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Thegpaper gives the general theory of optimal confidence f, ,E',
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This is specialized to series systems. It is noted that some
results previously given are false. 1In particular, counter-
examples for results of Sudakov (1974), Winterbottom (1974)

and Harris and Soms (1980, 198l1) are given. Numerical examples
are provided, which suggest that despite the theoretical problens
of the results, they are nevertheless valid for significance
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SIGNIFICANCE AND EXPLANATION

Systems with independent components arise naturally in

engineering practice. Therefore it is of importance to efficiently

utilize data obtained on individual components to obtain an assess-

ment of the reliability of the system.

This paper presents a unified theory for doing so and points

out errors in previous results on series systems.
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RELIABILITY WITH COUNTEREXAMPLES FOR RESULTS ON

? THE THEORY OF OPTIMAL CONFIDENCE LIMITS FOR SYSTEMS
OPTIMAL CONFIDENCE LIMITS FOR SERIES SYSTEMS

» [ X
& Bernard Harrxis and Andrew P. Soms

1. Introduction and Summary

A problem of substantial importance to practitioners in

reliability is the statistical estimation of the reliability of a
system of stochastically independent components using experimental
data collected on the individual components. In the situations

discussed in this.paper, the component data consist of a sequence

of Bernoulli trials. Thus, for component i, i=1,2,,,.,k, the

data is the pair ("i’Yi)’ where ng is the number of trials and Yi
is the number of observations for which the component functions,
YI’YZ""’Yk are assumed to be mutually independent random
variables.

This problem was treated in Sudakov (1974), Winterbottom
(1974). and Harris and Soms (1980,1981); one purpose of the pre-
sent paper is to exhibit counterexamples to theorems in the above
papers.

In Section 2 we discuss the general theory of optimal
confidence limits for system reliability so that the notation and
defini;ions to be employed in the balance of the paper have been
prescribed.

In Section 3 the counterexamples previously mentioned are

exhibited and the specific errors in the proofs of the theorems

are indicated.
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Section 4 presents the proof of a special case of the key

test theorem (Winterbottom (1974)), the general form of which was

Pl
et te te li

invalidated by a counterexample in Section 3.
The consequences for reliability applications are discussed

in Section S.

par gt

2, Buehler's Method for Optimal Lower Confidence
Limits for System Reliability

Ne now introduce the notation, definitions, and assumptions
that will be us~d throughout the balance of this paper,
1. Let p,, i=1,2,...,k denote the probability that the i‘M
component functions. The components will be assumed to be
stochastically independent. The reliability of the system will
be denoted by h(p), where p = (PysPgseeesPy)y 0 S py € 1. It is
assumed that h(0,0,...,0) = 0, h(1,1,...,1) = 1, and that h(p) is

ﬁ% non-decreasing in each_pi, i=1,2,...,k. Further, h(p) is
-'__| -~
S continuous on {p|0 < p; < 1}, which follows readily from the

; assumption of independence. These properties hold for coherent
xﬁ systems (see Barlow and Proschan (1975)).
o 2. Let s = {&|x, =0, 1,...,n,, im1,2,...,k} be the fatlure set.

g(i) is said to be an ordering function if for x < Zy,

:3 Xy 2 2500000 X S 2. X, z €8S, g(ﬁ) > g(z). (It is often convenient
:f to normalize g(x) by letting g(0) = 1 and g(n) = 0. With such
et a normalization, g(;) is often selected to be a point estimator
§§ of h(p).)
l"‘l -
) 3. Let R = {rl,rz,...,rs, s > 2} be the range set of g(X). With
G no loss of generality we order R so that r, > r, > .,. > r,. . L%;
fﬁ o
2 2N
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4. Let A, = {X|g(X) = r,;, Xc§, iv1,2,..,,5}. The sets Ay

constitute a partition of S induced by g(X).

