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5. Introduction to Autoregressive Models

In the previous sections we considered models for time series in
which the characteristic and useful properties appropriate to the time
sequence were embodied in the mean function f(t) ; f(t) could be a
polynomial or a trigonometric function. In astronomy, for example, it
is reasonable to suppose that the effect of time is mainly in f(t)
and thus prediction is reasonable. In economics and weather, for

example, the random part u, is also time dependent, and thus predic-

t
tion is more difficult. When the effect of time is embodied in Uy »
we are led to a "stochastic process" whose characteristic properties
are described by the underlying probabilistic structure. In these
cases, for example, there are not regular periodic cycles but more or
fess irregular fluctuations that have statistical properties of varia-
bility. A process whose probability structure does not change with
time is called stationary. In Section 5 we are mainly interested in
processes that are stationary or almost stationary or such that at
Teast the probability aspect (as distinguished from a deterministic

mean value function) is roughly stationary.

To illustrate these ideas, let us consider an autoregressive

process of order one, which is described by the relationship

Ye =0¥pp YU s t=12,000,

where the yt's are observed values of a random variable, and the ut's

are some unobserved random variables, called innovations. The innovation

ug s assumed independent of Yeo1oYpopseee for all values of ¢,



The distribution of ¥q and Yo is given by the distribution of
¥y and pyq +Us and similarly the distribution of Yis Yo and Y3
is given by the distribution of y,, oy, +u,, and p(pyl-kpz)-ku3 .
Thus Y3 depends on Yo s which in turn depends upon ¥q» and so on.
If |o| <1, then the further apart the y's, the Tess they are related.
An innovation U, is absorbed into Y35 Ygseees and thus the randomness
perpetuates in time. We therefore say that the effect of time is
embodied in the ut's . The above process is pictorially described in
Figure 5.1.

In Section 5.1 we discuss briefly some basic properties of

stochastic processes and introduce some notions which are used subse-

quentiy.

5.1 Stationary Stochastic Processes

The sequence of T observations which constitute an observed time
series may often be considered as a sample at T consecutive equally
spaced time points of a much Tonger sequence of random variables. It
is convenient to treat this Tonger sequence as infinite, extending
indefinitely into the future, and possibly going indefinitely into the
past. Such a sequence of random variabies Yis Yoseees OF coes =Y o

=Y_1s Yoo Yo Ypseees is known as a stochastic process with a discrete

time parameter. An objective of statistical inference may be to deter-

mine the probability structure of the longer infinite sequence.
In a stochastic process those variables that are close together

in time generally behave more similarly than those that are far apart
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Figure 5.1. An illustration of the structure of
an autoregressive process of order 1.



in time. Usually some simplifications are imposed on the probability
structure of the larger series, with the result that the finite set of
observations has implications for the infinite sequence. One simplify-

ing property is that of stationarity, behind which is the subjective

idea that the behavior of a set of random variables at one point in
time is probabilistically the same as the behavior of a set at another
point in time. Thus for example, if the underlying probability struc-
ture is assumed to be Gaussiah (normal) and stationary, then there is
one mean, one variance, and an infinite number of covariances. We are
interested in finding out what information about these can be glieaned
from a finite number of observations.

A stochastic process y(t) of a continuous time parameter t can

be defined for t =0 or -= <t <« , A sample from such a process
can consist of observations on the process at a finite number of time
points, or it can consist of a continuous observation on the process
over an interval of time. For example, the sampie could be a sequence
of consecutive hourly readings of the temperature at some location, or
it might be a graph of a continuous reading. Often a stochastic
process with a discrete time parameter can be thought of as a sampliing
at equally spaced time points of a stochastic process of a continuous
time parameter.

A discrete time parameter stochastic process is said to be

stationary, or strictly stationary, if the distribution of Vi s0eesYy
n

1

is the same as the distribution of Yi_ggsee for every finite
1

<5y
tn+t

set of integers ’{tl,...,tn} and for every integer t.



We shall denote the mean or the first order moment ey, by m(t) ,

and the covariance or the second order moment g(yt--m(t))(ys -m(s))

= Cov(yt,ys) by . o(t,s) . The sequence m(t) is arbitrary, but

the second order moment o(t,s) = o(s,t) for every pair s,t, and the
matrix [U(ti’tj)]’ i,j=1,...,n, must be positive semidefinite for
every n .

If the first order moments exist, then stationarity implies that

(5.1) &Y = &4y » Sst = cees=1,0,+1,... ,

or that m(s) = m(s+t) =m, say, for all s and t. Stationarity
also implies that for all t>0 . (yt Y ) has the same distribution
1 -2

as (yt1+t’ yt2+t) , S0 that if the second moments exist, then
Cov(ytl,yt2)= o(tyst,) = Cov(yt1+t,yt2+t)= o(t+t, tytt)

If we set t=-t then

2 s
(5.2) o(tl,tz) = c(tl-tz, 0) = o(tl-tz) , say .

Thus for a stationary process the covariance between any two vari-
ables Yi and Yiss depends upon s, their distance apart in time.

The function o(s) as a function of s, is called the covariance func-

tion or the autocovariance function, and the function of s

COV(yt’ yt+s) - a(s) _ ofs)
/Var(yt)/Var(yt+s) Yo(0) vo(0) a(0)

b

is called the correlation function or the autocorrelation function.




A stochastic process is said to be stationary in the wide sense or

weakly stationary if the mean function and the covariance function

exist and satisfy (5.1) and (5.2). In the case of the normal distribu-
tion, weakly stationary implies stricly stationary and vice versa. In
the general case, strictly stationary implies weakly stationary, if the

second order moments exist.

5.1.1 Examples of Stationary Stochastic Processes

Example 1: Suppose that the yt's are independent and identically
distributed with

(5.3) gy =m, and Var(yt) = 02;

then

(5.4) o(t,s) = o°, s=t,
=0 , s#t

This process is strictly stationary; however, if we drop the
requirement of identical distributions, but retain (5.3) and (5.4),

then the resulting process is stationary in the wide sense.

Example 2. Suppose that the yt‘s are identically equal to a

random variable y with

2

ey = m and Var Vi = o(t,t) = 02

Then, this process is strictly stationary.



Example 3: Define a sequence of random variables {yt} as

follows:
q
. = . . + . i PAN 9 .=¢¢¢’- ’0’+ 96 s 9
(5.5) e jzl(AJ cos th BJ sin \Jt) t 1 1
where the xj's are constants such that 0<<xj <m, and Al””’Aq’

Bl”“’Bq are 2q random variables such that

8Aj = 8Bj =0, J=lyee.5q »
8A§=882=0'§ s j=19-'°9q ’
8A1Aj = 8BiBj =0, it , ij=1,...,9, and
8A.iBj = 0 ° -i,j=1’...’q .
Then
ey = 0,
and
q q
&Y Y = € izl jzl(Ai cos A;t+B, sin kit)(Aj cos xjs-kBj sin xjs)
] 2 2
= A . 2.5 + eBS si .t si .
-Z [EAJ cos th cos st eBJ sin th sin st]

j=1
q

2 . .
.[cos A.t cos A.s + sin A.t sin A.S
jzl GJ[ J J J J ]

q
N c? cos r.(t-s) .

i=1 J



Since the covariance of (yt,ys) depends only on (t-s) , the
distance between the two observations, and since eyy = 0 for all t,
the sequence '{yt} is stationary in the wide sense. If, however, the
Aj's and the Bj's are also normally distributed, then the yt‘s will
also be normally distributed, and then the process will be stationary in
the strict sense.

The point of this example is that every weakly stationary process
can be approximated by a Tinear combination of the type indicated by

(5.5).

Example 4: Let ceesV 1 Vgs Vpsees be a sequence of indepen-
dent and identically distributed random variables, and let A Opseses

o be g+l coefficients. Then

q’

(5.6) ‘yt=aovt+alvt_l+occ+aqvt;_q, t=°"9-19 OS]-Sccc b ]

is a stationary stochastic process. If 8vt =y, and Var vy = 02 s

then
&yt =Y(°’-0+°'-1+--- +°'-q)
and
_ 2 _
Cov(yt, yt+s) =g (aoas e aq_saq) . $s=0,...,9 ,
=0 ’ S=q+1,ooo 9

and so {yt} is weakly stationary. Thus, for {yt} to be weakly
stationary, all we need is that the vt‘s have the same mean, the same
variance, and that they be uncorrelated.

The process (5.6) is known as a finite moving average.




The infinite moving average

~1 8

a_ Vv

(5.7) Yi =

means that the random variable Y when it exists, is such that

n
(5.8) Tim &(y, - )} a_v
N t g s t-s

A sufficient condition for the existence of Yi is that the Vi

S

be uncorrelated with a common mean (=0) and variance, and
(5.9) Y 68 < w ;

see Anderson (1971), p.377.

When (5.8) holds, the infinite sum ) « Vi is said to
S=O S -S

converge in the mean or in the quadratic mean.

6. Basic Notions of Multivariate Normal Distributions

Two random variables X and Y with means My and My and
variances 03 and 05 , respectively, are said to have a bivariate

normal distribution, or a bivariate Gaussian distribution, if their

joint density function is given by

X-1 y-u X=h, Y-u
£(x,y)= L expl - ——| (—2) 20 (— 1) 220 (—X) (=)
aa 2(1-05 )| %% %y Y %y
o o 2m/l-p Xy ’

Xy Xy
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e(X-u ) (Y-n )
then p__ = X M is the correlation between X and Y
Xy 9%y e

-oo<X<oo’ -oo<y<oo.

The marginal density of X is given by

1 1,%¥y, 2
f(x) = exp -7( = ) > - < X <
V2n o, X

This is the normal density function, which we will henceforth denote by
2
%)

n(x|ux, o
Similarly, the density function of Y 1is also normal,

n(y|uy, 0§) .

We can show (Anderson (1984), p.37), that f(x|y*), the conditional

density function of X, given Y=y* is also normal, but with a mean

[0}
X (y*e . 271_.2 .
My FPyy 5, (y uy) , and variance cx(l pxy) . That is,
GX 2
*) = *_ -
f(x|y*) n(X|ux+pxy — (y uy) » o (1 pxy))

<

Thus, the variance of X given that Y=y* does not depend on y*,
and its mean is a linear function of y*.

The mean value of a variate in a conditional distribution, when
regarded as a function of the fixed variate, is called a regression.

Thus, the regression of X 1in the situation above is

(e}
+0 ;5-(Y*-u ) .

u
X X
Yy y y

The trivariate normal distribution of three random variables X,Y,

and Z is defined in a manner akin to the bivariate normal distribution,



ST

. 2 2 2
once the means My ’“y , and Hy the variances Oys Gy’ and s

respectively, and the correlations between their pairs o and

Xy’ Pxz?

Pyz are specified. Let f(x,y,z) denote the joint density function

of this trivariate normal distribution; let f(x,y|z) denote the joint

density function of X and Y conditional on Z=z. Then

Flxoylz) = Hataz)
f(z)

]

where f(z)>0 1is the marginal density function of Z, which is again
normal. A property of the normal distributions is that f(x,y|z) 1is a
bivariate normal density (Anderson (1984), p.37).

