 -7.2 26.2 0.1
-5 -6.2 23.2 -6.2 23.1 -0.1

-4 -5.1 19.3 -5.1 19.4 0.1

-3 -4.0 15.2 -4.0 15.5 0.3

-2 -2.8 10.9 -2.8 11.1 0.2

-1 -1.5 6.8 -1.6 7.1 0.3

main beam 0 0 0 0 0

1 4.0 29.1 4.0 29.0 -0.1

2 5.1 37.4 5.1 36.0 -1.4

3 6.1 37.5 6.1 35.9 -1.6
4 7.1 35.8 7.1 38.2 2.4

5 8.1 40.1 8.1 38.6 -1.5

6 9.1 38.3 9.1 40.7 2.4
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Table 4. Computer Time for One Pattern Cut Over 20 Beamwidths

Number of Time for Total Run Time Pattern Integration FFT Time
Pattern Aperture Reduction
Points Distribution Subaperture FFT Subaperture FFT Factor

200 11.5 35.0 12.8 23.5 1.3 18

5. CONCLUSIONS

We have developed a simple and efficient computational method for the eval-
uation of reflector antenna patterns. The method is useful in situations where a

large number of candidate antenna configurations has to be analyzed, as is the
•.1-

case when synthesizing an antenna to a given design goal or when scoping a re-

flector limited scan technique.

The three essential features of the approach are (a) the use of ray optics to
map the off-axis feed onto the reflector aperture, (b) the use of Fermat's princi-

ple to determine the ray path from the feed to a given point on the aperture, and

(c) the use of a rectangular aperture sampling grid and FFT to speed up the

pattern integration. The pattern and the absolute gain are determined for arbi-

trary feed locations and orientations, the only restriction being that the reflector

lies entirely in the Fraunhofer region of the feed. Expressions have been derived

for the far field feed array pattern corresponding to two different feed array ele- .' ".-

ments: idealized cos e-elements and mutually coupled, circular waveguide ele-

ments.

Patterns computed by the aperture field integration method compare well

with known analytic results and with patterns computed independently with the

SAM code, which is based on reflector current integration. The validity of the

aperture integration method is further discussed in an appendix, where it is corn-

pared with integration over the actual reflector surface and with the GTD solu-

tion. A present limitation lies in the scalar field formulation, which neglects

the cross polarization. However, the latter can be easily incorporated using

simple geometrical polarization factors, such as derived in Reference 4.

4. Kauffman, J. F., Croswell, W. F., and Jowers, L. J. (1976) Analysis of the
radiation patterns of reflector antennas, IEEE Trans. Antennas Propag.
24:53.
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Appendix A

Feed Array Pattmn

In this section we derive the scalar far-field pattern f of the feed array. The
main difficulty is the proper normalization such that If(e.0)12 representsthe

directivity in the direction (6, 0).* Two types of array elements, idealized cos 0-

elements and realistic circular waveguide elements, will be considered.

We assume that the far field of the single, isolated feed element with excita- .- *

tion V can be expressed as

r (r, 0. ) = V(eo0 9 + e 0 ) eilk e-jkr/r , (Al)

where eo0 = e (0, 0), eoO = eo4(O, 0) are real functions, 0 and • are unit vectors,
0 0 o-.....e.(0-

represents a constant phase angle, and e-jkr/r represents the spherical wave-

front. Consequently, for an N-element array with excitation coefficients {Vn. .

the far field is ekrjr- r;;:i:i:i
S=(eo + eo) ej¢ (e _jkrr) nS Vn ek rn ,(A2) :S'.''..

00 04) n n

*Note that in this appendix r. 6, 0 stand for the spherical coordinates in the local
feed coordinate system, which in the main text carries a prime sign.

