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5.  Introduction to Autoregressive Models 

In the previous sections we considered models for time series in 

which the characteristic and useful properties appropriate to the time 

sequence were embodied in the mean function f(t) ; f(t) could be a 

polynomial or a trigonometric function. In astronomy, for example, it 

is reasonable to suppose that the effect of time is mainly in f(t) 

and thus prediction is reasonable. In economics and weather, for 

example, the random part u, is also time dependent, and thus predic- 

tion is more difficult. When the effect of time is embodied in u. , 

we are led to a "stochastic process" whose characteristic properties 

are described by the underlying probabilistic structure. In these 

cases, for example, there are not regular periodic cycles but more or 

less irregular fluctuations that have statistical properties of varia- 

bility. A process whose probability structure does not change with 

time is called stationary. In Section 5 we are mainly interested in 

processes that are stationary or almost stationary or such that at 

least the probability aspect (as distinguished from a deterministic 

mean value function) is roughly stationary. 

To illustrate these ideas, let us consider an autoregressive 

process of order one, which is described by the relationship 

yt = pyt-l + ut ' t = 1>2"-- » 

where the y 's are observed values of a random variable, and the u 's 

are some unobserved random variables, called innovations. The innovation 

ut is assumed independent of y. , »y+p" • • f°r a^ values of t. 
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The distribution of y, and y2 is given by the distribution of 

y, and py.+u^, and similarly the distribution of y,, y2, and y3 

is given by the distribution of y,, py-, + u2 , and p(py.+u2)+u3 . 

Thus y- depends on y2 , which in turn depends upon y« , and so on. 

If |p| <1 , then the further apart the y's, the less they are related. 

An innovation u? is absorbed into y,, y»,..., and thus the randomness 

perpetuates in time. We therefore say that the effect of time is 

embodied in the u.'s  . The above process is pictorially described in 

Figure 5.1. 

In Section 5.1 we discuss briefly some basic properties of 

stochastic processes and introduce some notions which are used subse- 

quently. 

5.1 Stationary Stochastic Processes 

The sequence of T observations which constitute an observed time 

series may often be considered as a sample at T consecutive equally 

spaced time points of a much longer sequence of random variables. It 

is convenient to treat this longer sequence as infinite, extending 

indefinitely into the future, and possibly going indefinitely into the 

past. Such a sequence of random variables y,, y?,..., or ..., -y_o» 

~y_l' yn' Yi» yo»"-» 1S known as a stochastic process with a discrete 

time parameter. An objective of statistical inference may be to deter- 

mine the probability structure of the longer infinite sequence« 

In a stochastic process those variables that are close together 

in time generally behave more similarly than those that are far apart 



Time t 

Figure 5.1. An illustration of the structure of 
an autoregressive process of order 1. 



in time. Usually some simplifications are imposed on the probability 

structure of the larger series, with the result that the finite set of 

observations has implications for the infinite sequence. One simplify- 

ing property is that of stationarity, behind which is the subjective 

idea that the behavior of a set of random variables at one point in 

time is probabilistically the same as the behavior of a set at another 

point in time. Thus for example, if the underlying probability struc- 

ture is assumed to be Gaussian (normal) and stationary, then there is 

one mean, one variance, and an infinite number of covariances. We are 

interested in finding out what information about these can be gleaned 

from a finite number of observations. 

A stochastic process y(t) of a continuous time parameter t can 

be defined for t > 0  or -co < t < °° . A sample from such a process 

can consist of observations on the process at a finite number of time 

points, or it can consist of a continuous observation on the process 

over an interval of time. For example, the sample could be a sequence 

of consecutive hourly readings of the temperature at some location, or 

it might be a graph of a continuous reading. Often a stochastic 

process with a discrete time parameter can be thought of as a sampling 

at equally spaced time points of a stochastic process of a continuous 

time parameter. 

A discrete time parameter stochastic process is said to be 

stationary, or strictly stationary, if the distribution of y+ ,o..,y. 

is the same as the distribution of yt +. y. +. for every  finite 

set of integers {t,,...,t } and for every  integer t . 



We shall denote the mean or the first order moment £y. by m(t) , 

and the covariance or the second order moment g(y. -m(t))(y -m(s)) 

= Cov(yt,ys) by a(t,s) .  The sequence m(t) is arbitrary, but 

the second order moment a(t,s) = a(s,t) for every pair s,t, and the 

matrix [o(t.,t.)]t  i,j = l,...,n, must be positive semidefinite for 

every   n . 

If the first order moments exist, then stationarity implies that 

(5.1) eys = eyt+s 5 s,t = ...,-l,0,+l,... , 

or that   m(s) = m(s+t) = m,   say, for all    s    and    t.     Stationarity 

also implies that for all    t>0       (y,  ,y.   )    has the same distribution 

as    (y.  +., y.  +.) ,   so that if the second moments exist, then 

Cov(yt , yt ) = a(t1,t2) = Cov(yt +t,yt +t) = ait^+t , t2+t)    . 

If we set   t = -t9 ,   then 

(5.2) a(t1,t2)  = a(t1-t2, 0)  = a^-tg) ,     say 

Thus for a stationary process the covariance between any two vari- 

ables y. and y.   depends upon s , their distance apart in time. 

The function a(s) as a function of s , is called the covariance func- 

tion or the autocovariance function, and the function of s 

C°V(yt' yt+S}     .    g(s)      _  a(s) 

/Var(yt)/Var(yt+s)    v^TJJ" ^JßJ        CT(0) 

is called the correlation function or the autocorrelation function. 
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A stochastic process is said to be stationary in the wide sense or 

weakly stationary if the mean function and the covariance function 

exist and satisfy (5.1) and (5.2). In the case of the normal distribu- 

tion, weakly stationary implies stricly stationary and vice versa. In 

the general case, strictly stationary implies weakly stationary, if the 

second order moments exist. 

5.1.1 Examples of Stationary Stochastic Processes 

Example 1: Suppose that the y.'s are independent and identically 

distributed with 

(5.3) eyt = m ,  and Var(yt) = a ; 

then 

(5.4) a(t,s) = a2 ,  S = t , 

= 0 ,  s^t . 

This process is strictly stationary; however, if we drop the 

requirement of identical distributions, but retain (5.3) and (5.4), 

then the resulting process is stationary in the wide sense. 

Example 2. Suppose that the y.'s are identically equal to a 

random variable y  with 

2 2 
£yt = m and Var y. = a(t,t) = a 

Then, this process is strictly stationary. 
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Example 3: Define a sequence of random variables {y.} as 

follows: 

(5.5)   y. = I  (A. cos X.t + B. sin X.t) ,     t-...,-l,0,+l,... 

where the X.'s are constants such that 0<x. <TT, and A,,...,A . 

B,,...,B  are 2q random variables such that 

CAj = W.  = 0 , j=l q , 

£Aj = £Bj = aj '        o=i»....q , 

£AiAj = £BiBj = ° ' ^J" '   i,J'=1 q' and 

SAiB. = 0 , i .J=l q • 

Then 

eyt = o , 

and 

q q 

j 
ty+y. = £ I     I  (A. cos x.t+B. sin x,t)(A, cos x.s+B. sin x.s) 

q 
2 2 

= 5! [SA^ cos x^  cos ^is + £B^ sin xn-t 
sin M] ^_ij    J     J    J    J     J 

q 
= y a.[cos x.t cos x.s + sin x.t sin x.s] 

jij_ J    J     J      J     J 

q 
2 = I    a. cos X.(t-s) . 

j=l J    J 



Since the covariance of (yf,y  ) depends only on (t-s) , the 

distance between the two observations, and since ey. = 0 for all t, 

the sequence {yt> is stationary in the wide sense. If, however, the 

A.'s and the B.'s are also normally distributed, then the yt's will 

also be normally distributed, and then the process will be stationary in 

the strict sense. 

The point of this example is that every  weakly stationary process 

can be approximated by a linear combination of the type indicated by 

(5.5). 

Example 4: Let ...,v_,, vQ, v.,...   be a sequence of indepen- 

dent and identically distributed random variables, and let a*,  a,,..., 

a , be q+1 coefficients. Then 

(5.5)  yt = aQvt + ^^t_i  + ... + aq
vt-a »  t=...,-l, 0,1,...  , 

2 
is a stationary stochastic process. If £v. = y , and Var v. = a    , 

then 

£yt = Y («Q +a^ + ... +a ) 

and 

2 
Cov(yt, yt+s) = a  (aQas + ... 

a
q_s

a
q) »    S=0,...,q , 

= 0 , S =q+l,... , 

and so {y.} is weakly stationary. Thus, for {y.} to be weakly 

stationary, all we need is that the v.'s have the same mean, the same 

variance, and that they be uncorrelated. 

The process (5.6) is known as a finite moving average. 



The infinite moving average 

(5.7) yt = I   o v t  s=0 s z  s 

means that the random variable y. , when it exists, is such that 

(5.8) 11me(yt- I    av  ) =0 
n-s-oo    s=0 

A sufficient condition for the existence of yt is that the vt's 

be uncorrelated with a common mean (=0) and variance, and 

(5.9) 
s=0 s 

see Anderson (1971), p.377. 
CO 

When (5.8) holds, the infinite sum  £ a v.   is said to 
s=0 s t_s 

converge in the mean or in the quadratic mean. 

6.  Basic Notions of Multivariate Normal Distributions 

Two random variables X and Y  with means u  and u  and x     y 
2      2 variances a     and a , respectively, are said to have a bivariate x    y 

normal distribution, or a bivariate Gaussian distribution, if their 

joint density function is given by 

f(x,y)= 

•£* 
exp^ 

a  a  2ir/l-p' x y   "xy 
2<Ky' 

x-uy o y-uv o    x-u  y-y ( X)2+( y_)2.2  ( x)( y_j 
°x    Gy    xy Gx   üy 
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e(X-yx)(Y-u ) 
then p  = ^—  is the correlation between X and Y ; xy a a   J x y 

-<» < X < °°   ,      -°o<y<oo# 

The marginal density of X is given by 

f(x) =—-—exoi-i( -)    t ,   -» <x<- . 
/27 a   ' I 2 ax   i 

A 

This is the normal density function, which we will henceforth denote by 

n(x|ux, ax) . 

Similarly, the density function of Y is also normal, 

n(y'v V ' 
We can show (Anderson (1984), p.37), that    f(x|y*),  the conditional 

density function of    X,   given    Y=y*    is also normal, but with a mean 

CTx 2        2 
yx + pxy ~ (y*~yy) '   and variance    CTx(1-p

Xy) •     That 1s' 

f(x|y*) = n(x|Mx+Pxy ^ (y*-uy) ,     a2(l-p2y)) . 

Thus, the variance of X given that Y=y* does not depend on y* , 

and its mean is a linear function of y* . 

The mean value of a variate in a conditional distribution, when 

regarded as a function of the fixed variate, is called a regression. 

Thus, the regression of X in the situation above is 

a 
u +p  — (y*-u ) . ^x Hxy a    KJ    ^y' 

The trivariate normal distribution of three random variables X,Y, 

and Z is defined in a manner akin to the bivariate normal distribution, 



•11- 

2  2       2 
once the means y , y , and y , the variances a , a , and a , x  y      z x  y      z 

respectively, and the correlations between their pairs p , p , and 

p  , are specified. Let f(x,y,z) denote the joint density function 

of this trivariate normal distribution; let f(x,y|z) denote the joint 

density function of X and Y conditional on Z = z .  Then 

f(x,y|z) = £U^1, 
f(z) 

where f(z)>0 is the marginal density function of Z, which is again 

normal. A property of the normal distributions is that f(x,y|z) is a 

bivariate normal density (Anderson (1984), p.37). 

