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LASER ANNEALING OF ION IMPLANTED SEMICONDUCTORS.
MECHANISM OF AMORPHOUS CRYSTALLINE TRANSITION.

1. INTRODUCTION

One of the most fascinating debates in the field of Semiconduc-
tors Physics in recent years, centers on the fundamental interpre-
tation of laser annealing. The question of the energy transfer
from an intense beam to a disordered material, such as amorphous
silicon, resulting in the crystallization of the amorphous substan-
ce has been approached from two different points of view, both
referring to a set of fairly clear experimental results. On one

hand, a claim has been made that the laser beam simply heats the
sample up to melting the amorphous material which on cooling crys-
tallizes from melt(]"dl.On the other hand, one has considered that
amorphous to crystalline phase transition can occur at low tempera-
tures without passing through the molten state(sl Many arguments
have been developped in support of these interpretations. A large
number of publications have appeared in the litterature.

The results we are reporting here constitute a contribution
toward the elucidation of the mechanism of amorphous to crystalline
transition. Our effort has been focussed on the two extreme time
scales : infinite time observation of the structural modifications
which have been retained after laser annealing and very short time
the evolution of the system in the femtosecond range. We have attemp-
ted to correlate the steady state observations with the sub-picose-
cond modification of the system. If the general conclusion is that
random nuclecation in the high density plasma fluid state governs the
final crystallization of the system, we are using essential links
to demonstrate such an opinion. The description of the system in
the highly excited non linear regime maintained during the irradiation
of 100 fs is not available. The description of the relaxation pro-
cesses in the fs range is not clearly established. The relation
between the excited short living {luid and melting is not known.

The theory of melting and recrystallization in this regime is not
cstablished.
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We are presenting here a gread deal of interesting and important
results. They are contributing to ask the right questions more than
they have solved the essential problems. As a result of this effort
nevertheless, we are convinced today that the radiation energy in-
troduced into the condensed matter is retained in a highly excited

phase with more than 1022

antibonding states as long as the radia-
tion field continues to arrive on the system. The evolution of this
particular fluid is the interesting question with which one should

be concerned now.

In addition to the fundamental interest, laser annealing has
been considered to have a strong potential in the technology of

semiconductor doping by ion implantation. For all these reasons,

the attention of a large audience has been focussed on this problem.

We believe that the results, we are presenting here show the
possibilities and set the limits of the use of laser annealing in
the semiconductor technology.

2. RAMAN SPECTROSCOPY OF GALLIUM ARSENIDE AMORPHOUS TO CRYSTALLINE
TRANSITION INDUCED BY LASER ANNEALING.

...........

Raman spectroscopy of laser annealed semiconductors rendered

...........

amorphous by ion implantation gives the possibility to follow the

recrystallization of the material. This technique which has succes-
(6,7)

rize ionic semiconductors as Gallium Arsenide.

fully been applied to silicon can as well be used to characte-

2.1. Experimental techniques.

Semi insulating GaAs have been implanted and laser annealed at
the lLaboratoire Central de Recherches de la Thomson C.S.F. (Corbe-
14As/cm2 + .2.1014 2

300keV in order to keep a correct stoechiometry in the samples.

ville). The dose chosen was 2.10 Ga/cm® under

Laser annealing was achieved by using a YAG laser equipped with a
frequency doubler. This laser deliveres energy pulses in the energy
range 0.3 to 0.6J/cm2 at a wavelength of 530nm. Raman spectra were
rccorded by using the 488nm line of an Argon laser. The diameter

______________
-‘-‘-'_- ;;;;;

of the spot of the Argon laser was of the order of 80 m. This size,
compared to the 1mm diamcter spot of the YAG laser permits a rather e
cood Raman characterization of all the surface of the annealed DA, -

......
........
.......
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region by sweeping the Raman laser spot inside the annealed

zone.

2.2. Experimental results.

Figures 1 and 2 present the Raman spectra of two GaAs samples
in a backscattering geometry on faces (100) and (110). On these
two different faces, the selection rules are complementary, the TO
phonon being forbidden on the (100) face, the LO phonon forbidden
on the (110) face. For perfectly crystalline samples, the selection
rules are verified, the residual forbidden peaks in each case are
due to residual misalignment. The frequencies of the lines are
1, their widthes, me?sured

2

respectively Wrg = 268 cm-1, Wo T 291 cm

-1

, is equal to 3.6 cm ' for

14

with an instrumental resolution of 2 cm

both peaks. After an implantation of 2.10 and

2.1014 ion Arsenic per cmz, the samples are rendered amorphous and

ion Gallium per cm

Ehe spectra observed are typical for this kind of amorphous material
i.e. a density of states spectrum.

After laser annealing, the spectra are drastically modified.
For a low energy density, the forbidden peaks are respectively
activated for each face ; this is especially spectacuiar for the (100)
face for which the forbidden TO is larger than the allowed LO. More-
over, the frequencies of these peaks are shifted towards the low
frequency region and their widthes are broadened to more than 6 cm'1
As the annealing energy is increased, the forbidden peaks intensities
tend to decrease, their frequency shift and their widthes reduce.
However, the normal characteristic are not completely recovered at
0.6J/cm2 especially for the (100) face.

The spectacular behaviour of the (100) face for low energy annea-
ling has lead us to study the Raman spectra at the periphery of the
annealed zone by sweeping the Raman laser spot across the limit of
the annealed region where the irradiation energy continuously varies.

As can be seen in Figure 3, the spectra are continuously modified,

the amorphous band at 250 cm™ !

into the TO phonon. The allowed LO phonon appears only as a shoulder

shifts and get structured changing

on this band. The polarization analysis has been made on the (100)
face sample, with the incident electric field parallel to the <011>
axe, the scattered field been either parallel or perpendicular to

S
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e w W - ".")-?.t_‘.y‘_:\":r-'g




YL T

Tel TeTi TR .V V.UV "€ T T,

.................................

. GaAs
' (100)

amorphous

c/s B
4 Ol‘/\
20

oL

annealed
¢/sr 0.40 J.cm-2

Xtal

LO

ok- 0
IR VRN ORI P N U NN A DU BN
230 250 270 290 250 270 290
WAVE NUMBER [cm-1]
Figure 1 Raman spectra of a laser annealed sample of GaAs(100)

for various energy densities.
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the incident field. For this last polarization both peaks TO and

LO are forbidden in a perfectly crystalline sample whereas the

LO phonon normally appears when both fields are parallel. In

Figure 4, it can be seen that t?e selection rules are well observed
when the analysis is made at the center of the annealed zone but
are not at the intermediate region, where spectra are rather iden-

tical for both polarization.

The more important feature presented here seems to be the gradual
transition from the4émorphous spectrum to a crystalline one. This
fact involves a continuous variation of the degree of order versus
the annealing density energy. The late apparition of the longitudi-
nal optical phonon when increasing the annealing energy confort this
hypothesis as the existence of this phonon is due to long range
Coulombian forces. A way of understanding such a continuous varia-
tion is to consider the presence of microcrystallites in the annealed
region. Such crystallites have yet been observed in laser annealed
Silicon and Gallium Arsenide(9’10). There are very few published
results on Raman spectroscopy of small crystals. The only extensi-
vely studied case is the graphite(11) where.only very small size
crystallites are available. In this material, new peaks as well as
a shift of the high frequency EZg first order peak are reported and
attributed to the wave vector selection rules relaxation. The shift
observed is toward the high frequency region. This is not contradic-
tory with our observafion of a low frequency shift in GaAs if the
special shape of the dispersion curves of graphite is considered.

In this material, the highest branch of the dispersion curves reaches
a region of higher frequency (1600 cm—1), than the zone center EZg
mode (1581 cm-1)(12). Furthermore, this EZg mode is transformed

into a band situated at higher frequency (1600 cm']) in the amorphous
state of graphite (glassy Carbon) which is an opposite behaviour as

compared to GaAs or Si.

Only a complete calculation of the lattice dynamic of a micro-
crystallite would fully justify the hypothesis of the size effect.
A similar computation has already be done at the laboratory on
Silicon(z). The extension of this model to GaAs is not straight-
forward because of the presence of the long range Coulombian forces
which ensure the stability of this ionic crystal. This extension is
the object of the following chapter.
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for various energy densities.
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Raman spectra of a laser annealed sample of GaAs (100)
from various points of the sample. The incident field

Ty

is parallel to a100 axew the scattered field is perpen-

dicular or parallel to the incident field.
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3. THE VIBRATIONS OF A GALLIUM ARSENIDE MICROCRISTALLITE.

3.1, Lattice dynamics of thin ionic slab of GaAs.

The complete calculation is presented in three publications
added in annexe (A1). We just summarize here the method and the

results.

A full lattice dynamics of a microcrystallite is outside our
possibilities as it should need the exact knowledge of the geome-
tric shape of the grain and as it would need the diagonalization
of matrix of order 3N where N is the number of atoms inside the’

crystallite. Even for very small crystallites N exceeds some
thousands so that computation duration should be excessive. That is
the reason for which the crystallite has been modelized by a thin
layer of material inifinite along two dimensions and finite along
the third. The finite dimension should be sufficient to introduce a
shift on the frequencies of vibration as compared to a crystal infi-
nite along 3 dimensions.

To resolve this pfoblem, it is necessary to solve the equations
of motion of the atoms of the slab, that is to say to diagonalize
the corresponding dynamical matrix. To simplify the problem, the
choice of a cristallographic orientation of the slab is of premium
importance as symetry consideration can reduce the computation. In
our case, the slab is parallel to the plane (111). With classical
notations, the equation of motion are

m (1K) = -1§k'§ 0qp 1K1k Juga(1'k") (N

The slab being infinite along two dimensions, the cyclic condition
y of Born Van Karman can be applied along these two directions. The
;;‘ solution of equation (1) can be expressed in the form :

(1k) ——,7-2—V°‘(13k) {~iet+2Z1iy.X(1k)} (2) e
u = expf{~iwt+2miy.Xx TN
o m P Y - ':\ ‘j
k :-.‘:- . o
-‘-.-;'\-l'\ !
e
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e
ot )t
..
l'l
7,
l‘¢"l-a
Ve,
Alsoe Yy




where the vector V(13: K) depends only on 1, the parameter which
labels the cells along the limited dimension.

y is a two dimensional vector of the two dimensions B:‘*1llouin
zone associated to the structure. By reporting (2) into (1), we

obtain :

wlv, (15k) = I D,a(sks13K" [¥Ivg(1k") (3)

z
13k ]
with

¢,g(1k;1'k")
. 77— (4)

' D (1 k;1tk' §) = 1
aB3TS 131y (mymy ')

exp{2mi ¥.X(1k;1'k"')}

Daf is the dynamical matrix, naB being the matrix of force
constants.

Since cyclic boundary condition does not apply to the limited
dimension, no further reduction is possible except those associa-
ted to symmetry considerations. Under these consideration the
3 x 3 matrixes D (13, K, L'S’ K') which describe the interactions
between the plane lattices ake the form

A-B 0 0
D‘(13, K, L'S’ K') = 0 A-B 0
0 0 A+2ZB

which shows that the modes of vibration can be separated in two
groups, one doubly degenerated which describes the vibrations
parallel to the slab, the other non degenerated which describes
the vibrations perpendicular to the slab.

To go further, we need now to choose a model of force constants.
The long range interactions and the short range interactions must
be processed differently as it is well known that Coulombian forces
introduce discontinuity.




For short range interaction, the model choosen is the Valence
Force Field force constants with 10 parameters describing the
linear and angular bondings between first and second neighbours.
The potential energy for this model take the form :

o
]

A 2
TaE I Args + —— I (Ar::)"*r.p z Ar., +
0 Ga-As 1] , Ga-As 1) ! Ga-Ga 1k

U 2 v 2
~— I (Ar; ) “+r.o z Ars 4—— I (Ar.,) "+
Ga-Ga ik ] As-As Jj1 As-As j1

2
670 2.%6%0 2
3 (88;) 4—5— I (46..,)°+
2 As-Ga-As jil Ga-As-Ga ijk

+

k kir 2

+ -

k ' k!

TT TT
~ I Ar. - T..+ -7 PN Ar.. AT.
As~-Ga-As )1 11 Ga-As-Ga 1) jk’

+

]
where £, A, p, U, T, V, ke, ké, k are the ten parameters and

rr
Ty and r, the first and second nearest neighbour distances.

3.2. Results and discussion.

The frequencies of vibrational modes of a thin slabs have been
calculated for a thickness varying from 2 to 25 unity cells.

The Figure 5 shows the variation of frequency of six modes o
versus the thickness of slabs. These modes are grouped in two
optical modes (TO and LO) and four surface modes. The two opti-

cal modes are the more interesting as they are the modes that
correspond to the Raman active TO and LO modes in the limit of
large number of unit cells (infinite crystal). As can be seen,

the frequencies of these modes tend very rapidly to their limits.
After 10 unit cells the frequencies have reached a stable value

s corresponding to the frequencies of the infinite crystal. For a
TS small number of cells than ten, the frequencies of the TO and LO
e . . . .

e modes are inferior to the bulk frequencies, result which corre-
i; lates the Raman spectra observed. The surface modes are not easily
oo seen by Raman spectroscopy so that their interest is only theoric
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as they cannot be compared to experimental results. Another inte-

resting theoretical deduction is that for a given slab of definite
thickness, all the modes except the surface ones, fall on the
dispersion curves of the infinite structure of GaAs (Fig.6). The
four missing point at the edge of the Brillouin zone correspond

to the four surface modes. These surface modes can thus be consi-
dered as a superposition of the four missing modes. This fact
implies that the continuum of frequencies obtained by several
authors when calculating solution for different wavevectors on the
plane of the slab, is the projection of the dispersion surface on
the two dimensional Brillouin :zone.

4. EXPERIMENTAL DETERMINATION OF THE TEMPERATURE OF SILICON AT
THE SPOT OF A CONTINUOUS LASER.

The possibility to characterize the laser annealing during the
impulsion by using the Raman spectroscopy was evidenced by Compaan
et al.(ls). Their mcasures showed that the temperature reached
immediately after the end of the pulse was of the order of 400°C.
This result, which is still controversed, is the last experimental
evidence for a non thermal annealing during manosecond scale. To
test the validity of this kind of measurements, we have measured
the temperature of a Silicon sample during a continuous laser irra-
diation by using Raman spectroscopy. Three quantities have been
studied : the Stokes to anti-Stokes ratio, the shift of the normal
mode and the broadening of the normal mode.

4.1. The Stokes to anti-Stokes ratio.

Raman scattering consists of an inelastic scattering of the
light by quantified excitations. In the case of a semiconductor,
the elementary excitations responsible of the scattering are the
phonons. Two processes coexist in the scattering.

Tn the Stokes process, incident photons of frequency w; Create
phonons of frequency Q and are scattered with a frequency wg=w, -Q.

In the anti-Stokes process, the incident photons interact and
arihilate the phonons and are scattered with a frequency AN TR

—— ii_k';_' —
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Raman spectra are thus formed by a set of peaks symetrically
disposed in cumparison with the incident frequency w; . The inten-
sity ratio of these two processes is governed by the statistic
of Bose-Einstein :

I
s n+l

= 2 where n = 1 / (exp|RQ/kT|-1)
Tas 0 |

In fact, this term only describes the thermodynamical part of the
intensity ratio and in order to be accurate, it is necessary to
take into account some corrective terms.

First, the Raman effect is a scattering phenomenon and then,
the scattered intensity varies as the fourth power of the frequency

of the incident light. More precisely, it varies as the product
CH wg where wy and ws are the incident and scattered frequencies

(ws =w; -2, 9 being the phonon frequency). This term introduces

the corrective factor (ws/mAS) which is temperature independent.

Another dependence upon the incident frequency is due to a
resonance effect. Raman scattering intensity increases as the
incident ‘1light comes close to the direct gap of the material.

This resonance term is difficult to compute so we have chosen to

use experimentag.rgsults obtained at the laboratory(14). This correc-
tive factor —STE%LGE‘T is temperature dependent by the intermediary
of the energy gaﬁ’vé?iation. However, this temperature dependence

can be neglected when the energy gap is far from the energy of

incident wavelength which is the case in our conditions.

A third correction is due to the difference between the values

of the absorption coefficient at the incident and scattered energy.
This gives a correction of the form

.+
%j * s

.+
Q3 * Ops

Besides all those theoretical corrections, these is an experi-

Y mental correction induced by the variation of the overall response
v of the spectrometer. This factor K can be measured with a standard
spectral lamp. With all these corrective factors, the ratio of

——Oeebas—toantieliokes. intensilics is expressed by the equation




s
( :
Tzs @3 Y G5 TWpg S(wj,Wpq)

I a. + o w S(w; ,w.)
i As S 43 ir”s
e

In the case of Silicon, the entire correction has been

computed and for an energy of ws of 20.492 cm'1 is equal to 0.83.

I
=

IAs

=0.83 Ml - 0.83 exp (Ke/kT)

A measure of the Raman intensities of Stokes and anti-Stokes

peaks versus temperature has been realized on a Silicon heated

in an oven. The points on Figure 7 represent the ratio of IAS/IS.
On the same figure is represented by a continuous line the theore-
tical function IAs/Is = 1.2 exp (-748.3/T). As can be seen on the
figure, the fit is only good at low temperature. At high tempera-
ture, this curve is significantly lower than the experimental
points. The reasons of this discrepancy is the incertitude on some
of the coefficients which form the correction stated above. In
order to increase the precision of the measure, we have choosen

to realize a least square best fit of the experimental results
with a theoretical curve of the form :

IAS/Is = A exp (-748.3/T) where A is the parameter to be adjus-
ted. This computation gives a value for A of 1.284 so that we can
practically measure the temperature by using the formula

Ipng/Ig = 1.284 exp (-748.3/T)
This curve is represented on Figure 7 by the interrupted line.
The temperature obtained by this method is exact with a precision

of about 20 4.

4.2. Anharmonic properties of Silicon.

The ratio between the Stokes and anti-Stokes intensities 1is

not the only quantity which can be used to determine the temperature.
Anharmonic properties which involve a shift and a widening of the
Raman peaks an be also used. These effects are due to interaction
between phonons. The simpler mode1(15, 16) supposes that the optical
phonon anihilates giving rise to two acoustical phonons with half
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the frequency of the optical mode. In this case, the width of
the optical phonon responsible of the Raman peak can be evaluated
to

[(T) = 1(0) |1+ 2 | (n
e’ -1

The damping constant and the frequency shift have been inves-
tigated systematically as a function of temperature. Figure 8
gives the temperature variation of the damping constant T (T)
between 5 and 1400K. The dashed curve represents I'(T) calculated
from the relation.

This equation (1) is an approximate expression for the tempera-
ture dependence of the damping constant based on three-phoncn pro-
cesses (cubic anharmonicity in second order) and the simple Klemens
model(16)._lt seriously underestimates the damping constant at high
temperatures. We attribute this discrepancy at least in part to the
neglect of four-phonon processes.

It is of interest to investigate whether this discrepancy can

be eliminated by genéralizing Equation 1 to include the contributicn

(1

write the kinetic equation for the net rate of decay of an incident

of four-phonon processes. Following the approach of Klemens , Wwe

phonon into three thermal phonons in the form

4t (8ng) = =B [ (8ng*ng) (ny+1) (ny# 1) (ng+1) )

- (6n0+n3+1)n1n2n3|,

where 8n is the deviation of the incident phonon occupation number
from its thermal equilibrium value ng and B is a constant. Using

the equilibrium condition

no(n‘+1)(nz+1)(n3+|) - (n0+l)n1n2n3 = 0, (3)
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We can rewrite Eq.(3.5) as
é% (Sno) = B(n1n2+n1n3+n2n3+n1+n2
(1)
+n3+1)6n0.

Energy conservation can be satisfied in the simple Klemens
fashion by settingh’] =*“2 = w3 = h%/S. Consequently, n,=n,=n,.
The generalization of Eq.(3.4) to four-phonon processes then

takes the form :

2 3 ' 3
T = 1+ —_— B 1+ + 5
Fn=A ( eX - 1) ’ ( eV - 1 (ey-l)z) )

Where y = Kub/SKBT and A and B are constants. In the high-tempe-
rature limit, the factors multiplying A and B in Eq.(5) vary as
T and TZ, respectively.

Equation (5) has been used to fit the experimental data presen-
ted in Figure 8 by suitably choosing the constants A and B. The
best values of A and B are found to be 1.295 and 0.105 cm-l, res-
pectively, and the resulting plot of I'(T) vs T is given by the solid
curve in Figure 8. We see that the agreement between the calculated

curve and the experimental points is now quite good.