25

. . .



where r : (sinecos#. sinosin#. cos8) is the unit vector in the observation direc-

tion (o. #) and r is the position vector of the n:th element, see Figure Al.nFrom Eq. (A2) we derive a scalar field E, which correctly describes the field

magnitude and phase but suppresses the polarization, as required for our ray

analysis, by setting

-jkro rjki. •
E e (e /rL V e , Aa)

0 0On n

where

e(O0.*) jeo. T+e2! ej (A3b)0• .00- 00-7".'*

OBSERVATION POINT

.
:

• " ~ ~Figure Al. Feed Coordinate System"""'

°> ~~~The desired scalar far-field pattern 0(0, 0) is now defined by the conditions:."""--

SI f(o, #) 1 2 -- directivity in dire ction (0. #)a

UpnU. .. ,

""arg f -arg • 4 e..A-.."-o,

"U, U.% . .

'U F-..'.F ' .U

'U 
P.o .. 'U
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which leads to
•(o. ,)f2, eo E Vn dk" F-ni e.

= (A0 a) e"'"1/ "A'a

lf e E V~ ejk. 7'n,2 dn] 1/2
[ 0 n

or alternatively

F4Y 112 kr- rn
f09. " L e EV e (A5b)

L rad 0 nl

where Yo is the free space admittance and

frad yo 1E 2 r2 dn (A6)
4v

denotes the total power radiated by the feed array.

Al. IDEALIZED ARRAY ELEMENT

In this case the array element pattern is

' o0 > r/2 (A7

and the only difficulty lies in the evaluation of the in'gral.

N 2
I= f leo. V e I dQ (A8)

4v n=l

in the denominator of Eq. (A5a).

Substitution of Eq. (A7) in Eq. (A8) and expansion of the square leads to a

double sum

N N.
I= T (A9a)

m1 n1• mal nul

where each term is given by

27 _
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r/2 2w'
V V*coae jk(r -(mr)si do#

TuV f on m nS fld f

0 0,

*V ~ ~/2 2r jk[(x _x )coo* + (y - snJm sncsdd

o o (Agb)

and the asterisk denotes comples conjugate.
Equation (Afb) can be integrated analytically and the result is

nkss mn m n
mmn

12

where

mn n =[(~ ~x) 2  ( y)I1/2

=s~ ý x'2+(Y n (All)

is the distance between element m and element n, and Jl denotes the Bessel
function of the first kind and order 1. Thus, for cos 0-elements the field pattern

for the feed array is

09 r0 4zcos 0 1/2 EVejk(xn Cos~ + Ynsin) sineo(A2

where the terms Tm are given by Eq. WAo).

A2. CIRCULAR WAVEGUIDE ELEMENTS

In this case the feed consists of an array of open-ended circular, dielectric

loaded waveguides in a ground plane. Each waveguide is matched to its (single

element) radiation admittance and is assumed to be driven in the dominant mode
by a matched generator.

28



The desired pattern function 08e. 0) is now derived in the following way. The
aperture field of each waveguide is approximated by the two orthogonal dominant

modes, one driven and one parasitic. Ideally, the aperture excitation of each";

guide and, consequently, the radiated field is directly proportional to its driving

generator voltage. In a realistic array however, the aperture excitation will be -' .-

perturbed by the mutual coupling between the elements. We evaluate this effect • " .
with the aid of a separate computer code based on Reference Al with cylinder rad-

Ntus -, ao which for a given set of N elements driven with voltages (An 1" computes
iN 'Nperturbed driven aperture voltages (Vn )N and reflected mode amplitudes IR n I" N N fo th paaii moe se-e'...:_'

and corresponding quantities IVn)1 and {Rn)1 for the parasitic mode, see

Figure A2.

