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Electronic and Redox Properties of Stacked-Ring Silicon

Phthalocyanines from Molecular Orbital Theory -

by

Alfred B. Anderson*

Teresa L. Gordon

and

Malcolm E. Kenney*

Chemistry Department, Case Western Reserve University

Cleveland, Ohio 44106

Abstract

It is shown that the multi-peaked cyclic voltammograms for

* silicon phthalocyanine monomer-oligonier sets may be predicted from

initial state molecular orbital energy levels if field shifts are

*used to allow for the charges of the anions and cations. The

*theory should have broad application for the understanding of the

- redox properties of other cofacial macrocyclic ring systems and the

conductivity of doped cofacial polymers. The molecular orbital

- energy levels also produce the features of the optical and photo-

*emission spectra of silicon phthalocyanine monomer-oligomer sets in

the HOMO-LUMO energy regions, showing the importance of directcIT)

overlap. Tor the dimers a 450 staggered conformation is predicted

to be slightly more stable than the eclipsed conformation.
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Introduction

Oxygen-bridged stacked silicon phthalocyanine ring systems are

members of a class of molecular and linear-chain solid state com-

pounds with interesting bonding1-4 and conducting5'6 properties. In

this paper the focus is on silicon phthalocyanine monomers, dimers,

and trimers. Only one monomer-dimer set has been examined by

7photoemission spectrosopy 7 , while two monomer-oligomer sets have

* 8-10been examined by optical spectroscopy. One purpose of the

present study is to analyze these data on the basis of molecular

orbital theory. However, the main theme of our work is to provide

theoretical understanding for the interesting multi-peaked cyclic

voltammograms of monomer-oligomer sets. 1 1, 1 2 The model developed

in this study appears to provide a method for treating and under-

standing redox properties of phthalocyanine ring systems in

general.

The stacked silicon phthalocyanine ring systems considered

here are bridged by oxygen anions and capped by OSiR 3 or similar

groups. A representative monomer structure is shown in Fig. 1. The

cap in this structure is the one used in our molecular orbital

study.

The low-energy Q band of the optical absorption spectrum has,

on the basis of a molecular orbital study, been assigned to 2aju-

6e HOMO-LUMO transitions.8 In the monomer examined by Hush 8 the

main peak occurs at 1.86 eV while in the corresponding dimer it is

shifted 0.11 to 1.97 eV, with evidence for weak shoulders at 1.65

and 1.82 eV. Both the monomer and dimer show high-energy shoulders

which are found in many ring compounds and are due to vibrational

excitations accompanying the electronic excitation.*3  The corres-

2



ponding trimer and tetramer show further blue shifting and

shoulder widening of the band.9  The explanation given for the main

Q band peak by Hush is in terms of a model with no ring-ring

8orbital overlap. Our discussion is in terms of n overlap. The

higher energy Soret band is composed of a variety of excitations.

Since they are not excitations between the t systems important to

the cyclic voltammetry results, we shall not elaborate on them

here.

The monomer photoemission spectrum has an emission from the

2alu orbital at 6.42 eV, which in the dimer splits into two emis-

sions at 6.19 and 6.51 eV, the average value being shifted 0.07 eV

to 6.35 eV.7 The splitting is recognized to be a result of

through-space" overlap. The onset of emissions from the lower

orbitals begins at -7.9 eV for the monomer and - 7.5 eV for the

dimer. The F- n emission band continues at least to ~17 eV for both

molecules and shows a multi-peaked structure.7 Our initial-state

energy level calculations (which omit orbital relaxations in the

cations produced on ionization) will be seen to be in good quali-

tative agreement with these photoemission features and the dimer

splitting will be related to the multi-peaked redox properties.

There have been other molecular orbital studies of stacked

phthalocyanine systems. Most closely related to our present work is

an extended Huckel tight-binding calculation of the alu and eg band

widths as a function of ring spacing and rotation using a model in

which the benzene-like rings are clipped off the phthalocyanine

ring (the ring formed is that used in our minimal models - see Fig.