The experimental results for the line position Q(T) as a func-
tion of T are shown in Figure 9. Also shown is the fit to the data
(solid curve) specified by the expressions

Q(T) = + A(T) (6)

i

and

s), (D)

2 3 3
6(T) = C\ 1+ ——— })+D ( 1+ +
( eX - 1) ( el -1 (7-1)

Whereuao, C and D are constants with the values 528, - 2.96, and
- 0.174 cm-‘, respectively. Equation (7) is the analog of Equation
(5) and specifies the contributions of three~phonon and four-phonon
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processes to the frequency shift. The agreement between the expe-
rimental points and the solid curve is seen to be good.

If we try to fit the experimental data with three-phonon
processes only by omitting the 'term in Eq.(3.10) with the factor

D, we obtain the dashed curve in Figure 9 with o = 529 cm-1 and
C=4.24 cn” . Although this curve fits the data well at tempera-

tures up to 600K, it is clearly inadequate at higher temperatures.
This demonstrates the necessity of including terms corresponding

to four-phonon processes in the expression for A(T).

In principle, the four-phonon contributions in Equations (5)
and (7) should include terms arising from difference processes.
We have omitted such terms on the gfounds that their inclusion
would simply introduce additional terms varying as T and as T2
in the high-temperature limit and would not add any new qualitative

features.
The temperature determined by measuring the width and the frequen-

cy shift of the Raman peak and using the formulas with the fitted
parameter can give a good correlation with the temperature measured

by using the Stokes to anti-Stokes ratio.

As an example of using these methods, we give now a determina-
tion of the temperature reached at the spot of an Argon laser
focussed onto thin layers of Silicon deposited on Silicon substrates

and on Silica substrates.

4.3. Temperature of a thin layer of Silicon under continuous

laser irradiation.

Thin layers of Silicon have been deposited by C.V.D. technique

(Chemical Vapour Deposition) at a temperature of 700°C. The layer
of Silicon is then a polycristalline material. Two kind of substra-

te have been used Silica and monocristalline Silicon. The diffe-

rence of thermal conductivity of these two materials gives rise to

a different behaviour under laser irradiation. The laser used to

irradiate the samples is a continuous Argon laser. The power density
2

of the irradiation has been varied between 0 and 10kW/cm”.
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4,3.1. Fused Silica substrate.

- T s Te n el e e M e e W o m e

The Raman spectra for this layer versus the irradiation power
are presented on Figure 10. The spectra shows a dissymetry towards
the low frequencies region whioh is due to the presence of strains
inside the thin layer. This fact prevents the use of the frequency
shift and the width of the Raman peak. These strains are due to
the difference between the dildtation coefficients of Silica and
Silicon and this problem could be neglected in the case of an homo-
geneous sample.

The temperature of the layer has thus just be determined using

the curve of the Figure 7.

4.3.2. Silicoh substrate.

The Raman spectra of a deposited layer of Silica on Silicon
are presented on Figure 11. In this case, the thermal conductivity
is so high that the temperature elevation is very small. The Figure
12 shows the temperature for both substrates versus the power
irradiation. As can be seen, the temperature exceeds 10J0°C for
the Silica substrate whereas the temperature does not reach 100°C
under the same conditions for the -Silicon substrate.

5. RAMAN SPECTROSCOPY OF VERY HEAVILY DOPED SILICON.

Ionic implantation followed by laser annealing can produce new
samples doped with a concentration of impurities which can exceed
the solubility limit. This new material could present a technolo-
gical interest in the field of solar cells or I.I.L. logic devices.

The Raman spectroscopy can characterize the doping effect by
controlling two different characteristic of the spectra. The first
one is the occurence of new peaks in the spectra ; these peaks are
related to the position of the implanted impurity. The second one
is the interaction between free carriers and normal or impurity
modes. This effect is responsible of a deformation of the line shapes
of these modes.
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5.1. The vibrational modes -introduced by the defects.

When defects are introduced in a perfect crystalline lattice,
the translation symetry is suppressed and the vibrational proper-

ties of the crystal are modified. The calculation of the new fre-
quencies is rather difficult. The simplest method to achieve it

is the use of the Green functions first introduced by Lifshitz(17) S A
and then used by Dawber and Elliott(18)'in a ' model describing the ' -

vibrations of a uniquc substitutional impurity in the Silicon.

Depending upon the mass of the impurity two kind of vibrations

are distinguishable. When this mass is higher than that of the : ' ’f'
matrix, the vibrations are of the "band mode" sort. These vibra- 1;
tions can propagate along the lattice. When the mass of the impu- E

rity is lower than that of the matrix, the vibrations are of the :.h.l,-

""localized mode" sort which are located in the neighbourhood of
the impurity. The Raman spectroscopy is usually more sensitive to

localized modes than to band modes. In the Silicon, the only light
impurity with a high solubility is the Boron so this impurity has
bcen wvidely investigated by optical spectroscopy. The localized
mode induced by this atoms in substitutional poéitions have been
observed some times ago in diffused or implanted materials by

infrared spectrometry(19) or Raman spectroscopy(ZO’Z]).

5.2. Free carriers-phonons interaction in heavily doped Silicon.

The simultaneous presence of two kind of excitations a discrete
one and a continuous one gives rise in the Raman spectrum of Sili-
con to specific Effect(zz’zs). The discrete excitation corresponds
to the phonon and the continuous one to the free carriers. Both
excitations are Raman active, the phonon giving a sharp peak contri-

bution to the spectrum, the free carriers giving a very broad conti-
nuum. The coupling between these two excitations modifies the Raman
spectrum in such a way that what is observed is not only a simple

superposition of the sharp peak upon a broad continuum but an inter-
ference which modify the shape of the phonon line (Fano effect).

This shape which is Lorentzian in Lorentzian in absence of free

“~
carriers (l(w) = 0 2) becomes assymetric in presence of elec- AN
r +(w-w0) o

tronic following the equation :

2
I +
L(w) = 100%e) " here q is proportional to the ratio of the
\




tensors for purely lattice and purely electronic Raman scattering.

€ = ﬂiﬂ where Q is the 'dressed' phonon frequency and I' the phonon
damping in presence of free carriers but without interference. .he
sign of the factor q governs the sense of the assymetry observed on
the spectrum. This sign is itself depending upon the type of the
free carriers (electrons or holes). The doping with P type impuri-
ties (Boron, ...) induces anassymetry towards the high frequency
whereas doping with n type impurities gives rise to assymetry towards

the low frequency region.

5.3. Experimental results.

The sample used for this study is a Silicon (111) implanted with
Roron (1016ions/cm2, 70 kV). Boron heing » light ion, the material
is not continuously amorphized. After implantation, the Raman spec-
trum of the sample is still a cristalline one. When compared to the
Raman spectrum of the sample before implantation, only a decreasing
In intensity and a small assymetry towards low frequency are noticcea-
ble (Fig.13). This assymetry is due to strains nduced by the implan-
tation process and to small clusters ~C guworphous material. A very
small peak appcurs at oi8 cm” ' which is the frequency of the locali:
zed mode due to B;, isotope in substitutional positioné After 1::u-
diation with a YAG laser (0.6J/cm” at 1.06um + 0,2J/cm” at 0,53um),
the center of zone mode presents a strong assymetry towards the high
frequencies and a rather high intensity mode appears at 618 cm-].
This peak too, presents an assymetry towards the high frequencies.

The appearance of the 618 em” ! peak is a proof of the high concentra-
tion of substitutional Boron. The assymetry of both peaks (normal mode
and localized mode) is the indication of a high free carrier concen-
tration. The comparison of laser annealing and thermal anncaling is
done on Figure 14. The thermal annealing was achieved in an oven at

a temperature of 1000°C during 2 hours. As can be seen, the Raman
spectra are more or less similar, the intensity of the Boron local

mode being a little more intense in the case of the laser annealing.
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(a) Pure Silicon

(b) Boron implanted
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Figure 14 : Comparison of Raman spectra of Boron implanted Silicon
' laser annealed and thermal annealed.
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Phosphorus ions in substitutional site do not give rise to local
mode because of their mass which is of the order of the Silicon mass.
These ions should give a band mode but these band modes are usually
difficult to observe by Raman spectroscopy. However, when a Silicon
sample is doped with Boron plus Phosphorus, the Phosphorus atoms can
modify the local modes due to Boron atoms. As a matter of fact, the
local mode of isolated Boron in substitutional positions is triply
degenerated. If a Phosphorus atom is situated in the neighbourhood
of the Boron atom, the symetry is modified and the triply degenerated
mode at 618 cm™ | is split into two modes at 628 cm™! and 600 cm™ (24,
The Figure 15 presents the Raman spectra of Silicon implanted with
2.10'% Boron per cm2 under 50 kV and 2.1016 Phosphorus per cmz. The
implantation energies have been choosen in order to approximately
balance the penetration depthes of both impurities. After implanta-
tion a spectrum characteristic of amorphous material is observed.
After laser énnealing (0,6J/cm2 at 1,06 m + O,ZJ/cm2 at 0,53 m), the
Raman mode of the zone center is dissymetric towards the lower fre-
quencies region, proof of a surcompensation of free carriers as com-
pared to the sample implanted with Boron only. The concentration in
electrons is thus superior to that of holes on the region sampled
by the Raman laser beam. The local mode does not see its frequency
modified. The intensity of this mode is higher than for a sample
implanted with Boron only because of the reduction of the interfe-
rence due to the partial compensation of free carriers. The fact that
the frequency of this mode has not moved,seems to prove that there
are very few Boran and Phosphorus atoms on nearest neighbours sites.
On the contrary, in the case of the thermal annealing of the same
sample (1000°C - 2 hours), the local mode has moved to 626 cm '
which is a frequency characteristic of a pair mode B-P. The other
peak of a pair mode situated around 600 cm”! is not observed. The
normal mode is slightly assymetric towards the lower frequencies.

The sample is thus rather well compensated with just a weak over
concentration of electrons on the path of the Raman laser beam.
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Laser annealing and Thermal annealing have thus different effects
on Boron + Phosphorus implanted Silicon. In the case of thermal
annealing, atoms of Boron and Phosphorus have enough time to pair
on neighbours lattice sites whereas in the case of Laser annealing
this is not possible. .

The samples used were cut along a (100) face and implanted with
Arsenic dose varying from 5.101S cm'z to 5.1016 cm'z. After implan-
tation, the samples were subjected to the irradiation beam of a Q
switeched YAG laser equiped with a frequency doubler. The duration
of the pulses was typically 100ns and energy density up to Z.SJ/cmZ.
The processing of the samples was done at the '"Groupe PHASE'" at the

C.R.N. (Strasbourg).

After implantations, the amorphous character of each sample has
been verifyied by detecting the classical '"density of states" Raman
spectrum of Silicon. This typical broad band situated at 480 em” !
is due to the scattering of the light induced by all the phonons in
the Brillouin zone in contrary to the sharp peak at 520.5 cm"1 obser-
ved on crystalline Silicon for which only the mode of the center of
the zone is active. For the samples implanted in the range 5.101% ¢o
3.1016As/cm2, the large amorphous band is well observed and no thin
crystalline peak can be observed in addition to this band. This signi-
fies that these samples are amorphous on a thickness larger than the
penetration depth of the laser. For the last sample, a thin crysta-
lline peak at520.5 cm-1 is detected, superposed to the broad amorphous
band. This peak could be due to a part of the sample which has been
partially recrystallized during the implantation process itself. The
high dose of Arsenic implanted (5.1016/cm2) imposed a very high beam
current in order to keep reasonable the time of processing. This
high flux induces then an elevation of the temperature of the sample
sufficient to recrystallize a thin thickness of the just amorphized

layer (lon beam annealing).

After laser annealing, the disappearence of the broad amorphous
band confirms the recrystallization of each sample. Two features
of interest arc visible on the spectra presented on Figure 16. A

peak at 520.5 cm | is due to the light scattered by the substrate

*
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through the perturbed layer. Besides this line and shifted towards
the lower frequency region, a broader and slightly asymetric peaks
can be observed. The frequency of this peak varyies from 515.5 cm

to S:é.s'cm;1 as the implantatﬁpn dose increases from 5.10'° to
5.10

As/cm”.

1

Two processes can explain the presence of this shifted peaks in
the spectra. First, a size effect could be induced by the presence

of microcrystallites in the annealed areal’) . This effect can be L .
ruled out, considering the good monocrystalline quality of the sam- E——
ples, determined by Rutherford backs-scattering measurements. This o i

other effect is the coupling of the continuum of electronic transi-

tions with the discrete phonon state (Fano effect) discussed in
paragraph 5.2. This effect is usually weak in N type semiconductors
but the special processing of these samples (implantations and laser
annealing) can lead to a free carriers concentration far above the
saturation and thus to a very large Fano effect.

On Figure 17 are presented the spectra of an 1.5 1016As/cm2
implanted sample laser annealed before and after a thermal annealing
(600°C - 1 jour). The shift peak has disappeared after the thermal
processing. This thermal processing has released the out of equili-
brium heavily doped state of the sample thus leading to the disapa-
rition of shifted peak of the Raman spectrum.

From the value of the frequency shift, it is possible to calcu-
late the free carriers concentration. The table summarizes the re-
sults obtained for 4 samples and compared to the values of concen-
tration measured by resistivity at Strasbourg.

TABLE

0.510'0 cm=2 11 1016 cm=2{ 3 10'6cm-2{ 5 106 cm-2

Raman shift

tonat, 5 5.5 8 9
Raman con-

centration |1.6 10°! 2 1027 5.5 102] 7.5 1021
(em™>)

Resistivity 10.37 102! 0.52 1021 1.2 10°7 2.25 102"

concentration
(cm™°)
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As it can be seen, the concentration measured by the mean of
Raman scattering gives higher values than the concentration
obtained by electrical measurements. This discrepancy can perhaps
be explained by the hypothesis mode to compute the concentration
from the Raman shift. The model used to achieve this computation
suppose the parabolicity of the band structure(zs). For very
heavily doped Silicon, the Fermi level reaches regions where this
parabolic approximation is no longer valid. The flattening of the
bands increases the effective masse of electrons which in turn
increases the joint density of states. A complete calculation using
the real shape of the band structure would lowers the free carriers
concentration and thus gives a closer agrement with the values
obtained by electrical measurements.

6. SUB-PICOSECOND SPECTROSCOPY.

The expériments presented in the previous chaptei. rere made
after 1aser.annea1ing. This kind of experiments can characterize
the samples and are thus of interest for devices development.
However, it is not possible to get information on the process of
laser annealing itself fiom such studies. In order to understand
the laser annealing process, time resolved spectroscopy is required.
Since the real problem is the understanding of the relaxation
processes during the first hundredths of femtoseconds, the labora-
tory has now built a sub-picosecond laser source.

6.1. The sub-picosecond optical source.

The oscillator part of this source is of the 'colliding pulse
modelocked" (CPM) type described by C.V. SHANK(26). A Rodhamine
6G dye laser is continuously pumped by a C.W, Argon laser in a ring
geometry cavity. In the path of the cavity, a thin jet of saturable
absorbant (DODCI) allows the synchronization and the shortening of
the pulses (Fig.18). This geometry automatically involves that the
two pulses travelling in both directions in the cavity, collide on
the absorber where the sum of their intensity is sufficient to reach
the threshold of transmission. Pulse widthes of 90 fs (10'155) are
easily achieved in those conditions with this Colliding Pulse Mode -
locking (C.P.M.) oscillator.
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This oscillator is now working and is extensively tested in
order to characterize the mean power, peak power and duration
of the pulses.

The second part of the experimental set up is the amplifier.
The construction of this part is now in progress. This is a four
stages amplifier, each stage being separated from the others by
absorber jets to provide isolation. The 3 first gain cells are
pumped transversally by a YAG laser. The last stage is pumped
longitudinally by the same laser. At the output, the pulse 1is
recompressed by a Treacy compressor which comprises two gratings
in a substractive mounting. The gain in peak power should be of

the order of 106.

6.2. Characterization of the source oscillator.

Three diagnostic tools are used to characterize the pulses.
The first one is an avalanche potodiode followed by a sampling
oscilloscope. This measure can only ensure that the laser is
pulsing as the intrinseque pulse duration is much smaller than
the response of the apparatus. The period of recurrence can be
measured and is equal to 14ns which is the time of flight of the
pulses in the cavity.

The spectrum of the pulse is qualitatively checked by sending
a small part of the light diffracted by a grating onto a screen.
The lengther the trace on the screen is, the shorter is the pulse
as time and frequency are related through a Fourrier transformation.

The third measure allows an indirect determination of the pulse
duration by means of an autocorrelator. This autocorrelator is
made up of a folded Michelson interferometer where the pulse is
divided into two parts on a semitransparent layer. One of the two
pulses is delayed through a vibrating prism. The two pulses are
then recombined on a doubler crystal of KDP. At the output of the
crystal a beam of ultra-violet light is created when the two pulses
are overlapping. This light is detected by a photomultiplier and
the signal is sent on the vertical channel of an oscilloscope. A
voltage synchronized with the vibration movement of the prism is
ient on the horizontal channel of the oscilloscope. The net result
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is the autocorrelation trace of the pulse on the screen of the
scope. The measure of very short time is thus transformed in the
measure of the elongation length of the prism movement. The
Figure 19 shows an autocorrelation trace of the oscillator. The
width at half height is about 80fs (femtosecond).

The mean power of the source is easily measured with a power-
meter of the calorimeter type. It has been determined to be
omW for a power of the Argon pump laser of 4W.

Knowing the recurrence period, the mean power and the pulse
duration, it is pessible to determine a peak power of 100kW.

7. DISCUSSION AND CONCLUSIONS.

Laser annealing has now a long history and an abundant litera-
ture. The interesting question, which still remains to be answered,
is what are the elementary processes in the interaction of a strong
radiation field with matter.

The process of laser annealing consists of two sets of phenomena.
The first concerns the effect of a dense radiation field on matter
creating elementary excitation far from equilibrium. The initial
hot plasma redistributes through interactions between carriers and
ultimately thermalizes giving up energy to heavier particles which
are the lattice constituents. The second set of phenomena, of a
completely different nature, concerns the modifications induced to
the solid as a result of the creation of the dense hot plasma. If
the laser pulse is short enough, the e-h density reached corresponds
to an amount of broken covalent bonds which is a significant portion
of the total number of bonds, the crystal becomes fluid even at
T =0 K. Ultimately, the solid sets in a new phase whose structure
depends on the elementary mechanisms of interaction and organization
of the lattice constituents. We shall discuss successively these
two states as : i) direct laser effect and ii) consequences of the
laser action.




7.1. Direct laser effect.

The incident laser energy is absorbed by electron-hole pairs
creation. and by free carrier excitation. In indirect gap semi-
conductors, electron-hole pairs. are created via indirect absor-
ption processes involving the emission and absorption of phonons.
Because phonon energies are much smaller than photon energy, the
amount of energy transferred to the lattice during absorption is
negligible in comparison to the total amount absorbed. The rise
of carrier density leads, in turn, to increased free carrier

absorption. The net result is the production of hot-electrons

and holes far from équilibrium which subsequently thermalize with

the set of the carriers and eventually with the lattice. The obser-
vations by Shank et a1(27) demonstrate that with short, 90 femto-
seconds optical pulse, an unstable form of highly excited state is
created near the surface which persists for a fraction of picosecond.

For very short impulsion of radiation, from the experiments(21—27)

one perceives clear indications that there are two steps of the
laser action on a crystal well separated in time. In the first
step, the electromagnetic energy transferred from the laser beam
to the solid is retained in the highly excited non-equilibrium
electronic state. In a second step, this energy is transferred to
the lattice.

Recently, a theoretical model(zs) is proposed which takes into
account the space time evolution of the plasma during the pulse
in order.to explain the processes in densities higher than 1022cm'3
reached in 100fs pulses. The novelty in this model is the argument
that free carrier absorption is dominated by e-h collisions with

a characteristic relaxation time t = 3.10 105,

A different situation is reached with much longer pulses :
T, = 10ns and a photon absorption rate g ~ 103" em™3 571 . Auger
recombination becomes the dominant recombination mechanism at

these densities.

Most of the laser energy is absorbed by the carriers within the
absorption depth. Eventually, these carriers loose their energy

to the lattice, the rise of the lattice temperature then depends
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on the distance they have diffused before substantial phonon
emission occurs. At moderate density, the phonon scattering
time is © ~ 10”13s, Screening does not affect the rate of
intervalley phonon emission until Ne n 1041 cm's. Because
screening increases the electron-phonon scattering time,

it not only decreases the rate of phonon emission but also
enhances diffusion. This increases the volume of the region

in which the energy of the excited carriers is transferred

to the lattice. Owing to the extreme non linearity of the hot
carrier effects, it is impossible to make an accurate estimate
of the precise temperature to which the lattice is heated or
to determine the laser power threshold above which melting will

occur.