5. We assume throughout that the data is distributed by
ngtxy Xy k “1] Yy By-yy

k (n
- ~ A 1
£(xX;p) = p~(Xxx) = I [ }p q i Qq 2,1
P 1=1lx, )71 i i-1y1pi i » (2.1)

where q; = l-pi, Xy = Ng-Yyo i=1,2,...,k. With no loss of
generality, we assume ny < n, < .0 < n.
From these definitions, it follows that

Pi{x eiél Ai} - pi{g(i) > rj} . (2.2)

From (2.1) and (2.2), we have

lll uz llk
p-{gci) ST D SR SRS S 1 7 S0 (2.3)
P illo 1230 . ik-O

'h‘re I = (11.12"..’1k) lnd uz b 02(11)....,uk = uk(il’12’00'l
1k-1) are integers determined by rj.

6. Subsequently we will need to extend the definitions of S and

g(X) to real values. We denote this as follows. Let

»

S = {i[o < %y < ny, 1-1,2,...,k} .

*
We assume that g(X) is nonincreasing on S . This requirement

is satisfied by all ordering functions used in practice.

Then
[t;1 [t,] [ty])
p-{,(i) > ,j} S S SRR SN T¢ ¢33 (2.4)
P 1,20 1,20 1,0

where t2 = tz(il).....tk = tk(il.iz....,ik_l), with

)
(4
"

t, = sup{tlt es’ and g(t,0,0,...,0) 2 Ty and t,(1,,i5,...,45 )

LN
ol
h) .\ "v
o

1
- ’up{tlt:s. ‘nd 8[11,12,...,iz_l,t,o,...O) 3 !'j » ll2,3,.o.,k,
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Ne now introduce the notion of Buehler optimal confidence

limits. Let g(x) = Ty- Then define
iy " 1nf{h(§)|p§{3|g(i) > g(i)} > u} . (2.5)

Equivalently, by (2.2), we can also write

s %) " inf{h(i)l?i{)(eiél Ai} > u} . (2.6)

We now establish the following theoren,

Theorem 2.1. Let assumptions 1-5 be satisfied. Then, for X€S,

bod ; [ P . v i
ag(x) is a 1-a lower confidence limit for h(p) If bg(X) s any

other 1-a lower confidence 1imit for h(p) with b_ >b_ > ... >b_,
T, - T, - - Ty
then bg(i) < a%) for all x€ S,

Proof. Fix p and let m(p) be the smallest integer such that

P§{§ € ngi) Ai}.-

> a .
i=])
Then
- s
p~{x € U A } > 1-a
P f=m(p) ©
Let

n
D_ = {§|P~{x e U A } > c} .
Ta P i=1 i
Then D__5, is a 1-a confidence set for S, since

g(X)

P;{ﬁ eng(i)} = Pi{g(i) < r.(s)} > 1l-a .
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By assumption 1, h(ﬁ) is continuous and the set of parameter
points satisfying (2.5) is compact; therefore the infimum in (2.5)
and (2.6) is attained.

Assume that there is an integer j, 1 < j < s-1, such that
brj > arj. Then there exists a ;o such that

- ~ -
brj > arj = inf{h(p)l?i{x.eigl Ai} > a} = h(po) . (2.7)

In addition, there exists a 51 such that

.~ 3 :
p~{xeu A}>a h(p,) <b_. . (2.8)
P, {=1 i ! 1 rj
Since br > br > .00 2 br ,» from (2.7) we have
1 2 s
h(il) < brz R L =1,2,,..,3 . (2.9)
Therefore
-~ j -~
~ u < P~ < hod .
a < Ppl{xei-l Ai} < pl{h(pl) b“x)}. (2.10)

which is a contradiction. Consequently, there is no integer j,

1 <3j < s-1, for which b > a_ .
- - l'j rj
From (2.6), it follows that ‘r = 0 and br is also
8 8
necessarily zero. Note further that in (2,7) it is possible

- )
that the infimum is attained at a point for which Pi{Xe. u Ai} > a.
i=1
To see this consider the following example.