An •MATCHING

SECTION

Figure A2. Waveguide Element With .' I

Aperture Matching Section

The explicit form for the y-polarized TE 11-mode function O(r. ) = r; + 0 is

= Jl~x) ~ 1/2 J(') in
Ir r) : L .d Jin , z

":x , 841 1 (A(3)

• where a is the guide radius. 
4...:., ~~~The far field E. E 9+ E ^ radiated from an electric aperture field,'-<

a a•"::~ ~ ~ whr a. istheykl guid r17 Aadius. so iclrwvgieary nclnes

.,IEEE Trans. Antennas Irpg 2560. •
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Eo 6 u j V' (e Jlr/r) [2 v 1/2 sn j (ka sine)0 0 2 - s in e I.O ..6

1/2,.

E .VI (ek/ ka cos 9coso i (As4)"ne)
Eo= jV(e-k/r) [2 1 ka sine)2  ....i.

By comparison of Eq. (A4) with Eq. (A3b). we deduce the scalar element

pattern to be

o ( Lx.) 1/2 [(sin# 2sing 2

2-1/2SJll~~~ka sine) •i ...

+ ose cos# 2 (A15)ka sine.

+ (C (
where the superscript (y) indicates that this pattern corresponds to the y-polar-

ized TEll-mode. The pattern for the x-polarlzed TEll-mode is

e(X) j -a sin':
0 ka sine)

J (ka sine) 21 1/2
+ cosO sin# (ksn) (A 16)

tt .S..- .

which is obtained from Eq. (A15) by a simple interchange of sinO and coso.

For the proper normalization of the feed pattern f we also must determine

the total power radiated by the array. This could again be done by integrating . ..-

the pattern over 4w sr, but fortunately this time there is a simpler method. The

power incident at the waveguide apertures is

P, T . IAn 1 .(..A°.P YTE 11 n• nAT : "''

30,
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and the power reflected is

r TEll nj'j n R 2  A8

where Y TEll denotes the TEll-mode admittance. The difference must be the

radiated power and therefore,

12 2' it(JA 1" °"2I (A*19)

Tril n n nHI R

The scalar field pattern now becomes

Pr = YT4w I v v <'1/2 A ei~n jk(x- Cos# + Yn sif-')cosO.'"

rower eon

where Pa is given by Eq. (A19) and the element pattern

(eo, for x-polarized excitation
e.

i (Y)
0 e 0  for y-polarized excitation

is given by Eqs. (A15) and (A 16).
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Appendix B

Fd-Aperture Meppng

In this section we determine the relation between the solid angle cross-

section dQ of a ray tube, which emanates from the feed, and the area dA, which

this ray tube intercepts at'the aperture, see Figure Bl. This is a purely

geometrical problem and we repeat the defining equations here before we

develop the solution.

(1) Paraboloid equation x2 + y 4Fz (BI)

(2) Focal length F

(3) Reflector diameter D

(4) Given ray origin point (Xf Yf zf) .

Known reflection point (X, yr' zr) determined from Eq. (B2)below.

Given aperture intercept point (xa* Ya za)

? 2 21/2I +(": ~(5) Feed-reflector sf Xf2+(ry) 'Y zf

L
2 +2 21/2

4F ... ,_

(6) Reflector-aperture s 2 + + z
"distance a 4F ..Z"':I":". .

i)!-.,..-...-
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APERTURE INTERCEPT

REOLETIONrt AREA dA AT (XeY,y1 ,)

z

RAY TUBE CROSS SECTION dil

\FEED CENTER (xf ,yf.zf)

Figure B1. Ray Trajectory From Feed to Aperture

(7) Total ray path length s s + s =minimum *(M2)

with respect to xr r (Fermat's principle).

We also introduce a local, feed-centered coordinate system C. n. C, which is

translated relative to the system x, ya Z.