7.2. Consequences of the laser action.

The equilibrium observations are clear : an amorphous or
glass solid is transformed into crystal under laser action and
a crystal submitted to very short laser irradiation is transfor-
med into amorphous material. An implication of both of these
transformations is that melting preceeds the transition. Another
alternative is that the phase transition is directly induced in
the highly excited state.

The effect of a dense plasma on the melting temperature is
itself an interesting problem of solid state theory. This question
has been recently addressed by Bok and Combescot(so). It is shown
that in the presence of a dense plasma, the melting temperature
of a solid changes. The melting temperature decreases with increa-
sing plasma density. For a laser pulse of 1J/cm2 during 10ns, it
is considered that e-h plasra reaches a steady state in a time
shorter than the laser pulse. Considering the plasma expansion due
to its high pressure, its collision with phonons and Auger recom-
bination, the highest plasma density is of the order 1021 cm°3.
This density is nevertheless considered to be sufficient to consi-
derably reduce the melting temperature so that a metallic layer

of liquid Silicon is formed at the surface.
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The role of a high plasma density in laser annealing has been
discussed by Van Vechten et al(s) in a quite different way but
still involving electron-phonon coupling and lattice instability
induced by this interaction. Above a critical carrier density
estimated at 8.10%% cm™3
At this plasma density, the bond charges will be so depleted that

, a second order phase transition occurs.

they will no longer be able to stabilize the TA phonon modes(zs).
The crystal will no longer resist shearing stresses and will beco-
me fluid. This fluid is distinct from the normal molten phase of
Si the latter being the result of a strictly first order phase
transition driven by the atomic motion at high temperatures. The
assumption of Van Vechten is that the plasma is supposed to direc-
tly induce the structural transformation. The energy is retained
in the electronic system instead of being entirely associate with
the atomic motion. As the plasma becomes less dense due to expan-
sion and to transfer of energy to the lattice, the material will
pass back through the second order phase transition at 8.1021 cm™3
and covalent bonding will gradually appear. The material will fina-
11y recrystallize if this process is relatively slow or will soli-
dify in the amorphous phase if the process is very fast.

This dense plasma phase could be compared to the highly excited
Silicon which persists for a fraction of a picosecond(27’28). The
interpretation of the laser action differs nevertheless with regard
to the following step ; it is generally considered that the solid
melts after the initial interaction stage.

In conclusion, few points appear clear today. The laser inter-
action with the solids results first in the creation of a highly
excited non equilibrium phase which persists for a fraction of a
picosecond. The question of how this highly excited fluid interac-
tion with the lattice remains still open. Further investigation in
the very short impulse regime are certainly desirable to clarify
the physical processes in laser annealing.
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Lattice dynamics of thin ionic slabs. I. The electrostatic energy
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The electrostatic energy per cell for thin slabs of ionic crystals is calculated as a function
of the thickness of the slab, its orientation, and the position of the cell with respect to the
surfaces. The summation method used is simple and quite general to allow for direct appli-
cation to slabs of any structure. The depolarization field associated with slabs of certain
orientations is also calculated and discussed. Numerical resuits are given for slabs of the

zinc-blende and rocksalt structures.

I. INTRODUCTION

The properties of small particles of solids
{(10—~500 A) and thin films are sometimes very
different compared to those of the bulk material.
Since the infinite crystal approximation is widely
used, calculation of these properties has to over-
come, in most cases, the problem of the presence of
surfaces. 4

In particular, lattice-dynamical calculations in
finite ionic crystals involve the evaluation of slowly
and conditionally converging sums, depending on
the shape of the crystal. Hence quantities such as
the electrostatic energy per cell, the internal field,
and the long-range interaction depend on both the
size and the shape of the finite crystal.

De Wette and Schacher' discussed these matters
in connection with a planewise summation method
employed to calculate the internal field in general
dipole lattices. Monkhorst and Schwalm? treated
the electrostatic energy of two-dimensional periodic
charge distributions, where they demonstrate the
cancellation of singularities in the case of a vanish-
ing dipole moment on the plane of the film and cal-
culated the Madelung energy of some ionic layers.

In this paper (paper I) we report on the electro-
static energy per lattice cell in a thin ionic slab, cal-
culated as a function of its thickness and of the posi-
tion of the cell with respect to the surfaces, for siabs
of different orientations in the zinc-blende and rock-
salt structures. Surface cells show up to 10% higher
electrostatic energies in certain orientation, assum-
ing they maintain the same structure as the bulk.
This fact could be of importance for surface recon-
struction and other surface phenomena. Moreover,
the depolarization field associated with certain
orientations may also influence the stability of the
surface layer, through the rearrangement of the elec-

28

tronic charge it necessitates.

In Sec. I we describe the planewise summation
method employed, a variant of Ewald’s method,
which assures fast convergence and which is very
simple and quite general in order to allow for direct
application in any case. It has advantages also over
the traditional Ewald’s method currently used in
lattice-dynamical calculations, for it converges fas-
ter and it provides results practically independent of
the dividing point R.

In Sec. 111 we calculate the depolarization field as-
sociated with certain orientations of the slab as a
function of its thickness. Finally in Sec. IV we give
and discuss some results for slabs of the zinc-blende
and rocksalt structures.

I1. DEFINITIONS AND METHOD

As defined in the case of an infinite structure, the
Madelung constant is a dimensionless number ex-
pressing the electrostatic energy per lattice cell with
respect to some unit of length (usually the nearest-
neighbor separation rq). This energy is of course the
same for any cell in an infinite structure, but in a
finite crystal it depends on the position of the cell
with respect to the surfaces.

Hence it is possible to define two “*constants,” one
the average over the whole finite crystal a, (V), de-
pending only on the total number N of cells in the
crystal, and one a(!,N), depending both on the posi-
tion of the cell under consideration [/=(l,1,15}]
with respect to some reference point in the crystal
[/=1(000}], and the total number N of the cells in it.
In the case of a slab, N is the number of the cell
layers and [ runs from (— 0, — c,0) to f £, 20, N ).

Between these two constants the following rela-
tion holds:

3390 © 1983 The American Physical Society
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1 & on the consequences of using this method.
"-V(N)=F§G(I’N) g Y The potential at a })oint X due to all ions in a

where the sum extends over the N layers of the crys-

tal, and the limit for N— o should give the value

of the Madelung constant for the infinite crystal.
The position-dependent “constant” can be defined

as
N N N N rob
all,LN)=7
: EHE,E; E, | (&) —%(1,K) |
[ I

()

where £, is the fraction of the electronic charge at-
tributed to ion «.

In the case of a slab parallel to the plane (hki) of
the crystal, we can always choose such a unit cell
that the primitive translation vectors @, and @, lie
on the plane (hk!) and d; lies out of it. The thick-
ness of the slab is measured by the number N of
cells superimposed on the direction perpendicular to
the plane (hkl). Since the unit cell chosen that way
may be a multiple one, the summation over « has to
be performed over all atoms in that cell.

The structure is considered as two dimensional
and a two-dimensional reciprocal lattice is associat-
ed with it, defined by the vectors

A, x(a;xXd;) - (q,xd;)X4d,;

, by=——— . (3)

E|=
ERS Ak

ERSh

We note also that since the structure is infinite in

two dimensions, a(l,N) becomes a function of the

index I3, which gives the position of the cell with
respect to the surfaces of the slab.

To evaluate the right-hand side of Eq. (2) we use a

variant of Ewald’s method. We will comment later
]

2 ,
V== [~ S 3 Gexpl— IR =T, 1%

llglk-l

crystal slab is given by

VaN=3 3 3 L

<=1 | X(y,15,05,6") =X |

Iy=

4)
where the sum over /| and /; runs to infinity. To
find a(l;,N) one takes the limit

allyN)=""S €, lim lvm

T — Xy,x)
R
| Ry — X |
(5)

where X(/;,)=X(0,0,15,k).
Since by assumption the vectors @, and 4, lie on
the plane of the slab, we can write

[R5, 05,60 = |2

= | XU, 15)+ %3, =% | 2

4? |_x.1“'3:K")—_x.1!2a (6)

where || and 1 designate, respectively, the com-
ponents of the vectors parallel and perpendicular to
the plane (hk!).

With the use of relation (6) and the integral repre-
sentation of 1/x,

%:—‘/2—1_7 fom exp( —x2p?)dp , (M
Eq. (4) becomes
2] 3 expl — | X(17,15)+ % (3.6 ) =% | 2p*)dp . (8)

"1

The sum over 1}/; in the above expression is a periodic function in two dimensions and can be expanded in

Fourier series,

2 ,
3 S expl - [ X(17,05)+X)403,6) =X | 7]
i,

e .
2T S exp( 7| Fhy,hy) [ /0= 2miCh ) [R5 k)= ]}, (9)

5aP” kA,

where s, = | 3, X3;| and §(h,,h;) is a vector of the two-dimensional reciprocal lattice, defined by relations
(3).

To keep in close analogy with Ewald’s method, one should split the integral in Eq. (8), into two integrals
over the intervals (O,R) and (R, o ) using both sides of relation (9). This leads to an expression containing er-
ror functions which converges rapidly, but its numerical value depends on the dividing point R more strongly
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than if unnecessary splitting is avoided.

-Since we are going to take the limit of V(x) for X — X(l3,x) [Eq. (5)], the first exponent in Eq. (8) will vanish
in the term Ij,x'=13x. It will vanish also for /5 =/ and x"=x""+#« for all ions «"' lying on the plane (hkl).
Hence we separate out these terms (/3 =I3 and x’=«"") and we use only the right-hand side of relation (9) in all
terms of Eq. (8) except the last ones, for which the integral has to be split and use of both sides of relation (9)
has to be made. We get

2 \/T_T N N N N

® =g o - d
V(XyN):'- 2 2 2 2 gx' 2 fO exp[—1xl(lhx)_"xllzpz—_”Z'y(hhh2)lz/pz]—§‘
a 1'3=|l3=l::':xl"x"=l hyh, P

=l

Xexp{ ‘—Zﬂ’iy(h),hz )'[K“(IS,I\")—X.””

T LD N N R IWISES NN SLE NI LT

P R s .
2T 36 3 [ Cexpl - ythihy) | - _3(1([3,K")—3('1|2p2]%
K’ LI

Xexp} —2miythyhy)[Xlyk") =X 11, (10)

where "' runs over all ions in the unit cell lying on the same plane (hkl) with 1on « (x included).
Taking the limit in Eq. {5) using the function

1 __2 1=
Hx)= Cerfe(x)= 2=~ [ e tar, (11)
the result’
lim RH(R}X(I},K)—?\)—-—“‘L——"‘— :—_2‘5___, (12)
T Ty P XU 3,60 =X | v

and V(x,N) from Eq. (10}, Eq. (5) becomes

r
ally, N)=—-3 &,

NN NN o~ ,
2 233 3u3/, expl~:‘xuu,x,ls,x'wZpl—nzl‘ywhl,hW/pz]i;‘é’-

>
>

xexpl —2miy(hy by )X (y,6,15 k)]

+R 36 S HR T, 15,6 1)

< I'l.llz

+ TS S Him ! §ih,,hy) ) /R )exp| —217[')7(h,,h2)-R’H(x,x”)]—-—‘2/—1;§,+ TN |
w

Rsa 'S hy .k,

(13)
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where the primed summation signs mean that terms with /1,15 for x" =« or (h,h;)=(00) have to be omitted

-and T'(l3,N) is just the sum of the (h,A;)=(00) terms given by

2\/-

T(3,N)=

2 2 2 Ef.wf exp[ — | Xy(ly,:,03,6') | %p 25 fo (14)
r,oh

. K’
Ly=l

The function T(/5,N) diverges for p equal to zero. Its Alimit for p—0is

T(I:hN) —2‘/- ‘/— 2 2 2 2§i|31”3,"»l's."')| +';—2€x" (15a)
Sa ol ® % '
3 g’
13,
since .
2 2 3 ket Zhe |lim [l =0 (15b)
b e ' P el Vo
I3l

due to the neutrality of the unit cell. _
Evaluating the remaining integral in Eq. (13) and using the result (15a) we find

-3 %3 3 Syt

25, B=1h=1 £=1 =1k | ¥(hyky) |
Iyl

cxp[ 211’] y(hl,hz)l | x1(13)K)13’K )l

—21ri"y°(h|h2)'i'(l3,x,13,x')]

"oR

IZ’K")“*_EEK RS, 2§§x§x

'°R - Z3bke 3 HR IR,

.1

225.& S H(m|§(hy,hy) | /R)expl —2miFh,hq) T ix,k")]
x X

bk,

2Rs

ﬂ'o

zg Ede | Rinx)| (16)

where we dropped the subscript || as of no importance since the vector ¥(A,,Ak;) has no component perpendic-
ular to the plane of the slab, and where we also reduced the first sum in (15a) since for the pair of terms with
x=x;, x'=x) and k=«), &' =K, one has

li;(';.‘hls,xi)l + |21“3,K'|,I'3,K|)I =2 | i(l;.l',)l an

for all I, %15, and hence the sum over x and x’ is zero for all /; =/, due to the neutrality of the unit cell.

Equation (16) is our final result. In this expression the sums of H(x) functions converge rapidly and so does
the first sum provided that | X,(/;,x,/3,4’) | is not too small, the slowest convergence occurring when /'y =
For N — o« and I, well away from the surface a(/;, oc } will give the Madelung constant only if the depolariza-
tion field is zero as we will show in the next paragraph.

III. THE DEPOLARIZATION FIELD

The function ¥(x,N) defined by Eq. (4) gives the potential at a point X of the space due to all ions in the
slab. Its values at a point P (X, ) outside the slab is given by
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Vixp,N)=Vs(xp,N)+V,(xp,N), (17a)
where
' N N exp[ —21 | F(hy,ha) | [ Kl .6) =R
VI(IP,N)-_—"I_ 2 25"2, p[ ly 15782 l | 0N Pl']
Sa 13_1!’:! LI IY(h),hz)l
X exp{ —2miy(hy,hy) [X) (13,6 )—%p]} (17v)

and

N
V(xp,N)———- ! 2 Ep | X (15,6 )—%py |
Sa Iy =10=1

(17¢)

as obtained by using only the form of the first sym
in Eq. (10) and taking the limit of the first integral
in Eq. (14).

The first term, ¥,(xp,N), in Eq. (17a) represents
the local fluctuations of the potential and it goes to
zero for a point P very distant from the slab. The
second term, V. (xp,N), represents a constant poten-
tial and it is independent of the position of the point
P (considered on the same side of the slab), This can
be easily shown by taking the charge fraction £, of

a particular ion «; to be

be=— 2 bc- (18)

Then, assuming a positive xp; and a unit vector
Vo=, X%,/ |8 X%;]|, V.(xp,N) from Eq. (17c)
becomes

AV, =V(—0,N)—¥(+ w,N)
=4y 2 EdR) =K K]V,  (22)
Sa g,

L)

which is locally modified by the difference of the
corresponding terms (17b) for local fluctuations.
Defining a dipole moment for the unit cell by

P.= 3 &%) —R(x")) (23)
KK
x\Ky

the potential difference AV, of Eq. (22) becomes
AV, = —:iNE Vs (24)
. _

The distance between the two surfaces of the slab is
L=(N-1)a,+d, (25)

where a; = | ;¥ | is the thickness of one unit cell
and d is the distance of the outermost planes of ions
belonging to the same cell (Fig. 1).

Assuming that the potential AV, [Eq. (24)] drops
uniformly across the thickness of the slab, the fol-

Ve(xp,N)=V(+ o0, N)=NV(+,1) (199  lowing field is created:
: Na
where dr U B9,
EI(N) v N—Tha, + d(P‘. V0 » (26)
Vit D=~ -;,_ "%n £l Xl —X ()] Vo where v, =s,°a, is the volume of the unit cell.
«,x
(20) N colls
is the potential created on the one side of a set of m
parallel uniform charged planes through the posi- Bl
of the ions in a slab of one-unit-cell thickness. A
R idering now the potential at a point P’ on the " ST
ey other side of the slab, one finds, apart from the term e
" describing the local fluctuations, a constant term EA T
::. . W e 4 .
VelxpnN)=V(~0,N)==V(+,N). (1) g

Hence there is a constant potential difference AV,
between the two surfaces of the siab, given by

FIG. 1. Schematic representation of a slab consisting
of N one-cell layers.
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Hence the presence of surfaces parallel to charged
planes of the crystal produces a macroscopic field
E () perpendicular to the surfaces, and conse-
quently the ions are no longer under the same condi-
tions as in the infinite crystal, where no surfaces are
present.’

To make the slab equivalent from that point of
view, with an infinite crystal without surfaces, one
has to apply an external field E(N) equal in
strength and opposite in direction for the total mac-
roscopic field in the slab to be zero. By doing that,
the energy per cell changes by the amount

W AN =7 S &ValoN), (28)

where V,,(k,N) is the potential at ion site x due to
the externally applied field.

Using again Eqs. (18) and (23) we find for the
change of the energy per cell

W (N)=3E (NP,

-090} Zinc blende

P b ahk SRk TERtS

\ (100)

-100}

120

-130

w\.3/8

-160¢

-170

Thickness
(Number of celis)

FIG. 2. Electrostatic energy per cell for the central
layer, as a function of the thickness of the slab, for slabs
of the zinc-blende structure oriented parallel to (100),
{(11T), and (110) planes.
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Increasing the thickness of the slab and taking the mr Na, I

limit of Eq. (26) for N— «, we find =-';‘_m(l’ Vo), (29)

which is a negative quantity or zero if Pc lies on the
plane of the slab. The factor depending on N goes
to unity as N — 0, and in the limit we get

W)= —%’1@,-%)2 . (30)

Hence the value of the electrostatic energy per unit
cell, obtained by Eq. (16) for N— « and /; well in-
side the slab, is higher than that given by the
Madelung constant, by W.( ),

ay= hm a(N/2JN)+rogW (o), (31

N— oo

where we multiply W.(w) by ry the nearest-
neighbor distance in order to be consistant with the
other terms.

IV. RESULTS AND DISCUSSION

Using a variant of the Ewald’s summation
method we calculated the Coulomb energy per unit

Rocksalt

- 0.70 il ol S P

1

4
I
d,m(m)

-140

o~
2 -150

w(N/2,

-1.60

-170

-180

Thickness
(Number of cells)

FIG. 3. Electrostatic energy per cell for the central
layer, as a function of the thickness of the slab, for slabs
of the rock-salt structure oriented parallel to (100), (11T),
and (110) planes.
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TABLE 1. Electrostatic energy per cell for central cells of thin slabs.

Number  Central

oy Ny
- LA ATV TR B L Ty Song vy e -t

I8

I b r;‘; "4";.:")’537;:
| oot PR .4

of cell a(N/2,N) for zinc blende* a({N/2,N) for rocksalt*
layers (N) (N/2) (100} 110 mnh (100) (110) (n
1 1 0.96795 1.344 48 1.35832 1.61554 133129 0.78646
2 1 0.963 33 1.508 20 1.384 84 1.68232 1.57097 0.74311
3 2 0.95871 1.67192 1.41136 1.74910 1.81064 0.69975
4 2 0.958 29 1.65347 1.41135 1.74832 1.77588 0.70006
5 3 0.95788 1.63501 1.41134 1.74754 1.74112 0.70037
6 3 0.957 88 1.63670 141134 1.74755 1.74470 0.70037
7 4 0.957 89 1.638 38 1.74756 1.74828
8 4 0.95789 1.63821 1.74756 1.74788
9 5 1.63803 1.74749
10 5 1.63805 1.74753

*The minus sign is omitted.

cell of thin slabs of tlic zinc-blende and rocksalt
structures for cells of the central layer (or layers
when N is even). In Fig 2 we show the dependence
of a(N/2,N) on N for thin slabs of the zinc-blende
structure oriented parallel to (100), (111), and (110)
planes. For each orientation, a(N/2,N) converges
very rapidly to a different limit. The only limit
which coincides with the Madelung constant
(ap =1.63806) of an infinite crystal is that for the
slab par: lel to (110) planes since these planes are
through both positive and negative ions and hence
ncutral. The limit for a slab parallel to (111) planes
is higher by 7/8V3, which is exactly the energy of
the unit cell given by Eq. (30) (multiplied by 7). In
the case of the slab parallel to (100) planes the limit
is higher by 7v/3/8 in accordance with Eq. (30). In
both of the latter cases the infinite planes forming
the slab are through only one kind of ion (positive or
negative) and hence there is a net dipole moment
perpendicular to the plane of the slab.