Let f(x|z) and f(y|z) denote the marginal densities of X and
Y conditional on 2z, respectively; these densities can be obtained via
f(x,ylz) . Let &(X|z) and e(Y|z) denote the expected values of X
and Y conditional on z, respectively. From our previous discussions
on the bivariate case, we recall that f(x|z) and f(y|z) are also

normal, and that ¢(X|z) and g(Y|z) can be written as

e(X|z) = a+Bz, and

e(Y|z)

Yy +8z .

The correlation between X and Y conditional on 2z, denoted by

is called the partial correlation between X and Y when Z

pxy-z
is held constant.

Thus, we have

- e(X=(atpz)) e(Y-(y+s2))
Ve (X-(a+82) ) e (Y- (v+52))2

Pxyz
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Small values of »p imply that there is little relationship

XYz
between X and Y that is not explained by Z. We can also verify

[Anderson (1984), p.41) that

Pxy Pxz Pyz

Ay A———
1'932 1'952

To discuss the idea of the "multiple correlation" between X and
the pair (Y,Z), Tlet us denote by €(X|y,z) the expected value of X
conditional upon Y=y, and Z=z . Again, from our discussion of the

bivariate case, we note that e(X|y,z) can be written as
e(Xly,z) = a+8y +vz

where o, 6, and Y are constants.

Now let us consider the correlation between X and an arbitrary
linear combination of Y and Z, say bY+cZ, where b and ¢ are
arbitrary constants.

Then, the multiple correlation between X and (Y,Z) s say R2 is

R2 = max[Correlation(X, (bY+cZ))]

b,c

2

It turns out that the values of b and ¢ are 6 and Y vrespectively.

Thus, the multiple correlation is the correlation between X and 6Y+yZ.

7. Estimation of the Correlation Function

One of the first steps in analyzing a time series is to decide

whether the observations Yis ¥Yps---syp are from a process of
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independent random variables or from one in which the successive
variables are correlated. If the process is assumed stationary, then
r(h), an estimate of the correlation function, enables us to infer the
nature of the joint distribution that generates the T observations.

To see this, consider a pair of random variables Yt and Yt+k’

separated by some lag k, where k=1,2,... . The nature of their
joint probability distribution can be inferred by plotting a "scatter
diagram" using the pair of values Y and Yk » for t=1,2,...,T-k.

In Figure 7.1 we show a scatter diagram for Y, and Y this

t t+k ?

diagram indicates that a Targe value of Yt tends to lead us to a

large value of Y and vice versa. When this happens, we say that

t+k ?

Yt and Yt+k are positively correlated. In Figure 7.2 the scatter

diagram shows that a large value of Yt leads us to a small value of

Yt+k and vice versa; in this case, we say that Y, and Yt+k are

t
negatively correlated. A key requirement underlying our ability to

plot and interpret the scatter diagram is the assumption of stationarity.

Because of this assumption the joint distribution of Yt and Yt+k is

the same as the joint distribution of any other pair of random variables

separated by a lag of k, say Y and Y for some s#0.

t+s t+s+k °
A formal way of describing the impressions conveyed by a scatter
plot is via an estimate of the correlation function; this estimate is

also known as the serial correlation. If the observations Yqs¥pseees

y7 are assumed to be generated by a process with mean 0, then r*(1) ,

the first order serial correlation coefficient is defined as
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Positive Correlation

Figure 7.1. Scatter plot of Yt and Yt+k showing a
positive correlation between the variables.

Ytak Negative Correlation

Figure 7.2. Scatter plot of Yt and Yt+k showing a
negative correlation between the variables.
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(7.1) px(1) = L

If the mean of the process is not known, (7.1) is modified by

replacing Y and Yi-1 by the deviation of these from the sample

T
mean y, where y = 7§ y¢/T. Thus we have

t=1

T-1 T )
(7'2) Y‘(l) = Z (yt'Y)<yt+l-y)/tzl(yt-_) .

Higher order serial correlations are similarly defined; for

example, r*(h), the h-th order serial correlation is

T-h
tzl Yt Yi4n
(7.3) r*(h) = ———u
T
2
Iy
t=1 b
or in analogy with (7.2) it is
T-h
(7.4) r(h) =
T, 02

t=1
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8. Autoregressive Processes

One of the simplest, and perhaps the most useful, stochastic
process which is used to model a time series is the autoregressive
process. A sequence of random variables Y1¥psees is said to be an

autoregressive process of order p, abbreviated as AR(p), if for

some constant u and integer p

(8.1)  (yy=w) +8¢(y,_q=u) +...+ Bp(yt_p-u) =u., t=plpe2,... ,

with up+1, up+2,..., being independent and fdentica]]y distributed

. . 2 .
with mean 0 and variance o¢°, and Uy independent of Yio1> Yiopo

We shall set u=0 1in the following discussion. The random
variable Uy is called an innovation or a disturbance. We shall refer
to the sequence {ut} as an innovation process.

It is convenient to generalize (8.1) to a doubly infinite sequence
cees Y 15 Yoo Ypoeees resulting in a doubly infinite sequence eesl_ps

UgsUgsese Such processes are also known as autoregressive processes.

k def

If we use the foreward lag operator p, where p Uy = u for

t+k
any integer k, then (8.1) can also be written as

P p-1 0 -
(8.2) (p +8P" 4 ...+-Bpp )yt_p Uy -
Since Ay, =yi.q = ¥y = &=V = (yhl)yt , we have the result
that A = p-1; recall that A 1is the foreward difference operator
introduced in Section 3.3. Thus we may say that the operator acting on

yt—p can also be written as a polynomial in A of degree p. If

Bp # 0, then the left hand side of (8.2) can be written as a linear

2

combination of Yiop? Miop A yt_p,...,Apyt_p_ and is therefore called

a stochastic difference equation of degree p.
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Unless otherwise stated (see for instance Section 8.9), we shall
assume that the stochastic process described by (8.2) is stationary.
In Section 8.1 we shall determine the conditions under which Uy is
independent of Yiags Ygapreres o

The model (8.1) can be used to generate other processes. For
example, should we want to incorporate the effect of a trend in (8.1),
then we add to the Tleft hand side of (8.1) the term % YiZit s

the Zit's are known functions of time; this matter is discussed

where

further in Section 8.7.

Autoregressive processes were suggested by Yule (1927), and were
applied by him to study sunspot data. Gilbert Walker (1931) extended
the theory and applied it to atmostpheric data. In what follows we
shall study the structure of autoregressive processes,\and address the

related questions of inference and prediction.

8.1 Representation as an Infinite Moving Average

If we inspect (8.1), we see that Y is expressed as a linear
combination of the previous yt's and Uy . We shall now study the

conditions under which Yy can be written as an infinite linear com-

bination of u and the earlier Uy, s . To see the idea, we consider

t
an AR(1) process

Vg = 0¥pa Tl
and note that since y, ; = ey, o + U, ;, We have

_ 2
Yg TUp telU g Fe Yo
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Successive substitution of the type indicated above leads us to

write

(8.3) Yp S U Fou g+ pzut_2 ..+ psut_S + oS+1yt_(s+1)
so that

(8.4) yt"(ut'+put-l'+""+psut-s) = ¥ Ye-(s+1) *

The difference between Ye and a linear combination of the
' . s+1 .
(s+1) u.'s s therefore o Yia(s+1) * and this becomes small when

o] <1 and s 1is large. In particular

S 2 _ 2(s+1)_.2
(8.5) e[yt-(ut-+put_1-+...-+p ut—s)] =p &yt-(s+1)

will not depend on t, if we assume that {yt} is a doubly infinite
stationary process. As s increases, (8.5) will go to 0, and so we

can write

and say that the infinite sum on the right of the above equation

converges in the mean to Yi - (See Section 5.7.)

Let us now consider an AR(p) ,
p

Y OB Y. = Ul o, Bh=1 .
Lo Prlter T Ut 0
so that

Yp = Up = By ~ B¥gapm e mBpYep -
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Replacement of t by t-1 yields

Vi1 T Uta1m By¥yop m Bp¥iz meeem B¥ipor o

which upon substitution gives

Vg = Up = 8y(Up 1=BiYe p=Bp¥y 3= eee = Bp¥e o 1) B¥y pm eee BV g
= U= 8qUy 1= (By=B2)Y, o= ue. 4 BBy
£~ BpUp 1= (Bo= By o oo ¥ BB 1p -

Continuing in the above manner s times, we arrive at

* * * * *
(8.6) yt = ut+61ut-1 + o + (Ssut_s-*.a‘sl\yt_s_1+a52\yt_s_2 + ORJO +aspyt-s_p ‘

We note that each substitution leaves us with p consecutive yr's
on the right-hand side of the above. Since y, . ;1=U; o 1-BYi o p"

eee =B we have

pyt-s-p-l’

*

* *
Yo =UtSqu g +ee #8 ral (U o =By o o "'-prt-s-p-l)

*
togpYpagap T oot OgpYigp

_ * * * % *
=up+dyg 1700¢ +Gsut-s'+“slut-s-1'+(“52"aslel)yt-s-z

* *

*
sp"uslsp-l)yt-s-p 'aslspyt-s-p-l .

Thus
* *
%541 7 %1 >
a:-i-l,j = (a:,j_l_l-a:lﬁj) s j=1,.0.5p-1,
* *
%s+1,p 'uslsp
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is a set of recursion relationships for the coefficients. Continuation

of this procedure leads us to write, for 68 =1,

*

o Oi V-

Ine~18

(8.7) Vi =
1

if the infinite sum on the right-hand side of (8.7) converges in

the mean to Y - We shall next see the conditions for this convergence.

8.1.1 Conditions for Convergence in the Mean of Autoregressive

Processes

The material of Section 8.1 can be formalized by using the backward

lag operator £, where £yt = Yio1o and writing the process (8.1) as

P

r -
rzo BL Yy = Uy -

Then, formally we can write our AR(p) process as

Y
Yy = (rZO 8.y
where
P ri.-1 & r
e T

the dr's are the coefficients in the equality
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p -
(8.8) (3 82"t = 1 52"
r=0 r=0
on the basis that the above equality can be so written meaningfully.
It can be verified (Anderson (1971), p.169) that the 6r's
of (8.8) are indeed the same as the 6:'5 of (8.7), which we recall
were obtained by successive substitution; thus we write 6r==6:.
In order to see the conditions under which it is meaningful to

write (8.8), we consider

p p-1 0 _
(8.9) BoX' +B{X ... +BX 0,

the associated polynomial equation of the stochastic difference equa-

tion (8.1) (our AR(p) process).