Let k = 2, n, = §, n, = 10,000, x, = O, X, ® 5,

1 1l
g (x) '.n1¢n2-x1-x2, h(p) = P,P,- It is easily seen that the

hypotheses of Theorem 2.1 are satisfied, Thus, for the data

-5-
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. given, g(x) = 10,000 = Tge The set U Ai consists of all points

i=]
(xl,xz) for which X +x, < 5, that is, A1 = {(0,0)},
Az = {(1,0).(0,1)}, and so on, Consequently,

LGS LA MRS RIS As B A

D {'lp ie v =
= {p ~{ e U A } > a} BT
e PU" "3y 1) - N
Sy %

includes the parameter points (0, p2a) where pZa satisfies l

sza{xz-o} > a, since Pil{xl < 5} = 1 when P, " 0.‘ Thus inf
h(P) = 0 for all 0 < o < 1.
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- We note that the monotonicity of h(p) is not utilized in 945
... ‘-".'?-
: - AN

the proof, which is valid whenever h(p) is continuous. S
- : A -
L It is easy to see that a__~, is monotone, i.e., a_ > a_ >
8(x) Ty~ Ty O
~ cee > 8, This follows from (2.7) upon noting that as j
e 3 )

increases, the set of p satisfying (2,7) increases and the

l infimum is taken over a larger set.

k
Corollary. For a series system h(p) = I P;- Then if
% k i=1

. g(x) = inl (ng-x;)/n; = il'l yi/ni, the hypotheses of Theorem 2.1
= =l .

are satisfied and the conclusion follows.

k

., .." . .':."‘._'.‘.. ;

- Note that g(x) = I (ni-xi)/ni is the maximum likelihood if;

i=1 e

gi estimator as well as the minimum variance unbiased estimator of f‘

— k RS

<. I P; and is therefore a reasonable choice of an ordering function. T

W iml ‘_;.\3:

- Gan

o N

ii.' We now establish the following theorenm, L
’:»::;; Theorem 2.2. Let g(x) = 1-j and let

. 5

,'.. - ~ ;‘.'-‘:'

o f (x;a) = sup P-{x(X) > r.}. 0<ac<1l . (2.10) AR

h(p)=a P ) .

'.~:‘.r

X

g

-6- ,.1'.:"'




sup £ (%;a) = 1
0<a<l

and f’(iga) is non-decreasing in a,

Proof. Since h(p) is continuous and h(l) = 1,

1m sup P={g(X) > T .} =1.
a+1l h(p)=a p{ j}

Now choose a and b such that 0<a<b<l,
X) > r } £ (x;a)
P;,‘{z(x) > 7y ;

and
Pib{g(XJ > rj} = £ (x;b) .

Let I  be the set of indices i such that p;, < 1. Then it is
possible to replace Pia by pib, ie I‘, where Pia < pib <1, so
that h(ig) = b, where pib = Pig’ ie Ii. This follows since

h(I) = 15> a and h(p) is continuous. The conclusion follows from

the monotone likelihood ratio property of the binomial distribution.
Note again that only the continuity of h(p) was used in
the proof of Theorem 2.2.

For the case of series systems, it is possible to strengthen

Theorem 2.2 and to exhibit the above construction. This is done

below.
- ~ k . .
Corollary. Let g(x) = r_ ., If h(p) = 1 Py then inf f (x;a) =0
j i=1 0<a<1

and f’(i;l) is strictly increasing in a whenever all uj < nj

(see (2.3) for the definition of uj). j=1,2,...k.

.........
.............

------
----------




Proof. From the hypotheses,

n
b i
Pi{z(x) > rj} $l-qq ©, i=1,2,...,k,
k
and since I P; * 0 implies at least one Py * 0, this gives
i=]1

inf f‘(i;a) =0 .
0<a<}

To show that f*(§;a) is strictly increasing in a, consider
-~ * o ~
0<a<b<l and let Py = (pal""’pak) satisfy f (x;a) = Pﬁa{g(X) > rj}.
Similarly, let ﬁb satisfy f*(i;b) = P; {g(i) > rj}. Let
b 2
Ia = {11,12,...,ir} be any non-empty set of indices such that

b,1/r

aij(;) < 1 (non-empty because otherwise multiplying the

| 4

components would give b > 1, a contradiction) and let I: be the ]

remaining indices. Then

b 1/rx
(n p,; (D IO _p =b . - (@.11)
ai.‘a ¢ “ai
jer, i jelg j
From the monotone likelihood ratio property of the binomial

distribution,

"ﬁ,{‘(i’ : ’j} <ppfec 27}

where the components of p* are given by (2.11). This gives Eigg
gﬁﬁ“

-~ -~ A SR

£*(X;8) < £ (X;D) , 08

'n/.l'. M

rus 8
1 %% v

which is the desired conclusion.

i)
4-‘

-;_‘
<.
v -
L
-
ey

Note that if at least one uj = nj, it follows immediately
k

from (2.5) that a = 0. For g(x) = 1 (ni-xi)/ni the

g(x) =1
condition u, < nj is equivalent to x, < nj, j=1,2,...,k.