Let f(x|z) and f(y|z) denote the marginal densities of X and 

Y conditional on z , respectively; these densities can be obtained via 

f(x,y|z) .  Let fi(X|z) and e(Y|z) denote the expected values of X 

and Y conditional on z , respectively. From our previous discussions 

on the bivariate case, we recall that f(x|z) and f(y|z) are also 

normal, and that e(X|z) and e(Y|z) can be written as 

£(X|z) = a + 3z , and 

£(Y|z) = Y +<5z . 

The correlation between X and Y conditional on z , denoted by 

p    is called the partial correlation between X and Y when Z 

is held constant. 

Thus, we have 

- e(x-(g+ßz))e(Y-(Y+6z)) 
pxyz   - ~~   ._..____ - • 

/e(x-(a+ez))2e(Y-(Y+6z))
2 
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Small  values of   PXV.Z    imply that there is little relationship 

between    X   and    Y   that    is not explained by    Z .     We can also verify 

[Anderson (1984), p.41) that 

_    pxy"pxz pyz 
pxy-z 

/l-pxz  /1-Pyz 

To discuss the idea of the "multiple correlation" between X and 

the pair (Y,Z) , let us denote by e(X|y,z) the expected value of X 

conditional upon Y=y , and Z = z . Again, from our discussion of the 

bivariate case, we note that e(X|y,z) can be written as 

e(X|y,z) = a + ey +YZ 

where a, e, and Y are constants. 

Now let us consider the correlation between X and an arbitrary 

linear combination of Y and Z, say bY+cZ, where b and c are 

arbitrary constants. 

Then, the multiple correlation between X and (Y,Z) , say R  is 

R2 = max[Correlation(X, (bY+cZ))]2 . 
b,c 

It turns out that the values of b and c are e and Y respectively. 

Thus, the multiple correlation is the correlation between X and OY+YZ 

7.  Estimation of the Correlation Function 

One of the first steps in analyzing a time series is to decide 

whether the observations y-,, y?,...,yT are from a process of 
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independent random variables or from one in which the successive 

variables are correlated. If the process is assumed stationary, then 

r(h), an estimate of the correlation function, enables us to infer the 

nature of the joint distribution that generates the T observations. 

To see this, consider a pair of random variables Y. and Y.+. , 

separated by some lag k, where k=l,2,... . The nature of their 

joint probability distribution can be inferred by plotting a "scatter 

diagram" using the pair of values y. and y. . , for t=l,2,...,T-k . 

In Figure 7.1 we show a scatter diagram for Y. and Yt+^ ; this 

diagram indicates that a large value of Y. tends to lead us to a 

large value of Y.+k , and vice versa. When this happens, we say that 

Y. and Y.+. are positively correlated. In Figure 7.2 the scatter 

diagram shows that a large value of Y. leads us to a small value of 

Y. . and vice versa; in this case, we say that Y. and Y.+. are 

negatively correlated. A key requirement underlying our ability to 

plot and interpret the scatter diagram is the assumption of stationarity. 

Because of this assumption the joint distribution of Y. and Y.+. is 

the same as the joint distribution of any other pair of random variables 

separated by a lag of k , say Y.   and Y. +. , for some s/0 . 

A formal way of describing the impressions conveyed by a scatter 

plot is via an estimate of the correlation function; this estimate is 

also known as the serial correlation. If the observations y^y?.--.» 

yT are assumed to be generated by a process with mean 0 , then r*(l) , 

the first order serial correlation coefficient is defined as 
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Yfk  • Positive  Correlation 

*    Y. 

Figure 7.1. Scatter plot of Y. and Y.+. showing a 

positive correlation between the variables, 

Yf Negative Correlation 

*   Y, 

Figure 7.2. Scatter plot of Yt and Yt+k showing a 

negative correlation between the variables. 
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(7.1) r*(l) - t=1 

T-l 

I ytyt+l 

I y\ 
t=i r 

If the mean of the process is not known, (7.1) is modified by 

replacing y. and y._, by the deviation of these from the sample 

T 
mean y , where y = £ y./T .  Thus we have 

t=l    z 

(7.2) r(l) =   I   (yt-y)(yt+l-y)/ I (yf-y)2 . 
t=l     z        z L       t=l   r 

Higher order serial  correlations are similarly defined; for 

example,    r*(h) ,   the h-th order serial correlation is 

(7.3) r*(h)  = t=1 

T-h 

L yt yt+h 

T     ? 

t=i  z 

or in analogy with (7.2)  it is 

(7.4) r(h) = 

T-h 
Uyt-y)(yt+h-y) 

t=i   z 
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8.  Autoregressive Processes 

One of the simplest, and perhaps the most useful, stochastic 

process which is used to model a time series is the autoregressive 

process. A sequence of random variables y,,y?,... is said to be an 

autoregressive process of order p, abbreviated as AR(p) , if for 

some constant p and integer p 

(8.1) (yt-y) +31(yt.1-y) + -....+ ßp(yt-p-
y) = ut ' t = P+1>P+2>--- » 

with u ,, u 2"*" being independent and identically distributed 

with mean 0 and variance a   , and u. independent of y._,, y. 2» 

... . We shall set p = 0 in the following discussion. The random 

variable u. is called an innovation or a disturbance. We shall refer 

to the sequence {u.} as an innovation process. 

It is convenient to generalize (8.1) to a doubly infinite sequence 

...» y_i> yr>j y-,,..., resulting in a doubly infinite sequence ...,u_-,, 

UQ,U,,... . Such processes are also known as autoregressive processes. 

k  def 
If we use the foreward lag operator p, where p u. = ut+.  for 

any integer k , then (8.1) can also be written as 

(8.2) (pP+31P
P_1+...+3pP°)yt_p = ut . 

Since Ayt=yt+1 - yt = R/t"yt = ^^yt ' we have the result 

that A = p-1 ; recall that A is the foreward difference operator 

introduced in Section 3.3.    Thus we may say that the operator acting on 

y.        can also be written as a polynomial  in    A    of degree    p .     If u-p 

(3    £ 0 ,   then the left hand side of (8.2) can be written as a linear 

combination of   yt_  , Ayt_  , A yt_  ,...»APyt_p   and is therefore called 

a stochastic difference equation of degree   £. 
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Unless otherwise stated (see for instance Section 8.9), we shall 

assume that the stochastic process described by (8.2) is stationary. 

In Section 8.1 we shall determine the conditions under which uf is 

independent of y, ,, y+.o"'" ' 

The model (8.1) can be used to generate other processes. For 

example, should we want to incorporate the effect of a trend in (8.1), 

then we add to the left hand side of (8.1) the term £ y.z.. ,  where 

the zit's are known functions of time; this matter is discussed 

further in Section 8.7. 

Autoregressive processes were suggested by Yule (1927), and were 

applied by him to study sunspot data. Gilbert Walker (1931) extended 

the theory and applied it to atmostpheric data. In what follows we 

shall study the structure of autoregressive processes, and address the 

related questions of inference and prediction. 

8.1 Representation as an Infinite Moving Average 

If we inspect (8.1), we see that y. is expressed as a linear 

combination of the previous y.'s and u. .  We shall now study the 

conditions under which y. can be written as an infinite linear com- 

bination of u.  and the earlier u 's .  To see the idea, we consider 

an AR(1) process 

yt = pyt-i + ut * 

and note that since   y.   , = pyt_2 
+ ut , ,   we have 

yt = ut + pUt-l + p2yt-2  ' 
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Successive substitution of the type indicated above leads us to 

wri te 

(3.3) yt = ut + PUt_1 + P2ut_2 + ... + PSut_s + PS+1yt_(s+l) 

so that 

(8.4) yt-(ut + PUt_1 + ...+P ut_s)  = P       yt.(s+1)   • 

The difference between y. and a linear combination of the 

s+1 
(s+1) u 's is therefore P  ^t-fs+l} ' anc* t'11"s becomes sman when 

|P|<1 and s is large. In particular 

(8.5) e[yt-(ut + Put.1 + ...+P
sut_s)]

2 = p2(s+1)eyt(s+1) 

will not depend on t , if we assume that {y.} is a doubly infinite 

stationary process. As s increases, (8.5) will go to 0 , and so we 

can write 

yt = I    p ut- z      r=0   c 

r 
u. 

r 

and say that the infinite sum on the right of the above equation 

converges in the mean to yt .  (See Section 5.7.) 

Let us now consider an AR(p) , 

P 

4o 3^-r = Ut '   30 = l  • 

so that 

yt = Ut " ßlyt-l " ß2yt-2"---"ßP
yt-p ' 
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Replacement of   t   by   t-1   yields 

h-i - ut-r Vt-2 - HH-z - •••" Vt-p-i • 

which upon substitution gives 

yt = ut-ß1(ut_1-31yt_2-02yt_3- ... - y^p^-ß^t-z" — "Vt-p 

= ut-
Biut-i-(B2-Bi,yt-z- — + 0iVt-i-p • 

Continuing in the above manner   s    times, we arrive at 

(8.6)      yt = V6*U1>1 + ... + <ut_s+aslyt_s_1+as2yt_s_2 + ... +^t_s_p  • 

We note that each substitution leaves us with    p   consecutive   y 's 

on the right-hand side of the above.    Since   yt_s_i =ut_s-l " glyt-s-2 " 

•••"Yt-s-p-l-   we have 

yt = V5lut-1 + • •' + Vt-s + asl(ut-s-rtyt-s-2 •'' -Vt-s-p-lJ 

+ asZh-s-2 +-" + aspyt-s-p • 

- ut + Vt-1 + ••* + 6sut-s + aslVs-l + (as2 " aslßl)yt-s-2 

Thus 

+ ... + (a*p - a*iBp-l)yt-S-p " 4 Vt-S-p-1 

ös+l = asl ' 

as+l,j = (as,j+l-aslßj) '        j = 1 P-1 ' 

* *    n a,,, =   -a   ,p s+l,p sip 
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is a set of recursion relationships for the coefficients. Continuation 

* 
of this procedure leads us to write, for 5Q = 1 , 

(8.7) y = I    6* u . 
t  i=0 l t i 

if the infinite sum on the right-hand side of (8.7) converges in 

the mean to y. . We shall next see the conditions for this convergence. 

8.1.1 Conditions for Convergence in the Mean of Autoreqressive 

Processes 

The material of Section 8.1 can be formalized by using the backward 

lag operator z ,   where sy.   = y. , , and writing the process (8.1) as 

P 

I   3 £ryt = u . 
r=0 r z       z 

Then, formally we can write our AR(p) process as 

P 

yt = ( i  (v/r1 u. , 
z      r=0   r z 

where 

( I  e/r1 =  I 6 / j 
r=0    r r=0    r 

the 6 's are the coefficients in the equality 
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1 

(8.8) (  l    ßzT1 =    I    6zr 

r=0    r r=0    r 

on the basis that the above equality can be so written meaningfully. 

It can be verified (Anderson (1971), p.169) that the    6  's 

of (8.8) are indeed the same as the    ö 's    of (8.7), which we recall 
* 

were obtained by successive substitution; thus we write    6=6. 

In order to see the conditions under which it is meaningful  to 

write (8.8), we consider 

(8.9) ß0xp + 31xp-1+... + ß x° 

the associated polynomial equation of the stochastic difference equa 

tion (8.1) (our AR(p) process). 