For Bp#(), let x be the p roots of (8.9). If

1,...,xp

]x1| <1, for i=1l,...,p, then it is clear that ZyseensZps the roots
of
P
] 82 =0,
r=0 "

are such that z.=1/x; and that |21| >1., Now, for any z such

that [z]< min|z;|, the series
i

(8.10) 1 . _1 _ g E(Z)r=zaz”,
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converges absolutely. Thus we see that when Xl"“’xp’ the roots of

the associated polynomial equation of an AR(p) process, are less

P &
than 1 1in absolute value, we can write ( ) Brzr)-l = ) 6 2" .
r=0 =

To argue convergence in the mean of the AR(p) process, we con-

p
sider the expression ( ) Br,zr)'1 and note that by a formal long
r=0
hand division
2 p
1 . Blz+822 +...+§E;
D B 2 P
1+slz+...+spz 1+Blz+ezz +...+sz
2242 } P. ptl
Cag (8,-87)z +...+(eJD slsp_l)z 818,72
TRt T 2 p
1+612+622 +...+sz
If we continue in the above manner, we see that
o ZS+1+ +o ZS+p
1 = 1+ 2 s, sl **°Usp
S §12+8,2 Foo A8 27 4 5 R
1+612+...+Bp2 1+BIZ+...+BpZ

where the dr's and the asi|s satisfy the same recurrence relation-

. *, * . -k=
ships as the ar s and the a.s'S of Section 8.1. Thus 8, = 8.

*
and gy T O - (See 8.6.)
s+l s+p
ocslz +...+ocsp2

1+8

In view of (8.10), we now see that must con-

P
e ,+spz

verge to 0 for [Z]|<min[z,|, and in particular for z=1. This
i

implies that the g > 0 (as s+«) for each i. Thus, if {yt} is
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a stationary process

. :
2 _ 2
8(yt"rzo Splpop)” = elagVy g pFeetogpVe s p)

will not depend on t and will converge to 0 as s>,

We therefore have

o

Ve = ) S.U._
t . rter

in the sense of convergence in the mean. We have proved

P

Theorem 8.1: If the roots of the polynomial equation § erp-r =0
r=0
P
associated with a stationary AR(p) process ) By =y, are
p=g ter t

less than 1 in absolute value, then A can be written as an infinite
Tinear combination of Ui, Uy 15 Up oseees -

Note that whenever Y, can be written as an infinite linear combi-
nation of Ups Up_qoe-es Yy will be independent of the future innova-
tions Upgqs Upppoeees 3 this follows from our assumption that the

sequence of innovations {ut} is mutually independent. We thus have

as a corollary to Theorem 8.1

Corollary 8.2: If the roots of the polynomial equation associated with

a stationary AR(p) process are Tess than 1 1in absolute value,

Yy s independent of Upgpe Upgpoeees o
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8.2 Evaluation of the Coefficients 6r and their Behavior

Suppose that the roots of the associated polynomial equation
p

) Brxp'r = 0, are less than 1 in absolute value. Then, by
r=0 .

Theorem 8.1, we can write

Ye = L S Ui s
t oz Trter
where the ar's are to be viewed as weights associated with the present
and past innovations Ups Up_qoeee o Our goal is to determine a proce-

dure by which the Gr‘s can be expressed in terms of the known Br's,
and also to see if there is any discernable pattern in the ar's . Such

a pattern will enable us to interpret the behavior of our sequence {yt}.

From (8.10) we note that since

1 - z srzr ,
P . r=0
I 8z
r=0 "
) . p - p
-
( 8 z") Y 8z =(7) s62) gz> =1,
rZO r s=0 S r=0 s=0 °
or that
=k rts
Yy Y B8z =1,
r=0 s=0 S 7'

Replacing r by (t-s) and by suitable re-arrangements, we have

-1 p

t, o t _
tZO(SEO BeSy.)Z * tzp(szo BeSy. )z =1,

which is an identity in z (the series converging absolutely for

]zl <1) . An inspection of the above reveals that the coefficient of
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zO on the left hand side is 1 and the coefficients of the other

powers of z are zero; thus we have the following set of relationships

between the &'s and the 8's :

Bpdg = % = 1 >
(8.11) { 6061-+6160 = 61-+81 =0 ,
Boép_1+ +Bp_160=0 5 and
(8.12) Boat-+...-+6p6t_p =0, t=p, ptl,..., .

We note that (8.12) is a homogeneous difference equation which
corresponds to the (stochastic) difference equation that describes the

AR(p) process

qﬁt+%yb1+“'+6ﬂ£¢=ut’ Bp=1 .

If the roots of (8.9), the polynomial equation associated with an
AR(p) process are distinct, then the general solution of (8.12) is of

the form

p
(8.13) 8, = 1 ki r=0,1,...,

where kl""’kp are coefficients.
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If a root X; is real, then the coefficient ki is also real.

If a pair of roots X; and Xi41
k

0 r r 0
are al 0 X, + k. .
re also conjugate complex and k]x1 k1+1X1+1 is real,

are conjugate complex, then ki and
i+l
r=0,1,...

Equations (8.11) give us the boundary conditions for solving (8.12).

The p equations (8.11) enable us to determine the p constants

klgno-

,kp by substituting (8.13) in (8.11).
The above material can be better appreciated via some special cases;

these are discussed below.

8.2.1 Special Cases Describing the Evaluation and Behavior

i
of $p S

We shall consider here two examples, an autoregressive process of

order 1 and an autoregressive process of order 2.

An Autoregressive Process of Order 1

Suppose that in (8.1) p=1 (and u=0), so that an AR(1) process
is

Boyt+81yt_1 = ut, fOY‘ t=2,3,---

The associated polynomial equation for the above process is

0 _
Box-+31x =0,

and so with BO==1, X =-61 is the only root.
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From (8.11) we have 60==1 and 61 =-81 , S0 that the coefficient
kl in (8.13) dis 1., Thus, for our AR(1l) process the coefficients

sr are such that

~ ro_ .\
(8.14) (SY'—klxl ( 81)

Now, if we assume that the process is stationary, then in order to
be able to write y, as an infinite linear combination of u., U _y5...
we need to have, by Theorem 8.1, |x| <1 or equivalently lBll< 1..

Thus, when lsll <1, we can write

(8.15) y, = Y 6.u .
t r=0 T t-r

We note from (8.14), that the weights S exponentially decay 1in
r when |81| <1. The decay is smooth if By <0, and the decay
alternates in sign if 81:»0 . This behavior of the dr's implies that
in (8.15) the remote innovations receive smaller weights than the more
recent ones. Such results are useful for explaining the behavior of

the series Yis Yeopseees and also interpreting forecasts in autoregres-

sive processes or order 1.

An Autoregressive Process of Order 2

Now suppose that in (8.2) p=2 (and u=0), so that an AR(2)

process is

BoYy tB1Ye_q T B¥ep = Up » t=3,4,...
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With Bgy=1 the associated polynomial equation for our AR(2) process

becomes

xZ-Fﬁlx-FBZXO =0,

I+

If X1 and X, are the roots of the above equation, then X5 = (-B1
/2 .4p, )/2, i=1,2
1 2 i e
2

If the roots Xq and X, are real and distinct, that is 81 >4B2 ,

then (8.11) and (8.12) give 1=k.x) + k O o\ sk, and kox, +kox

727 X175 1%17%%2
= -Bl = xl-l-x2 . The solution is

X =X
1 2
k, = and k, =
1 X1=Xo 2 xl-x2
Then
Xr1‘+1_X£+1
(8.16) 67‘ = Tl_—x—z—- N Y‘=0,1,2,...

If we assume that our AR(2) process is stationary, then in order
to be able to write i in the form (8.15), that is, as an infinite
Tinear combination of wu., uy_;5..., we need to have (by Theorem 8.1)
lxil <1, i=1,2. This in turn implies that the coefficients g; and

) will have to satisfy the following conditions:

81+82 > '1,
(8.17) By -6y < 1, and

-1<82<1o
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The above conditions define a triangualr region, shown in Figure
8.1, in which the coefficients Bl and By must 1ie; also see Box and
Jenkins, (1976), p.59.

When |X1| <1, i=1,2, and x; and x, are real, that is, when
B4 and 85 1ie outside the parabolic region of Figure 8.1, then from

(8.16) it is clear that the weights §. are a linear combination of

two exponentially decaying functions of r, xz+l and x;+1

When |Xi| <1, i=1,2, and when X and X, are complex, that

is Bf < 482 so that 81 and By 1ie in the parabolic region of
i0 -i0

Figure 8.1, Xq and X, may be written as X, = oe and Xy = 0@ T,

where i = /-1 ; since [x;]<1 and X, <1, a<l. Thus

16 _o-10
k, = and k, = .
1 e1e_e-1e 2 e1e_e-1e
so that
ig(r+l) _-i6(r+l)
_ r r_re -e
(8.18) Sp =KXy * koxp = 519
e -e
r sin(e(r+1))
sin 9 ?
. ig ..
since e~ =cos 6 + 1 sin 8.,

Thus 8. is a damped sine function of r, whose nature is illus-
trated in Figure 8.2. Such a damped sinusoidal behavior of the weights
offers an explanation of an oscillatory pattern of the yt's often
observed in otherwise nonperiodic stationary time series. (Also see

Section 8.6.)
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T +1

Figure 8.1. Region defining admissible values of
81 and 82 .
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Figure 8.2. Behavior of the weights §,. as a function of r,
for an autoregressive process of order 2 whose

associated polynomial equation has complex roots.
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In conclusion, we note that for a stationary autoregressive process
of order 2, the remote innovations in a (8.15) type representation of
the series receive a smaller weight than the more recent ones, regardless
of whether the roots of the associated polynomial equation are real or
complex. The nature of the roots determines whether the weights decay

exponentially or sinusoidally.

8.3 The Covariance Function of an Autoregressive Process

If the joint distributions of the yt's are normal, then the
process is completely determined by its first and second order moments,
Eyt . eyi , and 8ytyt+s , $=1,2,..., . If the joint distributions are

not normal, the above moments still give us some information about the

process. For example, Eytyt+%/98y%8y§ , the correlation between Yt and
Yits (assuming that 8yt==0 for all t), is a measure of the relation-
ship between the two variables Y and Yits for t=1,2,...

If the process is stationary, then all the variances are the same,
and the covariances depend only on the difference between the two indices.

Thus

&ytyt'l's = G(S)=G(-S) s ST ...y =1, 0, +1,... .

Recall that o(s) is also called the autocovariance function and that

o(s)/o(0) 1is also called the autocorrelation function; it will be denoted

by eo(s) and abbreviated as ACF.

We shall now Took at the properties of the covariance function o(s) .
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©

If we replace t by t-s in y, = ) Sqlt and multiply it by

=0 =9
b q
) BY = u,, we have
=g T t-r t
P =
(8.19) =

FZO Bryt-ryt-s qZO 6qut-s-qut

Now eyt-ryt~s = g(s-r) , 8u§ = 02 . 8utuS =0, t#s, and so the

expected value of (8.19) satisfies the following equations:

p
(8.20) ) B o(s-r) = o2 , s=0
r=0
p
(8.21) y B ofs-r) =0 , s=1,2,...,
r=0

The above equations are known as the Yule-Walker equations; these will

be discussed further in Section 8.4.
From (8.21) we observe that the sequence o(1-p), o(2-p)s...,
o(0), o(1),... satisfies a homogeneous difference equation, which is

the same as the homogeneous difference equation (8.12). Thus, if x

P

..,xp , the roots of the polynomial equation ¥
r=0

19

p-r _
srx 0, are

distinct and Bp # 0, the solution to (8.21) is of the form

h =
C_ix_i 9 h-l"p, 2‘p,...,0,1,...,

fi~1 T

(8.22) o(h) = .

i=1

where cl,...,cp are coefficients.
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There are p-1 boundary conditions of the form

and the other boundary condition is given by (8.20) with

replaced by o(p) .

a(-p)

Thus the behavior of the autocovariance function of an AR(p)

process is determined by the general nature of (8.22). We study this

by considering some special cases.

