Radar Echo Enhancement Using Surface Reflections

BEN H. CANTRELL

Radar Analysis Branch
Radar Division

September 28, 1984

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
Radar Echo Enhancement Using Surface Reflections

Analysis and simulation have shown that the detection of targets by pencil-beam radars could be enhanced by using strong surface reflections which are sometimes present. The radar used a beam pointed at the target and a beam pointed at the target reflection on the surface. Transmitting only on the direct beam and simultaneously receiving the direct and reflected beam energy, up to 2.5 dB improvement in signal-to-noise ratio (S/N) was obtained. During strong reflecting conditions, transmitting and receiving simultaneously over both beams made up to 5.5 dB improvements in S/Ns, but the improvement and occasional loss depended heavily on the target location within the beam.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>RADAR GEOMETRY</td>
<td>1</td>
</tr>
<tr>
<td>INTERFERENCE PATTERNS</td>
<td>2</td>
</tr>
<tr>
<td>RECEIVER NOISE</td>
<td>3</td>
</tr>
<tr>
<td>SIGNAL PROCESSING</td>
<td>4</td>
</tr>
<tr>
<td>DETECTION RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
</tbody>
</table>
RADAR ECHO ENHANCEMENT USING SURFACE REFLECTIONS

INTRODUCTION

Current fan-beam radars located on ships exhibit variation in signal strength and have a significant increase in target signal strength at some angles when the surface reflections in front of the radar are strong as described in Section 2.6 of Ref. 1. Pencil-beam radars, except for the surface beam, do not exhibit this strong variation in signal strength across the beam. Although the radiated signal energy reaches the target and the target echoes reach the antenna through the surface reflections in the pencil-beam radars, the surface-reflected signal is weak because it enters via the low antenna sidelobes. The subject of this study is to consider a system and its performance which uses the strong surface reflections to enhance target detections in pencil-beam radars. Some other studies [2-5] use the surface reflection to enhance target detection.

Consider a pencil-beam radar pointing at a high-elevation target. The target echo returns along the direct path and also reflects from the surface. If a pencil beam is pointed down toward the reflecting surface, the surface-reflected energy can be captured as well and can have almost the same signal-to-noise ratio as the original, upward-pointed direct beam; for good reflecting conditions, nearly a 3 dB enhancement in signal energy is expected. We will analyze radar systems which use pencil beams pointed toward the target and its surface reflections. We begin by defining a radar geometry and an associated set of interference patterns caused by the interfering electromagnetic waves. We then define the receiver noise and signal processing used. Finally, the detection performance is compared to a standard system that uses a pencil beam pointed at the target.

RADAR GEOMETRY

A radar using two beams is situated above a flat reflecting surface as shown in Fig. 1. One beam is pointed at the target and one is pointed at the reflecting surface so its reflection is pointed at the target. The angle at which the reflected beam needs to be pointed is given by

\[\theta_r = \tan^{-1} \left[\left(\tan \theta_a \right) + \frac{2h_a}{R} \right], \]

where \(\theta_a \) is the angle of the direct beam, \(h_a \) is the height of the radar, and \(R \) is the range to the target.

![Diagram showing radar antenna and target](image)

Fig. 1 — Geometry of radar antenna and target.

Manuscript approved June 19, 1984.
The difference between \(e_r \) and \(e_d \) is plotted versus range in Fig. 2 for \(h_a = 50 \) ft. We can determine two things from the curve. First, we note that the aspect angle at which the beams view the target is nearly the same, making the target cross section under bistatic scattering essentially the same as monostatic scattering for typical targets. Secondly, we see that if we set \(R \) equal to infinity, then \(e_r = e_d \). If we always use this value of the pointing angle, \(e_r = e_d \) for the reflected beam, Fig. 2 shows the error in alignment of the center of the two beams on the target. With little error then, we can use the monostatic radar cross section and, too, not have to worry about small errors caused by pointing of the beams.

![Graph showing aspect angle difference between direct and reflected beams as a function of range for \(h_a = 50 \) ft and \(e_d \) below 10°](image)

INTERFERENCE PATTERNS

The reflecting surface, such as the sea or a grassland, in front of the radar is not flat, but we can approximately describe it with a complex reflection coefficient \(\rho \) and set the angle of reflection equal to the angle of incidence.

