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1. Introduction and Summary ol

The present paper is a continuation of the study of Feynman integrals under-

g
-...-‘
taken in Kallianpur and Bromley [11}. A major theme of that paper, not taken up A
Lol |
ey
here, was the idea of using analytic continuation in several complex variables to :V"

=
. "n
p

define Feynman integrals for different classes of integrals. The purpose of the
present work is two-fold: (1) To define sequential Feynman integrals by means
of finite dimensional approximations and (2) to establish the existence of both

analytic and sequential Feynman integrals for a wider class of integrals than the

Y
L

.
o %o '
.

Fresnel class considered in Kallianpur and Bromley or in Albeverio and Hgegh-

Krohn [11,1). The latter results will be collectively referred to as Cameron-

-
L
Y

. X

Martin formulas because of their formal similarity to problems of equivalence of
Gaussian measures. A special case of the Cameron-Martin formula was given in [12].

Both the analytic and sequential Feynman integrals and the Cameron-Martin formula

will be investigated in this paper at the level of generality adopted in [11},

namely for classes of functionals on abstract Wiener and abstract Hilbert spaces. Ei;
A special feature of the paper is the definition of the analytic Feynman in- ;éﬁ
tegral for classes of functions on a Hilbert space H. This is done by the use of ??
finitely additive Gauss measure on H and the introduction of the "m-1lifting" map. gt
3 These ideas, together with preliminaries on abstract Wiener spaces are discussed EEE
in Section 2. Section 3 is devoted to theorems on analytic Feynman integrals. iif
All the results pertaining to sequential Feynman integrals are given in Section 4. iEE
These include the Cameron-Martin formula for integrands in Gq(H) and for the class QSE
Gq(B) of functionals on abstract Wiener spaces. 1In each section results are proved -
) for Feynman integrals on Hilbert and abstract Wiener spaces respectively.
. In Section 5, we specialize the theory to Feynman path integrals and briefly

indicate how the solution of the Schrodinger equation can be represented as a

Feynman integral either on a Hilbert space of paths or on the space of paths of
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the Wiener process. The results of Section 5 (except possibly for subsections

(d) and (e) and the remarks in (e)) are not new and are included as an application
of the theory of the earlier sections and also to enable the reader to appreciate
the physical background that initially led Feynman to his integral [6]. Moreover,
while making Feynman's arguments rigorous in this section, we have tried to ad-
here as closely as possible to his original approach as described in his book with
Hibbs ({7}, Chapter 3, especially Sections 3.5, 3.6 and 3.11).

The relationship of our paper to other work in this area is discussed in Sec-
tion 6. Sequential definitions of the Feynman integral have appeared in a very
recent Memoir by Cameron and Storvick [3] and in an earlier paper by Truman [15].
Both these papers deal with a Hilbert space of paths, the RKHS of the Wiener pro-
cess and define a sequential Feynman integral based on polygonal path approxima-
tions. Our definition is more general in two respects: it applies to any separa-
ble Hilbert space H and is given in terms of arbitrary segquences {Pn} of finite
dimensional orthogonal projection operators Pn converging strongly to the identity
in H. It is more general even for the case when H==Ht, the RKHS of the Wiener
process over C[0,t] and includes approximation by finite Fourier sums instead of
polygonal path approximations.

Cameron and Storvick confine their investigation essentially to what we call
the Fresnel class over Ci{0,t] and hence their results cannot be applied to any
problem involving unbounded potentials. Elworthy and Truman, on the other hand,
give a version of the Cameron-Martin formula for their sequential integral on Ht
in their paper [5]. Since this paper was written, we have seen a copy of a recent
paper by Elworthy and Truman, 'Feynman maps, Cameron-Martin formulas and arbarmonic
oscillators," kindly sent, to us by the authors. In it, a Cameron-Martin formula
is established for Feynman path integrals. Theorems 3.2 and 4.2 of our paper may

be regarded as generalizations of this result. Our definition of the sequential
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Feynman integral is also connected in some respects with Tarski's (Tarski [14] ﬂﬁ
"

and is alluded to in Section 6. Cad
o—“'

In the Kallianpur-Bromley paper, an analytic Feynman integral was defined for £

A

a (Fresnel) class F of functionals on an abstract Wiener space (H,B) and it was :4

shown that there was a Banach algebra isomorphism between F and the Fresnel class

.
- e
l ety
PR
ok Matalallt

F(H) for which a Fresnel-Feynman integral had been defined by Albeverio and Hdegh-

.
*, .I .