8.3.1 Special Cases Describing the Behavior of the Autocovariance

-Function of an Autoregressive Process

Following Section 8.2.1 , we consider here an autoregressive pro-

cess of order 1 and an autoregressive process of order 2.

An Autoregressive Process of Order 1

Suppose that in (8.1) p=1 (and u=0), so that

‘yt+81‘yt—l=ut’ t=2,3,..., .

The associated polynomial equation x-+81x0 = 0 has one root Xy = =By .

The general solution is (from (8.22)) o(h) =c1(-61)h

From (8.20) we have

0% = a(0) + 310(1) = c1[1+sl(-sl)] =c, 1 -sf]

» h=

8 I S
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Hence ¢, = 02/(1-85) , So that

o(h) = (-8)"%/(1-63),  h=0,1,... .
From po(h) = o(h)/c(0), the autocorrelation function is
(8.23) o(h) = (-8, h=0,1,...

If |81| <1, then we have the important useful result that the
theoretical autocorrelation function of an autoregressive process of
order 1 decays exponentially in the lag h . The decay is smooth if
By < 0, and it alternates in sign if B >0. In Figure 8.3, we illus-
trate this behavior of p(h) for nonnegative values of h. We also
remark that the behavior of o(h) is analogous to the behavior of the

weights 5. discussed in Section 8.2.1 - see (8.14) and Figure 8.2.

An Autoregressive Process of Order 2

Now suppose that in (8.1) p=2 (and u=0), so that

.Yt + Bl.yt__l + Bzyt_z = ut ° t=3,4,..., .

The associated polynomial equation x2 +Byx + Bzxo = 0 has the roots

x; = [-8; +/85-48,1/2, i=1,2 .

. : B h h
If the roots X1 and X, are distinct, then c(h)-—clx1 * CoXy

h=-1,0,1,... . Then (8.20) and o(1)=0(~1) can be solved for ¢y

and Co s yielding
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9 h+1 X h+l

o X1 2
(8.24)  o(h) = (——-—"%) ., h
(xl-xz)(l-xlxz) 1-x1 1-x5

051500

If we require that |X1| <1, i=1,2, then B, and B, must Tie
in the triangular region described by Figure 8.1; that is, they must
satisfy the inequalities (8.17). Furthermore, if X and X, are
real, that is 61 and 82 do not Tie in the parabolic region of
Figure 8.1, so that s% >482 , then by (8.24) we have the result that
o(h) 1is a linear combination of two exponentially decaying functions

h+l h+1
of h ). Xq and Xy .

Depending on whether the dominant root is
positive or negative, o(h) will remain positive or alternate in sign
as it damps out. This behavior of o(h) as a function of h=0, is
shown in Figure 8.4.

When [xi[ <1, i=1,2, and X1 and X, are complex, that
is, B% < 482, then x, and X, can be written as Xy = aeie and

1
Xy = ae™ e , where a<1, and now (8.24) becomes

2 2

(8.25)  o(h) o olsin 8(he1) -o? sin o(h-1)]
' (1-a2)sin e[l-2a2 cos 26+a4]
- ozah cos{6h=¢) ’ h=0,1,...,
(1-a?)sin 6/1-202 cos 26+a”
where tan ¢ =(1—a2)cot e/(1+a2).
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Thus o(h) 1s a damped cosine function of h3; the behavior of
o(h) as a function of h=0, %1, #2,..., is illustrated in Figure 8.5.

Since o(h) 1is a linear combination of the hth powers of the
roots Xq and X5 5 both of which are less than 1 in absolute value,

|o(h)| 1is bounded. We remark that the behavior of o(h) as a function

of h is analogous to the behavior of the weights Gr as a function
of r, discussed in Section 8.2.1 - see (8.16), (8.18), and Figure
8.2.

Thus to conclude, we have the important practical result, that
when B4 and Bs the parameters of an AR(2) process, 1ie in the
triangular region described by Figure 8.1, the theoretical autocorrela-
tion function decays either exponentially or sinusoidally. The exponen-
tial decay could be either smooth or alternating in sign, depending on
the values that B4 and By take.

In Section 8.11, we show the behavior of the estimated autocorre-
lation function of some real Tife data which we claim can be reasonably
well described by autoregressive processes. However, in order to be
able to use the behavior of the autocorrelation function as a means of
identifying autoregressive processes, we need to have some idea about
the behavior of the estimated autocorrelation function of some known
autoregressive processes. This we do next, and also make some other

comments which have some practical implications.
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8.3.2 Behavior of the Estimated Autocorrelation Function of

Some Simulated Autoregressive Processes

The results of Section 8.3.1 can be generalized in a straightfor-
ward manner to show that the autocorrelation function of autoregressive
processes must decay exponentially or sinusoidally. Even though this
result is true in theory, it is unreasonable to expect such a behavior

of the estimated éutocorre]ation function. Such a lack of conformance
between the theory and its application is mainly due to the sampling

variability in our estimate of the autocorrelation function (see Section
7), and is particularly acute when we are dealing with series of short
lengths, wherein our estimate of the autocorrelation function is based
on few observations. Thus a good deal of caution and insight has to be
used in order to identify the nature of an underlying stochastic process
by examining the behavior of its estimated autocorrelation function.

In Table 8.1 we give r(h), the values of the estimated autocorre-
lation function, h=0,1,...,25, based on 250 computer generated obser-

vations from an AR(1) nrocess

Vg = o5¥pg T U s t=2,3,...,250,

with yy = u A plot of r(h) versus h is given in Figure 8.6.

1 -
Barring the slight aberrations at h=7, 8, 9, 13, 19, and 23, this
plot reveals the exponential decay pattern expected of an AR(1) process
with 8, <0, and [g] < 1.

In Table 8.2 we give r(h), the values of the estimated autocorre-

lation function, h=0,1,...,25, based on 25C computer generated obser-

vations from an AR(2) process
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01

Figure 8.6.
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A plot of the estimated autocorrelation function
r(h) versus h, h=0,1,...,25, based on 250
computer generated observations from an AR(1)
process with Bl =-.5,
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yt-.9yt_1+.13fyt_'_2=ut . t=3,4,...,250,

with 2 =.9y1+u2 and yy=ug - A plot of r(h) versus h is given
in Figure 8.7. Since 8;=-.9 and B8,=.4, Bf < 48, , and so the

roots of the associated polynomial equation are complex. (o =v.4 = .63,

Xy X, = 45 & 441, 6~45° ) Thus the theoretical autocorrelation
function must decay sinusoidally; this feature is also revealed by the
estimated autocorrelation function shown in Figure 8.7.

In Table 8.3 we give r(h), the values of the estimated autocorre-
lation function, for h=0,1,...,25, based on 250 computer generated

observations from an AR(2) process
Ve t .5yt_1 - .Zyt_2 =u t=3,4,...,

A plot of r(h) versus h is given in Figure 8.8. Since By=.5,
and 62:=-.2 . B§ > 462 , and hence the roots of the associated polynom-
ial equation are real. These roots being (-.5+/.25+.8)/2, it is clear

that the dominant root is negative, its value is :LEJL%LQQQ = -.763 .

Thus according to the material in Section 8.3.1, the autocorrelation
function must decay, and alternate in sign as it does so - see Figure
8.4. The estimated autocorrelation function of Figure 8.8 reveals this
tendency, at least in the earlier stages, up to lag 10 or so. Later on,
the estimated autocorrelation function does alternate in sign, but does
not decay. We attribute our reasons for this to the sampling variability

of the estimates of the autocorrelation at the various lags.
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Figure 8.7. A plot of the estimated autocorrelation function

r(h) versus h, h=0,1,...,25, based on 250
computer generated obervations from an AR(2)
process with By = -.9 and By = A,
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Figure 8.8.

A plot of the estimated autocorrelation function
r(h) versus h, h=0,1,...,25, based on 250
computer generated observations from an AR(2)
process, with 81=.5 and 62=-.2 .
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The behavior of the estimated autocorrelation function of some real
1ife data which we feel can be reasonably well described by autoregressive

processes is shown at the end of this section, in 8.11.

8.4 Expressing the Parameters of an Autoregressive Process in

Terms of its Autocorrelations

The Yule-Walker equations (8.21) enable us to express the autoregres-
sive parameters 81""’8p in terms of the autocorrelations p(s),

s=1,..., . To see this, we set s=1,...,p in (8.21), divide

throughout by o(0), and observe that

o(1) = -8 - 820(1) - -BpO(p-l) ,

(8.26) 9(2) = 'Blp(l) - 82 - ..-l.-Bpp(p-z) )

o(p) = -8, o(p-1)-B,0(p-2) - ... -8y -

- p
B o(1) o(p-1)
o(1) 1 o(p-2)
]P =
o(p-1) o(p-2) ... 1
L. .
then o = -Pg from which we have (since P is positive definite)
_ -1
(8.27) B =-P "9

~

The matrix P 1is unknown as the autocorrelation matrix.
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Thus, the p autoregressive parameters can be expressed in terms
of the p autocorrelations p(l),...,p(p). This feature can be used
to estimate 8, using an estimate of P .

We obtain 02 , the variance of the disturbance, by setting

o(-r) =o(r) 1in the Yule-Walker equation (8.20) to obtain

(8.28) 39(0) + £,0(1) * ...+ 8o(p) =0

8.5 The Partial Autocorrelation Function of an Autoregressive

Process

In Section 8.3 we have shown that o(h), the autocovariance func-
tion of an autoregressiVe process of order p, is infinite in extent.
Thus from {c(h)} it is hard to determine the order of an autoregressive
process. The partial autocorrelation function, to be discussed here,
will help us in determing the order of an autoregressive process.

To be specific, let us consider a stationary autoregressive process

of order p

yt = Ut = Blyt_l = eee -prt_p ’ t=p+1, p+2,...

Recall that in order to predict yt we need consider only the p

lagged variables yt-l""’yt-p , Since the other variables yt-p-l’

Yi-p-22°+- have no effect on Yy -
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The partial autocorrelation between A and yt-p , to be denoted

by w(p) is the correlation between Yt and yt-p when the interme-
diate p-1 variables Yio1o yt-2""’yt-p+1 are "held fixed." That
is, w(p) 1is the correlation between Y and yt-p when the interme-
diate variables are not allowed to vary and exert their influence on the
relationship between Yt and yt_p . Clearly, =(1), the partial
autocorrelation between Yt and Yio1o is p(1), the (ordinary) auto-
correlation between A and Yioq > whereas n(0) the partial autocor-
relation between Y and itself is 1.

Thus, by its very nature, since Yiop-1? Yiap-22-++> have no
effect on Y » the partial autocorrelation function of an autoregressive
process of order p, w(j) #0, for j=0,1,...,p, and =(j)=0, for
j>p. The fact =(j) vanished for j=>p+l, can be used to identify
the order p of an autoregressive process, provided that w=(j) can be
computed.