A common feature to all three cases is that
a(N /2,N) tends to its limiting value through an ex-
tremum, a maximum in the case of the (100) slab
and a minimum in the cases of (111} and (110) slabs,
in an oscillatory way. For the (110) slab the
minimum is most pronounced, lying more than 2%
lower than the limiting value ay,.

In Fig. 3 the dependence of a(N/2,N) on N is
shown for thin slabs of the rocksalt structure orient-
ed parallel to (100), (111), and (110) planes. In both
(100) and (110) cases, a(N/2,N) tends to the value
of the Madelung constant (1.74756) since both
these planes are neutral, through a minimum which
is almost 4% lower than the limiting value for the
(110) slab. For slabs parallel to (111) planes the lim-
it is higher by 7/3 in accordance with Eq. (30).

In Table I we summarize the numerical results for
the six slabs of different orientations and structures

*

previously described. The most rapid convergence
of a(N/2,N) to its limiting value is observed for
slabs of (111) orientation in both structures, and the
slowest is for slabs oriented parailel to (110) planes.

In Table II we give the values of the electrostatic
energy per cell a(l;,N) for cells at different dis-
tances from the surface for a thin slab of the zinc-
biende structure, oriented parallel to (100), (110),
and (111) planes. It can be seen that the limiting
value is reached within even the second layer for the
(117) slab, while for the (110) slab it is reached at a
deeper layer.

In Fig. 4 we give the depedence of the electrostat-
ic energy per cell {ro W (N), Eq. (29)] due to a mac-
roscopic field equal in strength and opposite in
direction to the field created by the slab of N layers.
Among the cases considered here, such a field is
created by the (117) and (100) slabs of the zinc-
blende structure and by the (111) slab of rocksalt
structure. The corresponding limiting values are
reached very slowly but the convergence is the same

TABLE I1. Electrostatic energy per cell, in a slab of 20
layers, for layers in different distances from the surface.

Layer
from
surface a(l3,20) for zinc blende*
) (100) (110} mn

0 0.96292 1.491 27 1.38482
1 0.958 30 1.65499 141134
2 0.95789 1.63654 141134
3 0.957 89 1.63822 141134
4 1.63805
5 1.63807
6 1.638 06

*The minus sign is omitted.
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FIG. 4. Electrostatic energy of a cell in the macroscop-
ic field of the slab as a function of its thickness, for (117)
and (100) slabs of the “zinc-blende structure (left-hand
scale} and (117) siab of the rocksalt structure (right-hand
scale).

for the (100) zinc-blende and the (11T) rocksalt
slabs. For slabs with 50—70 layers the calculated
values are within 1% of their limits.

It is worthwhile to note that although for N— «
Eq. (2) is the definition of the Madelung constant,
its limit for N— oo depends on the orientaticn of
the slab. This is due to the fact that the series in the
right-hand side of Eq. (2) is not absolutely conver-
gent and hence its limit depends on the way of sum-
mation. Any method summing first on infinite
planes cannot avoid creating a constant potential
outside the planes and hence a depolarization field if
the dipole moment of the cell has a nonzero com-
ponent perpendicular to the glane of summation.

Monkhorst and Schwalm* calculated the electro-
static energy of a layer of the NaCl structure paral-
lel to the (100) plane in different distorted configu-
rations. Our result for one layer of the undistorted

3397

lattice is in exact agreement with their correspond-
ing result (namely the value —1.61554), The in-
crease of the energy, as their layer is separated into
two oppositely charged sheets, is due to the same
reason we already explained and the term E; in their
energy of the layer is equivalent to our result of Eq.
(28).

A final remark concerns their suggestion to treat
the electrostatic energy of systems of point charges
in terms of coefficients ¢, of the £.£, products.
For diatomic ionic crystals there is only one such
coefficient, the Madelung constant itself (since
§2=—§). For crystals with more atoms per unit
cell, with at least three different £,, such an expres-
sion will save considerable computation time and
will point out relations between structure factors in
structures and superstructures. We have found that
the Madelung constant of the chalcopyrite structure
(which is a superstructure of the zinc blende) can be
expressed as

ag=—2.13925(61 +£3)—2.273 78£,¢, ,

where £, and &, are the two cation charge fractions.
For £,=§;=1, a,, equals 4 times the Madelung
constant of the zinc-blende structure, since the unit
cell for the ideal chalcopyrite is 4 times larger.

After this paper was submitted for publication, V.
V. Avilov* proposed formulas to calculate the elec-
trostatic energy of planar lattices. Apart from an
obvious typing error, the potential of a planar lattice
of charges at a distance |z| from its plane,
represented as a Fourier series in the plane, is given
in this paper as exactly the same as in our calcula-
tions. In our opinion, the uniform background
charge distribution of opposite sign assumed to re-
move the divergence of the sum results in an unreal-
istic picture for a slab or an infinite crystal with two
parallel surfaces. It does in fact implicitly compen-
sate for the depolarization field through a multilayer
(or a two-layer) sandwich of uniform charge distri-
butions of opposite polarity, but without its source
and importance being demonstrated.

(32)
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Errata

Erratum: Lattice dynamics of thin ionic slabs. 1. The electrostatic energy
{Phys. Rev. B 28, 3390 (1983)]

G. Kanellis, J. F. Morhange, and M. Balkanski

Please make the foliowing changes to our paper.
(1) Page 3391, in Eq. (2), instead of

N N N N

12333,

I=1 oy x=1 0y
tey xotu’

(2) Page 3391, in Eqs. (4) and (8), the sum over «' runs from 1 to the number of ions in the unit cell (not to N).
(3) Page 3392, in the first line of Egs. (10) and (13), instead of

2 g g % ﬁfx'...,

Sa I;-I =l el f'-l

l‘ 11
1yl . Bx
write
Y
2 ’
B D %
a I_;-l [

(4) Page 3393, in the first line of the text, instead of ... terms with /;,/; for ..., write ... terms with (/{,/3)=(0,0) for

..-(;) Page 3393, in Egs. (14), (15a), and (15b), instead of

233 Sec

I]' «
[ "
I TR S

write

i 3Ex... .

l; -l «
PR
(6) Page 31393, in the first line of Eq. (16), instead of
N N N N ,
23 2 3 3.

et 3m et M-ty

"

’
] Ny=-p
1,y 1
write

3 3

Iy=)

23

Ay

o' iy«

29 672
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Lattice dynamics of thin ionic slabs. II. The long-range forces

G. Kanellis,* J. F. Morhange, and M. Balkanski
Laboratoire de Physique des Solides de I'Université Pierre et Marie Curie associé au Central National
de lu Recherche Scientifique, 4 Place Jussieu, F-75230 Paris Cedex 05, France
{Received 15 March 1982; revised manuscript received 11 March 1983)

The Coulomb interaction is calculated for thin ionic slabs of any structure and orienta-
tion. For ions lying on different planes, parallel to the plane of the slab, the direct-space
double sum is transformed into a rapidly converging double sum in reciprocal space only,
while for ions lying on the same piane, a two-dimensional version of Ewald’s method is
used. Finally we commeut on the macroscopic field associated with long-wavelength vibra-
tions of an infinite lattice on the basis of a two-dimensional summation method.

I. INTRODUCTION

Plheie is great interest in the physics of surfaces
and thin-film phenomena and much attention has
beeir Jraven to the study of surface-localized vibra-
iongd inodes of crystals. To investigate these modes
i lan slabs of donic crystals by direci lattice-
v ancival calculations, one needs to calculate the
iug-cange interaction between plane lattices. This
task involves the evaluation of dipole lattice sums
wirh an infinite number of terms, in two dimensions.
Since Jeitice sums in general are conditionally con-
verged, two-dimensional summation methods in
tl eruecives imply conditions leading to different re-
stris which have to be interpreted.

Nisboer and de Wette' and de Wette and Schach-
v iscussed these matters when calculating the
wizeal field in dipole lattices and they pointed out
hew the sums are influenced by the orientation of
the ;vanes on which the summation is performed
wih rospect to the dipole direction. Tney propose a
putiewise summation method which can be used to
calcutate the long-range interaction in thin siabs, but
thev (o not derive expressions for such a case.

ictaled calculations on finite ionic slabs have
been arred out by Tong and Maradudin.” These
authors treated in detail the long-range interaction
‘i the cxse of a slab of the rocksalt structure parallel
te the (I0W plane. using a method proposed by
Mackenzie. The same case has also been treated by
Bryksii o Firsov? and by Jones and Fuchs® for re-
tarcfed and unretarded interaction. but on different
Dases.

in thie paper we dertve explicit expressions for the
coaphrg coefticients due to unretarded jong-range
furece borween the plane lattices ir an fonic slab,
whatever 1is structure and orientation. This is done
follcag a procedure similar to the one presented in
tae . rceding paper, referred 10 as paper 1, where we

28

calculated the electrostatic energy per cell in thin
ionic slabs. We believe the method we propose here,
a variant of Ewald’s method, is quite general,
straightforward, and simple, and hence more con-
venient to use.

Finally we comment on the macroscopic field as-
sociated with long-wavelength vibrations of an in-
finite lattice. In fact a planewise (two-dimensional)
summation method for the Coulomb interactions
can never give the formal results of Ewald’s method
for the macroscopic field without additional as-
sumptions concerning the effect due to the presence
of surfaces.

II. COULOMB INTERACTIONS
BETWEEN IONS

We consider, as in paper I, a crystal slab consist-
ing of N one-cell layers, parallel to the (hk/) plane of
the crystal structure. By appropriate choice of the
unit cell, the primitive translation vectors @, and a,
can be taken to lie on the (hkl) plane, while 4, lies
out of it. The slab is considered as a two-
dimensional periodic structure and a two-
dimensional reciprocal lattice is_associated with it,
defined by the vectors b, and b, {Eq. (3) of paper
1}.

The ficld at a point X due to all point dipoles
E(I,x') at lattice sites X(I',x'), l'=(1},15,13), is
given by

2
E 5= Spallyr=-2
i« B

dx ,0x B“

N 2 E’ip_[.zﬂ A(L’_'l_)_] ,
i IR

where a,B-=(1,2,3) number the axis of some Carte-
sian coordinate system Oxx;x3, ' runs over all

3398 © 1983 The American Physical Society
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ions in the unit cell, I’ runs over all unit cells from
(—w,—,0) to (w0,o,N), and ¥ is a two-
dimensional wave vector.

We note that the index /4 labels the one-unit-cell
layers of the slab. Hence the index (/3,«) labels the

atoms in the long unit cell of the two-dimensional
; ]

periodic structure defined by the vectors
(3,,3;,Na3). To evaluate the sum over /1,/5 on the
right-hand side of Eq. (1) we proceed the same way

- as in evaluating the double sums in paper 1.

Using the integral representation of 1/x [Eq. (7)
of paper I] and again setting

[ R =T [ 2= [ KU 05+ %) (10 ) = Ky [ 24 [ o | (36 =%, |2, 2)

where || and | designate the components of the vectors parallel and perpendicular to the plane (hkl), respec-

tively, relation (1) becomes

- . o 0 © - = o
Ea(x)=lz l§p5(13,x )mfo exp[ — | X,(13,6') =%, | }p?+ 2mi§-X]
3.7

2
v

since the vector ¥ lies on the plane of the slab.

2 expf— li(l},l'z)+i°“(l’3,x')_i“|2pz )
1.4

F2miy [R5+ X5,k =Ky lidp

The sum over !},I5 on the right-hand side of Eq. (3) is a periodic function in two dimensions and can be ex-

panded in Fourier series
Vi
Wr

2
SaP” hy.hy

where 5, = | @, X @, | and ¥(h,,h,) is a vector of the
two-dimensional reciprocal lattice.

Here again, as explained in paper I, one can intro-
duce a dividing point R on the p axis and evaluate
the integral in Eq. (3) separately over the interval
(O,R) using the right-hand side of relation (4) and
over the interval (R, «) keeping the integrand as it
is.

Splitting the integral in Eq. (3) is necessary only if
'%,(15,6)—%X, | =0 for some (/3,x"), i.e., if the vec-
tor X(l5,x')—X lies entirely on the plane (hkl)
through the ion (/5,x").

In calculating the Coulomb interaction between
ions, one is interested in the field at ion sites X(/;,x).
It will happen then to be | X,(/},x")—X,(/;,x)| =0
for I, ,x' =15,", where " labels all ions of the unit
celt on the same (hk]) plane through ion « (x includ-

1),
E)(X)=
X
162l 0 8 axaa B Sa
1.8 0"

X T — ] —
"|-’|2 I y(hl’h2)+y I

LS exp{ — | KU}, 150+ (15,6) = Ky | 202+ 2mi G- [RUG 1y )+ Ry L )= Ky 1)

3 exp{ —7 | §(h1,hy)+§ | 2/p2 =2 §(h by [X) (136 ) =%}, @)

f
ed).

Hence we can consider the field E,(X) as being
the sum of two components,

E (X )=ENFE)+EQ(X), (5)

where E.'(X) is the field at point X due to all ions
outside the plane (hkkl) through that point and
E2(X) is the field at the same point due to all ions
lying on the plane (hkl). We distinguish the follow-
ing two cases:

Case A: | X, ,k')—X,|#0. Since we are later
going to replace X by X(/;,x), this will be the case
for (13,4')#(l3,c"") as already indicated. We
proceed by evaluating the integral in Eq. (3), using
only the right-hand side of relation (4). Then
for E'I'(X ) we have

2
S 3l d —l—exp(Zm'?-i‘)

expl —2m | Y(hy,ho)+§ | | X (13,6 =X, |

—-211’1.3'.(’11,’!2)‘[—X.”(IS,K')—-X.”“ . (6)




L

......

3400 G. KANELLIS, J. F. MORHANGE, AND M. BALKANSK] 28

Before carrying out the differentiation in Eq. (6), we note that the unit vector v, perpendicular to the plane
(hkl) is, by the assumption for the choice of the unit cell,

i) xa . . . .
Vo= ————— =cosa Xo +c0sB Koz +cosy Kps , M
[d,Xd,|
with respect to the coordinate system Ox;x,x;.
Hence :
R0y = Ry | =5y 2[R ) Vg— K- Fo] = —sg008a , (8a)
Ix, & ax,
where

+1 if X(3,6") %> X ¥

Sy = o er s IR (8b)
E7 =1 if XU Ve < X7,
and
& | X\ (0,6 =X, | =0. (8¢)
Ox,0xg ' ,
Carrying out the differentiation and evaluating the derivatives for X =X(1,,x), we get

EJ ()= 3 Spplls k' 1Qapll3 15,k | Vexpl2miy -X(l;,x)] 9
15,0 B
10y

where

472 _‘ s |- Yalhi,h))+yalyglhy,hy) +yg)

Qapllsuly k' | ¥)= =
i U s S, | ¥(hy,hy)+¥ |

+ | ¥(h{,hy)+¥ | cosacosB
+ I'S‘I[ya(hl,hz)+ya]cOSB+[yB(h],h))"’"}’ﬂ]COSa}

Xexp[ —217 ' —y.(hhh2)+y ' l —x’l(l)"()l.l)x‘) '“Z"iy(hl’hz)'i(l);K,lS,K')] .

(10)

In the last equation we dropped the index || as of no importance, since the vector ¥(h,h,) lies on the plane of
the slab.

It is worthwhile noticing that the above expression for Q,g(/3,x;1%,%" | ¥) is a regular function of }¥| hav-
ing a well-defined limit for | ¥ | —0. This can be easily verified by separating the (h h,)=(00) terms on the
right-hand side of Eq. (10). Their sum tends always to zero for ¥ —0 regardless of the direction of the vector
y.

Case B: |X,(l3,4')—X% [ =0. This will be the case for X =3X(l;,x) and (/},x')=(l;,x") where "' runs over
all wons of the unit cell lying on the same (kD plane with ion x. In this case we split the integral in Eq. (3)
into two integrals over the intervals (0,R) and (R, ) using both sides of relation (4). We get for E :,2'(3 )

2
EZXNX )=3 3 ppllsc") a R Y H(R | XU, 0,6 =% Dexpl2ai R L1, 0,6
v B Ox,0xg _

.
+—=— 3 Hiz|¥lh,h)+¥ | /R)

Rs""v"z .
Xexpl2mi[y(h,hy)+ ¥ X ~ 2mi§(hy,hy)- X3k |, (11

where we used the function
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2 1f=,2
Ho=2=— [ e~

to express both integrals.

The function H (x) diverges for x=0. Hence the term (/1/3)=(00) on the right-hand side of Eq. (11) will
diverge for k"’ =«. Performing the differentiation and replacing X by %(/3,x) we get for E2'(X),

E(,z’(i')=2 S ppll3,6")Qaptl3,:13,6" | ¥) +Quplls;i; 3,6 | §) [exp[27i¥-K(l3,60)] , (13)
B |x'#x

[ 4% ¢

where

Qaplls,i; 13,k | F)=R> 3 Hap(R | X(k,11,15,6") | Yexp[2mi ¥ - X (x,1},15,6")]

1.

4’

— = 3 Wathish2)+ya)lvgthi ko) +yg Hm | Fhy,hy)+F | /R)

Rs, hy.hy

Xexpl2miy(h,,h,y)-X(x",x)] , (14)

Qaplls,x;13,x | ¥) is the diverged term, to be evaluated, and

Hag(| %)= H(|X|]).

aZ
axaaxﬁ

(15)

To find Qaplly,i;l3,x | ¥) 6ne has to subtract from the right-hand side of Eq. (11) the contribution in the po-

tential at ion site (/3,«) due to the ion (I3,x) itself.
This is done by taking the limit
aZ
ox ,ax B

lim

T=TUy,0)

[H(R | %(0,0,03,6)— % | )—

92 1

1
| XLs,0) - X | '

R|TU -7

= lim
?—»?(l,,l)

ax,,axp

where 8,g is Kronecker’s §. By naming the function
in the square brackets of Eq. (16) as Hﬂp(x) and
considering the above-found result as its limit for
x—0, we can retain Eq. (14) as the general formal
expression for Qug(l5,x;l3,x" | y) bearing in mind
that in the case of x=«"', one has to replace in the
term (1,1;)=(00) the function H g(x) by H3g(x).

We note again that the right-hand side of Eq. (14)
is a regular function of |y|. The sum of the
h h;=(00) terms goes to zero for |y | —0, what-
ever the direction of the vector ¥ is.

For the coefficients Q,g(/,x;13,6” | ¥) given by
Eqs. (10) and (14), the following symmetry relations
hold:

Qast 1yl ' | ) =Qpallysl3 ' | ), (170)
Quplls ;13,6 | ¥)=Qop(ly 53136 | V), (17b)
aB
Qaptls,;l5 " | ¥)=Qap(l3,4305,6' | =F) . (17¢)

_ 2 f
R |X(y,k)=%| Vo Jo

4
—t? - —
exp( t)dt” 3‘/;5.;&» (16)

—
Relation (17a) can be verified by inspection from
Eq. (10) and by calculating H,g(x) for Eq. (14),
Hap(x) being also symmetric in x,,xg. Relation
(17b) is also true for Eq. (10) because of the condi-
tion (8b) while for Eq. (14) the summation indices
11,15 have to be replaced by —/},—13. Finally, re-
lation (17¢) is verified for both Egs. (10) and (14) by
replacing the indices k,,h; by —h |, —h,.

III. ON THE MACROSCOPIC FIELD

In the three-dimensional case the macroscopic
field is produced by the infinite charged planes,
through the positions of the vibrating ions, perpen-
dicular to the direction of the wave vector g, for
long-wavelength vibrations (§g—0). Its value turns
out to be equal to a nonregular, for the §—0 term,
of the sum of the (h;h,h;)=(000) terms in the ex-
pression for the exciting field at a dipole site.5 It is
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given by is created between its two free surfaces.

We would like to emphasize at this point that the

EM 4m 9§ g . Ep( ), (18) interaction due to electrostatic potentials calculated

Ya |q] l ql in a preceding paragraph is correct and accurate as

where v, is the volume of the unit cell and P(«) is
the dipole moment associated with the ion «.

In the preceding paragraph- we have shown that
such a term exists neither in Eq. (8) nor in Eq. (11)
for the exciting field. Since the macroscopic field,
according to Eq. (18), is on the same direction with
vector g, we have to conclude that there is not a
macroscopic field lying on the plane of the slab.
This is of course what one should expect, since in
the present case there exist no infinite oscillating
charged planes perpendicular to the plane of the
slab, but rather, plane-charged “strips” infinite in
one dimension. Consequently in slab-shaped crys-
tals, longitudinal and transverse phonons propagated
on the plane of the slab must be of the same fre-
quency, as far as no displacements perpendicular to
the plane of the slab are involved.