We transmit first on the direct so there is a plane wave sweeping over the target. The target equally reflects a signal along the direct and reflected paths. The phase difference \(\phi \) along the antenna aperture between the reflected and direct signals is given by

\[
\phi = \frac{2\pi}{\lambda} 2(h_a + x) \sin e_d + \psi
\]

(1)
where λ is the wavelength, x is the vertical location along the aperture and varies from $-d/2$ to $d/2$, ψ is the phase shift due to the reflecting surface, and d is the vertical aperture width. The plane wave from the sinusoidally excited direct path has a root-mean-square (rms) electric field strength E_d, and from the reflected path of $|\rho| E_d$. We plot the rms field strength across the aperture

$$E_a = \sqrt{2} E_d F$$

where

$$F = \sqrt{(1 + |\rho| \cos \phi)^2 + (|\rho| \sin \phi)^2}$$

in Fig. 3 for $|\rho| = 1$, $d = 10 \lambda$, $h = 55\lambda$, $\psi = 180^\circ$, and $\phi = 25^\circ$. We find there are nulls and peaks across the aperture and note that the average rms power level across the aperture is 3 dB higher than if only the direct plane wave were present. It can also be shown by using Eqs. (1) and (2) that as e_d decreases or the antenna width is narrowed (as in 2D radars), there is only one lobe or null across the antenna. Thus, at low elevations, the average rms power level can be 6 dB higher at times and negligible at other times.

If the same total power is divided equally and a sinusoidal signal is transmitted over both the direct and reflected beam channels, an interference pattern is set up in space. In fact, Eqs. (1) and (2) also describe the electric field in elevation across the beam. An example is shown in Fig. 4. We find that for at least the longer range targets, the power density is nearly uniform across the target, i.e., the target angle extent is small compared to distance between lobes. For unity reflection coefficients, the power density on target can be twice that of the single beam at some elevations and zero at other elevations. Note that the power density would be 6 dB above that of a single beam if the power were not split between the beams. This 6 dB improvement occurs naturally in fan-beam radars.

RECEIVER NOISE

The noise level in each channel is composed of receiver noise and external noise. The external noise in the direct beam at the higher elevations is quite low at microwave frequencies. The beam pointed into the ocean has a noise level bounded between the reflection of the sky noise (equal in power to that of the direct beam) and approximately 290 K. The external noise in the reflected beam depends on the reflecting properties of the earth, the surface roughness, polarization, grazing angle, etc.; a rough guess might be a noise temperature of 100 to 150 K for typical conditions. If we use a 5 to 6 dB noise figure receiver, the external noise in both beams is practically negligible. For our analysis, we assume the noise power in each channel is equal, and that the noise signals are Gaussian-distributed, zero mean, and uncorrelated.
It may be useful to have a low-noise receiver in the reflected beam channel and use it as a radiometer. By monitoring the external noise level in the reflected beam, we might be able to determine the reflection coefficient of the sea [6]. This may help in learning how to use this system.

SIGNAL PROCESSING

The baseband signals sampled at the range of the target can be represented by the complex numbers Y_d and Y_r. The signals are composed of target signal and noise, i.e.,

$$Y_d = S_d + N_d$$
$$Y_r = S_r + N_r$$

where S_d and S_r are the signal levels from the direct and reflected paths, and N_d and N_r are zero mean, Gaussian-distributed uncorrelated noise of power σ^2. The direct and reflected signal levels are computed from

$$S_d = S F$$
$$S_r = \rho S F$$

where S is the complex signal that would be present if only a single direct transmit beam were used, and ρ is the complex reflection coefficient. For transmission on the direct beam only

$$F = 1,$$

and for transmission on both beams

$$F = \sqrt{(1 + |\rho| \cos \phi)^2 + (|\rho| \sin \phi)^2}/\sqrt{2}$$

as previously defined in Eq. (2). The signal-to-noise ratio is defined by

$$(S/N) = \frac{|S|^2}{2\sigma^2}.$$

For purposes of comparison, a nonfluctuating signal was used.

The detectors compute either

$$Z_1 = |Y_d|^2$$

for a reference system using the direct beam only, or

$$Z_2 = |Y_d|^2 + |Y_r|^2$$

as shown in Fig. 4 — Electric field strength across beam at far range for $d = 10\lambda$, $h_a = 55\lambda$, $e_d = 25^\circ$, and $|\rho| = 1$.

Fig. 4 — Electric field strength across beam at far range for $d = 10\lambda$, $h_a = 55\lambda$, $e_d = 25^\circ$, and $|\rho| = 1$.