In our discussion of the partial autocorrelation function =(p) we
had mentioned the fact that the intermediate values Ypo1oee e Yiope1
had to be "held fixed". In order to formalize this notion we shall use
some results which are standard in multivariate ana]ysig.

Let X = [yt, yt-l”"’yt-p] denote the vector of p+l observa-

tions, and let x denote the variance-covariance matrix of these p+1

observations. Suppose that Y has a multivariate normal distribution

with mean vector 0 and covariance matrix I , where
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a(p) a(p-1) cen o(0)

Let us rearrange the elements of Y, and partition it into two
,(1) /(2)

~ ~

component sub-vectors

= [Yys yt_p] and = Wilgs Yiopoeees

yt_p+1] . Let 211, 522, and 512 be the variance-covariance matrices

~

of Y(l)’ Y(Z), and Y(l) and Y(Z) respECtiVE]y. That is, 2119 5229
and 10 is a partition of the rearrangement of 3 .
Let y(z) be a particular value taken by the vector Y(Z) . Then,

it can be shown [Anderson (1984), p.28] that the conditional distribu-

tion of Y(l) given y(z) is a multivariate normal with mean lezééy(z),

. . -1 s .
and covariance matrix §11 -§12§22§12 = §11.2 » say. This is a generali-

zation of the results mentioned in Section 6.

(2)

The vector 21225% y is called the regression function of the

(1) (2)

regression of Y on y . The matrix £11.2 is a 2x2 matrix

whose elements are indicated below:

Ttte(t-1),...,(t-p+1) Te(t-p)+(t-1)y...,(t-p+l)

2112 °
O(t-p)t°(t'1)s---s(t'p+1) O(t'p)(t'p)°(t'1)9---9(t'p+1)

The partial correlation between y; and yt-p holding (t-1),...,
(t-p+1) fixed at y(z) is
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n(p) = Tt (tep) e (£-1), .0, (£opHl) ;

/Otte(t=1) ... (t-pt1) ¥ O(t=p)(t-p)+(t-1),...,(t-p+1)

note that =(p) 1is independent of y(z).

As an example, if Y==(yt, Yio1o yt_z)', and if Y(l) =(yt, yt_z)

and- Y(z) = Yioq o then the partial correlation between Y and Yeop s

m(2), turns out to be

1(2) = (5(2) - o2(1))/(1-p%(1)) .

8.5.1 Relationship between Partial Autocorrelation and the

Last Coefficient of an Autoregressive Process

An interesting relationship between n(p), the partial autocorrela-

tion of Yt and yt_p , and B_, the last coefficient of an autoregres-

p
sive process of order p, can be observed. This relationship simplifies
our calculation of n(p), since Bp can be easily obtained from the
Yule-Walker equations via equation (8.28).

In order to see a relationship between w(p) and Bp , consider an

AR(2) process
Yg = Up = BpYeog - Bo¥yo

and solve the resulting Yule-Walker equations to obtain
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1 o(1)
o -l o | _e@-0k1)
2 ] o(1) 1-p%(1)
o(1) 1

However [(p(2) -pz(l))/(l -pz(l))] is indeed the partial autocorrela-
tion between Yi and Yoo s thus =(2) =-82 . In a similar manner,

if we consider an AR(3) process

Yg T Up = ByYilg T Bo¥ip = Bg¥i3

and solve the resulting Yule-Walker equations, we observe that

1 p(1) (1)
(1) 1 0 (2)
0 (2) o(1)  o(3)
83=' s
1 o(1)  o(2)
p(1) 1 p(1)
p(2)  o(1) 1

which again can be verified as the negative of the partial autocorrela-
tion between y, and y, 5.

In general, we observe [Anderson (1971), pages 188 and 2221 that
for an autoregressive process or order p, w(p) the partial autocorre-

Tation between Yt and yt-p is -Bp , Where



1 p(1) 0(2) o(1)

(1) 1 o(1) o(2)

(8.29) g =- o(p=1)  po(p-2)  o(p-3) o(p)
P 1 p(1) 0(2) o(p-1)
p(1) L o(1) o(p-2)

p(p-1)  o(p-2)  o(p-3) ... 1

It is helpful to remark that the determinant in the denominator is
simply the determinant of the autocorrelation matrix for an AR(p)

process P (Section 8.4), whereas the matrix in the numerator is P

with the last column replaced by p(1),...,e(p) .

An expression for w(j) the partial autocorrelation between Yt
and Yioj» can be obtained if we write the Yule-Walker equations for j,
and set w(j) =Bj , Where Bj is given by equation (8.29); recall that
m(0) =1, and that «(1)=0(1).

The partial autocorrelation function is a plot of w(h) versus h,

h=1,2,..., ;3 the partial autocorrelation function is abbreviated as
PACF.
We estimate (1) by r(1), and estimate w=(j) by m(j), where

7(j) 1is obtained by replacing the p(-)'s in (8.29) by their estimates
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8.5.2 Behavior of the Estimated Partial Autocorrelation Function

of Some Simulated Autoregressive Processes

Even though the partial autocorrelation function of an autoregres-
sive process of order p must theoretically vanish at lags p+l, P+2,
...y 1t is unreasonable to expect such a behavior of the estimated
partial autocorrelation function. The reasons for this are analogous
to those given for the behavior of the estimated autocorrelation func-
tion - see Section 8.3.2. Thus caution and insight must be used when
identifying the order of an autoregressive process by examining its
estimated partial autocorrelation function.

In Table 8.4 we give 7(h), the values of the partial autocorre-
lation function for h=0,1,...,25 based on 250 computer generated

observations from the AR(1) process

yt-.Sy.t_l = Up o t=2,3,...

discussed in Seciton 8.3.2.

A plot of a(h) versus h is given in Figure 8.9. Barring some
slight aberrations at a few lags, this plot reveals the behavior that
we expect from the PACF of an AR(1) process, namely that 7(1) must be
significantly different from 0, and that n(j), must be close to 0
for j=2,3,..., .

An examination of Figures 8.6 and 8.9 reveals the desired result
that for an AR(1) process, the autocorrelation function decays expo-
nentially, and that the partial autocorrelation function vanishes after

lag 1.
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In Table 8.5 we give 7(h), the values of the estimated partial
autocorrelation function, for h==Q,1,...,25, based on 250 computer

generated observations from the AR(2) process

.yt' 'gyt_l + '4.yt_2 = ut [} & 3349---9 s

discussed in Section 8.3.2.

A plot of ﬁ(h) versus h is given in Figure 8.10. As is to be
expected, barring some minor aberrations, (1) and w(2) are signi-
ficantly different from 0, and =(j) is close to zero, for j=3,4,..;,.

In Table 8.6 we give m(h), the values of the estimated partial
autocorrelation function, for h=0,1,...,25, based on 250 computer

generated observations from the AR(2) process

yt-F.Syt_l - .Zyt_z = Uy, t=3,4,... ,

discussed in Section 8.3.2. A plot of w(h) versus h is given in
Figure 8.11. Once again, as is to be expected, (1) and w(2) are
significantly different from 0, and 7(j) is close to zero, for
J=34,.00y .

An inspection of Figures 8.7 and 8.10, and Figures 8.8 and 8.11,
reveals the desired result that the autocorrelation function of an
AR(2) process decays either exponentially or sinusoidally, whereas the
partial autocorrelation function vanishes after lag 2.

The behavior of the estimated autocorrelation function and the
partial autocorrelation function of some real 1life data which we believe

can be reasonably well approximated by autoregressive processes is shown
in Section 8.11.
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Figure 8.10.

| 15 |20 ©  LAG h

A plot of the estimated partial autocorrelation
function a(h) versus h, h=0,1,...,25,
based on 250 computer generated observations
from an AR(2) process with By = -.9 and

By = 4.
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8.6 An Explanation of the Fluctuations in Autoregressive

Processes

A typical time series described by an autoregressive process fluc-
tuates up and down with oscillations which are not regular, but whose
average length depénds on the nature of the underlying difference equa-
tion. We can offer an explanation of these fluctuations by considering

the representation

and noting that

Ysiq = Solssq * S1Usuqel *rer SqUs +Oquqlsy teee

Thus, a given Ug will influence a subsequent ys+q via the coeffici-
ent 6q . In Section 8.2 we have pointed out the circumstances under
which the coefficients 6q oscillate, causing fluctuations of the

successive yr's . To illustrate this point we show in Figure 8.12, a

plot of a time series comprising of 100 observations generated on a

computer by an AR(2) process
yt-.gyt-l + ‘4yt-2 = Ut 9 t=3,4,ooo,

This is the process considered in Sections 8.3.2, and 8.5.2. Since

61(=-.9) and 82(=.4) are such that B% < 462 , the roots of the
associated polynomial equation are complex with © =44.68°, and o=.634

(Section 8.2.1). Thus the coefficients 6r will have a damped
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sinusoidal behavior of the type indicated in Figure 8.2. Substituting
the above values of 6 and o 1in (8.18), we observe that 8, =,899,
§,=.409, §,=.008, 8, =-.156, §;=-.144, 6. =-.06, §

=-.003, §,=.025,

3 5 6 7 8
69==.023, and 810 =,011; the remaining values of Sy s for r>1 are
all less than .002 and are thus essentially 0. It is because of the
above behavior of the Gr's that the observations A fluctuate up and
down about O wifh an average length of oscillation of about length

10 - see Figure 8.12. It is also useful to keep in mind Figure 8.7, the
estimated autocorrelation function of the generated series, and note

that the estimated autocorrelations for lags greather than 10 are, barr-

ing sampling variability, essentially small.

8.7 Autoregressive Processes with Independent Variables

1t “mt

that are known to affect the time series {yt}, t=1,2,..., being

Suppose that there are m 1independent variables z

investigated. The effect of these m variables can be incorporated

into an AR(p) model, by writing

lyiﬁt = Uy, t=ptl,e..

ne~13

p
8.30
(8.30) rZO BYier

where Y seeosY, are constants. It is of interest to compare the

model (8.30) with the classicial regression model (2.1) of Part I.

Let Xl""’xp be the roots of the associated polynomial equation
p
of the stochastic difference equation | 8 Yiop = Up t=ptlyee.s o
r=0 " "
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Then, using the forward Tlag operator g, where psyt==yt+s,
P

) BuY.,. can also be written as
r=0
p p 0
(8.31) T 8y, .= 1 88"y, = T (p-x;)y
p=0 ' t-r r=0 ' t-p i=1 i’7t-p
In terms of the operator &, the above becomes
P p
() By, = T (Px)y,_ .
s=0 STt 4o 1L
or
° 1 P 1
S- -
= T -X .
_ (SZO BsS ) Veop (i=1(P ;)Y

Thus, for t=p+l, p+2,..., the model (8.30) becomes

m
(P"Xj)yt_p + 121 Yiz'it

i
I = o
—

J

(x5 lygp + 0 v4(,

j=1

i
=Re
—

ne-13
(=Y

J i

YT(X B.L

(p=x;) Ly, __+
UL = Ry

I
[Li==lr =]

It ~13

j=1 i

Before proceeding further, it is helpful to recall a result that

we have encountered in Section 8.1.1, namely, that

p o
-1 r
(y 8.8) =7 &5 ,
rZO r r=0 r

where the Gr s are the coefficients in the equality



see (8.8).

or

(8.32)

since
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Using the above, we now write Uy as

m o4}
u, = BulYe o v 1 vi ) 6.zi .o 1,
t #;O ret-r 52y 1 429 S i,t-r-s
I (px;) ;
i . =
5e1 P-XJ yt_p Lo Bryt_r

A special case of the above is our AR(p) model (8.1). To see

this, suppose that m=1, and that th:=1 , for all t. Then (8.32)

becomes

(8.33)

where

==y, J
1t

p
rZO B (Y ) =uy t=p+l, p+2,... ,
O(SS.
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8.8 Stationary Autoregressive Processes Whose Associated

Polynomial Equations Have at Least One Root Equal to 1

Much of our discussion thus far, has been based on the requirement

P
that all the roots of the associated polynomial equation 7} Brxr =0
=0
n r
of an AR(p) process ) B <y, =u., t=p+l, p+2,..., be less than
el et T e =22

1 in absolute value. We have also assumed that the sequence of random
variables YysYosen- described by the AR(p) process be stationary.
In this section, we investigate the implications of allowing the abso-
lute value of one or more roots of the associated polynomial equation
take a value equal to 1 and still maintain the requirement that the

underlying sequence of random variables be stationary.