On the other hand, there are infinite osciilating
charged planes parallel to the plane of the slab.
Hence a macroscopic field must appear perpendicu-
lar to that plane due to vibrations along this direc-
tion. To calculate that field we consider the poten-
tial distribution inside the slab (Fig. 1). We have
shown in paper I [Eq. (22)] that, depending on the
orientation, a constant potential difference AV (N)

6= 2 3 4 A

=12 12 12 12
' { ! :
' 1 1 AV, (N)
! 1 ' £V ¢
! ! /l '
! '
} N : 5 1
T L_,o-..__\ 4

B i S 2SR .
~ ~y ™~ Lt

[ IRy ~‘ [} f L 4B |
N S S EE K
] ~FL 40
y N N R Y
' : r',\-;\f——-*AVc(“)
] ' i b anm Shadal
1 ' ' ‘

— o -

— OL -—

- L —_—

FIG. 1. Potential distribution in a thin slab. (1) Static
potential created by the charged planes, (2) external poten-
tial compensating the former one, (3) final distribution re-
sulting from the superposition of (1) and (2), (4) external
potential when the slab is considered as part of an infinite
structure, (5) potential distribution in an infinite crystal,
i.e., superposition of (1) and (4).

far as the slab is considered to be taken out of an in-
finite structure. Moreover, no question arises for
the zero-wave-vector limit perpendicular to the
plane of the slab, since no periodic boundary condi-
tion has been imposed along that direction. What
we are going to show is that the well-known macro-
scopic field in the infinite-crystal case is due to in-

finite distant planes (missing in the case of a slab)

and moreover how this field could be taken into ac-
count especially in the case where the surfaces of the

slab are not free. i .
To derive an appropriate expression for the con-

stant potential difference AV, between the two sur-
faces of the slab, we recall Eq. (17c) of paper 1 for
the constant term ¥V, of the potential at a point
P(X,) outside the slab,

V,(x,,N >_*——2 2§,|x1(13,x)~«x,,1 :

Sa I]_])(::l
(19a)

where £, is the fraction of the electronic charge at-
tributed to ion x’. At a point P'(X,) on the other
side of the slab, the same term of the potential will
be

N N
Ve(xy ,N)——~ 2 £ | X (156" )~ Xy | -
. sa l' K=l
(19b)
Assuming | Xp | > | X,(I3,6")| and X, = ~X,,

we find for the constant potential ditference

AV .(N)=V (x,',N)— Ve(x,.N)

- 2 2 gu’ X(laaK,)'Vu . (20)

Sa 1h=1x=1

We note that the above expression is completely
equivalent to the one given by Eq. (22) of paper I.

If we consider the slab as a part in the infinite
crystal, the above potential difference is almost com-
pensated by the result of the crystal, resulting in the
regular potential distribution of the infinite struc-
ture. Instead, we will consider the slab free and an
external potential to be applied, equal in magnitude
and opposite in sign, to the one given by Eq. (20),
which we assume to drop uniformly across the slab.
The resulting potential distribution is illustrated in
Fig. 1 for a slab of the zinc-blende structure, parallel
to the (111) direction, consisting of four layers.

In the general case where the unit cell may con-
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tain many atoms we have to assume that these

. atoms are distributed over several parallel (hk])

planes. Let us denote the position vector of an atom
lying on the first surface plane by X(1«,) and the po-
sition vector of an atom lying on the other surface
plane of the slab by X(N«,). Then its thickness will

be given by
J

L
Pil=~L 3 3 ER1)~ (L)) Fot

e 1y=1x=l

4 [XU5,6)=%(1,6))]- %

L =[X(N,k)—F(1,))] ¥ . @1

Having applied the above-mentioned external po-
tential, the total potential at ion site (/3x), apart
from the fluctuating term already encountered in
Eq. (6) for =0, will be

N N
3 S U0 Ty, (22)

Sa [Y(N,K,,)-—Y( l,Kl)]'Vo "‘-lx’:l

where the first sum extends over all ions of the unit cell from the first surface plane up to those (/3,«"") lying on
the same plane with ion (/3,«). In Eq. (22) we assume, for reference, that the potential on the first surface

plane is equal to zero.

The total electrostatic energy of the ions in a long unit cell of the slab, due to the above-described macro-

scopic potentials, will be

N N
W'=33 SV,

l3=lt=l

(23)

and the interaction force constant between the planes (/5,) and (/5,«"), due to their vibrations as solid planes,

is given by
. aZ Wl
Dog (s, 0 6 )= , 24
af s ik aly)ax gl )

or, by using Eqgs. (22) and (23) and taking the second derivative,

(1 131 k') = :1;. £ £, ccosa cosP+ DL 1,13 ') (25a)

aQ
where
, ., AV.N)
P Ul )= == | = (81,18, = B,y B, Yo — (B B, =B B, e
AV.(N)
+ 3 (81,18xx, —8,3,\,8,‘,,' )(8,,3 ,8,',|—8,,3N8,(,") cosa cosfP (25b)

and where &'s are Kronecker’s &’s.

From Egs. (25a) and (25b) it is evident that for a
given slab there exists a constant long-range interac-
tion between any pair of ion planes, depending on
the thickness of the slab [first term in Eq. (25a)],
plus an interaction between each surface plane and
the rest of the slab. This latter interaction given by
the term ®3%(/3,x;/5,6) in Eq. (25a) is a conse-
quence of the change in the thickness of the slab due
to vibrations of the surface planes.

We should note that the interaction between any
pair of ion planes exists even if we consider the slab
as a part of an infinite crystal and as we shall see
below it gives an alternative for the calculation of
the macroscopic field following a two-dimensional
summation method. For a slab which consists, in
part, of a different structure (e.g., heterostructure),

f
the interaction of Eq. (25a) has to be calculated on
the basis of a more realistic assumption.

The total force on the ion plane (/3x) due to the
displacements of all other ion planes is (@ com-
ponent)

Fa(13’K)=—° 2 :lﬁc(l.:;,K;IS,K')UB(Ié,K') (263)

15.x.8
or
47 .
Fo(ly,6)=— Ecosa Y, £ccosBuglly k)
soL ,
1,8
— 3 Ul K gl K) . (26b)

Y
To make a comparison with the three-dimensional
case, we take the limit of F,(/;,x) for very thick
slabs. We recall [Eq. (25) of paper I] that
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L=(N-1l)a,;+d, 27
where a, is the thickness of a one-unit-cell layer and
d is the distance between the two outermost ion
planes belonging to' the same unit cell. For N—
we can introduce the cyclic boundary conditior,
neglecting the deviations near the surfaces, and we
can put '

uglly,k)=uglxlexp[ —2miy, x(l3)], (28a)
where ¥, is the wave vector perpendicular to the
plane of the slab. Then for long-wavelength vibra-
tions

¥, —0 and u tl5,k)=uqlx) . (28b)

Taking the limit of the first term in Eq. (26b) for
N — o, we get

\!im F (l3,k)=F4{«)
m |7 __Neosa
Noex [ 3 (N—la,+d x

X SEAK) Vo | (29)

since the second term in Eq. (26b) tends obviously to
zero, and finally . :

F o)== — %’icosa £ S F(x) Vo, (30a)
a x

where p(x’) is the point dipole at ion site x’.
Hence the total force on ion x is

Fo)=£E™, (30b)
where
—smac 4 — .. —
E" =¥y P . 3h
Vg x

The field of Eq. (31) is exactly the macroscopic field
of Eq. (18) in the limit of zero wave vector from the
direction perpendicular to the plane of the slab.

It is also possible to obtain a more general expres-
sion for the interaction constant between ion planes
of the slab for wave vector Y0, in the same sense
as in Eq. (25a), if necessary. This can be done by us-
ing the (h h,)=(00) term of Eq. (6) where the dou-
ble differential and the sum over B is neglected,
pglly k') is replaced by &, and a summation is per-
formed over all (I7,x") in order to take an appropri-
ate expression for the potential.

IV. DISCUSSION

We have calculated the Coulomb interaction in
the case of ionic slabs of arbitrary orientation in any

structure. As far as interactions between plane lat-
tices on different planes are concerned the infinite

two-dimensional sums in direct space are converted

into sums in reciprocal space only, which converge
rapidly, depending on the distance of the plane lat-
tices. In the case of a slab of the zinc-blende struc-
ture parallel to the (117) plane, ten to twelve terms
are needed for an accuracy of the order of 10 (in
units of e2/v,) to calculate the interaction of the
closest plane lattices, while three of four terms are
enough to calculate the interaction of more distant

‘planes. On the other hand, this interaction drops off

very rapidly with the distance between the interact-
ing planes, becoming about 8 orders of magnitude
weaker for the fourth neighborhood, for zero wave
vector, in the above example. '

For interactions between plane lattices lying on
the same plane, a two-dimensional version of the
Ewald’s method of summation is used. Comparing
our results with the formulas given by Tong and
Maradudin for NaCl we find that in case A, they
are practically the same, while in case B they are
different since Mackenzie’s method sums both, in
direct (over infinite ion lines) and reciprocal space
(one-dimensional transform for each line). We con-
sider the formulas given here as accurate and of easy
and direct use in any case. We also note that the
dependence of the interaction coefficients of Eq. (14)
on the dividing point R is unimportant. A value of
R equal to (m/5,)'/? is quite adequate without any
further test.

Finally we should add that the given formulas for
the interaction coefficients contain the macroscopic
field. If, for instance, one uses the present formulas
to calculate the Coulomb interaction in the usual
single-cell approach of the infinite-crystal case, sum-
ming in direct space as implied, what will be ob-
tained are the longitudinal solutions for the corre-
sponding direction. A two-dimensional summation
method, such as the present one, implies the pres-
ence of surfaces even at infinity, and does not
separate out explicitly the macroscopic field. A slab
of infinite thickness is not equivalent to an infinite
crystal, since it presents an infinite potential differ-
ence between its two surfaces. Compensation of this
potential results in a definite field. The variation of
that field, due to vibrations of the paraliel to the
surface’s ion planes, is the well-known macroscopic
field responsible for the higher frequency of longitu-
dinal modes in polar crystals. The calculation
presented above shows how this field could be calcu-
lated in more complicated cases, such as the recently
developed heterostructures.
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Erratum: Lattice dynamics of thin ionic slabs. II. The long-range forces
(Phys. Rev. B 28, 3398 (1983))

G. Kaneilis, J. F. Morhange, and M. Balkanski

Please make the following changes to our paper.
(1) Page 3399, in the first line of Eq. (6), instead of

. »
o' sty B
o gy
write

S 3.,

I;.-' s
o' wig e

(2) Page 3400, in Eq. (9), do the same as above.
(3) Page 3400, in the first line of Eq. (10), instead of

An” a? -
0.-*;. ey
write
.4_.. n?
o .".2. e .

(4) Page 3401, in Eq. (13), the quantity in the large parentheses must read

32815 k" )Qupl3, 1315, k"' |F) + p (13, k) Quply, wil5 x[¥)] .

(5) Page 3401, second line of Eq. (14), instead of

4'2

Rse
write

4w’

Rs,

(6) Page 3402, in Eqs. (19a), (19b), and (20), the sum over x’' tuns from 1 to the number of ions in the unit cell (not to
N).

(7) Page 3402, 10th line from the bottom of the right column, instead of ... by the result of the crystal ..., write ... by
the rest of the crystal . .. .

(8) Page 3403, in Eq. (22), delete N on the rightmost summation symbol (over x').

(9) Page 3403, in Eq. (23), delete N on the summation symbol over «.

(10) Page 3403, iast two lines of the left column, instead of ... which consists, in part, of a ..., write ... which consists
partofa....

»
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Lattice dynamics of thin ionic slabs. 1II. Application to GaAs slabs

G. Kanellis,” J. F. Morhange, and M. Balkanski
Laboratoire de Physique des Salides de I'Université Pierre et Marie Curie associé au Centre National
de la Recherche Scientifique, 4 Place Jussieu, F-75230 Paris Cedex 05, France
{Received 13 March 1982; revised manuscript received 11 March 1983)

The lattice vibrations of thin slabs (up to 28 layers) of GaAs are calculated for zero wave
vector, on the basis of 8 rigid-ion model fitted on the phonon dispersion curves of the infi-
nite crystal. 1t is shown that all the modes, except the surface ones, fall on the branches of
the dispersion curves of the infinite crystal, while the surface modes seem to be combina-
tions of those missing near the zone-edge mades. Comparison is made with former calcula-
tions and the influence of the short-range interaction near the surfaces and that of possible

macroscopic fields is discussed.

1. INTRODUCTION

Normal modes of vibrations of thin ionic slabs
have been investigated theoretically by many au-
thors,'~® mainly on the basis of a rigid-ion model,
and the existence of surface modes have been well
established. Jones and Fuchs’ calculated the unre-
tarded modes of a thin NaCl slab; they developed a
theory for the infrared optical properties of ionic
slabs and discussed previously published results on
surface modes. Since most of the work mentioned
above has been done on NaCl slabs a more substan-
tial comparison is possible between their results.
Benedek® calculated surface dispersion curves and
phonon densities for thin ionic slabs on the basis of
a breathing shell model using Green's-function for-
malism. This approach suitably extended proves to
give very good resuits compared to those from direct
calculations on thin slabs.

A very general approach to the effect of surfaces
on the vibrational modes of crystalline solids is
given by Feuchtwang' based on the assumption of
finite-range interaction. Although in ionic crystals
long-range electrostatic interaction is important,
infinite-range forces arise only in the presence of a
macroscopic field. Hence his results must be, in
general, valid. Different features may appear to ap-
ply only to modes depending strongly on forces due
to such fields. The influence of a macroscopic field
on the vibrational modes of a slab will be discussed
briefly in the last paragraph of Sec. IV.

Dispersion relations for surface modes are given
by Fuchs and Kliewer' who found all long-
wavelength optical modes of an ionic slab to have el-
ther TO or LO frequencies. Tong and Maradudin®
treated in detail the case of a NaCl slab parallel to

28

the (100) plane and pointed out the importance of
some approximations made in the former work.
Further comments on this point are given by Jones
and Fuchs.” We also found the proper description
of the short-range interaction between atoms near
the surface to be of fundamental importance in cal-
culating the correct frequencies of the surface
modes.

Among the considerable experimental works on
infrared absorption or Raman scattering on thin
films and powders, which show vibrational states ei-
ther between the TO and LO frequencies of the in-
finite crystal or below the TO frequency, we men-
tion the infrared transmission and reflection mea-
surements on thin (up to 68 pm) films on GaAS by
Cochran et al.!! and Fray et al.'* They observed in
a 25 um thin film, lattice absorption on the TO and
LO frequencies and also two other strong peaks on
frequencies lying between these two. Each of those
peaks seems to consist of three or four fine-structure
peaks. These features are attributed to the size,
shape, and orientation of the specimens used.

Raman spectra on laser-annealed GaAs (Ref. 13)
show a gradual transition from the amorphous spec-
trum to the crystalline one involving a continuous
variation of degree of order versus the annealing
density energy. The above experimental resuits and
also analogous results on other materials reveal the
need for a complete calculation of infrared and Ra-
man spectra of small crystallites in order to justify
the hypothesis of size effects.

In the present paper we report on calculations of
vibrational modes of thin GaAs slabs parallel to
(117) planes, on the basis of a ng:d-lon model. This
model has been used by Kunc'* to fit measured pho-
non dispersion curves, hence our results are directly
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comparable to the ones of an infinite crystal. The
long-range interaction has been calculated in a form-
er paper’® referred to as paper II.

In the next section we briefly review the equations
of motion and the resulting dynamical matrix to be
solved. In the third section we describe in short the
rigid-ion model used for the calculation and the pro-
cedure applied to calculate the short-range interac-
tion of atoms lying near the surfaces. Finally, in the
last section we describe the results obtained and we
discuss them in comparison with other results.

I1. EQUATIONS OF MOTION
AND DYNAMICAL MATRIX

We consider a crystal slab of zinc-blende structure
(particularly GaAs) parallel to the (111) plane.
Choosing a Cartesian coordinate system Ox;x,xj,
whose axes are parallel to the edges of the cubic fcc
unit cell and its origin on an ion site (for instance, a
Ga site), the primitive translation vectors are

a, 01 1][%a
3’2 =% 101 _X.oz ’ (1)
- 1101
a; Xo3

where a is the lattice constant. Vectors @, and @, lie
on the plane (111) while d; lies out of it.
The equations of motion for a lattice are

myiig(Lk)=—3 Fdagln;i & ugl' k'),
I'n'B

”

16

@

where m, is the mass of the xth kind of ion, u,(/,x)
is the ath Cartesian component of the displacement
from the equilibrium position, ¢,g(l,x;!’,x’) are the
atomic force constants, and ! =(/,,l,,l5) labels the
unit cells.

Applying cyclic boundary conditions along the
directions &, and @, [on the infinite (111) plane] we
put

vglly,x

)
ugllx)= expl —iwt +2miy-X(1,x)] ,

m/2
3

where ¥ is a two-dimensional wave vector. Equa-
tion (2) becomes

ol,(l3,k)= 3 FDaplly.x;156" | Fvgll3x') ,

5.«
4)

where

bagtl;l' k')

£

n.
Xexp[2mi ¥ -X(lx;l'c')]

(5)

are the elements of the 6N X 6N dynamical matrix
(N is the number of layers in the slab). Since no

~ periodic boundary condition is used along the finite

dimension, any further reduction of the dynamical
matrix will be likely possible only from symmetry
considerations.

It has been shown'’ that for the above chosen
orientation of the slab one can use a new coordinate
system Ox)x;x3, related to the old one associated
with the crystallographic unit cell, by the transfor-
mation

Xo1 | —-Vv3iVv3i 0 Xo1
sz =7 1 1 2 _X.oz y (6)
| ¢ lva va —val g
03 03

whose Ox| and Ox axes are coplanar with the slab,
while axis Oxj is perpendicular to it. Since it is al-
ways possible to find such a coordinate system,
whatever the orientation of the slab might be, let us
denote the corresponding transformation matrix by
H [in the present case H is the 3 X3 unitary matrix
used in Eq. (6)).

With the use of transformation H and the repre-
sentation of the space group G of the three-
dimensional structure with respect to the old coordi-
nate system, one can construct a new space group G’
appropriate for the two-dimensional structure of the
slab, by transforming the representation of G to the
new coordinate system and by picking up those ele-
ments which act only parallel to the plane of the
slab.

Group G’ can then be used to provide the form of
the force-constant matrices and the relations be-
tween the elements of the dynamical matrix. In the
present case and for wave vector ¥ =0, we find that
the interaction between the plane lattices assumes
the general form

A B -B
Diyklyk)=|B A —B (7)
—B -B 4

in the old coordinate system Ox,x,x;, while in the
system Ox 1x5x it takes the form
A-B 0 0
DUyxlix')=] 0 A—-B 0 (8)
0 0 A+2B

................
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through the transformation
DL =H DUV Y 0]

The form of Eq. (R) imiplics that for the so-chosen
orientation of the slab, the solutions of Eq. (4) {all
into two groups, one doubly degencrate consisting of
the in-plane solutions (xv-y modes) and one noude-
generate consisting of the out-of-plane solutions (z
modes).

The matrix whose clements are defined by Eqg. (5
expresses the interaction between plane lattices and
has to be calculated on the basis of some model. In
the next section we give a brief deseription of the
applied rigid-ion model. Since both short- and
long-range forces are taken into account, it is cus-
tomary to consider the dynamical matrix as consist-
ing of two parts, the short-range (sr) and the
Coulomb parts;

Dtlx;15 &) =D"(;,%.1 k)
+DCy,15,K) . (10)

The form of the interaction matrices between the
plane lattices of the slab for zero wave vector, is
given in the Appendix.

The Coulomb part can be expressed in terms of
the Q coefficients calculated in paper 1I [Egs. (10)
and (14)), and for the general wave vector it assumes
the form

Se
m,

Dl 13K | =8 1, B

X 3 EvQaplls;lin" | 0)
1w

b .
—mQaﬁ”3,K;13,K 1y,
kT’

(1

where £, is the charge fraction attributed to ion «.
Values of the Q coefficients for zero wave vector are
also given ir: the Appendix (Table I).

J

¢=’o§ 2 Arlj+% 2 (Ar,})2+r,p 2 Ar‘k+ﬁ

TABLE L. Values of the Coulomb cocfficient f3 [in
waits of (Ze)V Zog).