Krohn [1]. The present paper throws further light on this question: The results
of Sections 3 and 4 extend the Albeverio-Hgegh-Krohn theory to a larger class of
integrands, viz. to Gq(H). Definitions of analytic Feynman integrals for H are

provided directly (via m-lifting maps) and, finally, Section 4 supplies a sequen-

tial Feynman integral theory in the set-up of Albeverio and Hgegh-Krohn.

A final comment is in order about one of the main reasons for writing this
paper. In the literature on Feynman integrals - and we refer here not to the work
of physicists, but to theoretical investigations (e.g. in much of the work of
Cameron and his co-workers) - the role of Wiener space and Wiener measure provides

M a basic setting for the analytic continuation procedure. On the other hand,
the somewhat different approach of Albeverio and Hgegh-Krohn does not make any
use of probabilistic ideas. The work of the present paper shows that all these

approaches are basically equivalent. The heart of the matter is that the Feynman

S
\."l"

VRN XA
1]

integral, can be obtained no matter how it is defined, by means of a very general

finite dimensional approximation procedure, set forth in Theorem 4.3.
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2, Preliminaries: Abstract Wiener spaces and m-lifting maps

The basic notions of abstract Wiener space, measurable norm and "m-1ifting"
map are due to L. Gross (see [8] and the references given there). We briefly

summarize them below for the reader's convenience.

Let H be a real separable infinite dimensional Hilbert space with inner pro-

duct (+,°*) and norm . Let P be the set of all orthogonal proiections on H with

finite dimensional range. For Pe P, let

_l .
CP = {P "B: B a Borel set in Range P}
and

C = uC_.

B P

A cvlinder measure is a finitely additive nonnegative measure on (H,C) such
that its restriction to CP is countably additive for all Pe P. The canonical
Gauss measure m on H is the cylinder measure on (H,(C) characterized by

i(h,h,) 1. 2
(2.1) [e  Vanm = e tml”
Let H- || be a measurable norm on H, i.e. for every € >0, there exists P_ e P

such that for all P L P_,, Pe P, we have

m{heH: ||ph]| >€} <e.

It can be shown that H is not complete with respect to . (See [13]). IlLet

B denote the completion of H under and let i denote the natural injection.
The adjoint operator i* maps the stronag dual B* continuously, one-to-one, onto a
dense subspace of H* (which is identified with H). By a well known result of
Gross, the induced measure mi-l on the cylinder sets in B is indeed countably
additive and hence extends to a countably additive measure v on F--the Borel O-

field on B. The pair (H,B) is called an abstract Wiener space and P is called

the abstract Wiener measure. If H = {fecC[0,1]: £ absolutely continuous,

£(0) =0, g—i-e L2[0,1]} with the inner product
df af
1 1 2
(£,,£,) = [ (50 () - at,
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then the uniform norm on H is measurable and in this case B is CO[O,1] and Vv is

the classical Wiener measure on Co[O,ll . The concept of measurable norm and ab-

stract Wiener space is due to Gross. See Kuo [13] for forther details.

We will briefly describe the integration theory on (H,C,m). We now fix a

CONS {ej} of H, such that e, € B*, for all j. For heH, xeB, let

lim z (h,e. )e (x), if the limit exists,
n¥*© j=1 ]
(2.2) (h,x) =
0 otherwise.
Let L:H-+L(B,B,v) be defined by
L(h) (x) = (h,x) .