2).4 The resulting alu and eg bands had respective widths of 0.9

3
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and 0.8 eV with the rings being staggered. An SCF INDO tight-

binding calculation of a tetraazaporphyrin polysiloxane chain (the

ring employed is that used in our intermediate models, Fig. 2)

produced alu and eg band widths of 2.00 and 1.52 eV, respectively.

A variety of other tight-binding calculational results have been

reviewed recently,2 as has the structure dependence of through-

1space splittings in various systems.

In the present study it is possible to compare the calculated

electronic structures within the full, minimal and intermediate

models of Fig. 2. It will be seen that all three do a comparable

qualitative job of describing HOMO and LUMO energy levels. Thus,

the minimal models are adequate for understanding the ring optical,

photoemission, and redox properties of silicon phthalocyanine

monomers, dimers, and trimers.

Results and Discussion

Molecular Orbital Interpretation of Monomer and Dimer

Photoelectron Spectra and Prediction for the Trimer

For the monomers our calculations place the lowest unoccupied

(eg) orbitals and the highest occupied (alu) and next occupied - -

(framework) orbital on our energy scale as shown in Table I. Planar

views of the a1 u and eg T orbitals are given in Fig. 3. Our

initial-state calculations do not produce relaxation shifts, which

nearly uniformly decrease orbital ionization potentials, so it is

understandable that the numbers in Table I are uniformly 4-5 eV

too large. (Further discussion of the theoretical procedure is

given in the Appendix.) Taking into account the relaxation shifts,

the electronic energy level structures in Table I can be compared

4
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with the experimental spectra given in Ref. 8. The 0 -alu gap calcu-

lated for the monomer full model is 1.59 eV, agreeing well with

'1.5eV in the spectrum. The minimal model overestimates this,

producing 2.68 eV and the intermediate model underestimates it at

1.37 eV.

Dimer energy levels based on minimal and intermediate dimers

in eclipsed conformations are given in Table II. The g and u

notations refer to bonding and antibonding combinations of the alu

and eg n orbitals. It may be seen that the o-a u gap closes due to --

the splittings. This is physically evident in the photoelectron

spectrum of the dimer7  where the gap between emissions decreases

from -1.5 eV to -1 eV. Further, the Sln splitting observed to be

0.32 eV in the dimer is predicted accurately in the calculations as

0.32 eV for the minimal dimer and 0.29 eV for the intermediate

dimer. The 0.07 eV shift of the average alu energy as indicated by

the spectrum is probably a relaxation effect because the splitting

is symmetric in our calculations.

In Table III are given our predicted au splittings based on

the minimal trimer. The overall splitting is 0.45 eV. These split-

tings should be accurate since the dimer splitting is exact within

our structure and computational models.

We have examined the effects of rotating a ring out of the

eclipsed conformation using the intermediate dimer. We find a mono-

tonic increase in stability on going from an eclipsed conformation

to a 450 staggered conformation, but the stability gain is only 1.0

kcal/mole, and thus we do not predict any angle preference. If

this is correct, then it appears that crystal packing or solution

coordination forces will determine the rotational conformations of

5



stacked phthalocyanine systems. An X-ray study of a solid trimer
14

shows the two outer rings rotated 160 in the same direction with

respect to the inner ring. This is almost certainly the result of

packing forces.

Our calculations using the intermediate model predict the alu

splitting decreases from 0.28 eV to 0.02 eV on rotating 22.50 and

increases to 0.25 eV at 450, in qualitative agreement with earlier

work.4 The rotational conformation of none of the known dimers in

the solid state has been published. The observed splitting of

Ref. 7 could be accounted for by 00 or 450 rotation in the gas

phase dimer. It seems cerrain that few molecules are rotated 22.50

in the gas phase as the alu splitting would then be very small. It

is noted that the predicted strength of the through-space splitting

seems to depend on the calculational method, extended Huckel split-

tings being small4 , CNDO being large3 and DV-X I in between. If our

calculations, and the extended Huckel calculations, are under-

estimating the through-space overlap and alu splitting, then the

observed 0.32 eV splitting in the photoemission spectrum of Ref. 7

might correspond to fixing the dimer at an average intermediate

rotational angle. At present there is no reason to suppose this

happens.