For 3D^0, let x,,...,x   be the p roots of (8.9). If 

it is clear that 7 - 
•P 

x- j < 1 ,   for    i = l,...,p,   then it is clear that   z-, z  ,    the roots 

of 
P 
I    3/ = 0   , 

r=0    r 

are such that z. =l/x.  and that |z. | >1 .  Now, for any z such 

that |z| < min|z-| , the series 

(8.10)   —I  = —-i = n  I (f) = I 6/ 
r    !.{1.i, -1-0 ^    r=0 

r^O 3^    i=1   *» 
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converges absolutely. Thus we see that when x.,...,x , the roots of 

the associated polynomial equation of an AR(p) process, are less 

P 
than 1 in absolute value, we can write ( £ ß zr)  = I    5 zr . 

r=0 r     r=0 r 

To argue convergence in the mean of the AR(p) process, we con- 

P 
sider the expression ( £ ß„zr)~   and note that by a formal long 

r=0 r 

hand division 

l ß1zfß2z
2+...+ß zp 

l+ß,z h...+ßnzP l+ß1z+ß2z2+..-+ßDzP 

r -L r 

= 1- ß,z 
(ß2-ß

2)z2+...+(ßp-ß1ßp.1)z
p-ß1ßpz

P+1 

1+ßjZ+ßgZ +...+ß zp 

If we continue in the above manner, we see that 

7
S+1X        X        ,S+P „ a   ,Z       +...+a    Z 

=  l+6,Z*-60Z,::+...+6 Z    +— ^_ 
l+ßjZ + .-.+ß   ZP l S l+ßjZ + .^+ß  ZP 

where the 6 's and the ct -'s satisfy the same recurrence relation- 

ships as the 6 's and the a  .'s of Section 8.1. Thus 6=6 r        r si r       r 
and a . = a . . (See 8.6.) 

7S+14-    4.    7S + P a-jZ  +...+a z 
In view of (8.10), we now see that  P—-— must con- 

l+ß1zf...+ßzP 

verge to    0   for    |z | <min|z.| ,   and in particular for   z =1 .     This 
i  i 

implies that the a  .  -> 0 (as s->°°) for each i .  Thus, if {yt> is 
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a stationary process 

3 

£(yt~J0 W/ = £(aslyt-s-l+"-+aspyt-s-p)2 

will not depend on t  and will converge to 0 as s -*°° 

We therefore have 

yt = Jo '-ut-r 

in the sense of convergence in the mean. We have proved 

P 
Theorem 8.1;    If the roots of the polynomial  equation     1    &J(.       = 0 

r=0 r 

P 
associated with a stationary AR(p) process  Y 3 y.  = u. are 

r=0 
r z~r       z 

less than 1 in absolute value, then y, can be written as an infinite 

linear combination of u., u. ,, u.p»...» . 

Note that whenever y. can be written as an infinite linear combi- 

nation of u., u. ,,..., yf will be independent of the future innova- 

tions u.+1, u.+2....s ; this follows from our assumption that the 

sequence of innovations {u,} is mutually independent. We thus have 

as a corollary to Theorem 8.1 

Corollary 8.2; If the roots of the polynomial equation associated with 

a stationary AR(p) process are less than 1 in absolute value, 

yt is independent of ut+,, u.+2,..., . 
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8.2 Evaluation of the Coefficients 6  and their Behavior   r   

Suppose that the roots of the associated polynomial equation 
P 
I    3 xp~r = 0 , are less than 1 in absolute value. Then, by 

r=0 r 

Theorem 8.1, we can write 

yt = rlQ  Vt-r > 

where the 6 's are to be viewed as weights associated with the present 

and past innovations u., u._,,... . Our goal is to determine a proce- 

dure by which the &  's can be expressed in terms of the known 3 's , 

and also to see if there is any discernable pattern in the 6 's .  Such 

a pattern will enable us to interpret the behavior of our sequence {yt>. 

From (8.10) we note that since 

CO 

1      _  V  * S 
P n  r   ' ¥ r=0 
I    3 z 

r=0 r 
r 

or that 

P        P P 

( I 3 zT1 I   e.zs = ( I   VP) l   ßszS = 1  ' 
r=0 r    s=0 s    r=0 r  s=0 

>   l wr+s = i 
r=0 s=0 s r 

Replacing r by (t-s)  and by suitable re-arrangements, we have 

P-1 t -  P 
I   ( I     3sSt_s

)zt + H I     3s5t_s)z
t = 1 , 

t=0 s=0 
s z  s    t=p s=0 s z  s 

which is an identity in z (the series converging absolutely for 

|z | <1) . An inspection of the above reveals that the coefficient of 
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z      on the left hand side is    1   and the coefficients of the other 

powers of   z    are zero; thus we have the following set of relationships 

between the    6's    and the    ß's : 

(8.11) 

Wo = 8Q = l 

Vi + 3iöo = 6i + ßi=0 ' 

{ 3oVi + "-+Vi5o = 0' and 

(8.12) Vt + -+Vt-P = 0 t = p,  p+1,...,  . 

We note that (8.12) is a homogeneous difference equation which 

corresponds to the (stochastic) difference equation that describes the 

AR(p)    process 

Vt + ßlyt-l + "'+Vt-p = Ut'       ßn = l J0 

If the roots of (8.9), the polynomial equation associated with an 

AR(p) process are distinct, then the general solution of (8.12) is of 

the form 

P 
(8.13) V = I    kix r = 0,1,..., 

wh ere k,,...,k  are coefficients 
1    p 
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If a root x. is real, then the coefficient k. is also real. 

If a pair of roots x. and x.+, are conjugate complex, then k. and 

k.+, are also conjugate complex and k.xC + k-+,xr+. is real, 

r = 0,1  

Equations (8.11) give us the boundary conditions for solving (8.12). 

The p equations (8.11) enable us to determine the p constants 

k,,...,k  by substituting (8.13) in (8.11). 

The above material can be better appreciated via some special cases; 

these are discussed below. 

8.2.1 Special Cases Describing the Evaluation and Behavior 

of ys 

We shall consider here two examples, an autoregressive process of 

order 1 and an autoregressive process of order 2. 

An Autoregressive Process of Order 1 

Suppose that in (8.1) p = l (and y=0), so that an AR(1) process 

is 

ß0yt +f3lyt-l = ut '   for t = 2>3"-- • 

The associated polynomial equation for the above process is 

BQX + S^ = 0 , 

and so with 30 = 1» x =-ß, is the only root. 
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From (8.11) we have 6«=1  and 6, =-ß, , so that the coefficient 

k, in (8.13) is 1 .  Thus, for our AR(1) process the coefficients 

<5  are such that 

(8.14) ör = kixi = ("0i)r • ' 

Now, if we assume that the process is stationary, then in order to 

be able to write y. as an infinite linear combination of u., u. _,,..., 

we need to have, by Theorem 8.1, |x| < 1 or equivalently |3-,| <1 . • 

Thus, when |ß.| <1 , we can write 

oo 

(8.15) yf = I 5 u.  . 
z     r=0 

We note from (8.14), that the weights s  exponentially decay in 

r  when |ß, | < 1 .  The decay is smooth if 3.. < 0 , and the decay 

alternates in sign if 3, >0 .  This behavior of the 6 's implies that 

in (8.15) the remote innovations receive smaller weights than the more 

recent ones. Such results are useful for explaining the behavior of 

the series y., y._,,..., and also interpreting forecasts in autoregres- 

sive processes or order 1. 

An Autoregressive Process of Order 2 

Now suppose that in (8.2) p = 2 (and u=0) , so that an AR(2) 

process is 

ß0yt + ßlyt-l + ß2yt-2 = ut »   t = 3,4,...  . 
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With 3Q=1  the associated polynomial equation for our AR(2) process 

becomes 

2       0 
x + gjX + ß2x = 0 . 

If x, and Xp are the roots of the above equation, then x. = (-3-, 

A\ - 4ß2 )/2 ,  i = 1,2 . 

If the roots x, and x2 are real and distinct, that is ß, >4ß2 

then (8.11) and (8.12) give 1 = M? + k2x2 = k. + k2 and k^ + k2x2 

= -ß. = x,+x2 . The solution is 

xi _x? 
k, = —  and   k9 = —-§- 

Then 

xr+l_ xr+l 

(8.16)       6r 
= ^ -x 2  '   ^ = 0,1,2,. 

If we assume that our AR(2) process is stationary, then in order 

to be able to write y, in the form (8.15), that is, as an infinite 

linear combination of ut, u._,,..., we need to have (by Theorem 8.1) 

|x.| <1 , i = 1,2 .  This in turn implies that the coefficients ß, and 

ß2 will have to satisfy the following conditions: 

ß1 + ß2 > -1, 

(8.17) g _ 32 < 1 ,   and 

-1 < 32 < 1 . 
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Th e above conditions define a triangualr region, shown in Figure 

8.1, in which the coefficients ß, and ß2 
must lie^ also see Box and 

Jenkins, (1976), p.59. 

When |x. | <1 , i =1,2, and x1 and x2 are real, that is, when 

ß. and ß2 lie outside the parabolic region of Figure 8.1, then from 

(8.16) it is clear that the weights 5  are a linear combination of 

r+1     r+1 
two exponentially decaying functions of r, x,   and x2 

When |x. | <1, i =1,2, and when x, and x? are complex, that 

2 
is ß, < 4ß2 so that ß, and ß2 lie in the parabolic region of 

i ft —i ft 
Figure 8.1, x» and x? may be written as x., = ae  and x2 = ae  , 

where i = /^T ; since |x, | < 1  and |xJ < 1 , a < 1 .  Thus 

J6 o"1 

k, = --I ^r  and k„ = "e 
e -e e -e 

so that 

(8.18)      6r = k xj + k^ = J 5 ^JL_  
e - e 

r sin(8(r+l)) 
" a   sin 0 

1 ft ' 
since e  = cos e + i sin e . 

Thus S     is a damped sine function of r , whose nature is illus- 

trated in Figure 8.2. Such a damped sinusoidal behavior of the weights 

offers an explanation of an oscillatory pattern of the y.'s often 

observed in otherwise nonperiodic stationary time series. (Also see 

Section 8.6.) 
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T+1 

F o 

1-1     * 

Figure 8.1. Region defining admissible values of 
3, and 32 • 
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Figure 8.2. Behavior of the weights 6  as a function of r , 

for an autoregressive process of order 2 whose 

associated polynomial equation has complex roots. 
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In conclusion, we note that for a stationary autoregressive process 

of order 2, the remote innovations in a (8.15) type representation of 

the series receive a smaller weight than the more recent ones, regardless 

of whether the roots of the associated polynomial equation are real or 

complex. The nature of the roots determines whether the weights decay 

exponentially or sinusoidally. 

8.3 The Covariance Function of an Autoregressive Process 

If the joint distributions of the y,'s are normal, then the 

process is completely determined by its first and second order moments, 

2 
£yt , £yt , and Sy+yt+s » s = l»2,  If the joint distributions are 

not normal, the above moments still give us some information about the 

process. For example, &y.yf+//&yz&y^  , the correlation between yt and 

yt+.  (assuming that £y. =0  for all t) , is a measure of the relation- 

ship between the two variables  y. and y    for t = l,2,... 

If the process is stationary, then all the variances are the same, 

and the covariances depend only on the difference between the two indices. 

Thus 

eytyt+s = a^ =cr(~s) ' s = •••» _1' °» +1"" • 

Recall that a(s) is also called the autocovariance function and that 

a(s)/a(0) is also called the autocorrelation function; it will be denoted 

by p(s) and abbreviated as ACF. 

We shall now look at the properties of the covariance function a(s) . 



•33- 

If we replace    t    by    t-s    in   y. =   l    öu and multiply it by 
—n      M    **   H q=0 

l    ßryf r = u. ,   we have 
r=0    r ^ r       r 

(8-19) rl0 VtVt-s • qi0 Vt-s-A • 

Now   eyt_ryt_s = a(s-r) ,   eu2 = a2 ,   fiu^ = 0 ,   t^s,   and so the 

expected value of (8.19)  satisfies the following equations: 

P 
(8.20) I    ß    a(s-r)   = a2 , s=0 

r=0    r 

(8.21) £    ß    a(s-r)  = 0   , s = l,2,... 
r=0    r 

The above equations are known as the Yule-Walker equations; these will 

be discussed further in Section 8.4. 