A 'Y I B

i 2 0 5.59135
{ i 1 -0.1434)
1 2 I 0.03349
2 1 1 1.43762
2 2 1 --(.143 41
! ! 2 --0.000 40
1 2 2 0.00018
2 1 2 -0.00175
2 2 2 —0.000 40

t
I

I11. THE MODEL

In the present case we use the rigid-ion model
(RIM} developed and applied to several binary com-
pounds of the zinc-blende structure by Kunc.'
Apart from the effective charge ¢°* the model
parameters are ten tensorial force constants, A and B
for first-neighbor central and noncentral interaction,
Cl, Dl’ Eh Fl) Cz, Dz, Ez, and Fz, fOl' second-
neighbor central and noncentral interaction, for the
two different kinds of ions.

All of the above parameters have been fitted to
experimentally known phonon dispersion curves, the
elastic constants, and the piezoelectric constant. In
order to use the above model in the case of a slab the
following adaptations have to be made:

(a) Long-range forces have to be recalculated on
the basis of new suitable formulas as already men-
tioned.

{b) Short-range interaction of the near-the-surface
atoms has to be modified, so as to take the missing
ions into account. For the short-range part of the
dynamical matrix the following procedure has been
followed. From the ten fitted tensorial force con-
stants, the values of a set of ten valence force field
(VFF) force constants are deduced, namely the £, A,
P 1, 0, v, kg, kg, k., and k,, according to the fol-
lowing model for the potential energy:

2 (Arlk)2+’|0 2 A"ﬂ-{-l 2 (Arﬂ)z

Ga-As Ga-As Ga-Ga Ga-Ga As-As 2 As-As

kord kyrd Ky k'

2T 0 +—22 3 A0+ 3 ArAr+—— 3 Arybr, (12)
2 As-Ga-As 2 Ga-As-Ga 2 As-Ga-As 2 Ga-As-Ga

where ro and r; are the first- and second-nearest-
neighbor distances, respectively.

The interaction of the near-the-surface ions is cal-
culated on the basis of the above VFF model. It

r

should be noted that the ten VFF parameters are not
independent, but have to fulfill the equilibrium con-
dition. For the given values of the tensorial force
constants this condition does not hold. Hence we
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FIG. 1. Variation of the frequencies of six modes vs
the thickness of the slab.

decompose the tensorial force constants into the
VFF parameters disregarding this condition.

By so doing, only the interaction of atoms lying
near the surfaces may be influenced. Since the
correct description of the above interaction is of
critical importance in calculating the surface mode
frequencies, one needs a faithful VFF model in or-
der to obtain unambiguous results for these modes.
In the next section we comment on the results based
on the above consideration and on those obtained
when the short-range interaction of surface atoms is
considered to be the same as for atoms in the interi-
or of the slab.

1V. RESULTS AND DISCUSSION

We have calculated the frequencies and the eigen-
vectors for thin slabs of GaAs oriented paraliel to
the (111) plane with thicknesses from 2 up to 25
cells (10—130 A thick) for zero (two-dimensional)
wave vector.

The main feature displayed by the solutions is
that, by increasing the number of layers of the slab
(i.e., its thickness) all of the solutions tend rapidly to
certain limits, while the new solutions appearing in

cach thicker slab are interpolated between the solu-
tions of the thinner one. For a slab 20 layers thick
all the frequencies are within 1% of their limits.

In Fig. 1 we show the variation of the frequencies
of six modes versus the thickness of the slabs: the
highest-frequency z mode (first LO), the highest-
frequency x-y mode (first TO), and four surface

- modes, i.e., two surface x-y modes (TS1 and TS2)

and two surface z modes (LS! and LS2). We see
that the surface modes TS| and TS 2 have practical-
ly constant frequency for any slab as thin as three
layers, while the frequencies of the rest of the modes
tend very rapidly to their limiting values.

The two-dimensional Brillouin zone correspond-
ing to the slab structure is a section through the
center of the three-dimensional zone of the fcc lat-
tice, perpendicular to the A direction (—§, —§, £).
Comparing the frequencies of the above modes with
the frequencies of the modes belonging to the disper-
sion branches of the A direction of the infinite crys-
tal, we find that the first LO and first TO modes
tend to have frequencies equal to those of the LO
and TO modes of the I point of the infinite struc-
ture, respectively. The surface mode TS'1 has a fre-
quency almost equal to the TO mode at the L point,
while modes TS2, LS 1, and LS2 have frequencies
which fall into the gap at the L point of the infinite
crystal.

Before making any further comments on the sur-
face modes and on the rest of the modes, we will
turn our attention to the eigenvectors. For a GaAS
slab N layers thick, there are 2N x-y modes, which
are doubly degenerate (the transverse modes), and
2N z modes (the longitudinal ones). From the 2N
modes in each configuration, N are optical anu the
remaining N are acoustic. Among the N optical
modes in each case there are two whose amplitudes
decay exponentially along the finite dimension of
the slab, from the one surface to the other, and are
therefore called surface mo-'>s. For wave vectors
different from zero the so-called Rayleigh waves'®
appear, among the acoustic modes. For each optic
mode m we construct the difference of the reduced
displacements,

ully,1lm)  u(ly,2|m)
Sl = — — , (13)
L ALK ,_Ml /—Mz

where 1 denotes the Ga atom, 2 the As atom, /,
numbers the layers of the slab, and M is the mass.
Accordingly, for the acoustic modes, we construct
the sum of the same quantities.

ully,1lm)  utlly,2im)

Sl =— + . (14)
VM, VM,

In Fig. 2 we plot fP(l,) and f(ly) vs z=1y,a,
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FIG. 2. For a slab of ten layers: (a) Relative reduced —_
y fayer

ionic displacements for some x-y optic modes. Number-
ing starts with the mode of highest frequency. (b) Sum of
reduced ionic displacements for some x-y acoustic modes.
Numbering starts with the zero-frequency mode.

FIG. 3. For a slab of ten layers: (a) Relative reduced
ionic displacements for some z optic modes. Numbering
starts with the mode of highest frequency. (b) Some of re-
duced ionic displacements for some z acoustic modes.
Numbering starts with the zero-frequency mode.

the coordinate along the finite dimension of the slab,

for some x-y modes (transverse modes), and in Fig. 3

we plot the same functions for some z modes (longi- 2 (m —1)mz

tudinal). It is evident from these figures that all the Sm(2)= TN ST (16)
T optic modes, except the surface ones, can almost be
;7-::- described (neglecting the sign) as (m=1,2,...,N, numbers the optic modes starting
e 5 mz from the highest-frequency one and the acoustic
el f, ,‘,’,"(z)o.«—ﬁsin 7 (15) modes starting from the zero-frequency one).
D We note that the above simple trigonometric ex-
|- where L is the thickness of the slab, while the acous- pressions do not describe exactly the functions of the
:lj-.' tic modes can be described as displacement defined by Eqgs. (13) and (12), but rath-

—
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lines show the position of surface modes. The positions of
TO and LO missing modes near and on the zone boun-
dary are shown by arrows.

er, give a good picture of what these functions look
like. Moreover, although the functions sketched in
Figs. 2 and 3 refer to a slab ten layers thick, the pic-
ture is the same for slabs of any thickness.

From Egs. (15) and (16) we see that there is an
implicit dependence of the modes on a wave vector
along the finite dimension of the slab, although such
an assumption has not been made. All the modes,
except the surface ones, on which we will comment
later on, seem to be characterized by the values of a
wave vector

"y =n% . (17)
There is no optic mode with n =0, i.e., there is no
mode of infinite wavelength. Since the surface

"-m'—fﬂj;‘""'ﬁ"_—‘A"ﬁ:"ﬁ‘ -

LATTICE DYNAMICS OF THIN IONIC SLABS. IIL ... 3411

modes cannot be described by the same function f?,
only N —2 optic modes could be attributed to the
wave vectors of Eq. (17). On the other hand, all the
N acoustic modes can be regarded as corresponding
to some wave vector y,. We should note that the
solution of zero frequency for y, =0 has been im-
posed by using relation (AS) when calculating the

_ self-terms of the dynamical matrix.

According to the above observations, we plot in
Fig. 4 the dispersion curves of GaAs along the A
direction, as they have been calculated by Kunc'* on
the basis of the same model and we put on the same
graph the solutions for a slab 20 layers thick. We
have chosen this thickness where each solution has
reached its limit within less than 19%. Acoustic
modes start from zero wave vector, while optic
modes start from wave vector equal to 0.5/20. We
see that all the modes, except the surface ones, fall
on the corresponding branches: x-y modes on the
transverse branches and z modes on the longitudinal
ones. There are four optic modes missing. Instead
there are four surface modes shown by dotted lines
on the graph along the zonewidth, although they
seem to belong to a value of the wave vector very
close to the zone boundary. Hence we conclude that
the surface modes could be regarded as superposi-
tions of the missing optical modes, and perhaps the
corresponding acoustic modes of the zone edge, in
each configuration (transverse or longitudinal). The
longitudinal surface modes (z modes), considered as
being superpositions of modes of higher frequency,
appear to have lower frequencies than the transverse
ones. They also show considerably less decay along
the finite dimension of the slab. Both of these
features could be explained, qualitatively at the mo-
ment, by the weaker short-range forces near the sur-
faces and by the assumption that these modes are
strongly damped by the long-range forces. We
should note at this point that the slowest conver-
gence of the frequencies to their limiting values,
with increasing thickness of the slab, is observed for
the longitudinal modes of shorter wavelength (wave
vector near the zone edge). Indeed, the frequencies
of the surface modes depend very strongly on the
short-range forces assumed for the surface layers. If
we restore on these layers the same short-range
forces as for the rest of the slab, then all the modes,
except the surface ones, tend faster to the same lim-
iting frequencies. The surface modes have higher!
limits as follows: The TS1 mode, 253.3 cm ™' (in-
stead of 252.5 cm~!), the TS2 mode, 247.3 cm™!
(instead of 235 cm™'), the LS 1 mode, 250.7 cm ™'
(instead of 230.7 cm~'), and the LS2 mode, 249.6
cm~! (instead of 210.5 cm~!). We see that the long-
itudinal surface modes have a much stronger depen-
dence on the short-range forces assumed for the sur-
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face layers, but still at least one of them should have
higher frequency than the transverse modes if no
damping due to long-range forces was existing.
Hence the correct description of the short-range
forces near the surfaces is of critical importance in
calculating the surface mode frequencies. Of course,
the eigenvectors are also influenced by the change of
the forces near the surface, in particular the eigen-
vectors of the longitudinal modes, but they retain
their main features. Stronger forces between the
surface layers result in deeper penetration of those
modes in the slab.

On the basis of the above observations it is clear
that the continuum of frequencies for “bulk” modes
obtained by several authors when calculating solu-
tions for different wave vectors on the plane of a
slab, is the projection of the dispersion surfaces of
the infinite crystal on the two-dimensional Brillouin
zone appropriate for the slab. Comparing our re-
sults with those of Tong and Maradudin,’ who cal-
culated the solutions for a slab of NaCl parallel to
(001) plane, we could note the following: The fre-
quency of the transverse surface mode in NaCl, ly-
ing just below the lower limit of the “bulk” optical
modes, is in agreement with our results. The near
degeneracy of both pairs of surface modes they
found can be explained by the fact that the two sur-
faces of the NaCl slab in the above orientation are
completely equivalent. Moreover, the thickness of
this slab is an integer multiple of the lattice con-
stant, while in our case it is not. This feature may
be of importance when superimposing plane waves,
due to the phase difference it may introduce. As far
as it concerns the higher-frequency surface modes
for zero wave vector in the case of the NaCl slab,
they can be considered as unlocalized surface modes
whose wave vector perpendicular to the plane of the
slab can assume values either at the center or at the
zone boundary'® in the present case. The corre-
sponding modes in our case are of the same type as
those found by Wallis.'® This difference may be due
to the fact that the NaCl slab consists of identical
“neutral” planes.

Fuchs and Kliewer' treated the case of long-wave
optical vibrations in a slab in the electrostatic ap-
proximation. Apart from the influence on their re-
sults due to approximations concerning the short-
range forces near the surfaces and the replacement
of infinite sums by integrals, which have been dis-

cussed by Tong and Maradudin,’ we would like to
note that their results for “bulk” modes concern
those modes which lie on the corresponding
branches but very near to the I' point. Hence for a
thick slab there are many modes which have the
zone-center TO and LO frequencies with small wave
vectors mw/L. For optic modes we have found
only the sine dependence of the displacements with
odd and even values of m. Their point, that this
dependence is such that there are exactly m half
waves across the thickness of the slab, is correct
even for very thin slabs and for the acoustic modes
also. The quantization of the wave vector along the
finite dimension is of course the same for all disper-
sion branches.

The surface modes found by these authors reduce,
for zero wave vector on the plane of the slab, in un-
localized surface modes, corresponding to zone-
center modes of the infinite crystal. It has been
shown by Feuchtwang'® that these modes are a spe-
cial case of bulk modes. Since the above authors
treated the case of long waves, these modes may be
the only ones which, for finite wave vectors (5£0) on
the plane of the slab, became surface modes. Lucas*
and Jones and Fuchs’ attribute the above behavior
of these modes to the neglect of the changes of the
forces acting on atoms near the surfaces. The re-
sults of the latter author at =0 are in agreement
to those of Lucas, and Tong and Maradudin, as to
the number and type of surface modes.

A final remark concerns the possible influence of
macroscopic fields. We have shown in paper 1I that
vibrations involving ionic displacements perpendicu-
lar to the plane of the slab give rise to a potential
difference between its two surfaces. This potential
does not influence the vibrations of a free slab, ex-
cept if it results in additional surface charges, or if
the slab is considered in some polarizable environ-
ment. In such cases, assuming complete compensa-
tion of the above potential, all the frequencies of the
2 modes tend slower to the same limits, while an ad-
ditional phase difference is introduced in the dis-
placements of atoms in neighboring cells. This
phase difference moves all the optic modes one step
toward the zone boundary. Hence for a slab thicker
than ten layers, the relative displacements show the
same pattern as described by Eq. (15), but now
modes with m =0, m =1, and m =N —1 are miss-
ing.

APPENDIX

The form of force-constant matrices (interaction between individual ions) for the zinc-blende structure is the

following:
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ABB A B —-B
$t1;1,2)=|BAB|, ®L2;'1)=| B A -B|,
BBA —B —B 4 (AD)
¢, D, E, ¢, D, E
o=\ D, C, E| ®U.x'2)=|D, C; El,

where [ =(1,,1,,1;) and I'=(l,,13,1;+1).
For the surface layers ly=(/,/;,1) and ly =(l,,1;,N) the force-constant matrices in the present case take the

form
A4, B, B, A, B, B,
Oy, 1:1,2)= |B, A, B, |, ®y,1;ly,2)= |By A, B, | . (A2)
B, B, A, B, By As

The decomposition of the tensorial force constants into parameters of the VFF model used can be found in
Ref. 14 for all interactions, except the ones between ions in the surface layers, which are listed below:

A=A —k, /6, Ay=A+8kg/3+k, /6, Ay=A—k. /6, Ay=dky/3+ki /6,
B,=B ~k, /6, B;=B —2kg/3+ky /6, By=B —k} /6, By=B —2ky/3+k,. /6.

(AY)

The interaction matrices for plane lattices for zero wave vector (submatrices of the dynamical matrix) as-
sume the following forms (with [} =1, +1):

34 —B B A B -B
DU, 1:0,2)~ |—B 34 B |, DU~ | B 4 —B|, (Ada)
B B 34 —B —-B 4
20, +F, D, —D, 2C,+F, D, -D,
DUy Ll )~ | D, 2C,+F, =D, |, DUy2%13,2)~| D, 2C;+F, —D,
-D, =D, 2C,+F -D, =D, 2C,+F,

{A4b)

Self terms, for zero wave vector, are calculated on the basis of the equation'®

S Dogtln;l'x')=0 . (AS)
[ 4

The corresponding interaction matrices for planes of the surface layers (/; =1 and [; =N) take the form

24, +4, —B, B, 24, +A, —B, B,
Q(I.I,I,Z)~ —B2 2A|+A2 Bz s Q(N,I,N,2)~ —B4 2A3+A4 B4 . (A6)
l B, B, 24,+4, B, By 24;+4,

All the Coulomb interaction matrices assume for zero wave vector the form

0 B -8B
oxl'x)=| B 0 —-B|. (A7)
-B -8B 0
The values of B are given in Table I for I’=0, 1, and 2. All more distant interactions are less than 10~ [in

units of (Ze)?/v,].
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6374 ERRATA

Erratum: Lattice dynamics of thin ionic slabs. IIl. Application to GaAs slabs
[Phys. Rev. B 28, 3406 (1983))

G. Kanellis, J. F. Morhange, and M. Balkanski
Please make the following changes to our paper.
(1) Page 3413, in Eq. (A2), instead of

A38,8,
Q(IN. l'.lN, 2)- B}A}B‘
B3B3A

write

A,8,8,
Q(ly. l'.ln,. 2)= B)A 184
BB A,

(2) Page 3411 1n Eq. (A)). instead of
1a=dkoi3+h 16
write

4,=8ky/ 3+ h 16+ 4
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Anharmonic effects in light scattering due to optical phonons in silicon

M. Balkanski, R. F. Wallis,* and E. Haro
Laboratoire de Physique des Solides, associé au Centre National de la Recherche Scientifique,
Université Pierre et Marie Curie, Tour 13, Deuxieme Etage,
4 Place Jussieu, F-75230 Paris Cedex 05, France
(Received 13 July 1982; revised manuscript received 21 April 1983)

Systematic measurements by light scattering of the linewidth and frequency shift of the §=0 op-
tical phonon in silicon over the temperature range of 51400 K are presented. Both the linewidth
and frequency shift exhibit a quadratic dependence on temperature at high temperatures. This indi-
cates the necessity of including terms in the phonon proper self-energy corresponding to four-
phonon anharmonic processes.

1. INTRODUCTION Recently, Tsu and Hernandez® have reported measure-

ments of the frequency shifts of both one-phonon and

Experimental studies of the inelastic scattering of light  two-phonon Raman lines for silicon over the temperature

by crystals have provided a great deal of information con-  range 20—900°C. Where their results overlap with those

cerning the optical modes of vibration at the center of the  of Hart e: al., the agreement is good. No data on the
Brillouin zone. In pure materials one finds typically that  Jlinewidth is presented by Tsu and Hernandez.

both the line center and the linewidth vary with tempera- In the present paper, measurements of the light scatter-
ture. This temperature dependence can be attributed to  ing spectrum of silicon are reported for the temperature
the anharmonic terms in the vibrational potential energy.' range between 5 and 1400 K. The temperature depen-

If one restricts oneself to cubic anharmonicity in second  dences of the frequency shift and damping constant of the
otder. the damping constant which characterizes the  Raman active LO phonon are analyzed in terms of cubic
linewidth is proportional to the absolute temperature T in  and quartic anharmonic contributions. It is found that at
the high-temperature limit, but when one includes quartic ~ the higher temperatures, cubic anharmonic terms to
anharmonicity to second order and/or cubic anharmonici-  second order are 10t sufficient to fit the data, but the in-
ty to fourth order, the damping constant involves terms  clusion of higher-order terms involving cubic and/or
proportional to 77 in the high-temperature limit.? For the  quartic anharmonicity makes possible a satisfactory fit.
case of silicon, Hart, Aggarwal, and Lax’ have measured
the frequency shift of the line center and the damping
constant over a range of temperatures from 20 to 770 K. Il. ANHARMONICITY IN LIGHT SCATTERING
They found that their data for the frequency shift agree BY OPTICAL PHONONS
rather well with the theoretizal calculations of Cowley*
based on cubic anharmonicity to second order, but their
data for the damping constant show significant deviations
from Cowley's results. Hart et al. were able to show, RO k) =R+ Rix) , o.n
however, that their data for the damping constant can be .
fitted satisfactorily by the cubic anharmonic model of Kle-  where R(/)={,T\+/,T;+ /17y, the 7; are primitive
mens® if the zero-temperature value of the damping con- translation vectors, the I; are integers, and R(«) is a vector

stant is properly chosen. | of the basis; the vibrational Hamiltonian can be written as

For a system whose equilibrium atomic positions are
specified by

H=} 3 3P+t 3 S Gofhail'whuglluugll'n)
Lea M, lxa l'sx.B

+v 3 2 3 Dol l' ' 17 " Yu g () gl K Y (17 ")
lxa '@ B I"x'y

T T T D Oupalhil kK Ut g a1 K D1 ) (2.2)
xa I'w,p I"¢y I'"x"8

r
where ii(/.x) is the displacement of atom I,x from its monic Hamiltonian by means of the normal-coordinate
equilibrium position and ®p, G,5,, and P, g4 are the har-  transformation

monic, cubic anharmonic, and quartic anharmonic force 122 — -
constants, respectively. The first two terms are the har- Tiha)= A p3 Me‘ TRy
monic Hamiltonian H,. The remaining terms are the MN | T (g )2 4

anharmonic Hamiltonian H,. We diagonalize the har- 2.3

28 1928 ©1983 The American Physical Society
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3 ) x 17295 — .
PUx)= ~i [ 3N _;(“K.j) Wix|d,j)
q.j
iT- R
Xe B, 2.4)
Here ey is the normal-mode frequency for wave vector

q and branch index j, Wi« | G.,j) is the polarization vector
for the normal mode, M, is the mass of an atom of type x,

1
Ho=7% Zﬁw_. (A% A; +B% B )_Zﬂod (ba.Jba.j +1), 2.7
Hy= 3  V@Eig »/’;6”,J"M3‘,Aa.‘,-fiau,,~
94 9.%"J
+ﬂ 2_. V(q,j5d%559"j"5q""0" g Ag jAge pAge et 2.8
Gudooos q"J
The anharmonic coefficients V are given by
2 :
- T 53 Il_l __ﬁ_ “/2 = -7 an
V(4,j;9"j549"j") = 6 | 2N (“’a’.j“’a'./""ﬁ'".j") NA(G+G'+q ")
XF T 3 Oup 0T x5 k") (2.9

xa ['w.g T"xy

W,ix|q,))\Wglx'|q
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and N is the number of unit cells in the crystal. The field
operators A_. and B , are specified in tenns of the pho-

non creatlon and anmhllatlon operators ot 3 and sz’ ; by
the relations '
_ t
A'q',J_be,i+b-31 2.5
. _ _pt
Ba’,j—ba',j b-—a’.i . (2.6)

After making the normal-coordinate transformation, the
cont.ibutions to the Hamiltonian 1ake the forms

UOWL K[ AT RI4T R

X
(M,M,,'M,‘n )1/2
HERE
V(q,j q ,jl <u’ju"—]~:njln)=§ Eﬁ, (w wa" j"')—l/zNA(a"'q +-q~u q ,)
2 2 2 ¢,p,g(O,K;T',K';I-",K";T’",K’")
xa I'w.p T «".8
X WG(KI a»l)Wﬁ(K' l a )Wr(K“l 6 ” II)Ws(KHI l = ur Ill
(M, M‘“)I/2
w il T Rt 1+ TR+ Ry ,
1
where where R(j;1,S) is the Raman tensor, the branch index j
{ifa=G refers to the longitudinal optical branch, ; (s} is the
Alg)=- "1 a=% (2.10)  Wave vector of the incident (scattered) radiation, a is the
0 otherwise : is the

and G is a vector of the reciprocal lattice.