3 3




We now establish a result which will prove useful in some

of the subsequent material.

Theorem 2.3. If £%(X;a) = a, O<a<l, has at least one solution in

a, then
*® _ ~
‘g(i) - 1nf{a|f (x;a) = a}. (2.12)
N L,
1f £ (x;a) > o for all a, then ag(i) = 0,
Proof. Let

c = 1nf{a|f*(§;a) > a} . (2.13)

The infimum in (2.13) is attained., Thus, there exists a fo such
that ¢ = h(§ ). If £ (X;a) > a for all a, let p, » 0, ix1,2,... k.
Then h(p) + 0, since hca) = 0 and h(ﬁ) is continuous, and
‘g(i) = o- .

Now assume there is at least one a with £ (;;a) = a. Then

f'(§;18(;)) > a and therefore c < ag(i)' If ¢ < ag(;), then

c = h(ﬁo) and £'(X;c) = a, which is a contradiction.

Again, only the continuity of h(p) was used in the proof
of Theorem 2.3. Under the hypotheses of the Corollary to

Theorem 2.2, for a series system, ag(i) is the solution in a of

£'(x;a) = o . (2.14)

The general theory described in this section applies as well
to what iIs known as systems with repeated components (see, e.g.,
Harris and Soms (1973)). PFor such systems, there are 1 Sm <k

unknown parameters PysPys+++sPy» Since the '"repeated components"




are assumed to have identical failure probabilities.

assumption permits the experimenter to regard the data as

(ni,Yi), i=1,2,...,m, and employ the previous results.

For example, if a series system of k components has a

one type, a, of a second, ..., %n of an m type,

a o
~ 1 _"2
h(p) = p," p,

th
oy k
S TR igl ay

3. Counterexamples

then

This

of

In this section we restrict attention to series systems and

employ the ordering function

g(x) =

i=1

k
I

introduced following Theorem 2.1.

(n,

=x;)/ng

As noted previously, in this
k

case the reliability function h(;) = I Py With this special-

ization we have for (2.4)

ix1

t, - nl(l-rm)
and for each fixed 0 < 11 < tl, 0 12 < tz, vees 0 <4
j-1
tj = nj(l-rm/[zlll (nz‘iz)/nzl)a 2 f j f k ,

whenever g(x) = r, 1l <m<s

For x > 0, A > 0, let

1

If m = s, then T,

I (K,A) = Ip 5 -y 0 <
(N = gy | . 0

the incomplete beta function.

-10-

(3.1)

(3.2)

= 0 and a, - 0.
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It is well-known that if t is an integer, t < n, we have

t
120 (2) pn'iq1 = Ip(n-t.t*l) . (3.4)

Sudakov (1974) published the inequality

P;{ztx) > rj} STy (mg-t),t.+1) . (3.5)
Ip

ja1 1

This inequality and generalizations of it were further

studied in Harris and Soms (1980,1981). (3.5) implies
£ (x;8) < I (n -t,,t +1) ,

hence its psefulness. However, as we now establish, (3.5) is not
universally valid, as was claimed in Sudakov (1974).

Let (xl,xz) = (xl,O) and let (nl.nz) = (n1.2n1). Then
g(x) = (nl-xl)/nl and t1 = X Consider Pi{g(XJ > r.). 1£

s = (1,a), 0 < a <1, we have

Pi{g(i) > rm} - Pa{(nz-xz)/n2 > r,} ,

since p{xl-o} = 1, by (2.1). Consequently,

Ps{cCi)i: r?}r-fp‘{xz < n2(1-rn)}

= P‘{Xz 2n1(1-rn)} .

1A

Since LI (nl-xl)/nl.

Pﬁ{g(§) > rm} - Pa{xz < le} .