From (8.21) we observe that the sequence a(l-p), a(2-p),..., 

a(0), a(l),...  satisfies a homogeneous difference equation, which is 

the same as the homogeneous difference equation (8.12). Thus, if x, , 

P 
...,x , the roots of the polynomial equation  £ ß x^~ = 0 , are 

p r=0 r 

distinct and ß f  0 , the solution to (8.21) is of the form 

P 
(8.22)        <r(h) = I    c.xj ,   h = l-p, 2-p 0,1  

i=l 1 1 

where c,,...,c  are coefficients, 
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There are p-1 boundary conditions of the form 

cr(h) = a(-h) , h = l,...,p-l , 

and the other boundary condition is given by (8.20) with a(-p) 

replaced by a(p) . 

Thus the behavior of the autocovariance function of an AR(p) 

process is determined by the general nature of (8.22). We study this 

by considering some special cases. 

8.3.1 Special Cases Describing the Behavior of the Autocovariance 

Function of an Autoregressive Process 

Following Section 8.2.1 , we consider here an autoregressive pro- 

cess of order 1 and an autoregressive process of order 2. 

An Autoregressive Process of Order 1 

Suppose that in (8.1) p = l (and y=0), so that 

yt + ßlyt-l = ut '   t = 2,3,..., . 

The associated polynomial equation x+ß-x = 0 has one root x, =-ß, . 

The general solution is (from (8.22)) a(h)=c,(-ß,) , h=0,l,... . 

From (8.20) we have 

a2 = a(0) + 8^(1). = CjCl + ß1(-ß1)] =C1[1 - ß
2]  . 
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2    2 
Hence c. = a  /(1-ß.) , so that 

a(h) = (-ßl)
ha2/(l-ß2) s   h=0,i »••• J • 

From p(h) = a(h)/o(0) , the autocorrelation function is 

(8.23) P(h) = (-3Jh ,   h=0,L 

If    13-, | <1 ,   then we have the important useful  result that the 

theoretical  autocorrelation function of an autoregressive process of 

order 1    decays exponentially in the lag    h .     The decay is smooth if 

3,  < 0 ,   and it alternates in sign if    3-, > 0 .     In Figure 8.3, we illus- 

trate this behavior of   p(h)    for nonnegative values of   h .     We also 

remark that the behavior of    p(h)    is analogous to the behavior of the 

weights    S      discussed in Section 8.2.1 - see (8.14) and Figure 8.2. 

An Autoregressive Process of Order 2 

Now suppose that in (8.1)    p = 2    (and y=0) ,   so that 

yt + 3lyt-l + e2yt-2 = ut' t = 3,4,...,  . 

2 0 
The associated polynomial equation    x   + 3-,x + 3oX   = 0    has the roots 

xn- =  [-ßj ±/3j-432]/2 ,   i = 1,2  . 

If the roots    x,    and    x2    are distinct, then   a(h) =c,x!? + c2x!] , 

h = -l,0,l,...   .    Then (8.20) and    a(l)=a(-l)    can be solved for    c. 

and    c2 ,   yielding 
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2      x h+1  x h+1 

(8.24)  a(h)= 2  (J___2  )?   h=Q^ 
(x1-x2)(l-x1x2)  1-Xj  l-x| 

If we require that |x.. | < 1 , i=l,2, then 3. and 32 must lie 

in the triangular region described by Figure 8.1; that is, they must 

satisfy the inequalities (8.17). Furthermore, if x, and x2 are 

real, that is 3, and 32 do not lie in the parabolic region of 

Figure 8.1, so that 3?>432 , then by (8.24) we have the result that 

a(h) is a linear combination of two exponentially decaying functions 

of h , x..   and x~  .  Depending on whether the dominant root is 

positive or negative, a(h) will remain positive or alternate in sign 

as it damps out. This behavior of a(h) as a function of h>0 , is 

shown in Figure 8.4. 

When |x. |<1, T =1,2, and x. and x2 are complex, that 

is, 3| < 432 , then x, and x2 can be written as x, = ae   and 

— 1 ft x2 = ae"     ,   where   a <1 ,  and now (8.24) becomes 

(8.25)       CT(n)=^ah[sine(h+l)-a
2 sin e(h-l)]   ? 

(1-a )sin e[l-2a   cos 2e+a ] 

a a    CQS(eh-(j)) 

(l-a2)sin 0vl-2a2 cos 2e+a4 
h =0,1,..., 

2 2 where    tan 4> = (1-a )cot e/(l+a ) 
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Thus a(h) is a damped cosine function of h ;  the behavior of 

a(h) as a function of h = 0, ±1, ±2,..., is illustrated in Figure 8.5. 

Since a(h) is a linear combination of the hth powers of the 

roots x, and x? , both of which are less than 1 in absolute value, 

|a(h)| is bounded. We remark that the behavior of a(h) as a function 

of h  is analogous to the behavior of the weights 6  as a function 

of r, discussed in Section 8.2.1 - see (8.16), (8.18), and Figure 

8.2. 

Thus to conclude, we have the important practical result, that 

when Si and ß„ , the parameters of an AR(2) process, lie in the 

triangular region described by Figure 8.1, the theoretical autocorrela- 

tion function decays either exponentially or sinusoidally. The exponen- 

tial decay could be either smooth or alternating in sign, depending on 

the values that e, and ß~ take. 

In Section 8.11, we show the behavior of the estimated autocorre- 

lation function of some real life data which we claim can be reasonably 

well described by autoregressive processes. However, in order to be 

able to use the behavior of the autocorrelation function as a means of 

identifying autoregressive processes, we need to have some idea about 

the behavior of the estimated autocorrelation function of some known 

autoregressive processes. This we do next, and also make some other 

comments which have some practical implications. 
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8.3.2 Behavior of the Estimated Autocorrelation Function of 

Some Simulated Autoregressive Processes 

The results of Section 8.3.1 can be generalized in a straightfor- 

ward manner to show that the autocorrelation function of autoregressive 

processes must decay exponentially or sinusoidally. Even though this 

result is true in theory, it is unreasonable to expect such a behavior 

of the estimated autocorrelation function. Such a lack of conformance 

between the theory and its application is mainly due to the sampling 

variability in our estimate of the autocorrelation function (see Section 

7), and is particularly acute when we are dealing with series of short 

lengths, wherein our estimate of the autocorrelation function is based 

on few observations. Thus a good deal of caution and insight has to be 

used in order to identify the nature of an underlying stochastic process 

by examining the behavior of its estimated autocorrelation function. 

In Table 8.1 we give r(h) , the values of the estimated autocorre- 

lation function, h =0,1,...,25, based on 250 computer generated obser- 

vations from an AR(1) process 

yt - -5yt_i =  ut ,   t = 2,3, ...,250, 

with y1 = u1 .  A plot of r(h) versus h is given in Figure 8.6. 

Barring the slight aberrations at h=7, 8, 9, 13, 19, and 23, this 

plot reveals the exponential decay pattern expected of an AR(1) process 

with ß, < 0 , and |ß,j < 1 . 

In Table 8.2 we give r(h) , the values of the estimated autocorre- 

lation function, h=0,1,...,25, based on 250 computer generated obser- 

vations from an AR(2) process 
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Figure 8.6. A plot of the estimated autocorrelation function 
r(h) versus h, h = 0,1, ,25,. based on 250 
computer generated observations from an AR(1) 
process with 3-, = -.5 . 
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yt" ,9yt-l + -4yt-2 = Ut  '        t = 3,4,...,250, 

with   y„ = .9y1+u2    and   y. = u, .     A plot of   r(h)    versus    h    is given 

in Figure 8.7.    Since    ß,=-.9    and    ß2= -4 ,   ßj < 4ß2 ,   and so the 

roots of the associated polynomial  equation are complex.   (a = SÄ = .63, 

Xp x    =  .45 ± .44i, 9^45°    )    Thus the theoretical  autocorrelation 

function must decay sinusoidally; this feature is also revealed by the 

estimated autocorrelation function shown in Figure 8.7. 

In Table 8.3 we give   r(h) ,   the values of the estimated autocorre- 

lation function, for    h=0,1,...,25,    based on 250 computer generated 

observations from an    AR(2)    process 

yt + -5yt_i "  -^-2 = ut    '        t = 3,4,...,    . 

A plot of r(h) versus h is given in Figure 8.8. Since ß, = .5 , 
2 

and ß2 = -.2 , ß, > 4ß? , and hence the roots of the associated polynom- 

ial equation are real. These roots being (-.5 ± /.25+.8)/2 , it is clear 

- 5 - 1 025 that the dominant root is negative, its value is —: j- = -.763 . 

Thus according to the material in Section 3.3.1, the autocorrelation 

function must decay, and alternate in sign as it does so - see Figure 

8.4. The estimated autocorrelation function of Figure 8.8 reveals this 

tendency, at least in the earlier stages, up to lag 10 or so. Later on, 

the estimated autocorrelation function does alternate in sign, but does 

not decay. We attribute our reasons for this to the sampling variability 

of the estimates of the autocorrelation at the various lags. 
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Figure 8.7. A plot of the estimated autocorrelation function 
r(h) versus h, h = 0,1,... ,25, based on 250 
computer generated obervations from an AR(2) 
process with ß, = -.9 and = .4 
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Figure 8.8. A plot of the estimated autocorrelation function 
r(h) versus h , h=0,1,...,25, based on 250 
computer generated observations from an AR(2) 
process, with 3-, = .5 and = -.2 
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Th e behavior of the estimated autocorrelation function of some real 

life data which we feel can be reasonably well described by autoregressive 

processes is shown at the end of this section, in 8.11. 

8.4 Expressing the Parameters of an Autoreqressive Process in 

Terms of its Autocorrelations 

The Yule-Walker equations (8.21) enable us to express the autoregres- 

sive parameters ß,,...,ß  in terms of the autocorrelations P(S), 

s=l,..., . To see this, we set s = l,...,p in (8.21), divide 

throughout by a(0) , and observe that 

(8.26) 

r P(1) = -3j_ - ß2P(l) 

p(2) = -ßlP(l) - ß2 

.. -3 p(p-l) , 

..-y(p-2) , 

p(p) = -ß1p(p-l)-ß2P(p-2) - ...- 3 ... Mp . 

If we denote ß = [3,,...,3 ] , p = [p(l),...,p(p)] , and 
•V X [J «, 

P = 

1 

P(1) 

P(l) 

1 

)(p-l)   p(p-2) 

P(P-1) 

P(P-2) 

then p = - P3 from which we have (since Pis positive definite) 

(8.27) 3 = - P-1p 

The matrix P is unknown as the autocorrelation matrix. 
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Th us, the p autoregressive parameters can be expressed in terms 

of the p autocorrelations p(l),..., p(p) .  This feature can be used 

to estimate ß , using an estimate of P 
2 

We obtain a , the variance of the 

a(-r)=a(r) in the Yule-Walker equation (8.20) to obtain 

2 
We obtain a , the variance of the disturbance, by setting 

(8.28) ßQa(0) + 8^(1) + ... + Spa(p) = a
2 

8.5 The Partial Autocorrelation Function of an Autoregressive 

Process 

In Section 8.3 we have shown that a(h) , the autocovariance func- 

tion of an autoregressive process of order p, is infinite in extent. 

Thus from {a(h)} it is hard to determine the order of an autoregressive 

process. The partial autocorrelation function, to be discussed here, 

will help us in determing the order of an autoregressive process. 

To be specific, let us consider a stationary autoregressive process 

of order p 

yt= ut - ßiyt-i ••••"Vt-P'    t = p+1'p+2'---   • 

Recall that in order to predict   y     we need consider only the   p 

lagged variables   y.   i»---»yt_D»   since the other variables   yt_D_i» 

y-t-D-2'""    'iave n0 e^eci on y+  • 
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The partial autocorrelation between y. and y._ , to be denoted 

by -rr(p) is the correlation between y. and y. when the interme- 

diate  p-1  variables yt_,, y,_~ ^t-D+1  are "ne^ fixed." That 

is, TT(P) is the correlation between y. and y.   when the interme- 

diate variables are not allowed to vary and exert their influence on the 

relationship between y. and y.  .  Clearly, TT(1) , the partial 

autocorrelation between y. and y._. , is p(l) , the (ordinary) auto- 

correlation between y, and y._. , whereas TT(0) the partial autocor- 

relation between y. and itself is 1. 

