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ABSTRACT

The paper gives the general theory of optimal confidence

limits for systems reliability introduced by Buehler (1957).

This is specialized to series systems. It is noted that some

results previously given are false. In particular, counter-

examples for results of Sudakov (1974), Winterbottom (1974)

and Harris and Soms (1980, 1981) are given. Numerical examples

are provided, which suggest that despite the theoretical problems

of the results, they are nevertheless valid for significance

levels likely to be used in practice. r/ .'.,. .
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SIGNIFICANCE AND EXPLANATION

Systems vith independent components arise naturally in

engineering practice. Therefore it is of importance to efficiently

utilize data obtained on individual components to obtain an assess- ii
ment of the reliability of the system.

This paper presents a unified theory for doing so and points

out errors in previous results on series systems.
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THE THEORY OF OPTIMAL CONFIDENCE LIMITS FOR SYSTEMS ,'..
RELIABILITY WITH COUNTEREXAMPLES FOR RESULTS ON
OPTIMAL CONFIDENCE LIMITS FOR SERIES SYSTEMS

, **,-..-

Bernard Harris and Andrew P. Soms

1. Introduction and Summary

A problem of substantial importance to practitioners in

* reliability is the statistical estimation of the reliability of a

system of stochastically independent components using experimental

data collected on the individual components. In the situations

discussed in this paper, the component data consist of a sequence

of Bernoulli trials. Thus, for component i, i=l,2,...,k, the

data is the pair (ni,Yi), where ni is the number of trials and Yi

is the number of observations for which the component functions.

y , are assumed to be mutually independent random

variables.

This problem was treated in Sudakov (1974), Winterbottom

(1974), and Harris and Soms (1980,1981); one purpose of the pre-

sent paper is to exhibit counterexamples to theorems in the above

papers.

In Section 2 we discuss the general theory of optimal

confidence limits for system reliability so that the notation and

definitions to be employed in the balance of the paper have been

prescribed. 0

In Section 3 the counterexamples previously mentioned are

exhibited and the specific errors in the proofs of the theorems

are indicated. k.
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Section 4 presents the proof of a special case of the key

test theorem (Winterbottom (1974)), the general form of which was

invalidated by a counterexample in Section 3.

The consequences for reliability applications are discussed

in Section S.

2. Buehler's Method for Optimal Lower Confidence

Limits for System Reliability

We now introduce the notation, defi-nitions, and assumptions

that will be us^d throughout the balance of this paper.

1. Let Pi, i=1,2,...,k denote the probability that the t

component functions. The components will be assumed to be

stochastically independent. The reliability of the system will

be denoted by h(p), where P (plP2, k 0 < P < 1. It is

assumed that h(O,0,...,O) a O, h(l,l,,..,l) 1, and that h(-) is

non-decreasing in each Pit i-l,2,...,k. Further, h(p) is

continuous on {pIO < pi < 1, which follows readily from the

assumption of independence. These properties hold for coherent

systems (see Barlow and Proschan (1975)).

2. Let S - 0, 3,...,ni, il,2,...,k} be the failure set.

g(x) is said to be an ordering function if for x < z
12 z 2 , .. ,k < zkX, z S g(x) > g(-). (It is often convenient

2 2'" k

to normalize g(x) by letting g(O)- 1 and gn) - O. With such

a normalization, g(x) is often selected to be a point estimator

of h(p).)

3. Let R • {rl,r 2 ,..,rs, s > 2} be the range set of g(R). With

no loss of generality we order R so that r1 > r2 > . . rs.

-2-
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4. Let Ai * f(g(- ] = r, ' cS, iol,2,..,s). The sets A1

constitute a partition of S induced by g(i).

S. We assume throughout that the data is distributed by

- k n xk "ky1  j*Yj
M t= p(Xxx) i  qi * 11 )pi q , (2.1)

where qi = l-pi. x = n i Yi, i-l,2,...,k. With no loss of .0

generality, we assume n <

From these definitions, it follows that .

xi  ->. rj .
- -

P {X C U1 Al} Pj{(a) rj} (2.2)

From (2.1) and (2.2), we have

u 1 U2  Uk

P ~ IsiO13 .*I f1~ (2.3)

= 0 i2 0 no -- 
0'-0:

where i (illi2,...,Ilk) and U2 - u2( ),...,uk = Uk(ili2,0..,

Ik-1) are integers determined by rj..