In the case of light scattering, the efficiency for Stokes
scattering by zone-center LO phonons in a homopolar
crystal is given’ by

d’s -
dwdf)

e‘LV
42 2
'a*MNc¢ Y

Ws

2u0%'m

@y
X(no+ 1 |R(j;1,8)|?

l‘(ii;a))
[0~0(0,j;0) )+ T0,j;0)

, (21D

lattice constant, L is the crystal thickness, oy
zone-center LO-phonon frequency, and ny is the mean
number of LO phonons.

The resonant frequency 0(0,j;w) in Eq. (2.11) deter-
mines the scattering line position and is given to first ap-
proximation by

Q(6.j;w)=ma~J+A(6,j;w) ) 2.12)

The quantities A(D,j;w) and T'(0,j;w) specify the real
and imaginary parts of the proper self-energy, P(0,j;w),
according to the relation'
lim P(0,j;0+i€)=—BAA(D,j;0)—~iT(0.jw)]
€0
2.13)
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and are referred to as the frequency shift and damping  higher-order terms in the anharmonic Hamiltonian H,.

constant, respectively. Each of these quantities is the sum  The cubic and quartic contributions up to and including

of contributions arising from the cubic, quartic, and  second-order terms are given by '
B

o i FITT .
A"’(O,;;w)=~—§ 3 3 V00,5808 |2
?I.)-j) 32-12

n1+n2+l nl+né+l n;—njy ny—n,
g - - .
8 otote; o—w-o, * o—w+a; O+o;—w; @ 14a)
oy ;. 24 -2 . t
A0 fiw)="¢ I ¥00,5;0.;qui~quiidm+3), (2.146)
?]Jl

o 96 R e i s
ts“"’<o.1;ca)=——-’iz )RS S S X (T 119 28 P 21 P9 A
Tpdy Tpdy Ty

X2 | [(ny+Dny+ 1 ny+1)—nnyn;,]

1 1
O+t +@; W@ ~0—~0; ]

+ 3[ny(ny+1)n3 4+ )~ (ny +1)nyn,)

! _ 1 , (2.140)
O—01+02+@; OFO|~0,~0)

A‘“’(O,];w)=-"ﬁ3‘ 2 2 V(0,5;0.7;~ T uf2) V(@riis ~ Qudail@sdsi ~daiy)

Tuiy 2 Ty

1 —
y{"”’""" it b (ny+1), (2.144)
o146, 0=,
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Jiw ) 2 z | (ojvﬁl!jl'azvjz)l
?p.’] ?1'12

X {(m +ny4+ 1)[8lo—a—w)) ~8w+0, +w,)]

+(n—n)[dw+ 0y ~w)) ~So—w +a,)]] , (2.15a)
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- where % denotes the principal value. In Eqs. (2.14) and
(2.15) we have written

=0z i=123 (2.16a)
n=n_ . =—I——-- , i=123 (2.16b)
Sdi Gpod;
e -1

where B==1/kyT. The various contributions to the fre-
quency shift and damping constant are shown diagram-
matically in Fig. 1. In addition, there are other diagrams
not shown in Fig. 1 which can give nonzero contributions
due to the fact that the atoms in silicon do not lie at
centers of inversion symmetry.

A specific remark should be made about the tempera-
ture behavior of A and I'. At high temperatures, i.e., tem-
peratures larger than the Debye temperature, the cubic
anharmonic terms in A and " given by Eqs. (2.14a) and
(2.15a), respectively, vary linearly with T. The quartic
anharmonic term in A corresponding to Eq. (2.14b) also
varies linearly with T, but the quadratic terms correspond-
ing to Egs. (2.14c) and (2.14d) vary quadratically with T.
The quartic anharmonic term in ' corresponding to Eq.
{2.15b) also varies quadratically with T. Additional T2
contributions to both A and I' arise from terms corre-
sponding to the diagrams in Fig. 2.

The light scattering process can be viewed as involving
the absorption of a photon #iw;, the emission of a photon
fiwg, and the creation of an optical phonon 0j which then
decays via anharmonicity into two phonons, three pho-
nons, etc. The production of two and three phonons is

la)

(b)

(c) QUARTIC

(4)

QUARTIC

FIG. 1. Diagrams representing contributions to the frequency
shift A and damping constant T" for the Raman-active LO mode
in silicon.

(a)

(b}

(c)'

FIG. 2. Diagrams representing higher-order contributions to
the proper self-energy of the Raman-active LO mode in silicon.

shown diagrammatically in Figs. 3(a) and 3(c). At
nonzero temperatures, processes can also occur in which
the decay of the optical phonon 0 is accompanied by the
absorption of another phonon, and the emission of one or
more phonons, as shown in Figs. 3(b) and 3(d) for the
cases of one and two emitted phonons, respectively.

III. EXPERIMENTAL RESULTS

Light scattering measurements have been performed
with a CODERG PHO spectrometer and an excitation
laser on single crystal nondoped silicon with a resistivity
of 100 (Lcm and oriented with a (111) face perpendicular
to the incident beam. In view of the large temperature
range explored the temperature was regulated in a liquid-
He cryostat for low temperatures, an electrically heated
furnace for the intermediate temperatures, and by laser
heating at high temperatures.

The sample temperature was measured by a platinum
resistor for low temperatures, by a thermocouple in the in-
termediate range, and by an optical pyrometer at high
temperatures. Verification of the measured temperature
was made by two additional methods. The first used the
integrated ratio of the Stokes to anti-Stokes Raman peaks.
The intensity of the Stokes and anti-Stokes peaks being
proportional, respectively, to no+1 and ng, the intensity

ratio is
Is i
=S exp |—2 |, 1
Tus exp knTl 3.0

where w, is the Raman frequency. (Wi omit the subscript
J from here on.)

The second method was based on the black-body radia-
tion of the sample. If we admit that the sample is a black
body we can apply Planck's law for the power emitted per
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Diagrams representing three- and four-phonon

anharmonic processes contributing to the decay of the Raman-
active LO mode in silicon.

FIG. 3.

unit area,

#i @’
P,(w)dw:a(w);ﬂ—zc—_;:m

and with a (w)=1 get the sample temperature.

The shape and the position of the peak due to scattering
by the Raman-active LO mode in silicon vary for different
temperatures. In Fig. 4 we show for comparison two spec-
tra taken at 295 and 1140 K. From these spectra we can
deduce the values of T and (2 for these two temperatures:
for T=295 K, I'0,LO)=4 cm™', and Q(0,LO)=520
em~' and for T=1140 K, I'(0,LO)=14 cm~' and

dw , 3.2)

Ter140k Ta295K
ya
._..-ﬁﬁ., ——
480 300 520 Alem)

FIG. 4. Firt-order Raman spectra for silicon at 295 and
1140 k.. The lre poution of the zone-center LO mode shifts
from 370 em~ 2t 295 K to 498 cm~' at 1140 K and the
linewidth fr+n 4 cm~"'at 295 K to 14 cm~' at 1140 K.

B

T TTTYTT

|

P P "
200 400 800

) e
800 1000 1200

1400 Ve

FIG. 5. Anti-Stokes to Stokes intensity ratio vs temperature,
considering the correction as discussed in the text. The closed
circles represent points for which temperature was measured by
a Pt resistor, a thermocouple and for temperatures above 600" C
by an optical pyrometer. The open circles are points obtained by
heating the sample with the laser and the oven; their tempera-
ture is not precisely determined. The theoretical curve
exp( ~#iwe/ky T) is represented by a solid linc

0(0,LO)=498 cm~'. The Stokes to anii-sioxes rano of
the intensity of these peaks gives the temperature by usng
the solid line representation given in Fig 5. In this sienn
the black circles represent the Pt resistor, mermocounls.
and pyrometric measurements of the temperature. I+ -
der to reach the melting point. we heated th samp'~ wth
the oven and the laser, by increasing the pover beam
This is represented by the circies. We should note the s
these points we were unable 10 measure the tempeiature
accurately. The calibration of the solid linc applies atter
the measured Raman intensities have been correcied for
the actual absorption coefficient and the frequency deprn-
dence of the Raman efficiency. In appliving these corvec
tions the expression for the intensity ratic becor

3 .
I ar+a,s | Ws S(w;,wg! T )
—_—=— | == ———exp > , 33
IAS ar+as WaAS S(w;.wAs) { Kg]

where a;,a,s,a5 are the absorption constants at the ire-
quencies wj,w,sws (incident beam, anti-Stokes, and
Stokes) and S(w;,ws) and S (w;.w,g) are the Raman cross
sections at the involved frequencies. Practically all the
points obtained by pyrometric measurements are above the
curve given by the Raman intensity ratio. This indicates
that the temperature determined by this method is sys-
tematically higher than that obtained by other measure-
ments. A better knowledge of the correction factors is
therefore necessary in order for this method to be used for
temperature measurements

The damping constant and the frequency shift have
been investigated systematically as a function of tempe: a-
ture. Figure 6 gives the temperature variation of the
damping constant I'(T) between 5 and 1400 K. The
dashed curve represents (T} calculated from the relation’

it

e*—

NN=T0) (3.4)
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Tid

FIG. 6. Temperature dependence of the damping constant I'
for the Raman-active LO mode in silicon. The solid curve gives
the theoretical fit using both three- and four-phonon processes.
The dashed curve gives the theoretical fit using only three-
phonon processes. The open and closed circles have the same
significance as in Fig. 5.

where x =#wy/2kzT and I'(0)=1.40 cm~'. Equation
(3.4) is an approximate expression for the temperature
dependence of the damping constant based on three-
phonon processes (cubic anharmonicity in second order)
and the simple Klemens® model. It seriously underesti-
mates the damping constant at high temperatures. We at-
tribute this discrepancy at least in part to the neglect of
four-phonon processes associated with the diagrams in
Figs. 1(f} and 2(a)—2(c).

It is of interest to investigate whether this discrepancy
can be eliminated by generalizing Eq. (3.4) to include the
contribution of four-phonon processes. Following the ap-
proach of Klemens® we write the kinetic equation for the
net rate of decay of an incident phonon into three thermal
phonons in the form

d%(&m,):—B[ (Sng+ng)n; +1)ny+1)n;+1)

—(5n0+no+l)nln2n3] y (3.5)

where 8n; is the deviation of the incident phonon occupa-
tion number from its thermal equilibrium value ny and B
is a constant. Using the equilibrium condition

no(m+1)(nz+l)(n3+l)—(no+l)n|n2n3=0 ,

(3.6)
we can rewrite Eq. (3.5) as
-g;(ﬁno)= —B(nny4+n\ny+nyns+ny+n,
+ny4+1)8n, . a.n

Energy conservation can be satisfied in the simple Kle-
mens fashion by setting v, =w,=w;=wy/3. Consequent-
ly, ny=n;=n;. The generalization of Eq. (3.4) to four-
phonon processes then takes the form

3
(e¥—1)?

NT=4 H—’_ZT +B (14 + )

e’—-1

(3.8)

where y =#wo/3kpT and A and B are constants. In the
high-temperature limit, the factors multiplying A and B in
Eq. (3.8) vary as T and T?, respectively.

Equation (3.8) has been used to fit the experimental data
presented in Fig. 6 by suitably choosing the constants A
and B. The best values of 4 and B are found to be 1.295
and 0.105 cm™!, respectively, and the resulting plot of
I(T) vs T is given by the solid curve in Fig. 6. We see
that the agreement between the calculated curve and the
experimental points is now quite good.

The experimental results for the line position {}(7) as a
function of T are shown in Fig. 7. Also shown is the fit to

- the data (solid curve) specified by the expressions

U T)=wo+A(T) 3.9)

and
2

X

3 3
+
=1 (er—1)?

(3.10)

where wg, C, and D are constants with the values 528,
—2.96, and —0.174 cm ™', respectively. Equation (3.10) is
the analog of Eq. (3.8) and specifies the contributions of
three-phonon and four-phonon processes to the frequency
shift. The agreement between the experimental points and
the solid curve is seen to be good.

If we try to fit the experimental data with three-phonon
processes only by omitting the term in Eq. (3.10) with the
factor D, we obtain the dashed curve in Fig. 7 with
wg=529 cm~! and C=-4.24 cm~'. Although this
curve fits the data wel! at temperatures up to 600 K, it is
clearly inadequate at higher temperatures. This demon-
strates the necessity of including terms corresponding to
four-phonon processes in the expression for A(T).

In principle, the four-phonon contributions in Egs. (3.8)
and (3.10) should include terms arising from difference
processes of the type represented by Fig. 3(d). We have
omitted such terms on the grounds that their inclusion

A()=C

T+ +D

1+

TR A 0 80 1000

1200 Tix)

FIG. 7. Temperature dependence of the line position Q1 for
the Raman-active LO mode in silicon. The solid curve gives the
theoretical fit using both three- and four-phonon processes. The
dashed curve gives the theoretical fit using only three-phonon
processes. The open and closed circles have the same signifi-
cance as in Fig. $.
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would simply introduce additional terms varying as 7 and
as T? in the high-temperature limit and would not add
~ any new qualitative features.

IV. DISCUSSION

We have seen in the previous section that the extension
of the Klemens-Hart-Aggarwal-Lax model>® to include
four-phonon processes. provides a good fit to the experi-
mental values for the frequency shift and damping con-
stant of the Raman-active mode in silicon up to 1400 K.
This fit is achieved by suitably choosing two adjustable
parameters for each of the two quantities. Since one
would expect the contribution of four-phonon processes to
be small compared to that of three-phonon processes, the
ratios B/A and D/C should be small. The actual values
of these ratios are 0.08 and 0.06, respectively, so this ex-
pectation is fulfilled.

It would, of course, be desirable to carry out a first-
principles calculation of the frequency shift and damping
constant arising from both cubic and quartic anharmonici-
ty. However, such a calculation is by no means trivial.
The principal difficulty is that a simple model such as a
nearest-neighbor model is inadequate to describe either the
harmonic or the anharmonic properties of silicon. This
was shown a quarter century ago by Herman® and by Lax®
for the harmonic properties and very recently by Wanser

M. BALKANSKI, R. F. WALLIS, AND E. HARO 28

and Wallis'® for anharmonic properties. Long-range
forces are necessary for a proper description and can be in-
troduced via a shell model,'" a bond charge model,'? or a
model containing dipole-dipole and/or quadrupole-
quadrupole interactions.” %

Cowley* has carried out a calculation of the frequency
shift and damping constant for silicon at temperatures up
to 500 K using a shell model for the harmonic forces and
a nearest-neighbor model for the anharmonic forces.
Reasonable agreement with the experimental data was ob-
tained by Cowley for the frequency shifts, but not the
damping constant.’ We are currently engaged in making a
calculation of these quantities using the long-range force
model of Wanser and Wallis generalized to quartic anhar-

" monicity.
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1o INTRODUCTION

One of the most fascinating debates in the field of Semiconductors Physics
in recent years,centers on the fundamental interpretation of laser anneal-
ing. The gquestion of the energy transfer from an intensc beam to a disor-
dered raterial, such as amorphous silicon, resulting in the crystalliza-
tion of the amorphous substance has been approached from two different
points of view, both referring to a set of fairly clear experimental re-
sults. On one hand, a claim has been made that the laser beam simply heats
the sample up to melting the amorphous material which on cooling crystalli-
zes from welt LlT4] . On the other hand, onc has considered that amorphous
te crystalline phase transition can occur at low temperatures without
passing through the molten state [5] . Many arguments have been developped
in support of these interpretations. A large number of publications have
appeared in the literature,

In addition to the fundamental interest, laser annealing has been
considered to have a strong potential in the technology of semiconductor
doping by ion implantation. For all these rcasons, the attention of a lar-
av audience has been focussed on this problem.

2. STRUCTURAL ANALYS1S AFTER LASER ANNEALING

2.1, Aporphous - Crystalline transformation

The aim of laser annealing is to achieve the transformation of the amor-
phous material obtained by ion implantation into perfect crystal. There~
fore, we shall first discuss the results of the +r>ructural analysis after
antiealing.

One of the methods which seems to be mest appropriate to define the
dezice of crystaliinity of the material is light scattering. The light
scattering spectrum of amorphous silicon for example, is very different
frem that of the perfect crystal.

Laser anncaling performed with Ruby Q-switched laser delivering puises
of ajout one hundived nanoseconds with energy density of the order of one
J/em” is deseribed by Morhange [67) . At this energy density, the diameter
‘of the powver laser beam was of the order of one mm. The anncaled region
i explorvd with an Acyon lascr probe beam focussed to a diameter of 80 um.
The prose voam ie used Lor Raman spectroscopy. With this arvangement, it
-7 Wan possitte to explore the auncaled region in the xy plane by moving the

sanic with repard to the probe beam and in the 2 dircction by varying the




N frequency of the probe beam 1nduc1ng changes in the penetration depth in
e "the a-Si sample.
- ' Two parameters characterize the annealed Si : the frequency position of
‘the Raman line and its half width. For monocrystalline Si, the Raman acti-

‘ve normal mode is observed at 520,5 em~! with a half width of 3 cm ). When
o ion implanted samples having a thlckness of the amorphous layer of 5000 A
oy are investigated, the annealed region does not show a uniform single
PN crystal structure. At the center of the 1Tradiated region, the Raman peak
N frequency is 519 cm"', shifted by 1,5 cm towards lower frequencies. The

o width of the peak is 6 ecm™' significantly broader then the single crystal
peak. When the probe beam is moved towards the periphery of the power
laser irradiated region, the frequency shift increase and reaches 5,5 cm
at the edge of the annealed area. The band is also broader and nas a
width of [0 cm ~! near the edge. These results are displayed in Figure 1,
where the circles represent the extent of the power laser beam and the
dot's indicate the position of the probe beam for the spectrum represented
on the left side of the figure. : .
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Figure 1. Raman spectra coming from

4 . various points along a

diameter of a laser annealed
o region. From J.F. MORHANGE

et al. Proceedings of the

N Material Research Society

CD : : Annual Meeting, Boston,

1978 (American Institute

of Physics, New-York 1979)

p. 429,
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These results could be viewed as follows. Even at the center of the
annealed region, laser annealing does not lead to a large single crystal
~in the way it would be obtained in equilibrium epitaxial regrowth.
Instead, the anncaled material consists of large polycristallites whose
dimensions decrecase as one approaches the interface between anncaled and
amorphous material. The recrystallization occurs as a result of random
nucleation in the amorphous layer. The dimensions of the crystallites




depend on energy distribution in the incident power laser beam. The crys-

tallite dimensions determine the frequency shift of the Raman active nor-
- mal mode band. An account of the normal mode frequency shift as a function
of the dimension of the crystallite is given by a simple lattice dynamics
calculatibn developped by Kanellis 7] . The model used in this calcula-
tion is that of a thin slab limited in one direction and infinite in the
plane perpendicular to that direction. In the case of Si, the results
obtained are shown in Figure 2. )

. . . - . Figure 2. Frequency

t ) variation .of the higher-
520 frequency optical modes
as a function of the .
number of cells. L
- , From G. KANELLIS et al., ‘ p}
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& In this figure the frequency shift of the two high frequency modes are
. represented. These are the surface modes which in the limit of 'infinite

! crystal tends toward the Raman active mode at the center of the Brillouin
. Zone. These calcylat.ons show that for crystallite having dimensions

2 smallar than 80 A, a noticeable frequency shift should occur. Indeed, the
& experimental observations show that in the region near the crystalline-

" amorphous interface a significant frequency shift is measured. From this

'«

theoretical model and the experimental results, we draw the conclusion
that in laser annealing, the crystallization occurs randomly.