Thus, by its very  nature, since y,  ., y^n-?""' ^ave no 

effect on y , the partial autocorrelation function of an autoregressive 

process of order p, TT(J') f  0 , for j =0,1 p,  and ir(j)=0, for 

j>p.  The fact ir(j) vanished for j > p+1 , can be used to identify 

the order p of an autoregressive process, provided that ir(j) can be 

computed. 

In our discussion of the partial autocorrelation function -n-(p) we 

had mentioned the fact that the intermediate values y._, , ...,yt +-, 

had to be "held fixed".  In order to formalize this notion we shall use 

some results which are standard in multivariate analysis. 

Let Y = [y., y._,,...>yt_D] denote the vector of p+1 observa- 

tions, and let z denote the variance-covariance matrix of these p+1 

observations. Suppose that Y has a multivariate normal distribution 

with mean vector 0 and covariance matrix z , where 
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E = 

a(0)   a(l) 

a(l)   a(0) 

a(p) 

a(p-l) 

a(p)   a(p-l)   ...   a(0) 

Let us rearrange the elements of Y , and partition it into two 

component sub-vectors Y^ '  = [yt, yt ] and Y^ ' = [yt_1,  yt_2"-" 

y^.n+il •  Let E,,, E22> 
and £ 12 ^e ^e variance-covariance matrices 

of Y^, Y^, and Y^ and Y^ respectively. That is, in, E22, 

and Ej2 is a partition of the rearrangement of E . 
(2) ~       (?) 

Let yv '    be a particular value taken by the vector Yv '  .  Then, 

it can be shown [Anderson (1984), p.28] that the conditional distribu- 

tion of Y^ '    qiven .\r ' is a multivariate normal with mean E,0E" " given y 

and covariance matrix E 

12 i^ 
-1 

11 "E12E22E12 = s 11-2 ' say* Thl'S is a 9enera",1'~ 

zation of the results mentioned in Section 6. 

-1 (2) The vector i.^L^o yx '    is called the regression function of the 

regression of Y^ '    on y  .  The matrix E,, « ""s a 2x2 matrix 

whose elements are indicated below: 

Ell-2 

att.(t-l),...,(t-p+l)      at(t-p)-(t-l),...,(t-p+l) 

a(t-p)t.(t-l),...,(t-p+l)   a(t-p)(t-p).(t-l),...,(t-p+l) 

The partial correlation between yt and y    holding (t-1),..., 

(t-p+1) fixed at y^ is 
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:(P) 
at(t-p)-(t-l),...,(t-p+l) 

/CTtt.(t-l)...(t-p+l) /a(t-p)(t-p)-(t-l),...,(t-p+l) 

note that ir(p) is independent of y  . 

As an example, if Y = (yt> y^, yt_2)\ and if Y^  - (yt» yt_25' 

(?) 
and Yv ' = y. , , then the partial correlation between y. and y. 2 

TT(2) 5 turns out to be 

*(2) = (p(2) - p2(l))/(l-p2(l)) . 

8.5.1 Relationship between Partial Autocorrelation and the 

Last Coefficient of an Autoregressive Process 

An interesting relationship between ir(p.) , the partial autocorrela- 

tion of y, and y.  , and 3 , the last coefficient of an autoregres- 

sive process of order p, can be observed. This relationship simplifies 

our calculation of ir(p) , since 3  can 

Yule-Walker equations via equation (8.28) 

In order 

AR(2) process 

our calculation of ir(p) , since 3  can be easily obtained from the 

In order to see a relationship between ir(p) and 3 , consider an 

*t = Ut " 3lyt-l - ß2^t-2 

and solve the resulting Yule-Walker equations to obtain 
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1 p(l) 

p(l) P(2) _      P(2)-P2(1) 

1 P(D 1-P2(D 

p(l) 1 

2        2 
However [(p(2) - p (1))/(1 -p (1))] is indeed the partial autocorrela- 

tion between y. and y._2 ; thus TT(2) = -ß« . In a similar manner, 

if we consider an AR(3) process 

yt = ut - ßlyt-l " 32yt-2 - ß3yt-3 

and solve the resulting Yule-Walker equations, we observe that 

1 

P(D 

P(2) 

P(D 

1 

P(D 

P(1) 

P(2) 

P(3) 

1 

P(D 

P(2) 

P(D 

1 

P(D 

P(2) 

P(D 

1 

which again can be verified as the negative of the partial autocorrela- 

tion between y. and y. - . 

In general, we observe [Anderson (1971), pages 188 and 222] that 

for an autoregressive process or order p , ir(p) the partial autocorre- 

lation between y, and y,   is -ß , where Jt t-ü p ' 
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(8.29) ßp = 

P(l) 

1 

P(D 

P(D 

1 

P(2) 

P(1) 

p(p-l)   p(p-2)   p(p-3) 

P(l) 

1 

•(p-1)   p(p-2) 

P(2) 

P(1) 

-(p-3) 

P(D 

P(2) 

p(p) 

p(p-D 

p(p-2) 

It is helpful to remark that the determinant in the denominator is 

simply the determinant of the autocorrelation matrix for an AR(p) 

process P (Section 8.4), whereas the matrix in the numerator is P 

with the last column replaced by p(l),...,p(p) . 

An expression for TT(j) the partial autocorrelation between y, 

and y. . , can be obtained if we write the Yule-Walker equations for j , 

and set TT(j) = g. , where s. is given by equation (8.29); recall that 

ir(0) =1 , and that ir(l) =P(1) . 

The partial autocorrelation function is a plot of -n-(h) versus h , 

h = l,2 ; the partial autocorrelation function is abbreviated as 

PACF. 

We estimate TT(1) by r(l) , and estimate TT(j) by ir(j) , where 

ir(j) is obtained by replacing the p(«)'s in (8.29) by their estimates 

r(-)'s. 
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8.5.2 Behavior of the Estimated Partial Autocorrelation Function 

of Some Simulated Autoregressive Processes 

Even though the partial autocorrelation function of an autoregres- 

sive process of order p must theoretically vanish at lags p+1, P+2, 

..., it is unreasonable to expect such a behavior of the estimated 

partial autocorrelation function. The reasons for this are analogous 

to those given for the behavior of the estimated autocorrelation func- 

tion - see Section 8.3.2. Thus caution and insight must be used when 

identifying the order of an autoregressive process by examining its 

estimated partial autocorrelation function. 

In Table 8.4 we give Tr(h) , the values of the partial autocorre- 

lation function for h=0,1,...,25  based on 250 computer generated 

observations from the AR(1) process 

yt-.5yt_1 = ut ,   t = 2,3,... , 

discussed in Seciton 8.3.2. 

A plot of T?(h) versus h is given in Figure 8.9. Barring some 

slight aberrations at a few lags, this plot reveals the behavior that 

we expect from the PACF of an AR(1) process, namely that ir(l) must be 

significantly different from 0 , and that TT(J) , must be close to 0 

for j = 2,3,..., . 

An examination of Figures 8.6 and 8.9 reveals the desired result 

that for an AR(1) process, the autocorrelation function decays expo- 

nentially, and that the partial autocorrelation function vanishes after 

lag 1. 
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In Table 8.5 we give -rr(h) , the values of the estimated partial 

autocorrelation function, for h=0,1,...,25, based on 250 computer 

generated observations from the AR(2) process 

yt-.9yt_1 + .4yt_2 = ut ,   t = 3,4,..., , 

discussed in Section 8.3.2. 

A plot of Tr(h) versus h is given in Figure 8.10. As is to be 

expected, barring some minor aberrations, TT(1) and TT(2) are signi- 

ficantly different from 0, and TT(j) is close to zero, for j=3,4,...,. 

In Table 8.6 we give Tr(h) , the values of the estimated partial 

autocorrelation function, for h = 0,l 25, based on 250 computer 

generated observations from the AR(2) process 

yt + .5yt_1 - .2yt_2 = ut ,   t = 3,4  

discussed in Section 8.3.2. A plot of TT(II) versus h is given in 

Figure 8.11. Once again, as is to be expected, -rr(l) and 7r(2) are 

significantly different from 0 , and TT(J) is close to zero, for 

J — o ,4 ,...,. 

An inspection of Figures 8.7 and 8.10, and Figures 8.8 and 8.11, 

reveals the desired result that the autocorrelation function of an 

AR(2) process decays either exponentially or sinusoidally, whereas the 

partial autocorrelation function vanishes after lag 2. 

The behavior of the estimated autocorrelation function and the 

partial autocorrelation function of some real life data which we believe 

can be reasonably well approximated by autoregressive processes is shown 

in Section 8.11. 
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based on 250 computer generated observations 

from an AR(2) process with ß, = -.9 and 
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8.6 An Explanation of the Fluctuations in Autoregressive 
Processes 

A typical time series described by an autoregressive process fluc- 

tuates up and down with oscillations which are not regular, but whose 

average length depends on the nature of the underlying difference equa- 

tion. We can offer an explanation of these fluctuations by considering 

the representation 

CO 

yt = 4o 6rUt-r 

and noting that 

Vq = Vs+q 
+ Vs+q-1 + '«' + 6qUS + 6q+lUS-l + ''"  " 

Thus, a given u  will influence a subsequent y .  via the coeffici- 

ent 5 .  In Section 8.2 we have pointed out the circumstances under 

which the coefficients 5  oscillate, causing fluctuations of the 

successive y 's .  To illustrate this point we show in Figure 8.12, a 

plot of a time series comprising of 100 observations generated on a 

computer by an AR(2) process 

yt-•9yt_1 + .4yt_2 = ut ,   t = 3,4,..., . 

This is the process considered in Sections 8.3.2, and 8.5.2. Since 

ß,(=-.9) and ß2(
='4) a^e such that e, < 4ß2 , the roots of the 

associated polynomial equation are complex with 0=44.68°, and a = .634 

(Section 8.2.1). Thus the coefficients 6  will have a damped 
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sinusoidal behavior of the type indicated in Figure 8.2. Substituting 

the above values of 0 and a in (8.18), we observe that 6, =.899, 

62 = .409, <53 = .008, <54 = -.156, <$5=-.144, 5g=-.06, 67 = -.003, 6g = .025, 

6g = .023, and <5,Q = .011 ; the remaining values of 6 , for r>l are 

all less than .002 and are thus essentially 0 .  It is because of the 

above behavior of the & 's that the observations y. fluctuate up and 

down about 0 with an average length of oscillation of about length 

10 - see Figure 8.12. It is also useful to keep in mind Figure 8.7, the 

estimated autocorrelation function of the generated series, and note 

that the estimated autocorrelations for lags greather than 10 are, barr- 

ing sampling variability, essentially small. 

8.7 Autoregressive Processes with Independent Variables 

Suppose that there are m independent variables z,.,..., z 

that are known to affect the time series {y.} , t = 1,2, , being 

investigated. The effect of these m variables can be incorporated 

into an AR(p) model, by writing 

K        m 
(8.30)       I    O   + I    Y z. = u ,   t = p+l,... , 

r=0 
ni r  i=l '     l 

where y-,,...ty     are constants. It is of interest to compare the 

model (8.30) with the classicial regression model (2.1) of Part I. 