Then L. is a representative of the weak distribution corresvondinc to m i.e., for

IIACSERRY hkeH and B a Borel set in ]Rk,

(2.3) m{h: ((h),h),..., (b ,h)) € B} = \){(L(hl),..., L(h)) eB}-

For a proof that (2.3) holds, see [11). For a cylinder function f on H aiven bv

(2.4) f(h) = ¢((hl'x)""' (hk'x))'

where hi € H and ¢ is a complex valued Borel function on le, we denote by P(f) the

random variable ¢)((h x) P (l‘\', x)~) on (B,B,v). We extend this mapping as follows:

Definition: Let L(H,C,m) be the class of complex valued continuous functions f

on H such that the net {R(f°P):P € P} (P1 <P_ if Range P, c Range P,) is Cauchv in

2 1

v-probability. Further, for £e L(H,C,m), let

(2.5) R(f) = 1lim in v-probability R(foP).
PeP

The mapping R will be called an 'm-lifting.'

Definition: Let

tYu,Com = {fel,C,m:[|R(E)]|av <}
and for fell(H,C,m) and Cc € C, define

(2.6) [ fam= J’R(lc)-n(f)dv

SR A TR ER R eI jn\-. oM -1\ \; ;.\-.N AR A AR L ST LN ERE

' . -‘ e - a .‘_ 'l-.'
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Remark 1. In the above definition we have taken (B,B,Vv) as the "representation

L oy . -

- space" for the weak distribution L and for the m-liftina. Other linear probability
-_'::: spaces can also be chosen leading to Feynman integrals of different classes of
o5 functionals. This point will be taken up in Section 5. )
BN We will now introduce the Fresnel class F(H) of functions on H. This class

- plays an important role in the later sections. Let M(H) be the class of all

N countably additive complex measures on Borel subsets of H with finite absolute

- variation. Let F(H) be the class of all functions f of the form

AN

\}:. l(hrhl)
\1.. . =
e (2.7 £(h)) [ e au (h)

N

. for some welM(H). F(H) is the Fresnel class of Albeverio and Hgegh-Krohn [1]
:'::: and has been discussed also in [11].

:-::' The next result shows that F(H) ng(H,C,m) and aives a representation for .
__ R(f) for fe F(H). For convenience we will use the followina notation throughout

A .
\. this paper. Let E be avector space and let H:E +¢. For X >0, we denote by

.;-’:” _L

LSRN the function Gx(e) =0() ‘e), ecE.

. Lemma 2.1: Let fe F(H) be as in (2.7). Then feLl(H,C,m) and R(f) =F, where F

:f:'_;'; is given by

e i -

(2.8) ) = [ et ™* qum), xes.

< H

L

'.:'_‘—' Further, for A >0, we have

- A A

e (2.9) R(fE) =F for all A >0.

N

6' ’ Proof: Fix peM(H) and let £ be given by (2.7). Continuity of f follows from

- :; the Dominated Convergence Theorem for H. For PeP,
'_-:..\. (foP) (hl) = f(Phl) i
!-;’ - fel(h,Phl)du(h)

e = Iel(ph'hl)du(h) .

N

et

o_
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From the definition of m-lifting for cylinder functions, it follows that

(2.10) R(£oP) (x) = fe' ¥ gy,

Using Fubini's theorem

(2.11) fBlF(x) - R(£oP) (x) |dv(x) < J'H[B|e1(Ph"‘) _ethix) lav(x)dful (h)
< fulgli- 2 PR 0y halut oy,

where |u] denotes the total vairation measure for U. For 0 >0, let

) 2
(2.12) u(o) = IIR l1-e*Y|1//37 e dy.

Since the distribution of L(h - Ph) under Vv is Normal with mean 0 and variance

2
lh-—Ph| , we have from (2.11) and (2.12),

(2.13) J'Blp(x) - R(foP) (x) |av(x) < jH u(|n-pn]alul ).

Since u{(0) 0 as 0+0 and u is bounded, the Dominated Convergence Theorem for Iul

implies that

UglF () - R(£ep) (0 [av) },  p > O

Hence
(2.14) R(f) = F.