6. Subsequently we will need to extend the definitions of S and

g(i) to real values. We denote this as follows. Let

S i0 < x< ni , i-l,2,...,k}

We assume that g(") is nonincreasing on S . This requirement

is satisfied by all ordering functions used in practice.

Then ., .,
[t 1J It2 3  [tk]  .. **.,

i=0 13 0 S30

where t2 - t2 (t1), tk - tk ~iI2,.,ik l), with

t sup tt CS and g(t,0,0,...,0) ! r land t1 (i1 ,i2 ,...,i- 1 )
u suprtztcS and Pit ,.2,3..,...

-3-
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We now introduce the notion of Buehler optimal confidence

limits. Let g(x) r J,. Then define

a1 .inf h(-)IPi{itg(6) & (x)} 01. (2.5)

Equivalently, by (2.2), we can also write

aR~ ainf~h i .X eU Ai}>c) (2.6)

we now establish the following theoxe=.

Theorem 2.1. Let assumptions 1-S be satisfied. Then, for iS,
ag30is a 1- lower confidence laimit for npj). If x i n

*other 1-ai lower c-onfidence limit for h(j) with b >b > ... > b

* then b(~ gi for all icS.

Proof. Fix and let m(j) be the smallest integer such that

in

Then

P-Ai} A 1-ai

Let

Dr, 7 {PP{ mlA}~c

Then D -is a 1-ai confidence set for p, since

-4-



By assumption 1, h(p) is continuous and the set of parameter

points satisfying (2.5) is compact; therefore the infimum in (2.S)

and (2.6) is attained.

Assume that there is an integer J, I < j s-1, such that

br arj Then there exists a po such that

br > a inf h(U) A& E a h . (2.7)

In addition, there exists a 1 such that

Ptx i a , h(j1 ) < (2.8)

Since brI > br2 >... > br from (2.7) we have

'h < br , t - 1,2,...,j . (2.9)

Therefore

< P P i{XeU Ai}l P-{h(j,) < (2.10)

which is a contradiction. Consequently, there is no integer ,

i < j s-1, for which br > ar r

From (2.6), it follows that a 0 and b -is also

necessarily zero. Note further that in (2.7) it is possible

that the infimum is attained at a point for which PX U A

imi J >
To see this consider the following example.

Let k a 2, n1 - S, n2 = 10,000, x1  0, x2  S,

g(x) • nl.n 2 -xl-x 2 , h(C) = plP2
•  It is easily seen that the

hypotheses of Theorem 2.1 are satisfied, Thus, for the data

-..,,
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given, g() a 10,000 a r 6 . The set U A consists of all points

(x 1 x 2) for which x1 + 2 < 5, that is, A (0,0)

A2 =(10),(01) and so on. Consequently,

'.6

includes the parameter points (0, p2 d) where P'2, satisfies

p X s a. since } 1 when p, a 0. Thus inf

h(A) - 0 for all 0 < a < 1.

We note that the monotonicity of h(j) is not utilized in

the proof, which is valid whenever h(") is continuous.

It is easy to see that a is monotone, i.e., a > a >

80C) r1  r2
> ar . This follows from (2.7) upon noting that as j

r

increases, the set of j satisfying (2.7) increases and the

infimum is taken over a larger set.

SCorollar For a series system h(S) iH Then if
Lik Il

g(i) - H (ni-xi)/ni - f yi/ni, the hypotheses of Theorem 2.1

are satisfied and the conclusion follows.

k
Note that g(i) = i (nix )/ni is the maximum likelihood

estimator as well as the minimum variance unbiased estimator of r
k

i pi and is therefore a reasonable choice of an ordering function. ;.

We now establish the following theorem.

Theorem 2.2. Let g(i) - rj and let

f(x;a) sup Pig() >rj Oa<l (2.10)
h(p)=a "

-.

- .'..-.. . ..

.. ,*. 
,.**
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•
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Then

sup f (x;a) - 1

and f*(i;a) is non-decreasing in a.

Proof. Since h( ) is continuous and h(l) - 1,

a-I h(p)-a Pt u 1 .

Now choose a and b such that O<a <b<1,

pf.1 ) ij} f*(;;a)

and

pb{ g(i) r - f (x;b)

Let Ia be the set of indices i such that pia < 1. Then it is

possible to replace pia by pb' I€ Ea ,where pia < plb < 1, so

that h( ) - b, where pib a' c. This follows since

h(l) 1 > a and h(j) is continuous. The conclusion follows from

the monotone likelihood ratio property of the binomial distribution.