ELEVATION (RADIANS)

ELECTRIC FIELD

$E_d \sqrt{2}$

$E_r \sqrt{2}$

-0.05 0 0.05
using both the direct beam and reflected beam. We combine the signals noncoherently since we do not know the relative phase. Using the Neyman-Pearson detection criteria, we set thresholds with Ref. 7 to yield a probability of false alarm of 10^{-6}. Simulation gives the probability of detection P_d.

DETECTION RESULTS

The probability of detection for a probability of false alarm of 10^{-6} is shown as a function of signal-to-noise ratio for three different situations in Figs. 5, 6, and 7. All three figures show a reference case which is the normal case of transmission and reception using the direct beam only. The reference case can be found in Sec. 2.4 of Ref. [1]. Figure 5 shows the results for transmission on the direct beam, simultaneously receiving on the direct and reflected beam channels, and noncoherently adding the results. We found the probability of detection was independent of the phase difference between the two channels. Also, we got a 2.5 dB improvement in signal-to-noise ratio when the reflection coefficient was unity. We lost one-half of a dB from the 3 dB increase in energy due to noncoherently adding the signals. We also found that when the signal level in the reflected beam channel goes to zero, i.e., $|p| = 0$, we lost about .5 dB from the reference due to the added noise.

![Graph](image1)

Fig. 5 — Probability of detection versus signal-to-noise ratio for a probability of false alarm of 10^{-6} using transmission on the direct beam only and reception using both the direct and reflected beam.

![Graph](image2)

Fig. 6 — Probability of detection versus signal-to-noise ratio for a probability of false alarm of 10^{-6} using both the direct and reflected beams on transmission and reception for $|p| = 1$.
The results of transmitting and receiving simultaneously on both the direct and reflected channels are shown in Figs. 6 and 7 for $|\rho| = 1$ and $|\rho| = 0.5$. We note first that although the processed received signals are independent of relative phase between the channels, the phase difference between the transmitted signals reaching the target is very important. Recall that the signal strength impinging on the target depended heavily on the target location in the beam and was caused by the relative phase of the waves in the two transmitted beams. As shown in Fig. 6, we find a 5.5 dB improvement in signal-to-noise ratio when the target location is such that the signals add in phase, i.e., $\phi = 0^\circ$ and $|\rho| = 1$. The improvement is composed of 2.5 dB from reception (previously discussed) and 3 dB due to transmission. For all the other phases, there exists the 2.5 dB improvement due to reception. So, for $\phi = 90^\circ$, there is essentially no improvement in signal-to-noise ratio due to transmission. And in Fig. 6 $|\rho| = 1$, we find that some targets in the beam can be enhanced considerably while others located near the nulls of the lobing pattern can even take losses. The losses occur because the two signals arriving at the target nearly cancel themselves out.

In Fig. 7, we find that for $|\rho| = 0.5$, losses happen mostly when transmitting and receiving simultaneously on both channels because the power is split and energy lost in the direct beam. The energy from the reflected beam is even lower because of the low reflectivity; regardless of phase, the energy reaching the target is low. Where $|\rho| = 1$ in Fig. 6, we did not lose energy, we simply redistributed it. So, we conclude that we should not split the power and transmit along the two different paths unless we are certain the reflection coefficient is high.

SUMMARY

A radar system was defined for using the strong surface reflections to improve target detections in pencil-beam radars for those targets located about a half-beam width above the horizon. This system used an additional beam called the reflected beam as well as the original direct beam. The direct beam was pointed at the target and the reflected beam was pointed at the target reflection on the reflecting surface.

By transmitting only on the direct beam channel, and receiving on both the direct and reflected beam channels, we improved the signal-to-noise ratio unless the surface reflections were very weak. A perfect reflecting surface showed the best signal-to-noise ratio improvement of 2.5 dB, and a loss of 0.5 dB occurred for a perfect absorbing surface. It seems this technique can often yield an improvement in performance.
When the power was split and transmitted over both the direct and reflected beam channels, we did not get nearly as good results: a low reflection coefficient caused a loss of energy. We suggested, however, that the magnitude of the reflection coefficient might be estimated using radiometry techniques by inserting a low-noise receiver in the reflected beam channel. If the magnitude of the reflection coefficient can be estimated, and we transmit one half the energy over the reflected beam when the magnitude of the reflection coefficient is high, then nearly 6 dB improvement in signal-to-noise ratio can be had for some target elevation angles in the beam at the expense of losses at other target elevations. There may be times when one wishes to take these risks and choose such an option.

REFERENCES