Molecular Orbital Interpretation of Optical Band

Our calculations underestimate the Q band energy in the

monomer. As seen in Table 1, all three models produce somewhat

over half of the measured monomer value of 1.86 eV.8 For the dimer

the observed main 0 band peak shifts to 1.97 eV, a result of

orbital relaxations in the final state cation which are not pro-

6



duced in our initial-state calculations, as seen on comparing

Tables I and II. The presence of a single main peak for the dimers,

despite the splitting of the alu and eg orbital levels into alu(g),

alu(u) and eg(g) and eg (u) energy levels (alu(g) and eg(u) are the

bonding combinations), is a result of selection rules. Only (g)'

(u) and (u) - (g) are allowed in x-y polarized light. These tran- 7

sitions are determined to have nearly the same energy for the

intermediate dimer (1.15 eV and 1.14 eV) and for the minimal dimer

(1.03 and 1.00 eV), consistent with a single strong peak. Based on

the intermediate dimer calculation, the forbidden au (u) e (u)

transition lies 0.29 eV towards the red and may be responsible for

the observed weak low energy shoulder at 0.32 eV to the red. A sim-

ilar forbidden ag(g) + eg(g) transition calculated to be 0.28 eV

toward the blue may be obscured by the vibrational shake-up bands.

The other observed shoulder 0.15 eV to the red from the main peak

may be due to vibrational shake-up of the lowest energy transition.

The low energy shoulder would merge well into the main peak if the

rings were rotated 22.50. The fact it is shifted relatively far

into the red means the average angle probably lies near the 0 or

450 extremes.

Energy Level and Field Shift Model for Monomer, Dimer and Trimer

Redox Potentials

A number of electron transfer steps are evident in cyclic

voltammograms of silicon phthalocyanine monomer-oligomer sets. 12

(see Table IV). It might be supposed that each electron transfer

step corresponds to adding one or more electrons to an e g orbital

(reduction) or removing one or more electrons from an alu orbital

7
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(oxidation). The reversible voltammograms indicate such processes

are themselves reversible. Will initial state energy levels, per-

haps with an added field shift for multiple oxidations or reduc-

tions, explain the spacings of the redox potentials for these

systems? This section shows that they will.

In the monomers, the oxidation and reduction waves are one-

11,12electron in nature, l 2 and in the dimers they represent two-

electron steps.12 As will be discussed below, we suspect two-

electron waves are seen for the trimers as well. For the monomer

examined by Armstrong the 1.89 V gap between the first oxidation

and first reduction peak matches well the splitting of 1.86 eV

between the aiu and e g levels seen in Ref. 8. The second reduction

peak is 0.56 V in the cathodic direction from the first peak and

probably corresponds to creating a double occupancy of the degen-

erate e set yielding a triplet state, which by Hund's Rules,
g

*probably has the Ce x)1(e gy) configuration, though the formation

of a singlet state through antiferromagnetic coupling cannot be

ruled out.

Two-electron processes become allowed for the dimers and tri-

mers because of charge delocalization among the rings. For these

oligomers it is possible to relate the oxidation and reduction peak

spacings to the spectra and calculated energy levels by imposing

field shifts. The field shifts are the result of the charges on the

molecular anions and cations. These shifts are small because of the

shielding effect of the dielectric electrolyte in which the redox

reactions are performed. The counter ions necessary for charge

neutrality also serve to make them small. Similar valence state

8
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field shifts have been discussed for cations in ferrous and ferric

oxides.t5  Such shifts are the basis of oxidation state deter-

minations using ESCA.

In the dimer and trimer examined by Armstrong the first reduc-

tion peaks lie at about the same voltage (-1.29 V and -1.35 V

respectively) as the corresponding peak of the monomer (-1.29 V).