We begin by considering a stationary autoregressive process of

order 1 with its single root taking a value 1; thus we have
Ye=Yeoqg t Up s t=2,3,...

or

AYi_1 =Yg o t=2,3,... .

Thus the first difference of our autoregressive process of order 1 with
its single root equal to 1, is described by an innovation process. This
latter process is stationary. We let Euy =0, and 8u§ = 02 for all
values of t.

Now for all s>0, we note that

+u +

Y =Ygog T Up FUp g e T U gy
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so that

2 2 2 2
8(yt'yt_s) = &yt + 8Yt_s = zsyt‘yt-s = 80

Since our sequence {yt} is stationary, Syi = Syi_s » and so
2
2
3.Yt.yt_s = O'(S) = 8.Yt = _S_(;__ ’ S=1,2,..., .
2

The above result can hold for all s>0 only if ¢~ =0, in
which case Yi = Yiog o with probability 1.

To generalize, we consider a stationary autoregressive process of
order p, p>1, and allow one root, say X1 to equal 1, and require
that the other p-1 roots are less than 1 in absolute value; that is,

lx1| <1, i=2,...,p . Following (8.31), we may write our stationary

AR(p) process as

(p-1)

i

=]
~N

(P-xi)yt_p = ug .

If we let
i=2
written as (p—l)zt_1 =ug, or since (p-1) =A, we have AZy q =Ug -

i =T

(P"Xi)yt-p = 2, 1> then our AR(p) process can be

It now follows from our previous discussion of the stationary
AR(1) process with a single root equal to 1 that for all s>0,

t-g = Z» say. Thus

H =

-i (P'X-i ).Yt_p =Z ,
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and Yy = Z:=O 8.2, SO that Y =Yig o with probability 1. We

therefore have as

Theorem 8.3: If a stationary autoregressive process of order p has
at least one root of its associated polynomial equation equal to 1,

then all values of the process are the same with probability 1.

8.9 Some Linear Nonstationary Processes

We shall now introduce a type of nonstationary stochastic processes
that are suitable for describing many empirical time series. Such series
behave as though they have no fixed mean. The stochastic processes
introduced here, are within the genéra] structure of autoregressive
processes.

Suppose that a nonstationary sequence of random variables Y1s¥ps
... is described by a stochastic difference equation of order p+d,

Pl 0

p+d . = =
so that (p° = + 8 et Bog P )yt_p_d Uy, t=pd+l,

1
p+d+2...., or equivalently, the sequence is described by an autoregres-

sive process of order p+d, where

p+d
) B oL Yy = Uy t = p+d+l, p+d+2,...
r=0
ptd p+d-r
The associated polynomial equation 7§ B X = 0 of the above
r=0

process has p+d roots Xl""’xp’xp+1’ﬂ"’xp+d . Suppose that d of

these roots, say xp+1,...,xp+d are exactly equal to 1, and that the

remaining p(z1) roots xl,...,xp, are less than 1 in absolute value.

Then, following (8.31), we can write our AR(p+d) process as
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d -
(P'X.I)(P'l) yt-p-d - ut

= =]

i=1

or

p
I
i=1

d -
(8.34) (p-xi) MYipod =Yg t = p+d+l, p+d+2,... ,

since p-1 = 4.
= pd ifferenced
If we Tet wt-p-d = A yt-p-d , and assume that the differen
sequence {wt b d} , t=ptd+l, p+d+2,..., 1is stationary, then for

px=1 (8.34) becomes

p
(8.35) m

(p—xi)wt_p_d = U, t = p+d+l, p+d+2,...,

1=1

Thus for p=1 our model for the nonstationary sequence {yt} s
t=1,2,..., 1is one for which {wt-p-d} , t=ptd+l , ptd+2,..., its
d-th difference is described by a stationary autoregressive process of
order p . Since the roots xl,...,xp, are assumed to be less than

1 1in absolute value, all our previous results for stationary autore-

gressive processes are also applicable for the model (8.35).

When p=0, and d=1, the first difference of our nonstationary
sequence {yt} is described by an innovation process {ui}  which by
definition is always stationary; see Section 8.8.

Note that if the original series {yt} , t=1,2,..., consists of
n observations, then the differenced series {wt} will consist of

. : . - d -
n-d observations. Since Wiopd = A Yiop-d t =p+d+l, p+d+2,...,

. _ ,~d : -d
we write Yiop-d = & Wi p-d * where the notation 4 needs to be
explained. For this purpose we set d=1, substitute the values

= p+ i - ) )
t=p+2, p+3,..., 1in the telescoped series Wt-p-l yt-p yt-p-l , and
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observe that we can write Yiop = Weop-1 + Wi p-2 tooot Wty for
any t=p+2. The operator A'l therefore represents summation or
integration - the reverse of differencing - and it is for this reason
that we say that the sequence {yt} , t=1,2,..., 1is described as an
integrated autoregressive process of order p. An explanation for

A'd , d =2, follows by an analogous argument.

8.9.1 Behavior of Estimated Covarjance Functions of Integrated

Autoregressive Processes and Processes with an Underlying

Trend

Since the associated polynomial equation of the process déscribed

by the difference equation

p+d p+d-1 0 - _
(8.36) (p" "~ +8¢p +...t Bp+dP')yt-p-d Uy t =p+d+l,... ,

ptd ptd-r

is Z Brx =0, it follows from (8.22) that if the roots Xy
r=0

...,xp+d are distinct, !xj! <1,j=1,...,p+d, and Bp+d #0, o(h),

the covariance between Y and Yish o is

o(h) = 3 c;x?,  h=1l-p-d, 2-p-d,...,0 ,
i=p 7
where Cl""’cp+d are coefficients.
Since the roots are assumed to be real, distinct, and less than 1
h

in absolute value, each X; damps exponentially. If a pair of roots,

say  X; and X, are conjugate complex; then o(h) 1is a mixture of
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damped exponentials and damped sine waves. Now suppose that one of the

roots, say X, is close to 1, so that for some small number §>0,

x2 =1-5.

Then using a first order Taylor's series expansion for 1-6)h , We see

h

that (1-8)" * 1-hs, for an arbitrary h, and so contributes

(
h

€%
a term approximately cl(l-hc) to o(h) . The term c _(1-h8) decreases

%
linearly and slowly in h, for h not too large. Thus, the tendency of

the estimated autocorrelation function to decrease linearly and slowly in

h, indicates the possible presence of a root close to 1 (in absolute
value), in (8.36), the associated polynomial equation of the process.
When such is the case and the under]yihg series cannot be assumed
stationary (for otherwise the result of Theorem 8.3 would come into
effect), we may want to consider appropriate differences of the series
and attempt to model these as a stationary autoregressive process; see
the discussion following (8.35).

To illustrate the above issues, we generate on a computer 250

observations from an AR(1) process

yt = .ggyt_l = ut, t=2,3,... .

A time series plot of these 250 observations is shown in Figure 8.13.
An examination of this plot reveals that the series behaves as though
it has no fixed mean. This is to be expected since B =-,99 being
close to 1 1in absolute value makes the nonstationarity of the gener-

ated series a likely possibility. In Table 8.7 we give values of r(h),
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the estimated autocorrelation function, for h=0,1,...,50, and in
Figure 8.14 we show a plot of r(h) versus h . As is to be expected,
this plot conspicuously shows the slow, and almost Tinear decay, of the
estimated autocorrelation function.

Since the estimated autocorrelation function of the generated

series decays slowly and linearly, we consider w t=1,2,

t =Y+ Yo
«..» the first difference of the generated series, and investigate the

behavior of its estimated autocorrelation function. Recall, that if

By were to be exactly equal to -1 ; then the- wt's would be described
by an innovation process whose autocorrelations at all lags other than
0, is zero.

In Figure 8.15, we show a plot of the time series generated by the
wt's , for t=1,2,...,249. 1In contrast to Figure 8.13, we see that the
differenced series {wt} reveals fluctuations around a fixed mean of
zero. In Table 8.8 we give values of r(h), the estimated autocorrela-

tion function of the w, series, for h=0,1,...,25, and in Figure

t
8.16 we show a plot of r(h) versus h. We contrast this plot in

Figure 8.16 with that of Figure 8.14, and note that in the former, as is
to be expected, the autocorrelations at lags other than 0 are, barring

sampling variability, effectively zero.

8.9.2 The Covariance Function of Some Processes with an

Underlying Trend

As a note of caution, it is not true that the tendency of the
estimated autocorrelation function to decrease slowly necessarily

implies that a root close to 1 exists. Such a tendency can also be
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observed whenever there is an underlying trend in the series. To see
why this is so, let us consider, for example, a process with an under-

lying Tlinear trend of the form
Yy = Ug * t, t=1,2,...

where, as before, UpsUpse.. —are independent and identically
distributed with mean 0 and variance 02
Since gyt:=t for all values of t, it is easy to verify that

for a series of length T the expected value of the sample mean of

Yyseees¥T is

If we are to use the numerator of (7.4) to compute the covariance
of the T observations at lag h >0, then the theoretical quantity

that is being estimated is

T-h
1 T+1 T+1
(8.37) ET R (yt - T)(yt+h - T)
Using the fact that eYiYisp = t(t+h), h=1,2,..., and that
ZI:? t2 = (T-h)(T-h+1)(2T-2h+1)/6 , we can show that for large values
of T, (8.37) can be approximated by (T-h)((T-h)2-3h2)/24 , which

for small values of h decreases slowly in h.,
An analogous conclusion can be drawn for other types of processes
and other types of trends. Thus in practice, to investigate the

nature of the serjes, by plotting it to see whether it exhibits an
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underlying trend. If the underlying trend appears to be a polynomial,
then, as discussed in Section 3.3, such a trend can be eliminated by

taking an appropriate number of differences of the series.

We have thus seen that the differencing of an observed series may
be motivated by two distinct considerations. The first enables us to
model certain types of nonstationary sequence of random variables, via
the mechanism of a integrated autoregressive processes, whereas the
second enables us to eliminate the presence of an underlying polynomial
trend in a series.