From the definition of (h,x)~, it follows that for A >0,

(h,2x) = A(h,x) = (Ah,x) .

Hence

and

- J'ei(h ,X)N

P (x) au, (h)

where 1y e M(H) is defined by

1,
Hy (B) = u()’B).

A A
Hence invoking (2.14) for £ ,ux,F , we get

R(fx) =F .
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Remark 2: The same calculations as above also aive us the following result. If

S
P >I, P €P, then
n n

(2.15) R(onPn) - R(fA) = FA in Ll(B,B,V).

s
(Here Pn-*I means Pn converges strongly to I).
We now wish to evaluate the m-lifting for a wider class of integrands on H

which correspond, in physical problems, to certain unbounded potentials such as

the anharmonic potential. In the latter context and for the RKHS of the Wiener
process the class was introduced by Elworthy and Truman and also by Ph. Combe
et al. [5,4].

Our immediate aim is to establish Proposition 2.4.
Lemma 2.2: Let A be a trace class operator on H and let Pne:P be such that
Pn 5 I. Then, ||-H1 denoting a trace norm we have

- > 0. -
(2.16) HPnAPn A||1
This is a well known result. For a proof see Gross ([8], Corollary 3.2).
Lemma 2.3: Let A be a self adjoint trace class operator with eigenvalues {ak} and

corresponding eigenfunctions {ek}. Let u(h) = (h,Ah), h € H. Then, for all

A>o0, uxe L¢a,C,m) and

U (2.17) R(aY) = v

f} where v is given by

v n ~ 2

. (2.18) vix) = 1lim 2 akﬂek,x) ] if the limit exists,

Ny n j=1

:, =0 otherwise.

2

A Proof: Since we can write A = A+ - A_ where A+ and A_ are self adjoint, positive,
'6 trace class operators, we have u(h) = u+(h) - u_(h) where u_ _(h) = (h, A h). It )
5? suffices therefore, to prove the result for a self adjoint, positive, trace class
L

SN
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p.

i::', operator A with eigenvalues {ozj} and corresponding eigenfunctions {ej}. Accordingly
L

set u(h) = (h, Ah) = ||Bh||2 where the self adjoint, Hilbert-Schmidt operator B is
the square root of A. Now Theorem 2 of Gross [8] can be applied to u and it follows
that R(u) exists. Furthermore, Corollary 5.3 of [8] implies that R(u) = lim in v-
>
. probability R(u e Pn) where Pne P is any sequence converging strongly to tl?e identity.

Choosing Pn to be the orthogonal projection onto span {el, caes en} it is easy to

see that R(u) = v is given by (2.18). Note that the above limit is finite v-a.s.

gince the series Z Otj converges. If we now fix A > o, we have ux(h) = % u(h)
j=1
A 1 1 . ~
and so R(u') = N R(u) = 3V From the definition of (ej, x) it follows that
-i—v(x) = vk(x) and we have R(u}\) = v>\. D

We will henceforth use the more suggestive notation (x,Ax)N for vix).
Proposition 2.4: Let ueM(H) and A be a self adjoint trace class operator on H.

Let g,G be defined by

. ' , i(h
(2.22) g(h) = el/2(h.AR) f Ll 1'h)du(hl)
H
and
i/2(x,Ax) ; i(h,x) ~
{2.23) G(x) = el/ (x,Ax) fel( x) du (h) = ei/2(x,Ax) F(x), say.
H
Then for A >0, we have
(2.24) R(qx) = G)\
and further if Pn 3 I, then
(2.25) R(ngPn) > G>\ in Ll(B,B,\)).
e
SN
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{ A

o h
NN Proof of Proposition 2.4. If A>o, gx(h) = 2 u (b fx(h) and (2.24) follows from

A the multiplicative property of R. Next for P ¢ p,

) A v FR@R) v
T R(g'eP) - G = e R(f"eP) - e F,

\:{ and i A .
i A A 2 RGueP)