Note again that only the continuity of h() was used in

the proof of Theorem 2.2. , :,.

For the case of series systems, it is possible to strengthen

Theorem 2.2 and to exhibit the above construction. This is done

below.

k
Corollary. Let g(i) = rj. If h(P) 1 1 pi, then inf f (x;a) 0

i-i " O<a<l
and f (x;a) is strictly increasing in a whenever all uj < n

(see (2.3) for the definition of uj), 11,2,..k.

-7-
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Proof From the hypotheses,

ni
P-{g(X) rj <1-qt  1 , i 2....,k R.

k .

and since n pi - 0 implies at least one Pi * 0. this gives

inf f (i;a) - 0

O<a<1

To show that f (i;a) is strictly increasing in a, consider

O<a<b<l and let Pa = Pal'***'Pak satisfy f (;a) p ag() x rj.

Similarly, let satisfy f (i;b) P g(Xb" r,}' Let

a • 2 1 • r be any non-empty set of indices such that

Pai.(a < ( (non-empty because otherwise multiplying the

components would give b > 1, a contradiction) and let Ic be the

remaining indices. Then

b /rC( P (ilr I =ca b (2.11)
jel jelt

a a

From the monotone likelihood ratio property of the binomial

distribution,

Fj a{ Ci) > r} < P-a g(i) > r}

where the components of p* are given by (2.11). This gives

f*(i;a) < f*(C;b)

which is the desired conclusion.

Note that if at least one u - nji, it follows immediately
k

from (2.5) that ag(l) - 0. For g(i) = n (ni-xi)/ni the

condition u < n is equivalent to x < nji J-l,2 ....,k.

.. . . . .. . . . . . . . .... J . *,~. -. *I . *. . . .*.. .*.*.x*.. .• . . J. . . .'.
.. . ........ , . . .. . .. . . ................... . . .....:.,....,...,,:,. .. ,... . ..... *.. . . . . . . . . . . . . . . . . . .. ::,..,.,-..,-.,. ., ,:.,-.



We now establish a result which will prove useful in some

of the subsequent material.

Theorem 2.3. If f*(i;a) aa, O<acl<, has at least one solution in

a, then

a g 0) ainftalf (i;a) a).(2.12)

if f (rc;a) > aL for all a, then ag) 0.

Proof. Let

c -inf ja f (i;aa) ).(2.13)

The infimum in (2.13) is attained. Thus, there exists a iosuch

that c a h(i ) If f*(i;a) > a for all a, let p. -p 0, i-l,2,...#k.
0

Then h(j) *0, since h(6) *0 and hC ) is continuous, and

is0.

Now assume there is at least one a with f (;;a) =a. Thenf

f )x ~ > o and therefore c < ag() If c < ag) then
g(x) - () a.t%

c h(- 0) and f*(i;c) - a, which is a contradiction.

Again, only the continuity of h(j) was used in the proof

of Theorem 2.3. Under the hypotheses of the Corollary to

Theorem 2.2, for a series system, a is the solution in a of
g 60)

fi a a .(2.14)

The general theory described in this section applies as well

to what is known as systems with repeated components (see, e.g.,

Harris and Sons (1273)). For such systeMs, there are I < m < k

unknown parameters pp 2 .,p since the "repeated components"

-9-
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are assumed to have identical failure probabilities. This

assumption permits the experimenter to regard the data as

(ni,Yi), i-l,2,...,m, and employ the previous results.

For example, if a series system of k components has a of

th
one type, a2 of a second, ... , q of an m type, then2 m

a1  a2  am k
h(l) = P P2  ... Pm ' Eai  k

3. Counterexamples

In this section we restrict attention to series systems and

employ the ordering function

k

(g() = (n i -x ) / n i
inrdcdial i .ni

introduced following Theorem 2.1. As noted previously, in this

case the reliability function hCp) Pi With this special-

ization we have for (2.4)

t n1 
(1-r3 ) (3.1)

L

and for each fixed 0 < i1 < ti, 0 < i2 < t2 , ,.., 0 I < l

tj= n Cl'r /TI (n.-i,)/nL]), 2 < j < k , (3.2)

whenever g~x) = r3 , I < m < s. If m = s, then r. 0 and a 0.
m 0

For K > 0, X > 0, let

I (KPA tK'(l-t) 'dt , 0 < p <1 , (3.3) .-
Ip( - CK, y 0" "."

the incomplete beta function.