To illustrate the effects of a linear trend on the estimated auto-
correlation function of a series, we generate on the computer, 250
observations from an autoregressive process of order 1 with By =-.5,
and for which a linear trend term is added. HNote that this is the
same series considered in Sections 8.3.2 and 8.5.2, except that the
inclusion of a linear trend term makes the generated series nonstationary.

In Table 8.9 we give r(h), the values of the estimated autocorre-
lation function, for h=0,1,...,25, for the 250 computer generated
observations described above. In Figure 8.17, we plot r(h) versus h.
This plot clearly shows the very slow decay of the estimated autocorrela-
tion function. The estimated autocorrelation and partial autocorrelation
functions of the first difference of this series will reveal a behavior
analogous to those of Figures 8.6 and 8.9, since by differencing the
series we would have eliminated the linear trend.

An example of some real 1ife data with a trend, and for which the
estimated autocorrelation function decreases linearly and slowly is

given in the next section.
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Figure 8.17.

10 15 20 . 25 LAG h

A plot of the estimated autocorrelation function
r(h) versus h, h=0,1,...,25, based on 250
computer generated observations from an AR(1)
process With By =-,5, and a Tinear trend term
added to it.
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8.9.3 Behavior of the Estimated Autocorrelation Function of a

Real Life Nonstationary Time Series

In Figure 8.18, we show a plot of G the US gross national

£
product (GNP) in billions of US dollars, for the years t=1920 through

t =1979 (Source: Bureau of Economic Analysis, U.S. Department of
Commerce, Washington, D.C.). This plot indicates that the GNP series

is a nonstationary one, it being increasing (approximately) exponentially
over time. Thus it appears reasonable to first take the natural Toga-
rithms of the GNP, 1nGt . A plot of yt==1nGt><1000 versus t s
shown in Figure 8.19; the actual values of Yy are given in Table 8.10.
Figure 8.19 shows that the Y series is also not stationary, it being
increasing (approximately) linearly in t. The estimated autocorrela-
tion function of the Y series, for lags O through 20 , is shown in
Figure 8.20. Because this estimated autocorrelation function decreases
linearly and slowly, we consider the first differences of the Y series,

We =0Yp =Yiq1 =Yy o t=1,2,...,59. A plot of w_ versus t is shown

t

in Figure 8.21; the actual values of w_ are also given in Table 8.10.

t

From Figure 8,21 we see that whereas the w_ series appears to have a

t
constant Tevel (mean), its fluctuations in the earlier years, 1920-1947,
appear to be more erratic than the fluctuations in the latter years,
1947-1979. A possible explanation for this behavior is that "automatic
stabilizers” such as unemployment insurance, workmens compensation, etc.,
which were introduced into the economy as of 1947, tend to make the GNP

less erratic. Plots of the estimated autocorrelation and partial auto-

correlation functions of the Wy series are shown in Figures 8.22 and
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Figure 8.20. The estimated autocorrelation function of Yi o
the Logarithm of GNP times 1000.
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8.23, respectively. In contrast to Figure 8.19, we note from Figure
8.22 that the autocorrelation function at lag 1 is significantly
different from 0 and takes smaller values for the other lags. How-
ever, it is difficult for us to claim in Figure 8.22, a pattern of
either an exponential or a sinusoidal decay. A similar type difficulty
is apparent in Figure 8.23. Thus it appears that the W, series
cannot be reasonably well described by an autoregressive process of the
type discussed here; more complicated models to be presented later on,

may be necessary for analyzing this data. Our main goal here, is to

show Figure 8.20.

8.10 Forecasting (Prediction) for Stationary Autoregressive

Processes

Suppose that a sequence of random variables {yt} s t=1,2,...,

can be described by an autoregressive process of order p

Y ¥B¥e 1 * Bzyt_2-+...-+8pyt_p =Uy t=p+l, p+2,..., .

. * *
Let yy_ 1> ¥4_ps--.» be the observed values of the random variables

i1 Yiopoee- - Our goal in this section is to determine a

procedure which would give us a best, in the sense of minimum mean
square error, forecast (predictor) of the unobserved variable Yy -

We shall soon see that if the roots of the associated polynomial equa-

p

tion ) Brxp'r = 0 of the AR(p) process given above are all less
r=0

than 1 1in absolute value, then the best predictor of A is indeed
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the natural quantity

* * *
TBYeo1 T B¥i-2 T eer T BpYiop

To see that the above is true, we first note that under the condi-

tions of Theorem 8.1 in the equation

Ye = =Bp¥iaq ~B¥pap = eee Bp¥iptUs

Uy is independent of Yio12 Ypopsere - Thus, the conditional expec-
. . * * .
tation of Yy given that Vi1 FY4o12 Yeo=Vpop s eee 1S

*

% _ _ * * * .
8(yt|yt_1-yt_1, yt_z"‘yt_Z’-~") = 'Blyt_l - Bzyt_z- cee 'prt_p s

the right-hand side of the above equation can be used to forecast Yi s
*

. *
given yi ys Yi_pseees -

Now let f(y;-l’y;-Z""’) be any other function of the previous

*

* * *
values y,_;» Yg_ps+++» and suppose that we use f(yt_l, yt-Z""’)

as a another forecast of Yi - Then the mean square error of f(yz_l,
*

Yiopsees ) as a predictor of Yt is

* 2 _ * * * 2
e 2 B L A R AL S LR AT

2

2 * * *
=8Ut +8[f(yt_1, .o .)+Blyt_1+ ew » +B yt_p] L]

P

since wu, s independent of Y12 Yeopseee

. ... * * * *
The above is minimized when fly, 1> ¥y pseee) =-B1¥y 1 = By¥¢ o -

*
SREY M



-96-

In general, when the conditions of Theorem 8.1 are satisifed, the
best (minimum mean square error) forecast of Yi given Yiogo1®
Yi_gupseers (520) s ely |y, 15 ¥4 g_ps---)» the conditional

expectation of y, given y, . 15 Y4 o ps.-.» Where e{ytlyt-s-l’

Yimg-goers b = 0gp¥egy ¥ 0gpVpgp et *spYt-s-p S
* *

S ERRTEL o =g, are given in equation (8.6).

8.11 Examples of Some Real Life Time Series Described by

Autoregressive Processes

In this section our aim is to demonstrate the methods of the pre-
vious sections by considering some real life data which can be reason-
ably well described by autoregressive processes. It is entirely
possible that the data can also be described by some of the other models
introduced later on. However, at this point in time, it is convenient
to introduce the data and use these to indicate the practical usefulness

of autoregressive processes of a simple order.

8.11.1 The Weekly Rotary Rigs in Use Data”™

A rotary rig is composed of five major components and costs
upward of $500,000 each. It is used.for drilling for oil and gas. The
number of rotary rigs in use per week, by state, is an important compo-
nent used in econometric models of the oil and gas industry. Such

econometric models are of interest to the U.S. Department of Energy.

*This data and its description was given to us by Mrs. B. Volpe, Energy
Information Office, U.S. Department of Energy, Washington, D.C. It
has been abstracted from a Hughes Tool Company, Houston, Texas, report,
entitled "Average Number of Rotary Rigs Running - by State."
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In Table 8.11, we give 82 values of the weekly number of rotary
rigs in use in the Southern Louisiana Inland Waterways, from the period
starting December 10, 1979. A time series plot of this data is shown in
Figure 8.24. An informal inspection of this plot reveals that the neigh-
boring observations tend to behave similarly, suggesting a positive
correlation between them. This is in contrast to neighboring values
alternating in sign implying a negative correlation between them. There
does not appear to be a well discernable underlying trend in this data,
nor does the data reveal any systematic fluctuations indicative of an
underlying periodicity.

In Tables 8.12 and 8.13, we give values of the estimated autocorre-
lations and partial autocorrelations of this data for lags 1,2,...,25.
In Figures 8.25 and 8;26, we show plots of the estimated autocorrelation
function and partial autocorrelation function, respectively. The
estimated autocorrelation function appears to decay exponentially, and the
estimated partial autocorrelation function shows a value which is signi-
ficantly differently from zero at lag 1 only. These plots suggest that
the data of Table 8.11 may be reasonably well described by an autorégres-
sive process of order 1.

An estimate of the autoregressive parameter By can be obtained by
using the estimate r(1)=.722 in (8.28). The estimate r(1) is
consistent with our observation that the neighboring values in Figure 8.24
tend to behavé similarly.

Based upon the above, a proposed linear stochastic model for the

weekly number of rotary rigs in use in Southern Louisiana InTand Waterways
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Table 8,11

Values of the Weekly Rotary Rigs in Use in
The Southern Louisiana Inland Waterways for the
period starting December 10, 1979

Week Rigs Week Rigs Week Rigs Week Rigs
Number { In Use || Number | In Use | Number | In Use | Number | In Use
1 74 21 75 41 75 61 81
2 79 22 84 42 80 62 79
3 82 23 83 43 78 63 75
4 83 24 76 44 79 64 77
5 84 25 80 45 81 65 77
6 79 26 79 46 82 66 79
7 80 27 74 47 80 67 87
8 78 28 73 48 79 68 88
9 75 29 70 49 73 69 87
10 72 30 70 50 75 70 90
11 73 31 68 51 76 71 99
12 74 32 68 52 78 72 88
13 77 33 74 53 81 73 84
14 84 34 68 54 79 74 79
15 81 35 73 55 83 75 82
16 77 36 72 56 82 76 84
17 76 37 74 57 81 77 81
18 72 38 74 58 77 78 75
19 77 39 79 59 75 79 83
20 73 40 81 60 74 80 84
81 84
82 81
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Figure 8.24. A plot of the Weekly Rotary Rigs in Use in
The Southern Louisiana Inland Waterways
for the period starting December 10, 1979.
(See Table 8.11)



-100-

%0 | €0°| v0°| 00" | 00° | 90" | £0° | 80" | 60" { 90" | 80" | 60" | ¥O° (U)4 30 anLep

G¢ e € ¢ Ic 0¢ 61 8l L1 91 St 14! €l y beq
Go'| Ti°| 91" | 81° | ¢t" | L0" | 11" | 81" | 8¢ vt ¢5° | el (4)4 40 anLep
A 11 01 6 8 L 9 5 14 & 2 I y beq

6°Q @[qeL jo ejep asn ui sbry A[yedM du3 Jo ‘Gz rfl=y U0y
* (Y)4 uorjdUNy uOLER(DAA0D03NR pBJRWL]ISD BY] JO SIN|EA

¢1°8 ®iqel



-101-

G0°| 90°-| 20" | ¥0" | v0°~{ S0°| 20°~| 00"~ | €0°~| €0°~|20'~| 1° | G0° | (u)t 0 anep

G2 | v2¢ | €2 (22 | 12 | 02| 61 | 81T | 41 | o1 | ST | #1 | €1 y beq
80°~|80°~ [90°~ | 80" | GT°} 20° | 20"~ |€0°~| 0"~ |tv0" |00 [2L° | (u)L g0 mmﬂm>
2 | 1T | o1 6 8| ¢ 9 g b £ 2 |1 y beq

6°8 3lqel 40 ejep asn uL sbiry Axyasm ayz jo
“(4)L uorlouny uorie|a44020Ine |elided pajewt}sa ayl Jo sanjep

€1°8 3lqel

nmNnooon._”"I



Estimated Autocorrelation

Estimated Partial Autocorrelation
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igure 8.25. A plot of the estimated autocorrelation

function of the Weekly Rigs in Use data.
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Figure 8.26. A plot of the estimated partial autocorre-

lation function of the Weekly Rigs in Use
data.
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Yt is for t=2,...,82

(yt -78.5) = .722(‘yt_1 -78.5) +uy
where the G£'s , with
ut=(_yt—78.5) - .722(yt_1-78.5) . t=2,...,82 ,

are known as the residuals. The quantity 78.5 represents the mean of
the data.