The first oxidation peak shows a decrease from 0.60 to 0.27 to 0.08

V for the set. The 0.33 V decrease in gap between the first

reduction and first oxidation potentials on going from monomer to NA

dimer is not reflected in the optical alu to eg excitation energy,

which increases 0.11 eV. 8 However, our calculations show a decrease

of 0.30 eV for the minimal model and 0.28 eV for the intermediate

model; the decrease is a consequence of the splitting of the alu

and eg levels due to the inter-ring orbital overlaps. The experi-

mental diner to trimer decrease of 0.13 V is reproduced in our

minimal dimer and trimer calculations where the decrease is 0.13

eV. Thus the calculated initial state energy levels provide an

adequate basis for predicting changes in the difference between

first oxidation and first reduction potentials, and the optical

spectra do not. This is probably because of complicated orbital

relaxations which occur in the optically excited systems, while

final state relaxations accompanying the ionization processes are

more uniform .

Although the above shows that the addition or subtraction of a

single electron from the monomer and the addition or subtraction of

pairs of electrons from the dimer and trimer are well described

within the initial state one-electron framework, not a surprising

result because of the ability of such calculations to deal with

9
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photoemission spectra, field shifts must be superimposed on the

level differences when additional electrons are added or sub-

tracted. In the dimer the oxidation peaks are separated by 0.46 V.

Our calculated splitting for the minimal model is 0.32 eV (agreeing

exactly with the photoemission spectrum). We assign the 0.14 V

difference as an "anionic field shift" due to the greater dif-

ficulty of removing a second pair of electrons, this time from the

an(g) orbital of the +2 anion in the dielectric medium. The final

state of the +4 anion then has no a electrons. The first two dimeru

reduction peaks are separated by 0.36 V, compared to 0.29 eV

calculated for the eg(g), eg(u) level separation, leading to a

"cationic field shift" of 0.07 V. The final state, if it is high-

spin, should be a quintet, but in any event it has the

(egx(u)) t (egy (u))l(egx(g) )(egy(g)) 1 configuration. A third

reduction at 0.54 V cathodic to the second one is, as for the

second reduction of the monomer, due to adding additional electrons

to the degenerate e g set.

The above field shifts are used to predict redox potentials

for the trimer in conjunction with the minimal trimer model

energy levels. The trimer has three oxidation peaks which must

correspond to (au(u 1 )) 2 (au(g)) 2 , (au(ul)) 2 , and empty au orbital

final state configurations. The first two are separated by 0.39

V. Adding the 0.14 V field shift to the calculated 0.23 eV au(u),

au(g 2) level splitting produces 0.37 eV, which is in good agree-u(9-.)

ment with this value. The middle and third oxidation peaks are

separated by 0.46 V. The simplest approximation is to double the

field shift to 0.28 V, which, when added to the calculated spacing

10
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L.

*. of 0.22 eV produces 0.50 eV, in reasonable agreement.

The first three reduction peaks correspond to (egx(gj)) I

(egy(gj))'1 (e gx(gl))(e gy(g))(e gx(u)) I (e gy(u))', and

(egx(gl))'(egy(gi))'(egx(u))'(e gy (u)) 1 (egx(g2)) 1 (egy(g 2 )) 1 final

states. The first pair is spaced 0.24 V and adding the 0.07 V

anionic field shift to the 0.20 eV calculated splitting yields 0.27

eV, in good agreement. Doubling the field shift for the second pair

results in a prediction of 0.36 eV, in close agreement with 0.38 V

from experiment. The fourth reduction peak lies 0.36 V in the

cathodic direction and corresponds to an additional reduction step.

Conclusions

Our calculations illustrate the adequacy of truncated models

and initial state molecular orbital theory for producing certain

features of photoemission, optical, and redox potential measure-

ments on stacked-ring silicon phthalocyanines. Through-space

orbital overlaps are seen to be responsible for splittings in the

photoemission and optical spectra and to provide a basis for a

partial understanding of the multi-peaked cyclic voltammograms. We

find in the dimer a very small dependence of total energy on ring

rotation angles, with the 450 staggered form favored by I kcal/

mole. This implies that ring rotations which occur in molecular

crystals 1 4 or infinite stacked chains16 are most likely caused by

steric interactions which accompany crystal packing forces. NNR

solution studies suggest free rotation in the oligomeric species on

the NMR time scale. 1 7

Our most novel and interesting finding is the relationship of

photoemission and optical spectra and our calculated energy levels

11-
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with the redox potentials of the monomer, dimer and trimer. We