Let x,,...,x_ be the roots of the associated polynomial equation A    P p 

of the stochastic difference equation  I ß y+  
= u. , t = p+l,..., . 

r=0 
r t-r   z 
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Then, using the forward lag operator p, where psy.=y. 
P 
I B„y* „   can also be written as 

r=0 ^r'r 

(8.31)     I   B_yt. = I ßrP
P*ryt-D

= h (p-x..)yt.D 
r=0 

r r r  r=0 r    r p  1=1   1 r p 

In terms of the operator z , the above becomes 

P P 
( I 3_£S)y. = n (p-x.)y   , 
s=0 s  z     i=l  1 t_p 

or 
P   s 1      P      1 

Thus, for t = p+l, p+2,..., the model (8.30) becomes 

p m 
ut = n (p-x.)yt_ + J yizn z     j=l  J z  p  i=l n ir 

p m    p 
= n (p-x.)[yt  + I Y,-( n (P-X.))  zi + ] 

j=l  J  T"p  1=1 n j=l  J    1X 

P m    p     . 
= n (p-x.)[yt + I Yi( I 3 £s)_i z.   ] 

j=l  J  x p i=l  s=0 s     1st p 

Before proceeding further, it is helpful to recall a result that 

we have encountered in Section 8.1.1, namely, that 

P 1       CO 

(I s/r1 = i 6/ , 
r=0 r      r=0 

where the 6 's are the coefficients in the equality 
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( I ß^T1 = I V 

see (8.8). Using the above, we now write IT as 

ut = n (p-x.)[yt + I Yi I   6 £ z.   ] t  ,=1  j  t p i=1 i s=0 s  i,tp 

j^J^t-p^I/s^l.t-p-sJ 

or 

r m      oo 

(8.32)       u = I     0 [y   + I Yi I 5szi t   ] , 
r  r=0 r *• r  i=l ' s=0 s ''L  s 

since 

P P 

A special case of the above is our AR(p) model (8.1). To see 

this, suppose that m = l, and that Z.. = 1 , for all t.  Then (8.32) 

becomes 

P 
(8.33)        l    ß(y  -p) =ut ,   t = p+l, p+2,... , 

where p = -y-, £ 6 . 
1 s=0 s 
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8.8 Stationary Autoregressive Processes Whose Associated 

Polynomial Equations Have at Least One Root Equal to 1 

Much of our discussion thus far, has been based on the requirement 

£   r that all the roots of the associated polynomial equation I    3 x = 0 

p r-° 
of an   AR(p)    process      l    ß £ry+ = u+ ,   t = p+l, p+2,...,    be less than 

r=0 r z       z 

1 in absolute value. We have also assumed that the sequence of random 

variables y-i,y?,...  described by the AR(p) process be stationary. 

In this section, we investigate the implications of allowing the abso- 

lute value of one or more roots of the associated polynomial equation 

take a value equal to 1 and still maintain the requirement that the 

underlying sequence of random variables be stationary. 

We begin by considering a stationary autoregressive process of 

order 1 with its single root taking a value 1; thus we have 

yt =yt_1 + ut ,  t = 2,3,... , 

or 

Ay. * = u. ,   t = 2,3,... . 

Thus the first difference of our autoregressive process of order 1 with 

its single root equal to 1, is described by an innovation process. This 

2   2 latter process is stationary. We let eu. =0, and eu. = a      for all 

values of t . 

Now for all    s > 0 ,   we note that 

yfyt-s =ut + ut-l +-"+ut-s+l 
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so that 

£(yt"yt-s)2 = &t  + £yt-s - 2£ytyt-s = SG2 • 

2    2 Since our sequence {y.} is stationary, £y. = £yt_s » and so 

2  sa2 eytyt_s = a(s) = gyt - -y- ,      s = l,2,...,. 

2 
The above result can hold for all s>0  only if a   = 0 , in 

which case y. = y.  , with probability 1. 

To generalize, we consider a stationary autoregressive process of 

order p , p>l , and allow one root, say x, to equal 1 , and require 

that the other p-1 roots are less than 1 in absolute value; that is, 

|x.| < 1 , i =2,...,p . Following (8.31), we may write our stationary 

AR(p) process as 

(p-1) n (p-x.)yt _ = u, 
i=2       c~"   ' 

If 
V 

we let _n (P-x-j)yt_p = zt_1 , then our AR(p) process can be 

written as (p-l)zt_1 = ut , or since (p-1) =A , we have AZ. . = u. . 

It now follows from our previous discussion of the stationary 

AR(1) process with a single root equal to 1  that for all s>0 , 

zt = zt_s = z , say. Thus 

P 
n (p-x.)ytm 
i=2 
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and yt = S^.g Sz , so that y+=yt_s » with probability 1 .  We 

therefore have as 

Theorem 8.3: If a stationary autoregressive process of order p has 

at least one root of its associated polynomial equation equal to 1 , 

then all values of the process are the same with probability 1 . 

8.9 Some Linear Nonstationary Processes 

We shall now introduce a type of nonstationary stochastic processes 

that are suitable for describing many empirical time series. Such series 

behave as though they have no fixed mean. The stochastic processes 

introduced here, are within the general structure of autoregressive 

processes. 

Suppose that a nonstationary  sequence of random variables y-,,y?, 

is described by a stochastic difference equation of order p+d , 

so that (P
p+d + ßjpP*0-1 + ... + ßp+d-p°)yt_p_d = ut » t = p+d+l , 

p+d+2  or equivalently, the sequence is described by an autoregres- 

sive process of order p+d , where 

p+d 

l    ßr/yt = ut ,     t = p+d+l, p+d+2,.. 
r=0 r z     z 

P+d   +d 
The associated polynomial equation l    ß xH   = 0 of the above 

r=0 r 

process has p+d roots x,,...,x ,x , x . . Suppose that d of 

these roots, say x
p+1»-••>

x
p+d are exactly equal to 1 , and that the 

remaining p(^1) roots x,,...,x , are less than 1 in absolute value. 

Then, following (8.31), we can write our AR(p+d) process as 
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.ni(i>xi)(pl)
dyt.p.d = "t 

or 

(8.34)       _n (P-X.) Adyt.p_d = ut ,   t = p+d+l, p+d+2  

since p-1 = A . 

If we let w,  . = Ady.  . , and assume that the differenced 
t-p-d   -'t-p-d ' 

sequence {w._ _d> , t = p+d+1, p+d+2,..., is stationary, then for 

p>1 (8.34) becomes 

(8.35) n (p-x.)wf n H = u. ,   t = p+d+l, p+d+2,  

Thus for p >1 our model for the nonstationary sequence {y.} , 

t = l,2,..., is one for which {wtd} , t = p+d+1 , p+d+2,..., its 

d-th difference is described by a stationary  autoregressive process of 

order p . Since the roots x,,...,x , are assumed to be less than 

1 in absolute value, all our previous results for stationary autore- 

gressive processes are also applicable for the model (8.35). 

When p = 0 , and d = l , the first difference of our nonstationary 

sequence {y.} is described by an innovation process {ut> which by 

definition is always stationary; see Section 8.8. 

Note that if the original series {yt> , t = l,2,..., consists of 

n observations, then the differenced series {w.} will consist of 

n-d observations. Since wt_  . = Adyt_  . , t = p+d+1, p+d+2,..., 

we write yt_  . = A" wt  d , where the notation A-d needs to be 

explained. For this purpose we set d = l , substitute the values 

t = p+2, p+3,..., in the telescoped series wt  , =y  -y    , and 
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observe that we can write y.  = w.  , + w.  « + ••• + wi + ^i » f°r 

any t > p+2 .  The operator A"  therefore represents summation or 

integration - the reverse of differencing - and it is for this reason 

that we say that the sequence {y.} , t =1,2,..., is described as an 

integrated autoregressive process of order p . An explanation for 

A" , d > 2 , follows by an analogous argument. 

8.9.1 Behavior of Estimated Covariance Functions of Integrated 
Autoregressive Processes and Processes with an Underlying 
Trend 

Since the associated polynomial equation of the process described 

by the difference equation 

(8.36)  (pP^ + ßjpP^-1 +...+ ep+dp°)yt_p_d = ut,  t = p+d+l,... , 

p+d     , 
is I    3 xp   = 0 , it follows from (8.22) that if the roots x,, 

r=0 r i 

...,x d are distinct, |x. | <1 , j = l,...,p+d, and ß d f  0 , a(h) , 

the covariance between y, and y. . , is 

P+d   u 
cr(h) = I    c.xj ,   h = l-p-d, 2-p-d 0 , 

i=l 1 n 

where c, c  . are coefficients. 

Since the roots are assumed to be real, distinct, and less than 1 
h 

in absolute value, each x. damps exponentially. If a pair of roots, 

say x. and x. are conjugate complex; then cr(h) is a mixture of 
J        K 
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damped exponentials and damped sine waves. Now suppose that one of the 

roots, say x  is close to 1 , so that for some small number 6 >0 , 

X, = l-6. 

Then using a first order Taylor's series expansion for (1-6) , we see 
h h 

that (1-6) ~ 1 - h<$ , for an arbitrary h , and so ex  contributes 

a term approximately c (1-hs) to a(h) . The term c (1-hfi) decreases 

linearly and slowly in h , for h not too large. Thus, the tendency of 

the estimated autocorrelation function to decrease linearly and slowly in 

h , indicates the possible presence of a root close to 1 (in absolute 

value), in (8.36), the associated polynomial equation of the process. 

When such is the case and the underlying series cannot be assumed 

stationary (for otherwise the result of Theorem 8.3 would come into 

effect), we may want to consider appropriate differences of the series 

and attempt to model these as a stationary autoregressive process; see 

the discussion following (8.35). 

To illustrate the above issues, we generate on a computer 250 

observations from an AR(1) process 

yt " ,99yt-l = ut '   t = 2,3,... . 

A time series plot of these 250 observations is shown in Figure 8.13. 

An examination of this plot reveals that the series behaves as though 

it has no fixed mean. This is to be expected since ß, =-.99 being 

close to 1 in absolute value makes the nonstationarity of the gener- 

ated series a likely possibility. In Table 8.7 we give values of r(h), 
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th e estimated autocorrelation function, for h=0,1,...,50, and in 

Figure 8.14 we show a plot of r(h) versus h . As is to be expected, 

this plot conspicuously shows the slow, and almost linear decay, of the 

estimated autocorrelation function. 

Since the estimated autocorrelation function of the generated 

series decays slowly and linearly, we consider wt=yt+l~yt ' t = l»2» 

..., the first difference of the generated series, and investigate the 

behavior of its estimated autocorrelation function. Recall, that if 

8, were to be exactly equal to -1 , then the w.'s would be described 

by an innovation process whose autocorrelations at all lags other than 

0 , is zero. 

In Figure 8.15, we show a plot of the time series generated by the 

w.'s , for t = 1,2 249. In contrast to Figure 8.13, we see that the 

differenced series {wf} reveals fluctuations around a fixed mean of 

zero. In Table 8.8 we give values of r(h) , the estimated autocorrela- 

tion function of the w. series, for h =0,1,...,25, and in Figure 

8.16 we show a plot of r(h) versus h . We contrast this plot in 

Figure 8.16 with that of Figure 8.14, and note that in the former, as is 

to be expected, the autocorrelations at lags other than 0 are, barring 

sampling variability, effectively zero. 

8.9.2 The Covariance Function of Some Processes with an 

Underlying Trend 

As a note of caution, it is not true that the tendency of the 

estimated autocorrelation function to decrease slowly necessarily 

implies that a root close to 1 exists. Such a tendency can also be 
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observed whenever there is an underlying trend in the series. To see 

why this is so, let us consider, for example, a process with an under- 

lying linear trend of the form 

yt = ut + t ,   t = 1,2,... , 

where, as before, u,,u2»...  are independent and identically 

2 
distributed with mean 0 and variance a    . 

Since ey. =t  for all values of t , it is easy to verify that 

for a series of length T  the expected value of the sample mean of 

yls...,yT  is 

T     T+l 
1 t=l z 

If we are to use the numerator of (7.4) to compute the covariance 

of the T observations at lag h>0 , then the theoretical quantity 

that is being estimated is 

(8.37) e^Y(yt.•)(yt+h.•, 

Using the fact that ßy+yf+h =  t(t+h) , h =1,2,..., and that 

^t-1 t2 = (T-h)(T-n+1)(2T-2h+1)/6 » we can show that for lar9e values 

of T, (8.37) can be approximated by (T-h)((T-h)2 - 3h2)/24 , which 

for small values of h decreases slowly in h . 