(2.26) J IR(g"eP) - 6" | dv < lwl [ le -e | dv,
e B 8

Nl
<

e + f IR(£YeP) - F>‘| v ,
: B

Ll
3.
s
+ e

|
T
[l
T ]

where IuAI is the total variation of the conplex-valued measure My introduced in

s 4

¥,
TR
2,

)

Lemma 2.1. The integrals on the R.H.S. of (2.26) converge to zero as P+I along P

P
[
o s
.
.
‘

by the dominated convergence theorem. We can, in fact, replace P by Pn in (2.26)

..'.’ Ps

e
)
B A

and take the limit as P 8 I. This proves (2.25).

s, 0,
(I('l. A

‘I
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3. Analytic Wiener and Feynman integrals

(a) Integrals on abstract Wiener space

Here we recall the definition of analytic Wiener and Feynman integrals given
in [11] and obtain a "Cameron-Martin” type formula for the analytic Feynman inte-
grals. (For a special case, see [12]).

Definition: Let F be a measurable complex-valued function on B such that

1
-4

(1) I (0 = [F(A?x)dv(x) exists for all real X >0.
(ii) There is an analytic function J;, on Q = {z e€¢:Rez >0} such that JE*‘(M =
JF(X) for real X >0.

Then we will define I:(F) =J;,(z) and call 1: the analytic Wiener integral of F

over B with parameter z.

If 1lim IZ(F) exists for some q real, we will denote the value of this limit
z*>-iq

zef)

by IZ(F) and define it to be the analytic Feynman integral of F over B with para-

meter q.

If F and G are functions on B such that F=G a.s. v, then it does not imply
that JF()\) =JG(>\) for all X >0 and thus F=G a.s. vV does not imply that
'IZ(F) = I:(G) . {See [11] for a discussion on this point). These considerations

lead us to the definition of s-equivalence of functions on B. Given two complex

valued functions F and G on B, we say that F=G s-almost surely if for each a >0,

y{x e B:F(ox) =G(ax)} = 0.
Tt is easy to see that JF(M and JG(M exist simultaneously and coincide if F=G
s-a.s. For a function F on B, we will denote by [F] the equivalence class of
functions G which are equal to F s-a.s.

We will now introduce the Fresnel class F(B) of functions on B.

~

X iy, weMm ],

F8) = {[F1: F(x) =

~




As is customary, we will identify a function with its s-equivalence class and
think of F(B) as a class of functions on B rather than as a class of equivalence
classes.

For U_,u, e M(H), let ul*uz denote the convolution of u. and u,. Also let Hal

1
denote the total variation of pue M(H). Then M(H) is a Banach algebra. 1f for

2 1

f € F(H) given by (2.7), we define |‘f|h)= Hu||, then it can be easily seen that
F(y) is a Banach algebra and that the mapping w+f (u,f related by (2.7)) is a
Banach algebra isomorphism between F(H) and F(H).

It is shown in [111, [3] that F(B) is also a Banach algebra with the norm
||F|h)= Hull and the mapping u—>F (U,F related by (2.8)) is a Banach algebra iso-
morphism.

The following result gives an evaluation of the analytic Wiener and Feynman
integrals for Fe F(B). This result is taken from [11] and the short proof is in-
cluded here for the sake of completeness.

Theorem 3.1: Let Fe F(B) be given by

_ RICHON

(3.1) F(x) dau(n) , ueMm).

Then for all z ¢{), the analytic Wiener integral 1: (F) exists and

1
- 2
o 7zih]

z —
(3.2) I ® = [

du(h) .

The analytic Feynman integral I:n(F) exists for all gqe R, g#0 and

= fye T aum.

q
(3.3) Ia (F)

Proof: By Fubini's theorem, we have

1/ ~
i(h, A" %) au(h)dv(x)
(3.4) a0 = [of, e

1 ~
[ S Z(h,x) av(x)dy (h)
H’B
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Let

1,2
(3.5) ariz) = [, e 7z/n] auh) , zeQ-{0}, Q={ze¢: Rez 20}.