An amorphous network ic not a perfectly regular structure. The energy
supplied by the laser beam at threshold is..sufficient to soften bonds in
the less favourable topological situation and allow nucleaticn, Crystal-

F.Iz‘ .o S % AL % . M.
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. lographic ordering develops around the randomly distributed nucleus embed-
ded in the amorphous background creating microstalline clusters whose size
depends on the energy.density distribution.

First order phase transitions such as melting or crystallization take
place, in general, via nucleation and growth of microphases. Unstable
phases of Si have also been prepared in high~pressure experiments L8
Philiips [ 9] has given evidence of metastable phases in laser-induced and
thermally.reversible microcrystallization in the chalcogenide glass formers
GeSe,. Recent light scattering experimentsALIO:lshows the existence of
microcrystallites embedded in the glass (GeSe,) during laser annealing. The

micro crystalline clusters initially formed are“free to rotate and form
larger clusters, a fact which-is expressed by Raman line narrowing and
demonstratés a precurscer effect in the laser induced glass to crystal
transition. These experiments although achieved in different materials
and in a very different time scale might be suggestive of the.processes
occuring in silicon. - ' ) . ’ '

2.2. Picosecond laser induced patterns on -silicon single crystal surface

It is generally believed that monocrystalline silicon being a well defined
target ' would yield unambiguous indication about' the mechanism of the-
transformations produced by a laser beam on a semiconductor.

The surface of a silicon single crystal may be transformed into an
amorphous layer by a single picosecond pulse llJ'. Optical observation
show the formation of an amorphous ring pattern on a (111) crystal
surface after exposure to a laser pulse at 532 nm with an average duration
of 30 ps and with a spot having a size of the order of 5.107" cm”. At
lower intensities, the ring diameter becomes smaller, the amorphous region
coalesces to a spot at the center and disappears below a critical intensity
threshold. At2532 nm, the threshold is reported to be 0,18 J/cm” for (100)
and 0,08 J/cm” for (111) surfaces. Amorphous rings rather_than central
spots are_formed for intensity levels exceeding 0,24 J/cm® for (100) and
0,12 J/em? for (111) surfaces. The center in this case is a single crystal
with the same orientation as the substrate. The amorphous nature of the
rings was deduced from an inc-ease of the reflectivity compared to crystal-
line silicon and was confirmed by electron diffraction with a transmission
electron microscope. '

The annular pattern of the amorphous phase is interpreted in terms of
cooling rate and crystal-growth speed. It is first assumed that above
threshold, the laser pulse induces welting of the silicon target.

Folloving lascr pulse melting, two limiting cases are then proposed :
just_gbove the threshold intensit¥’ a layer of depth somewhat smaller than
5.107° cm is cooled in t_ = 3,10 s and the condition, d/Uy >t , for
nucleatior of an amorphoBs solid phase, is fulfilled. Well above Phe thres-
hold intensity, the temperature of the molten layer rises far abhove T
and the cooling rate in the critical region below 0.8 T_ becomes longor.
This gives a description of the annular pattern of the amorphous phase.

2.3. Picosecond laser annealing of implanted silicon

Experiments analogous to that described in the previous chapter for silicon
single crystal surface nave been performed by Liu et al L}ZJ on ion
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_implanted amorphous silicon.

With a laser beam of 1.06 ym, beside the annular amorphous region and
* recrystallized center, one also observes a récrystallized ring. Both the
‘ring and the centgr are polycrys;alﬁ. The energy fluence level to formzthe
ring is 0.22 J/em®, It is 0.35 J/ecm® for the a-Si region and 0.85 J/cm
or the recrystallized region.

Rozgonyi et al [13] have re-examined the structural modification of
amorphized silicon surfaces following picosecond laser irradiation using
cross~section transmission electron microscopy and showed that thé center
is always a dislocation free single crystal encircled by poly-silicon
ring. This observation is consistent with the results of Morhange et al
(.”'J obtained by Raman spectroscopy. ' :

"More recently, Nissim et al [15] have performed light scattering measu-
rements analogous to. that reported by Morhange et al. [14J scanning the
irradiated area with a probe laser beam focussed on a I ym diameter spot.
When a single 30ps pulse at 1,06 and 0.532 um wavelengths from a mode-

- locked neodymium : Yttrium Aluminium Garnet laser is used, a multi annular
recrystallization patteran is observed on implanted silicon. At high
incident energies, single crystal silicon is observed in the central spot
and in the first recrystallized ring of the annealed area. With an irra-
diation at 1;06 ym, the threshold of laser induced damage was found to be
above 2 J/cm”., The multi annular pattern has been ascribed to multiple
melting resolidification process during the pulse duration leading to the

. superposition of basic structures of different sizes.
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For the understanding of this complex structures, it should also be
remembered that periodic surface structures onm solids may result from
inhomogeneous energy deposition associated with the interference of the
incident beam with a surface scattered field as discussed by Van Driel
et al [}6 ].

3. TIME RESOLVED ANALYSIS OF PULSED LASER IRRADIATION OF SEMICONDUCTORS

For the discussion of the data obtained by short laser irradiation pulses
one could distiuéuish three different time ranges : i) very short time
scale, t << 107! s, where the system is in a far from equilibrium state,
the seat of highly non linear processes, ii) intermediate time scale,

t v 107'“ s when different ebementary relaxation processes take place and
iii) long time range t > 10~ s when thermalization occure and the

system tends toward equilibrium. :

Y

3.1. Investigations in the very short time range

A radiation beam, of energy density of ! J/cmz, is bound to produce a
strong perturbation on the material at the instant of interactiomn. The
photon density is such that a hot electron plasma might be produced.

The experiments in the shortest time scale are these of optical pulse
induced phase transitions in silicon described by Shank, Yen and Hirlimann
17] . They reported the first observations of optically induced reflec-

tivity changes in silicon with 90 fs optical pulses.
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The results of reflectivity measurements are shown in Figure 3. The
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energy E is defined as the excitation energy density where visual evi-
_dence of amorphous layer formation is observed. This energy corresponds
to 0.1 J/cm”.

[
-

Figure 3. Transient reflectivi-
ty data in Silicon at probe
wavelength ] um and pump
wavelength 620 nm at various

var . : incident energies.

‘ atéﬁ"w. 25Ey .+ From C.V. SHANK et al., Phys.
o3} ﬁy Tl ° Rev. Letters 50, 454 (1983).
) 40Eqy " Tm-e .- . —
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Shank et al [17] discuss the results shown in Figure 3 in the follo-
wing way. Optical excitation of Si with a 2.0 eV optical pulse results
in the generation of a dense electron-hole plasma within the optical
absorption depth : a ' =.3 pm. They suppose that during the earlier time
following excitation, the reflectivity is dominated by the electron-hole
plasma. As the pulse intensity is increased, the energy is transfered to
the crystal lattice and the crystal melts. It is also supposed that
melting begins at the surface and moves inward into the bulk.

Probably, the most important contribution of this investigation is the
demonstration that when the crystal is excited with a short optical pulse
of 90 fs a form of unstable highly excited silicon is created which per-
sists for a fraction of picosecond. A challenging programme now is to
determine the properties of this material with at least 10 % of the avai-
lable electrons excited. )

3.2. Intermediate time range. Picosecond irradiation

Most of the work on time resolved spectroscopy is in the range of the
picosecond for the simple reason that this is the time scale for which
short pulsc laser sources are readily available.

Experiments in the picosecond range on transmission and reflectivity
were performed by Liu et al. [IQJ at the fundamental and doubled frequency
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-0of a mode-locked Nd :. YAG laser producing a 30 ps single pulse. In this
vork are presented measurements on self reflectivity and self-transmission
at A = 532 nm for increasing energy fluence with 20.ps pulses. The self-
reflectivity of bulk silicon with (111) surface starts to increase when the
energy fluence of the pump beam reaches 0.2 J/cm“. The initial rise of the
reflectivity from the crystalline value of 0.37 to a maximum value of 0.48
is in agreement with changes in the index of refraction due to melting of a
thin surface layer. In this case, it is supposed that the hot e~h plasma
transfers sufficient energy for meltipg within the duEation of the pulse
iltself. Below the critical fluence level of 0.2 J/cm, the photoexcited
e-h plasma causes a decrease in the real part n of the complex refractive
index. '

A pump and probe technique was also used where a picosecond excitation
pulse is followed by a slightly focussed weak probe with a variable time
delay. :

At 100 ps delay, the probe pulse is temporarily completely separated
from the pump pulse,and an abrupt rise in reflectivity at the threshold
fluence of 0.2 J/cm” is observed [}8 . This discontinuity in the car-
rier density should be associated with local structural changes. The
reflectivity rises to 0.75 + 0.03 which is characteristic of molten silicon
at the probe wavelength of 1.064 um, This behaviour is observed even at
zero delay indicating that melting occurs within the pulse duration of
20 ps.

3.3. Long time phenomena

At long time, the energy is transferred to the lattice which eventually
melts. For the long time phenomena, we are faced with three major problems
i) what is the mechanism of melting, .
ii) do intermediate, metastable phase exist in the further thermalization,
1ii) what is the microscopic mechanism of resolidification.

There are two experimental approaches to these questions :

a) determination of the temperature of the system,

b) direct observation of the structural phase transformation during the
evolution of the system towards thermalization.

We have discussed in paragraph 2 the structural observations and the
insight they could be for the dynamical evolution of the system. We shall
now focuss on considerations on the determination of the temperature of the
system : the electron gas temperature and the laﬁtice temperature.

3.4. Energy transfert and carrier density

e 0f particular interest for the understanding of the laser action on a solid
,xjf is the analysis of the initial events following the irradiation by an inten-
e se optical pulse. Femtosecond spectroscopy has already shown to be a
L_; valuable method for such an analysis [}7, 19, 20] . Measurements on the

: time dependent reflectivity leads to estimation of the electron hole
density, initially created as well as its evolution with time. Such
measurements are also suggestive for models for the emergy transfer during
and after the irradiation.

The questions to be considered are the following :

e




i) whgt.is the electron-hole (e-h) density resulting from the excitation.
ii) what are the interaction processes behind the excitation.

iii) how is the éenergy stored in the excited carriers and transferred to
-the rest of the system.

i) electron-hole density produced by femtosecond pulse

The high density electron-hole plasma in silicon created by a 90 femtosecond

pulse has been investigated (17] by measuring the time dependent reflectivi-

ty over a 20 picoseconds time scale, at various laser energies. Such short
pulses lead to the possibility to break so many covalent bonds that the
crystal.becomes fluid even at T = O K. The carrier g?nsitg created at this
time scale was estimated to be of the order of 5.10°" c¢m™” under an inci-
dent enérgy density of 0.063 J/cm?. The phenomena produced in such very
short pulses can be viewed in the following way [203 . The part of the ini-
tial laser beam absorbed over a penetration depth of d = 3 um creates an
electron hole plasma with a decreasing density profile. After the surface
density reaches a fraction of N_, the plasma density, the refle ‘tivity and
the penetration depth fall, becgusq of the decrease of the real part of
the dielectric constant as well as of the increase of th: induced free
carrier absorption. For high enough power, the surface density goes beyond
N_within the pulse, yielding an instantaneous reflectivity larger than R,
tRe initially reflected beam. At that high surface density the laser beam
becomes a vanishing wave which can create e-h pairs only very close to the
surface. '

The reflectivity during the pulse R(t) is obtained through a general
resolution of the Maxwell equations, taking into account the variation of
the dielectric constant via the modification of the e-h density profile.

, . . -1
The experimental data ZQJ are fitted with a relaxation time T = 3.59 6
s. For A 520!31 um the plasma frequency density can be as high as 2.10°% <
N_ < 8,10 cm™3 which is iniged very high in view of the total number of

vBlence band electrons (2.10 cm'3).

ii) electron-gas_temperature

An interesting investigation on the photoexcited electron distribution is
performed by non-linear photoemission from silicon by Bensoussan and

_ Moison (21]. They show that in Si, at moderate fluences an equilibrium

distribution coexists with the electrons at very high energies in the
conduction band, generated by two and three quantum processes. The
equilibrium distribution is described by a well-defined temperature which
differs significantly from the lattice temperature. Because of the fast
photogeneration of the carriers, and of the two photon absorption and
biparticle Auger recombination processes in which carriers are sent
continuously high in the bands, the electron gas can reach an internal
equilibrium characterized by a température T, higher than the lattice
temperature T_,. The experimeatally measured thermal emission is interpreted
by the RicharSson equation. The temperatures deduced for different fluences
are shown in Figure 4.

XX
s _B_®

. P4

l{“ 0.‘.

>
.




N

Figure 4. Electron and lat-

_ tice temperatures vs. photon

- ' flux. .

From M. BENSOUSSAN. Procee-
"dings of the 16th Internation-
al Conference on the Physicg
of Semiconductors. North-
Holland, Editor M. Averous
(1982) p. 405.
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Lattice temperature at equilibrium can be inferred from light scattering
measurements of the frequency shift and line width of the LO mode 22
and Stokes to anti-Stokes ratio [23] . The Stokes to anti~Stokes ratio
indicates a lattice temperature of 1400 K for a delay of 150 ns after
excitation with a power beam of 0.8 J/cm® at 532 nm. Raman measurements
are evidently taken after the high reflectivity falls off.

4. DISCUSSION AND CONCLUSIONS

Laser annealing has now a long history and an abundant literature. The
interesting question, which still remains to be answered, is what are the
elementary processes in the interaction of a strong radiation field with
matter.

The process of laser annealing consists of two sets of phenomena. The

first concerns the effect of a dense radiation field on matter creating
] elementary excitation far from equilibrium. The initial hot plasma redis~
SR tributes through interactions between carriers and ultimately thermalizes
e giving up energy to heavier particles which are the lattice constituents.

S The second set of phenomena, of a completely different nature, concerns
the modifications induced to the solid as a result of the creation of the
dense hot plasma. If the laser pulse is short enough, the e-h density
reached cerresponds to an amount of broken covalent bonds which is a
significant portion of the total number of bonds, the crystal becomes
fluid even at T = 0 K. Ultimarely, the solid sets in a new phase whose
structurc depends on the eclementary mechanisms of interaction and organi-
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zation of the lattice constituents. We. shall examine successively these
two states as : i) direct laser effect and ii) econsequences of the laser.

.action. .

DN
[

A

4,Y. Direct laser effect

. .
: ‘_‘_l.-.!-

The incident laser energy is absorbed by electron-hole pairs creation and
by free carrier excitation. In indirect gap semiconductors, electron~hole
pairs are created via indirect absorption processes involving the emission
and absorption of phonons. Because phonon energies are much smaller than
photon energy, the amount of energy transferred to the lattice during ,
absorptlon is negligible in comparlson to the total amount absorbed. The
rise of carrier density leads, in turn, to increased free carrier absorp-
tion. The net result is the production of hot-electrons and holes far from
equilibrium which subsequently thermalize with the set of the carriers and
eventually with the lattice. The observations by Shank et a1,[l7] demons-

. trate that with short, 90 femtoseconds optical pulse, an unstable form of
highly excited state is created near the surface which persists for a
fraction of picosecond.
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For véry short impulsion of radiation, from the experiments [17,_2('8
one perceives clear indications that there are two steps of the laser
“ action on a crystal well separated in time. In the first step, the electro-
" magnetic energy transferred from the laser beam to the solid is retained
in the highly excited non-equilibrium electronic state. In a second step,
this energy is transferred to the lattice.

-

Recently, a theoretical model C?OJ is proposed which takes into account
the space time evolution of the plasma durﬁng tge pulse in order to explain
the processes in densities higher than 102 reached in 100 fs pulses.
The novelty in this model is the argument that free carrier absorption is
dom1nated by e-h collisions with a characteristic relaxation time 1 =
3.107!

S RO Sl W)

) A different situation is reacheg with much longer pulses : = 10 ns
. and a photon absorption rate g ~10° cm™ -3 570 Auger recomb1na%1on
. becomes the dominant recombination mechanism at these densities.

Most of the laser energy is absorbed by the carriers within the absorp-~

5 tion depth. Eventually, these carriers loose their energy to the lattice,

3 ' the rise of the lattice temperature then depends on the distance they have

: diffused before substantial phonon emigsion occurs. At moderate demnsity,

- the phonen scattering time is T ~ 10 '~ s. Screening does not affect the

» rate of intervalley phonon emission until N, © 102! cm™3. Because screening
increases the electron-phonon scattering time, it not only decreases the
rate of phonon emission but also enhances diffusion. This increases the
volume of. the region in which the energy of the excited carriers is trans-

" ferred to the lattice. Owing to the extreme non linearity of the hot
carrier effects, it is impossible to make an accurate estimate of the
precise temperature to which the lattice is heated or to determ1ne the
.laser power threshold above which melting w111 occur.

4.2. Consequences of the laser action

The ‘equilibrium observations are clear : an amorphous or glass solid is

transformed into crystal under laser action and a crystal submitted to
N\
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very short laser irradiation is transformed into amorphous material. An
implication of both of these transformations is that melting preceeds the
transition. Another alternative is that the ‘phase trarisition is directly
induced "in the highly excited state.

The effect of a dense plasma on the melting temperature is itself an
interesting problem of solid state theory. This question has been recently
addressed by Bok and Combescot [?4]. It is shown that in the presence of
a dense plasma, the melting temperature of a solid changes. The melting
temperature decreases with increasing plasma density. For a laser pulse of
} J/em” during 10 ns, it is considered that e~h plasma reaches a steady -
state in a time shorter than the laser pulse. Considering the plasma
expansion due to its high pressure, its collision with phonoa? ang3Auger
recombination, the highest plasma density is of the order 10°° ¢m ~. This
density ' is nevertheless considered to be sufficient to considerably reduce
the melting temperature so that a metallic layer of liquid silicon is formed
at the surface. :

The role of a high plasma density in laser annealing has been discussed
by Van Vechten et al. 5] in a quite different way but still involving
electron-phonon coupling and lattice instability inducedZ?y th%s interac-
tion. Above a critical carrier density estimated at 8.10°° cm °, a second
order phase transition occurs. At this plasma density, the bond charges
will be so depleted that they will no longer be -able to stabilize the TA
phonon modes [253 . The crystal will no longer resist shearing stresses
and will become fluid. This fluid is distinct from the normal molten phase
of Si the latter beeing the result of a strictly first order phase
transition driven by the atomic motion at high temperatures. The assumption
of Van Vechten is that the plasma is supposed to directly induce the
structural transformation. The energy is retained in the electronic system
instead of beeing entirely associate with the atomic motion. As the plasma
becomes less dense due to expansion and to transfer of energy to the
lattice, the.materi?l will pass back through the second order phase
transition at 8.10°' cm™3 and covalent bonding will gradually appear. The
material will finally recrystallize if this process is relatively slow
or will solidify in the amorphous phase if the process is very fast.

This dense plasma phase could be compared to the highly excited silicon
vwhich persists for a fraction of a picosecond {}7, 26] . The interpretation
of the laser action differs nevertheless with regard to the following step ;

. it is generally considered that the solid melts after the initial inter-
action stage. : .

In conclusion, few points appear clear today. The laser interaction
with the solids results first in the creation of a dense plasma which
persists for a fraction of a picosecond. Melting seems to .occur after the
- excitation pulse. The mechanism of melting is not clear and consequently
" the mechanism of ‘solidification is not clear either. Further investigation
in the very short impulse regime aré¢ certainly desirable to clarify the
physical processes in laser annealing.
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