An analogous conclusion can be drawn for other types of processes 

and other types of trends. Thus in practice, to investigate the 

nature of the series, by plotting it to see whether it exhibits an 
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underlying trend. If the underlying trend appears to be a polynomial, 

then, as discussed in Section 3.3, such a trend can be eliminated by 

taking an appropriate number of differences of the series. 

We have thus seen that the differencing of an observed series may 

be motivated by two distinct considerations. The first enables us to 

model certain types of nonstationary sequence of random variables, via 

the mechanism of a integrated autoregressive processes, whereas the 

second enables us to eliminate the presence of an underlying polynomial 

trend in a series. 

To illustrate the effects of a linear trend on the estimated auto- 

correlation function of a series, we generate on the computer, 250 

observations from an autoregressive process of order 1 with ß, =-.5 , 

and for which a linear trend term is added. Note that this is the 

same series considered in Sections 8.3.2 and 8.5.2, except that the 

inclusion of a linear trend term makes the generated series nonstationary. 

In Table 8.9 we give r(h) , the values of the estimated autocorre- 

lation function, for h=0,1,...,25, for the 250 computer generated 

observations described above. In Figure 8.17, we plot r(h) versus h. 

This plot clearly shows the very slow decay of the estimated autocorrela- 

tion function. The estimated autocorrelation and partial autocorrelation 

functions of the first difference of this series will reveal a behavior 

analogous to those of Figures 8.6 and 8.9, since by differencing the 

series we would have eliminated the linear trend. 

An example of some real life data with a trend, and for which the 

estimated autocorrelation function decreases linearly and slowly is 

given in the next section. 
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51 = -.5 ,   and a linear trend term 
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8.9.3 Behavior of the Estimated Autocorrelation Function of a 

Real Life Nonstationary Time Series 

In Figure 8.18, we show a plot of G. , the US gross national 

product (GNP) in billions of US dollars, for the years t=1920 through 

t=1979 (Source: Bureau of Economic Analysis, U.S. Department of 

Commerce, Washington, D.C.). This plot indicates that the GNP series 

is a nonstationary one, it being increasing (approximately) exponentially 

over time. Thus it appears reasonable to first take the natural loga- 

rithms of the GNP, InG. . A plot of y. =1nG. x1000 versus t is 

shown in Figure 8.19; the actual values of y. are given in Table 8.10. 

Figure 8.19 shows that the yf    series is also not stationary, it being 

increasing (approximately) linearly in t . The estimated autocorrela- 

tion function of the y. series, for lags 0 through 20 , is shown in 

Figure 8.20. Because this estimated autocorrelation function decreases 

linearly and slowly, we consider the first differences of the y. series, 

w. =Ay. =y.+, -y. , t = 1,2,...,59 . A plot of w. versus t is shown 

in Figure 8.21; the actual values of w. are also given in Table 8.i0. 

From Figure 8.21 we see that whereas the w. series appears to have a 

constant level (mean), its fluctuations in the earlier years, 1920-1947, 

appear to be more erratic than the fluctuations in the latter years, 

1947-1979. A possible explanation for this behavior is that "automatic 

stabilizers" such as unemployment insurance, workmens compensation, etc., 

which were introduced into the economy as of 1947, tend to make the GNP 

less erratic. Plots of the estimated autocorrelation and partial auto- 

correlation functions of the w. series are shown in Figures 8.22 and 
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8.23, respectively. In contrast to Figure 8.19, we note from Figure 

8.22 that the autocorrelation function at lag 1 is significantly 

different from 0 and takes smaller values for the other lags. How- 

ever, it is difficult for us to claim in Figure 8.22, a pattern of 

either an exponential or a sinusoidal decay. A similar type difficulty 

is apparent in Figure 8.23. Thus it appears that the w. series 

cannot be reasonably well described by an autoregressive process of the 

type discussed here; more complicated models to be presented later on, 

may be necessary for analyzing this data. Our main goal here, is to 

show Figure 8.20. 

8.10 Forecasting (Prediction) for Stationary Autoregressive 

Processes 

Suppose that a sequence of random variables {y.} , t = l,2,..., 

can be described by an autoregressive process of order p 

yt + ßlyt-l + ß2yt-2 + '*' + ßpyt-p = ut '  t = P+1' P+2"--> • 

Let yt_i>  yt-2"*" be tne observed values of the random variables 

^t-1' yt-2"*" * 0ur goal in this sectl'on is t0 determine a 

procedure «which would give us a best, in the sense of minimum mean 

square error, forecast (predictor) of the unobserved variable y. . 

We shall soon see that if the roots of the associated polynomial equa- 

P 
tion 1    3 xP~r = 0 of the AR(p) process given above are all less 

r=0 r 

than 1 in absolute value, then the best predictor of y. is indeed 
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the natural  quantity 

~hh-i - Vt-2 - • • • - V t-P • 

To see that the above is true, we first note that under the condi- 

tions of Theorem 8.1 in the equation 

yt = -ßiyt-i-32yt-2'---- Vt-P + Ut 

u. is independent of y, -, y, «,... . Thus, the conditional expec- 

tation of yt given that yt_1 = yt_1» Yt_2 
= ^t-2 ' ' "  is 

e(ytlyt-l=yt-l' h-Z^t-Z""^ =  "3lyt-l " ß2yt-2-"--Vt-p ; 

the right-hand side of the above equation can be used to forecast y. 
*   * 

t-1' yt-2! given y. ., y. 9,..., 
*  * 

Now let f(yt_1,yt_?,...,) be any other function of the previous 
*   * *   * 

values yt_i» yt_o»'«'> 
and suppose that we use f(y. ,, yt_2"">) 

as a another forecast of y. .  Then the mean square error of f(yt_i» 

yt-2"" ' as a Prec'ictor of y.  is 

£[f(y*_1,...)-yt]
2=e[f(y*_1,...)+31y*t.1+...+ßpy*t.p-ut]

2 

= £u2+e[f(y*t_1,...)+ß1y*.1+...+ßpy*t_p]
2 . 

since u. is independent of y. ,, yt_?»... 

The above is minimized when f(y+_i» yt-2'"*^ = ~ßlyt-l " e2yt-2 

•••-Vt-p • 
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In general, when the conditions of Theorem 8.1 are satisifed, the 

best (minimum mean square error) forecast of y. given y+_s_i» 

yt-s-2'"" ^s-0^ 1s £(yt'yt-s-r yt-s-2""^' the conditiona1 

expectation of yt given yt_s_1« yt_s_2>--" 
where £{^tlyt-s-l' 

yt-s-2"-- 
} = aslyt-s-l + as2yt-s-2 + "• + aspyt-s-p ' and asl = 

a ,,...,a  = a are given in equation (8.6). 

8.11 Examples of Some Real Life Time Series Described by 

Autoregressive Processes 

In this section our aim is to demonstrate the methods of the pre- 

vious sections by considering some real life data which can be reason- 

ably well described by autoregressive processes. It is entirely 

possible that the data can also be described by some of the other models 

introduced later on. However, at this point in time, it is convenient 

to introduce the data and use these to indicate the practical usefulness 

of autoregressive processes of a simple order. 

8.11.1 The Weekly Rotary Rigs in Use Data 

A rotary rig is composed of five major components and costs 

upward of $500,000 each. It is used for drilling for oil and gas. The 

number of rotary rigs in use per week, by state, is an important compo- 

nent used in econometric models of the oil and gas industry. Such 

econometric models are of interest to the U.S. Department of Energy. 

*This data and its description was given to us by Mrs. B. Volpe, Energy 
Information Office, U.S. Department of Energy, Washington, D.C. It 
has been abstracted from a Hughes Tool Company, Houston, Texas, report, 
entitled "Average Number of Rotary Rigs Running - by State." 



•97- 

In Table 8.11, we give 82 values of the weekly number of rotary 

rigs in use in the Southern Louisiana Inland Waterways, from the period 

starting December 10, 1979. A time series plot of this data is shown in 

Figure 8.24. An informal inspection of this plot reveals that the neigh- 

boring observations tend to behave similarly, suggesting a positive 

correlation between them. This is in contrast to neighboring values 

alternating in sign implying a negative correlation between them. There 

does not appear to be a well discernable underlying trend in this data, 

nor does the data reveal any systematic fluctuations indicative of an 

underlying periodicity. 

In Tables 8.12 and 8.13, we give values of the estimated autocorre- 

lations and partial autocorrelations of this data for lags 1,2,...,25. 

In Figures 8.25 and 8.26, we show plots of the estimated autocorrelation 

function and partial autocorrelation function, respectively. The 

estimated autocorrelation function appears to decay exponentially, and the 

estimated partial autocorrelation function shows a value which is signi- 

ficantly differently from zero at lag 1 only. These plots suggest that 

the data of Table 8.11 may be reasonably well described by an autoregres- 

sive process of order 1. 

An estimate of the autoregressive parameter ß, can be obtained by 

using the estimate r(l) = .722 in (8.28). The estimate r(l) is 

consistent with our observation that the neighboring values in Figure 8.24 

tend to behave similarly. 

Based upon the above, a proposed linear stochastic model for the 

weekly number of rotary rigs in use in Southern Louisiana Inland Waterways 
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Table 8.11 

Values of the Weekly Rotary Rigs in Use in 
The Southern Louisiana Inland Waterways for the 

period starting December 10, 1979 

Week 
Number 

Rigs 
In Use 

Week 
Number 

Rigs 
In Use 

Week 
Number 

Rigs 
In Use 

Week 
Number 

Rigs 
In Use 

1 74 21 75 41 75 61 81 

2 79 22 84 42 80 62 79 

3 82 23 83 43 78 63 75 

4 83 24 76 44 79 64 77 

5 84 25 80 45 81 65 11 

6 79 26 79 46 82 66 79 

7 80 27 74 47 80 67 87 

8 78 28 73 48 79 68 88 

9 75 29 70 49 73 69 87 

10 72 30 70 50 75 70 90 

11 73 31 68 51 76 71 99 

12 74 32 68 52 78 72 88 

13 77 33 74 53 81 73 84 

14 84 34 68 54 79 74 79 

15 81 35 73 55 83 75 82 

16 77 36 72 56 82 76 84 

17 76 37 74 57 81 77 81 

18 72 38 74 58 77 78 75 

19 77 39 79 59 75 79 83 

20 73 40 81 60 74 80 

81 

84 

84 

82 81 
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Figure 8.24. A plot of the Weekly Rotary Rigs in Use in 
The Southern Louisiana Inland Waterways 
for the Deriod starting December 10, 1979. 
(See Table 8.11) 
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Figure 8.25.    A plot of the estimated autocorrelation 
' function of the Weekly Rigs in Use data. 
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Figure 8.26, A plot of the estimated partial  autocorre- 
lation function of the Weekly Rigs in Use 
data. 
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y.      is    for    t = 2, ...,82 

(yt-78.5) = .722(yt_1-78.5)+Gt , 

where the   LL'S ,   with 

ut = (yt-78.5)-.722(yt_1-78.5) , t = 2 82    , 

are known as the residuals. The quantity 78.5 represents the mean of 

the data. 

In order to assess how well the proposed mdoel describes the data 

of Table 8.11, we see if there is any recognizable pattern in the resid- 

uals. If the model were adequate, then we would expect that as the 

series length increases, the u.'s would become close to the innovations 

u.'s . Thus a study of the u.'s would indicate the existence and 

possibly the nature of model inadequacy. In particular, the behavior of 

the estimated autocorrelation and partial autocorrelation of the u.'s 

would yield valuable evidence about model inadequacy. The absence of a 

recognizable pattern in a plot of these functions would give us some 

assurance of model adequacy. 