•*. -10-
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It is well-known that if t is an integer, t < U, we have

n qn.tn-i (3.4)

Sudakov (1974) published the inequality
~. .?..

Pi{6) > r k (al-tl~J~l) •
i-i

This inequality and generalizations of it were further

studied in Harris and Sons (1980,1981). (3.5) implies

" ~~f*(x;a) <. I Cn1-tlt. l) ,"

hence its usefulness. However, as we now establish, (3.5) is not

. universally valid, as was claimed in Sudakov (1974).

Let (xlX 2 ) (xl,0) and let (n 1 ,n 2 ) = (nl,2n,). Then

gx) a (nl-xl)/n I and t1  XI. Consider Pr . If

. p= (l,a), 0 < a < 1, we have

Pi g(X) > rm} Pa{(n2-X2)/n2  .)

since P{X 0O} a 1, by (2.1). Consequently,

Pi. [) r .Pa 2
a , aX 2 < n2 (l-rm )} *.5

Pa < 2n(l-r "

Since r (U X l)/n Im

P'{gCx) > r}n  Pa{ 2  2x}

Thus from (3.4),

-11-:
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P-{gCX) > r}* IaC2(fllX), 2x1+l)

The Sudakov inequality implies that

a (2(n1-x1  2x 1l) < Ia (n1-X1, x1.l)

or

Ia (2n r, 2n 1l-r )+l) < Ia (n r3 n 1l-r )+1) .(3.6)

Let h 2 (t;n2 Ira) and hl(t;n1 ,rm) denote the beta density functions

corresponding to the left and right hand side of (3.6), respec-

* tively. Then, provided n r3 > 1, there is an c > 0 such that

h 2 (t;n 2 3'r a h (t;n1 ,r a 0 < t < c 1-C < t 1

*This implies that h I t;n 2 2r ) and h 2(t;n 21 r3  intersect in at

*least two points. If t* is such an intersection, setting

h (t;n 11 r )/h (;n 2,r) I gives

I~ a 2(t 20)

t Ia(l-.t) =c(n 1 r > 0

Thus, for I < a < s, there are exactly two such intersections.

-Therefore there is a zsuch that

0' 0

*for z >z0

and for z < z0

-12-



* Thus for z > z ,(3.6)1is violated. (3.6) was used as a lemma

by Sudakov (1974) to prove the inequality (3.5). This lemma was

*also employed in Harris and SoMs (1980, 1981). It is the falsity

of this lemma which invalidates (3.5).

Table 1 provides some illustrations of the violation of ~

(3.5) for k a 2 and selected values of (n19n 2)v (x Vx 2) The

* smallest value opp 2 for which this violation occurs is also

* given in the table, where it is denoted by a*. In addition,

f*(i;a*) is tabulated. Thus for a < fe Ci;a*), (3.5) is valid.

The calculations were made by means of a FORTRAN program. Note

the for (nl1n)- (5,5) and Cx11x)- (1,1) the inequality

was not violated.

Table 1. The Smallest a. a*. and f*(i;a*)

(n11n 2 ) (x 1,x2) a* 'ia

*(5,5) (111) 1.0000 1.0000

*(5,5) (3,3) .7454 .9998

(5,10) (1O) .8798 .8909

*(5,15) (0.3) .8698 .8791

*(S.30) (1,0) .8498 .8467 -

4. The Theory of Key Test Results

If for n1 <n .. < n, CXix ~2... oxk -X08 V~

k > 2, then R is called a key test result. Winterbottom (1974)

asserted that subject to x f(k,n1) where f~k,n) is the

solution in f of -**

n k-f-1 k[(n -f)nll/ 13 (4.1)

-13-*%



we have ag 80 is the solution in a of .

'a(nl-x 1 , Xl1) = a 0 < a C < . (4.2)

This would imply the inequality (3.5), which we have disproved

in Section 3. -

As we subsequently establish, the error in Winterbottom's

(1974) result is a consequence of falsely concluding that

f(k,n1 ) depends only on nI. It is easy to be led to this conclu-

sion on intuitive grounds, since (n.-x1, n1,..., n ) would seem

to be a less favorable experimental result than (nl-xl,n2 ,...,nk).