have shown that on oxidation and reduction it is possible to iden-

tify ionic field shifts for use in conjunction with experimental

and theoretical energy level data to predict the current peaks in

cyclic voltammetry. The fundamental simplicity of the theory re-

quired to understand the oxidation and reduction of the silicon

phthalocyanines should hold for other similar systems. Hopefully,

these findings will play a role in future understanding of electro-

chemical processes and catalysis by macrocyclic complexes.

Appendix

Our calculations employ the atom superposition and electron

delocalization theory with a molecular orbital approximation to the

electron delocalization energy.1 8 The ASED theory is derived from

the Hellmann-Feynman formula for electrostatic forces on nuclei in

molecules. In this theory the molecular charge density is parti-

tioned into atomic and electron delocalization (bonding) parts.
1 9

The atom superposition energy is calculated exactly by integrating

the force due to atom superposition. The electron delocalization20

energy is conveniently approximated by a one-electron molecular

orbital energy using a molecular hamiltonian similar to the ex-

tended Huckel hamiltonian. Parameters used in this study are in

Table V.
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Table I. Energies of the HOMO (alu), LUMO (eg), and 0 orbitals

using minimal, intermediate, and full models of the monomer (eV).

A indicates energy level separation (eV).

Orbital minimal intermediate full

energy A energy A energy A

eg -9.42 -10.51 -10.0891.01 1.14 0.98

alu -10.43 -11.65 -11.06

2.68 1.37 1.59
a -13.11 -13.02 -12.65

15
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- Table II. As in Table I, for dimer (eV).

minimal intermediate

Orbital energy A energy A

e (g) -9.27 -10.36

0.29 0.28

eg (u) -9.56 -10.64

0.71 0.86

au(u) -10.27 -11.50

0.32 0.29

au(g )  -10. 59 -11.79o

2. 54 0.65

a -13.13 -12.44

16
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Table III. As in Table I for minimal trimer.

minimal

orbital energy

eg(g2) -9.20

0.22

eg (U) -9.42

0.20

eg(g I ) -9.62

0.58

au(u2) -10.20

0.23

au(g) -10.43

0.22

au(uI) -10.65

2.49

-13.14

17



Table IV. Oxidation and reduction potentials from Ref. 11 (vs.

Ag/kgClO4 ).

Oxidation Potential,(V) Reduction Potential(V)

*Monomer 0.60 -1.29 -1.85

Dimer 0.73 0.27 -1.29 -1.65 -2.19

*Trimer 0.93 0.47 0.08 -1.35 -1.59 -1.97 -2.33

18



Table V. Parameters used in the calculations: principal quantum

number (n), ionization potential (IP) in eV, orbital exponents ( ) in

a.u.

Atom s p

n IP n IP

Si 3 13.46 1.634 3 8.15 1.428

0 2 28.48 2.246 2 13.62 2.227

N 2 20.33 1.924 2 14.53 1.917

C 2 20.00 1.658 2 11.26 1.618

H 1 13.6 1.3 - - -

.- 7
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1.Silicon phthalocyanine monomer structure based on the X-ray

study of the trimer in Ref. L4. Hydroxyl groups in the caps

are models. The particular oligomer of Ref. 14 has, in place

of the hydroxyls, a -CH3 and two -OSi(CH 3 ) 3 groups. The S1-0

N 0

distance is 1.66 A and ring spacing is 3.32 A.
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Minimalintermediate

1 3

Full

L 2. Structures of minimal, intermediate, and full models. Indi-

cated bond lengths are based on Ref. 14. C6 ring angles are set

equal to 1200, and the phthalocyanine ring system is flattened out.
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Minimal Intermediate Fl

3.Highest occupied alu and one of the degenerate set of lowest

unoccupied eg orbitals f or the minimal. intermediate and

full modes..
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