~X f

~z f . (M3)

since in this system the ray tube cross-section d12 is conveniently expressed as

dQ sine dO dO I ,(B4O

where 9 and are the local spherical coordinates. *

The desired relation between the solid angle df2 and the aperture element

dA is now obtained as follows. We consider the coordinates e,~ that determine

* Note that in this appendix the spherical angles 0.~ are different from those in

Appendix A, since the 9.7, K -system here is rotated relative to the x, y z -system. *.-
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the ray direction, tobe functions of the coordinates Xa0 Ya at which the ray inter-

cepts the aperture. -

6• O{Xa Ya)

#- (Xa ya) (B5)

The mapping of an aperture area element dxa dya onto an element dO d# is

given by '.". -

dO d* J dx a dya (B6)

where the Jacobian

j 0 .9 8 4 a (B 7),. ' . t .

T- a -- a 8 ya Ia a

Substituting Eq. (B4) In Eq. (B6) and setting dA = x dyal yields the

desired relation

d1- - Jisine , (B8a)

where

2+ I 1/2)21/
sine L 2 2 [(r = Xrf)2 + (yr-yf)2 Sf (B8b)

This completes the derivation of dQ/dA. The remainder of this appendix will be

devoted to the development of explicit expressions for the partial derivatives in

the Jacobian.

According to Fermat's principle Eq. (B2) the reflection point (xr, Yr' zr) is

a stationary point so that r

,* .. •

ax r

% W 8yr8 0 .(B9)

N.P.
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For small position increments dx a dy a in the aperture point the resultingS increments dxr dyr in the reflection point will be such that Eq. (B9) still holds.

S 2s a2 2 s 2___8()~d ~ a a r a+~ardau

d( dx + -dy +a~ ______0§xrr ayax r Xax Yfr da+ ayaayr daO (B)

From Eq. (BIO) we solve for dxr dyr in terms of dxae dya to obtain

dx a dxa + dya

Ldyr =ydxa + 6dya *(Bli)

where

r r aayr ay ar
r

2rg 2 82s .22

)C ax 8 Yaayr Oy 2 a9yaar]
r

S[;2s 8r2 s 
2 s ax2  1

C ~ ~ - ax2  xy
r

1i [a 2  82 : a a2 : 12:] (Bl2a)

with

C a 2s a ( :ayr) (Bl2b)
r Yr

L 36
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The derivation of explicit expressions for the second-order partial deriva-

tives of assf+sa required for a*. -y. 6 is lengthy but straightforward. The

result is

282s f X ]r/4F2 o/f 2[X1Xf

ex

+- [1 + (zr-Zf)/2F + ./4F] I (x + Xr(Zr.Zf)/2F)2 /s/

r a r a r(rZa)/F2ea * °'

a1 /+ r- /2 +/4F ]2  [x (z

rayr = rYrl/f+l/Sal .[X _f + Xr(Zr.Zf)/2F .

[yr-yf + yr(Zr-Zf)/2F]/s3 - [3r-xa xr(Zr-Za)/2F]

r z)/2F 4

[yr-ya + yr(Zr-Zal/F) e aI

•' 1_/sa + (Xr.Xa) [xx+ Xr(ZrZal/2F]/Sa

2

a r a 2--2

S= (yr'y)tYr'Ya I+ YrX~ +Yr" F 0a/82

2s + (zr.Ya)/2 + yrX /4F 4a/e2/2F3 /a

2ayaXr r r a r'1 Yr -aI + /"f

+2 [ + ( yr- Ya)/ yr-ya 2 )/22] 2 / a .,,.

r a- s +. (B+S
a :

= ./ +. (...F-

•' -. I.*.
.......

=~~~~~~- (x -xt Y 4x+ /

ax r r ar r r a

'.~ y 4

a 2 2 2
By~~~~~~~~~ ~ ~ ~ ~ ~ a x yr Ya[ -( r4Fa/F*s
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Returning to Eq. (B11). we note that the coordinate increments dir dr on the

I reflector surface also are accompanied by an increment

dzr +d +ydy )/2F . (B14)
r r( dr r r

We have now traced the aperture point increments dx a, dy a to corresponding

I refectio-poit incement dir dyro dr and it now only remains for determine9

how these increments are viewed from the feed in terms of dM, dO. In other

words, we need to determine the unknown coefficients in the relation

dO a I di r + a 2 dyr +a 3 dz r

dO b1 dir + b dy + b dzr (B15)