whenever ni > n1  for at least one index i, 2 < i < k. We

now establish a modified key test result that holds for

x < fk,n), where f(k,i) is the smallest solution in f of

k k '/

Snl - £ - 1 - k[(nl-f) it n. (4.3)
i=2

Theorem 4.1. If nI I n 2  ... nk and i - (xl,0,...,0), with

x • ftk,f)l where f(k,") is given by (4.3), then

( Ox(4.4)"""'
.P " j SO > k 1- 1  1

where -~x,,...,01 r

5' -14-
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Proof. The proof consists of finding a necessary and sufficient

condition under which

*~~~~~ {kUnci > 1  k - (5II(n-z > H (ni-x =(ni-zi) (ni-x

and then applying the results of Pledger and Proschan (1971) to

find the supremum of the right hand side of (4.5) subject to
k k
1 pi - a. Clearly, we must have xi < nI . For fixed

k k k"

Ii " f. or equivalently, for fixed (n -x) n fn -64

kc k
II (n i-x ) is minimized by (n1 -f) II n . This follows from the

i-1 I i-2

strict Schur-concavity of U xi , x, > 0, 1 < i < k (see, e.g.,

Marshall and Olkin (1979, p. 78)). Therefore we must have

(f,0,...,0). Then a necessary and sufficient condition for

* (4.5) to hold is that i-(x,0,...,0), where x <f'(k,n) and

f' (k,n) is the first positive integer f for which

k kc
(n -f) 1 ni < max U (n -x ) (4.6)

i=2 k i-l
Sx 1-f+1

i-1

The Schur-concavity of i Z then gives (4.3) as a sufficient

condition and the subsequent corollary gives a simple method of

calculating f' exactly.

We now assume that (4.5) is satisfied and hence that

* fk k
f (x;a) - sup p nl-xl + i 2n  ( (4.7)

k i±iiU2)
i-l pima

Writing (4.7) as an iterated sum and noting that

I t(n-x,x+l) is a decreasing function of n for fixed x, we have-.

tP

* .. .. *......*-..'-.. .. . . .
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sup P nsup P Y1 (k-1)n
fl illy n' k ~ 1"---

1 i=a.

where the Ui are independent binomial random variables with para-

meters (nl1Pi), i=2,...,k. Writing
I-pi

k k n
Y1 + I Ut X1 iJ "

i 2 i. JI l "-

where the Yij are independent Bernoulli random variables with

parameter pi, a result of Pledger and Proschan (1971) may be
k n

employed to show that the upper tail of Y is a Schur-
1l Jul

convex function of -Inp,, -Inpl,..., -Inpl, -Inp 2 ... ,-1n ,..., L

-lnPk,...-lnPk) and therefore f*(;a) = Ia(n 1 -xis xll), as

required. ____:_

Corollary. For each f, form the vector ( = (zl,Z2,...,zk) from

- = nl,n 2 •...•nk) by continually reducing the maximum (s) until

the subtractions total f+l, f > 0. Denote by f'(k,nln 2 ...ank)

the first f for which

k k
zi > (n,-f) n n.

Then a necessary and sufficient condition for (4.5) to hold is

that xI < f'(k,n).

Proof. The proof proceeds exactly as for Theorem 4.1'by noting
-k k

that I maximizes 11 r i subject to 0 < r i . n i and r
' k i l I=I r '

= ni-f-l. This follows since i is majorized by r and the

product is strictly Schur-concave.

-16-
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if -n , (4.3) reduces to (4.1) which is

Winterbottom's (1974) condition. However, s should be replaced

by sl in his formula, which also has a sign error. As an

example, for k a 2, n1 = n2 a 50, from Winterbottom (1974), (4.4)

is stated to hold for x1 < 17 or nl-xl> 33. However, 33,50 < 41.41,

and therefore (4.4) only holds for x,' 13 or n,-x, > 37, as the

Corollary to Theorem 4.1 shows, or the solution of (4.3), which

gives f(2,S0,S0) - 13.14.

The dependence of f on may be seen by considering an

example. Let k a 2, n1 * S, n2 = 10. Then from the Corollary

following Theorem 4.1, (4.4) only holds for x1 = 0, whereas for

n n2 = 5, it holds for xI * 0,1,2, and 3. Thus the case of'

equal ni , il,2,...,k, does not give the minimal f. In fact, it

may be seen that if nk . 2nl, then (4.4) holds only for x1 = 0.

5. Concluding Remarks
****.

From Table 1, it seems reasonable to conjecture that (3.5)

is valid for thoso values of a,k,fi likely to arise in practice.

The authors are continuing to investigate the problem and hope

to report more precise conditions for the validity of (3.5) in

subsequent work.
.';% "*-.
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