Thus from (3.4),

-11-
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The Sudakov inequality implies that
Ia(2(n1-x1). 2x1+1) < Ia(nl-xl, x1+1)
or
Ia(anrm, 2n1(1-rm)+1) < Ia(nlrn’ nl(l-rm)+1) . (3.6)

Let hz(t;nz,rm) and hl(t;nl.rm) denote the beta density functions
corresponding to the left and right hand side of (3.6), respec-

tively. Then, provided nr, > 1, there is an ¢ > 0 such that
hz(t;nz,rm] < hl(t;nl,rm) 0 <tcgeg, leg ct <1,

This implies that hl(t;nz,rm) and hz(t;nz,rm) intersect in at
least two points. If t* is such an intersection, setting

hl(t;nl,rm)/hz(t;nz,rm) = 1 gives

n,r n,(1-r_)
t 1 m(l-t) 1 n . c(nl,rm) >0 .

Thus, for 1 <m < s, there are exactly two such intersections.

Therefore there is a z, such that
Izo(nlrm’ nl(l-rm)+1) = Izo(nzrm, nz(l-rm)+1) .
for z > L
Iz(nlrm’ nl(l-rm)+1) < Iz(nzrm, nz(l-rm)+l)

and for z < L

Iz(nlrm,nl(l-rm)+1) > Iz(nzrm, nz(l-rm)+1) .

-12-
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Thus for z > 2 (5.6) is violated. (3.6) was used as a lemma

by Sudakov (1974) to prove the inequality (3.5). This lemma was

also employed in Harris and Soms (1980, 1981). It is the falsity
of this lemma which invalidates (3.5).

Table 1 provides some illustrations of the violation of
(3.5) for k = 2 and selected values of (nl.nz), (xl.xz). The
smallest value of PP, for which this violation occurs is also
given in the table, where it is denoted by a*. 1In addition,

£°(X;a") is tabulated. Thus for o < £*(X;a%), (3.5) is valid.

The calculations were made by means of a FORTRAN program. Note
the for (nl,nz) = (5,5) and (xl,xz) = (1,1) the ineguality

was not violated.

Table 1. The Smallest a, a*, and £%(X;a")

(n,n,) (xy,%,) a* £%(x;8")
(5,5) (1,1) 1.0000 1.0000
(5,5) (3,3) .7454 .9998
(5,10) . Q,0) .8798 .8909
(5,15) (0,3) .8698 .8791
(s,30) €1,0) .8498 .8467

4. The Theory of Key Test Results

I1f for n, < n, < 0. < Nys (xl.xz,...,xk) = (xl,o....,O).
k > 2, then X is called a key test result. Winterbottom (1974)
asserted that subject to Xy < f(k,nl), where f(k,nl) is the

solution in £ of

k-141/k '
n k-£-1 = k[(n,-£)n;7"] » (4.1) NP
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.we have a‘(;) is the solution in a of
I‘(nl-xl, x101) =a , 0<a<11,. (4.2)

This would imply the inequality (3.5), which we have disproved
in Section 3.

As we subsequently establish, the error in Winterbottoa's
(1974) result is a consequence of falsely concluding that
f(k,nl) depends only on n,. It is easy to be led to this conclu-
sion on intuitive grounds, since (nl-xl. Ryseees nl) would seem
to bde a less favorable experimental result than (nl-xl,nz.....nk).
vhenever n, > n, for at least one index i, 2 < i < k. We

now establish a modified key test result that holds for

x, < £(kx,n), where £(k,n) is the smallest solution in f of

X X
1£1n* -£-1 = x[(a-0) K nill’k . (4.3)

Theorem 4.1. 1I1f n, < n, € e & L and x = (xl,o....,O), with

x, < £(x,A) where £(x,i) is given by (4.3), then

Pi{z(il > rj} <, (my-x;,x,¢1) , (4.4)