Once we have these coefficients we can substitute Eqs. (B11) and (B14) in

Eq. (B15) to obtain

d c 1 da 2 c~ya

dO z c 3 di a + c 4 dya ,(B16)

where the four new coefficients c1 , c 2 ' c 3 ' c 4 now can be identified as the four -

partial derivatives required for the Jacobian. Thus, we have

98
aa c 1  a (a1 + a 3 x r/2F) + vY(a 2 + a 3 yr/2F)

*~ c0 z a3(a + b xr/2F) + 6(a2 + b y/ 2 F)

a

ci P~ b x /2F) + (b + b yr/2F) B7
a
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The ~ ~ ~ 2 coficet a2a, 3 b ,b2 b 3 are determined as follows. From theP ~standard relation between spherical and rectangular coordinates

2 2'

we obtain by differentiation

dO 19 Kd9 +ri CdTn-t 2 dfl/s 2t p

where

t + n2(B2 0)

In view of Eq. (B3) we have

dE= dx, dri = dy, dC = dz (B2 1)

and when we substitute Eq. (B2 1) in Eq. (B 19) and identify the resulting expres -

sion with Eq. (B15) we find

2 2
a,1= r/ ft b I -1i/ rt

2 rr

2

a3  -t ~/S b3 = 0 (B22)
3. rf.3

where the subscript r indicates that the value at the reflection point is to be used.
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Substitution of Eqs. (B3) and (1322) in Eq. (B3I7) yields

'Ex laI(X -xf)(zr zf) -xrtr/2F] + -ii(yr-yf)(zr-zf) -Yr t r 2F]/s ft r
a r

86 -)(Zz-z x 2 /2F - vt 2 I2F~l/s 2t
a Yaf'r-f Xrtr/2 + 6[(Yr-yf)(zr-zf) r r' f r

2
ax I-ayr-yi + Y(xr-xf))/ r B2a

a

where

tr A (x-i) Y (1323b)

In summary, we have now, via Eqs. (138), (M3), (1323), (1312), and (1313),

-. ~expressed the desired function dQ/dA entirely in terms of the known coordinates

of the feed point, reflection point, and aperture intercept point.
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Appendix C

Validity of the Aperture Integration Method

We want to briefly comment on the validity of the patterns obtained by the

aperture integration method. In particular, we want to know over how large an

angular sector around the reflector axis the method is valid and how many side-

lobes about the (scanned) beam are accurately predicted.

The first question may be answered by comparing our method of integrating

over an equivalent rlanar aperture with a more accurate integration over the actual,

curved reflector surface. This is done in Reference Cl, where it is shown that

the two methods are equivalent out to angles in the order of 2 times the

beamwidth. For larger angles there will be quantitative differences, although we

would still expect good qualitative agreement.

One numerical example illustrating this point is provided by the patterns of

Table 3. There, good agreement between the aperture field integration and

current integration methods is shown out to 19 beamwidths from the reflector

axis, which is 1.4 times further than the 14 beamwidths obtained by the V ]Ul-

criterion.

The conservativeness of this criterion is further demonstrated in the next "*''

example, where it is exceeded by a factor of 3. We consider a reflector with

D = 1OOX, F/D = 0.5, with a balanced Huygens feed located at xf = -9. 98X, yf = 0,

zf = 49. 08?t, and with a 1/(l+cos 0) field pattern pointing at the reflector center.