In order to assess how well the proposed mdoel describes the data
of Table 8.11, we see if there is any recognizable pattern in the resid-
uals. If the model were adequate, then we would expect that as the
series 1ength.increases, the ﬁt's would become close to the innovations
i

£ Thus a study of the at's would indicate the existence and

possibly the nature of model inadequacy. In particular, the behavior of

u

the estimated autocorrelation and partial autocorrelation of the at's
would yield valuable evidence about model inadequacy. The absence of a
recognizable pattern in a plot of these functions would give us some
assurance of model adequacy.

In Tables 8.14 and 8.15, we give values of the estimated autocorre-
lations and partial autocorrelations of the residuals in question for
lags 1,...,25. In Figures 8.27 and 8.28, we show plots of the data in
Tables 8.14 and 8.15. Since these plots do not reveal any recognizable

pattern, we conclude the adequacy of the proposed model.
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Estimated Autocorrelation

Figure 8.27.

A plot of the estimated autocorrelation function
of the residuals from an AR(1) model for the
Weekly Rigs in Use data.

Figure 8.28.
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A plot of the estimated partial autocorrelation
function of the residuals from an AR(1) model
for the Weekly Rigs in Use data.
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8.11.2 The Landsat 2 Satellite Data™

The Landsat 2 satellite 1is an earth orbiting satellite which
measures the amount of reflected energy in 4 bands of the electromag-
netic spectrum. The satellite travels from north to south over the
day side of the earth. As the satellite travels, an oscillating
mirror sweeps out a 150 kilometer long scan line in a west to east
direction. The mirror reflects the energy from the ground onto an
array of detectors on board the satellite. The reflected energy is
converted to an electrical impulse. Several such impulses are inte-
grated over a short period of time and then transmitted to the earth
via ground stations as discrete signals. The discrete signals
represent Tight intensities, O denoting black, and large values
such as 130 denoting bright.

In Table 8.16 we give 496 values of the Tight intensities
observed by such a satellite over a sand dune field in the Sahara
Desert. The measurements are indexed by the distance traveled by the
satellite (instead of time) and are recorded at every 80 meter
distance. Note that the entries in Table 8.16 are taken from a
computer output with an exponent notation; thus the first observation
.74000D +02 denotes 74.000. The light intensities in this table

range from O to 127, 1In Figure 8.29 we show a plot of the first

*This data and its description was given to us by Dr. Mark Labovitz of
the National Aeronautics and Space Administration, at the Goddard
Space Flight Center, Greenbelt, Maryland 20771.
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Table 8.

16

Values of the Light Intensities Observed by a
Landsat 2 Satellite over the Sahara Desert
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300 values of the Tight intensity over distance traveled. The plotting
of all the 496 observations would be cumbersome and would tend to con-
ceal the fluctuating behavior of the individual observations. The
periodic fluctuations in Figure 8.29 suggest an autoregressive process
of order 2 or more - see Section 8.6. The plot also conveys the
impression of an underlying trend whose wave 1ike nature is indicated
by the dotted line of Figure 8.29. Thus one possibility would be first
to fit a cyclical trend of the type described in Section 4.2 to this
data, and then to describe the residuals from such a fit by autoregres-
sive processes. However, this possibility was not investigated here,
and instead fluctuations about the sample mean of the entire series of
496 observations were considered. The sample mean of the entire set of
these data is 82.9.

In Tables 8.17 and 8.18 we give values of the estimated autocor-
relations and partial autocorrelations of the deviations of the light
intensities from 82.9 for lags 1,2,...,35. In Figures 8.30 and
8.31 we ;how plots of the estimated autocorrelation function and par-
tial autocorrelation function, respectively. The estimated autocorre-
Tation function appears to decay exponentially, and perhaps even
sinusoidally. The estimated partial autocorrelation function takes
values which are significantly different from zero at lags 1 and 2.
These plots suggest that the deviations of the light intensities can
be described by an autoregressive process of order 2.

Estimates of the two autoregressive parameters By and B, can

be obtained by using the estimates r(1)=.87 and r(2)=.66 in



-111-

§0°- | 0"~ [ §0°-|90°=| S0O°~ | ¥0°~ | 20°= | 00" | 20" | 20" | 20" | (u)4 40 @niep

G¢ te €e | z¢ [£3 0€ 62 | 82 | L2 | 92| S y beq

20" | 00" | €0°-| 90"~ |60°~| 60"~ | S0°- | zo- | 10" | 20" | €0° | zo° (Y)4 40 aniep
2 €2 2z 12 | o2 61 81 L1 9T | ST | ¥1 | €1 y beq
00° | 00" | 20" | €0" | sor | 80" | TT° | 81" | 62" | S¥" | 99" | £8° | (u)4 40 anpep
21 I 01 6 8 L 9 S b € 4 I y beq

WoA4 SDLILSUDIUL JYBL| BYL 3O SUOLIRLASP BY3 JO

{1°8 @lqel

elep 93L|[|93eS g jespue] |yl J404 uesw JL3Y)
ann.o-nNnH
‘(y)4 uoLzouUN} UOLJE[BAUOD0INE PIJRULISD BYI S0 SaN|eA




-112-

10" | ¥0°-| 10" | €0° | €0°- | T0°-| €0 | £0°-| 00" | €0°-| 20| (u)r 4o anjep
GE vE £¢ 2€ 1€ 0¢ 62 82 L2 92 | S y be
20-| 20" | 10"~} 00" | TII° | €0°- |S0'-| T0°-| €0°-| €0°-| §GO"-| ¥0" | (u)r 40 anfep
¥2 £2 22 12 02 61 8l (1 91 ol vL | €l y Beq
G0* | 10°-| 00" | 10°-| 10"~ | 20°- | 20" | SO° [ z0"-| 10" | Op'-| 48" ) (u)r 40 mz_m>
2l 11 0l 6 8 L 9 g ¥ £ 2 I y be7

®1ep 911|970 g JESPUET Y} 04 UBAW AL3y]
WoJ44 S9LILSUDIUL JYBL| Y3 O SUOLIBLADD By 4O GE°T* 2T =y

¢ (y)r uoLpdouny uotje|aduodolne |erjded ayj jo sanpep

81°8 3qel



Estimated Autocorrelation

Estimated Partial Autocorrelation
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Figure 8.30. A plot of the estimated autocorrelation
function of the deviations of the 1ight
intensities from their mean for: the
Landsat 2 Satellite data.
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Figure 8.31. A plot of the estimated partial autocorre-
Jation function of the deviations of the
1ight intensities from their mean for the
Landsat 2 Satellite data.
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Equation (8.28); these turn out to be 31 = -1.28 and B,=.46. The
estimate of By is approximately the estimated value of the partial
autocorrelation at lag 2, which is -.40,

Based upon the above, a proposed linear stochastic model for the

Tight intensity Yi s is, for t=3,...,496, (yt-82.9) =1.28( -82.9)

Yt-1

- .46(y,_,-82.9) +{, , where the Gt's , with

Uy = (yt-82.9) - 1.28( -82.9) + .46(yt_2-82.9) ,» t=3,...,496,

Y1

are known as the residuals.
In order to judge how well the proposed model describes the data
of Table 8.16, we see if there is any recognizable pattern in the

residuals. If the model were adequate, then we would expect that as

~
Ut
t's . Thus a study of the Gt's would indicate the

existence and possibly the nature of model inadequacy. In particular,

the series length increases the s would become close to the

innovations u

the behavior of the estimated autocorrelation and partial autocorrela-
tion functions of the ﬁt's would yield valuable evidence about model
inadequacy. The absence of a recognizable pattern in a plot of these
functions would give us some assurance of model adequacy.

In Tables 8.19 and 8.20 we give values of the estimated autocor-
relations and partial autocorrelations of the residuals in question
for lags 1,2,...,35., In Figures 8.32 and 8.33, we show plots of the
data in Tables 8.14 and 8.15, respectively. Since these plots do not

show any recognizable pattern, we conclude that the proposed model is
adequate.



-115-

10° | 00° {20° | S0°-]20"~| 10" |€0°-|10°-]| £0°| €0°-| 20" || (u)4 Jo sanfeyp
e | v€ | ee| 2c | 1e |oe| 62 | 82| L2| 9z | s y beq
00°0| €0° | 20°-| 10" | S0°-|20°-|S0°| 10" [20°-| vO°| 20" | ¥0° [[ (u)4 40 seniep
ve | ¢z | 22 | 12| 0z | 61 | 81 NH, 91 | ST | 1 | €I y Beq
90°-|20°-| 0* [ 00" | 20" | ¥0" | 20°| 00* | t0'-| ¥0°| GO"-| €0 || (u)4 40 sanjep
et | 11| ot| 6| 8 L] 9] § v | €] 2 T y beq

[Spow (Z)YY ue wodj} s|enpLsad ayl 4o
“(u)4

BIEp 93L[193BS Z 3eSPURT Y} J04

ann-o-nNnHus

uoL3ouNy UOL]ER|34A40202NE PalewL]ss 3yl 4O san|ep

61°8 aLqel



-116-

10° | 10° | 20" }so°-|en-]10°{00°|+0°-|60" [€0°-] €O || (u)4 3O San|eA
13 ye | €€ | ¢¢ 1¢ | oc | 62| 82 | L2 | 92 | ¢ y beq
20°-| 20" |10°-| 00° |¥0°-|20°-|GO" | 10" |€O"-|¥0" | 20" | €0° || (u)4 40 saniep
ve | €2 | 22| 12 |02 | 61 | 8T | LT | 91 | ST | #T | €1 y bet
60°- | 20°-| v0° | 00°0 { 20° | ¥O° |20° | 10" | ¥O°~ | ¥0" {90°-| €0" || (u)4 4O san|eA
21 IT | ot 6 8 L 9 | 6| v £ 2 I y bel
e3P 81L||930S Z IBSpURT 3yl 404
. A5:—%05 (2)4y ue wouy sjenpLsad ayl jo

0¢°8 @19el

ann-oonNnHHS
UoLoUNy UOL]B[B440003Ne [eL)ued pajewL]sSd Byl JO San|ep



Estimated Autocorrelation

Estimated Partial Autocorrelation
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Figure 8.32.
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A plot of the estimated autocorrelation function
of the residuals from an AR(2) model for the
Landsat 2 Satellite data.
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Figure 8.33.
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A plot of the estimated partial autocorrelation
function of the residuals from an AR(2) model
for the Landsat 2 Satellite data.
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