Ip
a1 1

where g(xl,o,...,O] » rj.
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Proof. The proof consists of finding a necessary and sufficient

condition under which

{z n (ni-zi) 2 0 (n;-x;) = {;

i=l im}
and then applying the results of Pledger and Proschan (1971) to

; b e}
(n,-z,) > (n,-x. ,(4.5)
j=1 i 74 i=1 i 71

find the supremum of the right hand side of (4.5) subject to

k k
N p, =a. Clearly, we must have ) x, < n.. Por fixed
i i 1

iml i=]

k k k

) x, = £, or equivalently, for fixed Z (ni-xi) = z n, - f,
i=]l i=] i=1

k k

I (n,-x.,) is minimized by (n,-f) N1 n,. This follows from the
. i 74 1 i

imsl X im2
strict Schur-concavity of I xi, xi >0, 1 <1i <k (see, e.g.,

i=l

Marshall and Olkin (1979, p. 78)). Therefore we must have

x = (£,0,...,0). Then a necessary and sufficient condition for

(4.5) to hold is that x = (x,0,...,0), where x < f£'(k,n) and

£'(k,n) is the first positive integer f for which

k k
(n.-£) I n s max I (n,-x,) . (4.6)
1 {m2 i " {=1 1 1

The Schur-concavity of M x
1a1 t
condition and the subsequent corollary gives a simple method of

then gives (4.3) as a sufficient

calculating £' exactly.

We now assume that (4.5) is satisfied and hence that

* i i
£f (x;a) = sup p{ Y, > n,=x, + n} . (4.7)
X gmp 17T g0l
II p,=a
gm1 3

Writing (4.7) as an iterated sum and noting that

It(n-x,x+1) is a decreasing function of n for fixed x, we have
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k
sup P{ ) Y, 2 npexg¢ In } < sup P{ + Z Uy 2 ny-x 4 (k-1)n }.
k i=1 1 a2t k 1a2 171 1
n pi-a n py=s

i i=1

. where the Ui

meters (nl,pi), j=2,...,k. NWriting
k

are independent binomial random variables with para-

] ity
Y, ¢ U, =
1 1 421 3=

where the Y. . are independent Bernoulli random variables with

ij
parameter p,, a result of Pledger and Proschan (1971) may be

employed to show that the upper tail of X Z Y,y is & Schur-
1 j=1
convex function Of (-lnpl. -lnpl,..., -lnplg ‘lnpzpoo.,‘lnpz.-ao.

-1npy,...,-1np,) and therefore £*(x;a) = I,(n -x;, x,+1), as

required.

Corollary. For each £, form the vector Z = (zl,zz,...,zk) from
n = ("1‘n2""’nk) by continually reducing the maximum (s) until
the subtractions total f+1, £ > 0. Denote by f (k.nl,nz....,nk)
the first £ for which

121 z, 2 (nl-f) 122 n, .
Then a necessary and sufficient condition for (4.5) to hold is

that < £'(kx,n).

*1
% Proof. The proof aroceeds exactly as for Theorem 4.1'by noting
k

that Z maximizes [ T subject to 0 < r =

<n

k ix1 1= p 1
121 n,-f-1. This follows since z is majorized by T and the
product is strictly Schur-concave.

and.iz

...........
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1f n, =n, = ... = n o (4.3) reduces to (4.1) which is

C M e )

Ninterbottom's (1974)'condition. However, s should bo'f;plaeod
. by s+1 in his formula, which also has a sign error. As an
example, for k = 2, n, *=n, = S0, from Winterbottom (1974), (4.4)
is stated to hold for Xy €17 or n -il > 35. However, 33:50 < 41.41,

1

and therefore (4.4) only holds for x, < 13 or n,-x, > 37, as the

1
Corollary to Theorem 4.1 shows, or the solution of (4.3), which
gives £(2,50,50) = 13.14.
The dependence of £ on n may be seen by considering an
; example. Let k = 2.‘n1 = 5, n, = 10. Then from the Corollary

following Theorem 4.1, (4.4) only holds for x, = 0, whereas for

1
n; =n, =5, it holds for x, = 0,1,2, and 3. Thus the case of
equal ny, i=1,2,...,k, does not give the minimal £. In fact, it

may be seen that if n, > 2n1, then (4.4) holds onl} for X, = 0.

§. Concluding Remarks .

From Table 1, it seems reasonable to conjecture that (3.5)
is valid for those values of a,k,fi 1likely to arise in practice.
The authors are continuing to investigate the problem and hope
to report more precise conditions for the validity of (3.5) in

subsequent work.
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