C1. Clarke, R.H., and Brown, J. (1980) Diffraction Theory and Antennas,
John Wiley & Sons, N.Y., p. 196-199. . -.
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The nominal main-beam position is u0  0. 174, v0  0, corresponding to a scan

angle of about 17.4 beamwidths. The u-plane pattern through the main beam0

obtained with the aperture integration method is shown in Figure Cl. The side-

lobe magnitudes and positions as computed with the current integration method
(SAM) are indicated by circles in the same figure. The maximum difference is ,.~

2. 7 dB and clearly the two methods produce very similar patterns out to at least

27 beamwidths from the axis. The VFX-criterion yields only IC beamwidths m

in this case. The corresponding v-plane patterns through the main beam agree

with the same accuracy as in the u-plane pattern when the powers of the 0- and

0-polarized components are combined. Computations with two orthogonal feed

polarizations showed that the patterns are very insensitive in this regard, since

the sidelobe peak variations were less than 0. 01 dB down to the -40 dB sidelobe

level.

0.

-20

-60~~~~~~ ..
" ..... . ..i

-10 -.15

Figeo bure 17.4 Comamwidtson ofPttern u-p tained pater Scalrough rture maineld..

IntegratinitudSolid oiione) and byVctompte wChthurrent I ntegration (Crc es) dr" -
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To address the second question we compare the diffraction patterns computed

by the aperture integration method and Geometrical Theory of Diffraction (GTD), * S
respectively. The latter method is used as a reference, since it correctly .-.

describes the far-out sidelobes. Such a comparison is quite illustrative and will

be outlined below, since rather surprisingly, we were unable to find it explicitly . -

"in the literature.

We consider the 2-D case of a parabolic cylinder, diameter D and focal . .

distance F, illuminated by a focal line source. The geometry and notations are

shown in Figure C2. Note that the reflector rim is not necessarily a knife edge,

but a general wedge of angle • . The feed has a symmetric y-polarized fieldw
pattern such that E(s,0) = E(s, -V). If we trace a ray tube of angular cross-

section dV from the feed to the aperture we find that it intercepts an aperture

element

Fdx = 2 d =sfd• , (Cl)
cos V/2

where sf is the distance from the focus to the reflection point on the cylinder.

Thus, the ray tube has the same cross-section area at the reflector as at the

aperture. The incident field Ei(M) at the reflector is assumed normalized such

that I'1 is the intensity in Watts per meter. Since the power within the ray
tube is constant it follows that the normalized aperture distribution

OBSERVATION mts
POINT (R, -)

F

El €\

H ddii
p(x) dx

U...

0 0
2 2

Figure C2. Geometry of Parabolic Refle,.c., ;vith Line
Source Feed
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p(x) = E.(;) ejksa (C2) I..

where the phase factor expresses the phase delay over the distance s from the

reflector to the aperture. ',,

The far field based on aperture integration is now obtained as follows. Each

aperture element dx represents a source of strength p(x)dx, which radiates a 3,0

cylindrical wave, described by the Hankel function H (2Mr). The total far field

can be shown to be'

D/2

Ea k p H (2) (kr) dx
-T f 0H~krd

-D/2

:'e} = -pe-ilII D/ ejlxsinO dx (C3)

-D/2 1O

where the superscript a denotes aperture integration, and we have made the

usual far-field approximations for the Hankel function and the distance r from

the aperture element dx to the observation point. In the sidelobe region the
C3

integral reduces essentially to two end contributions, so that

-%..

.=-: Ea _ jkR s in(2 kD sin 0) !.;

EaI e p(D/2) sin_ (C4) ..

Finally, in view of Eq. (C2) we obtain

'* j j i s in(1 kD sin 0)
L-, E~~a•""fix e'Jd Ei(Vo) si- (C 5) "...'"".

V - 0 sine 0C

The far field Eg according to the GTD method consist of the sum of the fields

E 1 and E 2 , scattered at the left and right edge of the reflector, as shown in

Figure C3. Due to the feed symmetry the incident field is equal at both edges
-". ~~~we have in the far zone .... •.

C2. Harrington, R. (1961) Time-Harmonic Electromagnetic Fields, McGraw

Hill, N.Y., p. 288.