In Tables 8.14 and 8.15, we give values of the estimated autocorre- 

lations and partial autocorrelations of the residuals in question for 

lags 1 25 .  In Figures 8.27 and 8.28, we show plots of the data in 

Tables 8.14 and 8.15. Since these plots do not reveal any recognizable 

pattern, we conclude the adequacy of the proposed model. 
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Figure 8.27. A plot of the estimated autocorrelation function 
of the residuals from an AR(1) model for the 
Weekly Rigs in Use data. 
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Figure 8.28. A plot of the estimated partial autocorrelation 
function of the residuals from an AR(1) model 
for the Weekly Rigs in Use data. 
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8.11.2 The Landsat 2 Satellite Data* 

The Landsat 2 satellite is an earth orbiting satellite which 

measures the amount of reflected energy in 4 bands of the electromag- 

netic spectrum. The satellite travels from north to south over the 

day side of the earth. As the satellite travels, an oscillating 

mirror sweeps out a 150 kilometer long scan line in a west to east 

direction. The mirror reflects the energy from the ground onto an 

array of detectors on board the satellite. The reflected energy is 

converted to an electrical impulse. Several such impulses are inte- 

grated over a short period of time and then transmitted to the earth 

via ground stations as discrete signals. The discrete signals 

represent light intensities, 0 denoting black, and large values 

such as 130 denoting bright. 

In Table 8.16 we give 496 values of the light intensities 

observed by such a satellite over a sand dune field in the Sahara 

Desert. The measurements are indexed by the distance traveled by the 

satellite (instead of time) and are recorded at every 80 meter 

distance. Note that the entries in Table 8.16 are taken from a 

computer output with an exponent notation; thus the first observation 

.74000D + 02 denotes 74.000.  The light intensities in this table 

range from 0 to 127 .  In Figure 8.29 we show a plot of the first 

*This data and its description was given to us by Dr. Mark Labovitz of 
the National Aeronautics and Space Administration, at the Goddard 
Space Flight Center, Greenbelt, Maryland 20771. 
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Table 8.16 

Values of the Light Intensities Observed by a 
Landsat 2 Satellite over the Sahara Desert 

1- 3 
t- 14 

17- 24 
25- 32 
32- 40 
41- 48 
49- 56 
57- 64 
65- -in 

73- 30 
81 - 88 
S9- 96 
97- 104 
105— 112 
llj- ii.0 

121- 122 
12*- 136 
1'37- 144 
145- 152 
153- 160 
161- 168 
169- 176 
177- 184 
185- 192 
193- 200 
201- ^*0F* 
209- 216 
"> . "7 — 22 <! 
225- ':> -;' 2 

233- 240 
241- 248 
249- **56 
257- 264 
265- >72 
273- 280 
281- 2i?w 

3—';• — wwO 
_ ^ 7 — w 'J / 

345- 3o*i 

353- 360 
jai- 36a 
269 — 376 
277- 3S'4 
"i"85- 392 
703- 400 
-tOi- 4uS 
^0'" - -*> 1 i 
41/- 42* 
423- 432 
-33- 44 0 
--ii. - -143 

—r *r *; 45ö 
-~ i / • -r ö 4 
4<is- 4/2 
4/3- TÖÜ 
48i- 4sa 
4ÖV- '49o 

0.740000+02 
0.660000+02 
0.86000D+02 
0.S3Q00D+02 
0.940000+02 
0.950000+02 
0.530000+02 
0.380000+02 
0.780000+02 
0.105000+03 
0.870000+02 
0.105000+03 
0.760001+02 
0,770000+02 
0.720'j...'ö-t-ö2 
0.920000+02 
0.9000ÖD+0i 
0.870000+02 
0.9600 00+02 
0.3000015+02 
0.920000+02 
Ö.900000+02 
0.790000+02 
0.600000+02 
0.6400011+02 
0.370000+07. 
0.740000+0.7. 
0.6ri-00D+02 
0.970000+02 
0.620000+02 
0.62000D+02 
0.30Ö00D+02 
0.330000+02 
0.340000+02 
0.610000+02 
O.370000+02 
0.97000D+-J2 
ij.•;>•';  OOCil + 02 
o^ooon+os 
0.7300001-02 
0.760003+02 
0.630000+02 
0.750000+02 
0.780000+02 
0.690000+02 
0.660002+02 
•J.910000+02 
0.330ÜÜD+G2 
O.T80000+02 
0.5200CD+02 
0.3ÜÖ00D+02 
0 370000+02 
0.710000+02 
0.U10ÖD+C3 
O.SSOCOB+02 
0.9 00000+02 
0.95000D+02 
u.V3CO0U i02 
Ü.üiOOOu+02 
0.82CO0Ü+Ü2 
0.c/aüöOD+02 
O.ylOÖCü+02 

.0.710000+02 
0.630000+02 
0.790000+02 
0.78000D+02 
O.lOlOOD+03 
0.1Ö200D+03 
0.700000+02 
0.950000+02 
0.770000+02 
0.103000+03 
0.860000+02 
O.lOlOOTi-03 
0.7'M)0!;j+"2 
0.340000+02 
0.630000+02 
O.90OOOO+O2 
... . •":>00D+02 
0,910000+02 
0.950000+02 
0.730000+02 
0.390000+02 
0 . 850'>OOT02 
0.820000+02 
0.640000+02 
Ü.6700QD+02 
r. .870000+02 
0.690000+0? 
\!. 6S000L'-r02 
ü.370000+02 
0 .630000+02 
0.590000+02 
C.370000+02' 
0.770002+02 
0.830000+02 
0.67000D+02 
0.890000+02 
.:••. ?~0000+02 
0 - 101000+03 
0.530000+02 
O.106000+03 
0.ÜÖ0Ö00+C2 
0 - ^';OGOO+O2' 
•J.d3ö00D+Ö2 
0.740000+02 
0.630000+02 
0.690000+02 
0 • ~ .".^'ICTl-4-A—I 

o.750000+02 
0.910000+02 
0.540000+02 
0.300000+0? 
0 ,830000+02 
0.73-JO jD+02 
0. 1050G0+03 
0.900000+02 
0.340000+02 
0.840000+02 
•j. ':-• £0000+02 
O.iiiOOUO-s-^i 
'j.'yiuuuutui 
0.940001:+C2 
Ü.S.3Ü00D+O2 

0.740000+02 
0.700000+02 
0.75O0OD+02 
0.860000+02 
0.110000+03 
0.101000+03 
0.800000+02 
0.99.0000+02 
0.730000+02 
0.100000+03 
0.900000+02 
0.900000+02 
0.750000+02 
0.760000+02 
0_. 730000+02 
0.890000+02 
0.930000+02 
0.910000+02 
0. »60000+02 
0.700000+02 
O.S400ÖO+02 
0.S60000+02 
0.330000+02 
0.720000+02 
0.730000+02 
0.900000+02 
0.780000+02 
0.690000+02 
0.390000+02 
0.590000+02 
0.560000+02 
0-710000+02 
0.710000+02 
0.820Ö0D+02 
0.790000+02 
0.S30C0Ü+02 
0.920000+02 
0.990000f02 
0,930000+02 
0.108000+03 
0.730000+02 
0..710000+02 
0.810000+02 
0.650000+02 
0.690000+02 
0.710000+02 
0.100000+03 
0.730000+02 
0.340000+02 
0.610000+02 
0.830000t02 
0-390000+02 
0.910000+02 
0.950000+02 
0.960000+02 
0.320000+02 
0.790000+02 
0.920000+02 
0.910000+02 
0.38000Ü+C2 
0.9SOOÖÜ+0* 
0.840000+02 

0.740000+02 
0.860000+02 
0.71OOO0+02I 
0.93000D+02 
0.11100D+03 
0.35000D+02 
0.780000+02 
0.570000+02 
0.750000+02 
0.100000+03 
0.101000+03 
0.790000+02 
0.330000+02 
0.720000+02 
0.790000+02 
0.360000+02 
0-860000+02 
0-330000+02' 
0,930000+02 
0.770000+02 
0.840000+02 
0.330000+02 
0.790000+0- 
0.740000+02 
0.790000+02 
0.960000+02 
0.340000+02 
0.720000+02 
0.830000+02 
0.650000+02 
0.620000+02 
0.10000D+03 
0.6.l0000+02i 
0.S30Ö00+02 
0.870000+02 
0.860000+02 
0.910000+02, 
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300 values of the light intensity over distance traveled. The plotting 

of all the 496 observations would be cumbersome and would tend to con- 

ceal the fluctuating behavior of the individual observations. The 

periodic fluctuations in Figure 8.29 suggest an autoregressive process 

of order 2 or more - see Section 8.6. The plot also conveys the 

impression of an underlying trend whose wave like nature is indicated 

by the dotted line of Figure 8.29. Thus one possibility would be first 

to fit a cyclical trend of the type described in Section 4.2 to this 

data, and then to describe the residuals from such a fit by autoregres- 

sive processes. However, this possibility was not investigated here, 

and instead fluctuations about the sample mean of the entire series of 

496 observations were considered. The sample mean of the entire set of 

these data is 82.9. 

In Tables 8.17 and 8.18 we give values of the estimated autocor- 

relations and partial autocorrelations of the deviations of the light 

intensities from 82.9 for lags 1,2,...,35 .  In Figures 8.30 and 

8.31 we show plots of the estimated autocorrelation function and par- 

tial autocorrelation function, respectively. The estimated autocorre- 

lation function appears to decay exponentially, and perhaps even 

sinusoidally. The estimated partial autocorrelation function takes 

values which are significantly different from zero at lags 1 and 2. 

These plots suggest that the deviations of the light intensities can 

be described by an autoregressive process of order 2. 

Estimates of the two autoregressive parameters ß, and ß2 can 

be obtained by using the estimates r(l) = .87 and r(2) = .66 in 
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Figure 8.30. A plot of the estimated autocorrelation 
function of the deviations of the light 
intensities from their mean for:the 
Landsat 2 Satellite data. 
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Equation (8.28); these turn out to be ^ = -1.28 and §2= .46 .  The 

estimate of Bo   is approximately the estimated value of the partial 

autocorrelation at lag 2, which is -.40 . 

Based upon the above, a proposed linear stochastic model for the 

light intensity yt , is, for t = 3 496, (yt - 82.9) = 1.28^^-82.9) 

- •46(y._2 - 82.9) +u. , where the ut's , with 

ut = (yt-82.9) - 1.28(yt_1-82.9) + .46(yt_2-82.9) , t = 3 496 , 

are known as the residuals. 

In order to judge how well the proposed model describes the data 

of Table 8.16, we see if there is any recognizable pattern in the 

residuals. If the model were adequate, then we would expect that as 

the series length increases the u.'s would become close to the 

innovations u.'s .  Thus a study of the ut's would indicate the 

existence and possibly the nature of model inadequacy. In particular, 

the behavior of the estimated autocorrelation and partial autocorrela- 

tion functions of the u.'s would yield valuable evidence about model 

inadequacy. The absence of a recognizable pattern in a plot of these 

functions would give us some assurance of model adequacy. 

In Tables 8.19 and 8.20 we give values of the estimated autocor- 

relations and partial autocorrelations of the residuals in question 

for lags 1,2,...,35 .  In Figures 8.32 and 8.33, we show plots of the 

data in Tables 8.14 and 8.15, respectively. Since these plots do not 

show any recognizable pattern, we conclude that the proposed model is 

adequate. 
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Figure 8.32. A plot of the estimated autocorrelation function 
of the residuals from an AR(2) model for the 
Landsat 2 Satellite data. 
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Figure 8.33. A plot of the estimated partial autocorrelation 
function of the residuals from an AR(2) model 
for the Landsat 2 Satellite data. 
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