C3. Felsen, L., and Marcuvitz, N. (1973) Radiation and Scattering of Waves,

Prentice-Hall, N.J., p. 387. %
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Figure C3. Reflector Edge Geometry for GTD Analysis

-jk(R +½-DsinO) -jk(R -½-Dsine)

Eg DDE i (0 + D2 Ei(vo) e(C6)

where D and D are edge diffraction coefficients. Setting momentarily
1 (2

u' T kD sin0 (C7)

we obtain from Eq. (C6)

e-jkR
Eg U[(D+D 2 ) cos u' - j (D -D2) sin u'] EiQ) e(C8)

1 2 to 0 IT, -

We use Keller's original diffraction coefficients, see, for instance Refer-

ence C4. When the incidence and scattering angles appropriate for our geometry

(see Figure C3) are substituted in these coefficients, the result is

1, + 1 
.C11.. "cosc-Cos o cc cos 2  cos- co nj!---

n. n n • F:nn n

D. -D + - 7Co s cs--cos-o~ cos--cos- Cos--Cos

(C9)

C4. Balanis, C.A. (1982) Antenna Theory, Harper & Row, N.Y., p. 509.
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where

C e~' sin(ir/n)/(n;'2i7rk-)

-n2(ClO) '.p

We now investigate the behavior of Di + D2and D 1  D2 in the sidelobe

region near the main beam, where 10 << I1. In general rp, n and r will be

independent parameters and therefore we obtain

Frlim (D + D) C [~~ 2 co-3 + cos ] (Cil)

FrD I D 2however, the situation is different and there we find

1 2

D-D C 2 (C12)1 2 sin. sin r
n n

which is unbounded when e-0. Substituting the above expressions into Eq. (C9)

yields

-g E (iP ) e sinu' + jE cosu'J (C13)
In sinW/n) i 0

where

+ - sin-!sin- . (C14)
n n

The second term within the bracket in Eq. (C13) is in phase quadrature to

tefrtone and has a much smaller magnitude. Its main effect is to fill in the

pattern nulls. For reflector edge angles w !s 900 and normal F/D ratios we '

find that

I'((e,Vd 0 n)j 5Is e (C15)
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The second term may therefore be neglected and as long as

l max " .. , ...-

the relative error in the field pattern envelope will be less than 1/32, or about

3 percent. Thus, we finally obtain

,W e-j sn -sn0,R-.-•,;.
Eg E( 0 ) sin(-k sin9) (C17)

Comparing Eg above with Ea of Eq. (C5), we find that the ratio

202""....,

E n sin(O/n) 1+v 1 m-1+ mx, I+
sin 6 -

2  6

where we have substituted Eq. (C16) for 0max. The relative difference between

Ea and Eg thus is 1/96, or about 1 percent. This error adds to the 3 percent
a

relative error in E incurred earlier.

In summary, we have shown that the sidelobe pattern, in particular the pat-

tern envelope and the sidelobe positions, is accurately determined by the aperture

integration method out to angles of ± 150 or ± 1/4 (D/X) beamwidths around the

main beam. In this sector the sidelobes can be viewed to be determined by the

aperture field alone, independent of the reflector edge geometry. Consequently,

even when we scan the main beam by imposing a linear phase taper over the . ... '

aperture, we can expect aperture integration to accurately predict the sidelobe

pattern over a ± 1/4(D/)) beamwidths sector, but this time centered around the

scan direction.

The above conclusions are independent of the feed polarization, as can be

easily shown. Also they apply equally well for a circular reflector as for the

cylindrical reflector considered here, since the diffraction coefficients are

identical in the two cases. However. we feel that the idealized geometry con-

sidered here may be a particularly favorable case and that caution should be

exercised when applying these conclusions to more general problems, as for . .

exai ýple, offset reflectors, highly tapered illuminations, or illuminations with

large amplitude and phase errors.

.-. ',.-,, Z. ••
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