Then J;(M =JF()\) for real A >0 and by the dominated convergence theorem, J;(z)
1 2

is continuous in 2 - {0}. For each heH, e Elhl

|2

is analytic in Q so that

112
dz =0 for every rectifiable closed curve C in Q. Since |e 7zin| | <1

1

[ o 7z
C
for z €, a simple application of Fubini's theorem and Morera's theorem give the
analyticity of J;(z) . The proof of (3.3) is immediate. 0

The classes Gq(H) and Gq(B) . For a real number g, g #0, we denote by GQ(H)
[resp. Gq(B)] the class of functions g [resp. G] given by (2.22) [resp. (2.23)]
for some u e M(H) and some self adjoint, trace class operator A on H such that the
bounded inverse (I +1/q A)Ql exists.

Recall that for a self adjoint trace class operator A with eigenvalues {aj},

the Fredholm determinant of (I +A) (denoted by det(I +A)) is defined by

(3.8) det(I +A) =
3

=8

l(1+aj)

and the Maslov index of (I 4+A) (denoted by ind(I +A)) is the number of negative
eigenvalues of (I +A4), i.e.

(3.9) ind(I +2) = #{j: 1+aj<o}.

With this notation, we have the following result on the analytic Feynman integrals
for the class GI(B). (See also [12]).

Theorem 3.2: (Cameron-Martin formula for analytic Feynman integrals). Let A be

a self adjoint trace class operator on H such that (I +1/gq A) is invertible (g ¢ IR,
a#0) and let Fe F(B). Let

(3.10) G(x) = exp{i/2 (x,Ax) }F(x).

Then the analytic Feynman integral Ig(G) exists and

du(h),

- Lind(1+1/qA) ] ZE T +1/a A "h,h)
H

q -1
(3.11) 1_(G) = ldet(1+1/q a)| % e
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where U is related to F by (3.1). We will give a proof for q=1. The proof in
the general case is similar,
Proof: Let Ej be the eigenfunctions and aj the eigenvalues of A. Let
- ~ 2
£,= (e, and h = (e ,h). Clearl ® a,E5<w a.s. )
3 3 3 = (e Y, 23___1a353 ® a.s. and hence we have )
~ @ 2
(x,8x) = ) a.£; < o s-a.s.
=1 ] .
Now,
-
(3.12) I, = [Le0T 0 avx
517{ a, g +i/VX zlh i85
= avl du(h)
[ytg e 1 au(
. ia 2 ih
X e 1 e THA-hY ety
P = FiE=e dy1du(h)
L H -0
n". J=1 ‘/21'[
®
,~:§ since (Ej) is a sequence of independent standard normal random variables on (B,V).
."::: To evaluate the infinite product, use the fact that if Reb >0 and c is real, then
".\
: N 2 c2
, I . _ ]
(3.13) 1w [0 &TRY Hiay Lt B
In this formula and in the sequel, B for a complex number z =rele, r real positive, *
1. .
-T<B<m, z° will denote the number Vr e16/2, where Vr is positive square root of
r. Using (3.13) in (3.12), we get 1 o0 h%
(=) -1 = =
(3.14) 3,0 = { I a- —l)} My e A au(n) .
[ ]
- Observe that since A is trace class, 2‘0-3-‘ <o and hence the infinite product and
o
b series appearing in (3.14) converge absolutely.
Po
P
P. By renumbering the aj if necessary, assume that 1 +aj <0 for 9=1,2,...,
- m=Ind(I+L) and (1 +aj) >0 for 32m+1. Choose § >0 such that aj £i-1-68, -1+48)
o .
'.'-_‘t for all j. This can be done because aj;é-l for all j and |aj| +0 as j*>w. Let
, Q' = Qu{zed: Rez=0, |l+Imz|S5}.
P
;':'_.’ For ze{l', let
oY mo -
1 (3.15) A(z) = T ()7 (z-ia,) %,
ol 1 . J
A i=1
LA
o
,:-.‘:- - S . ‘-... ..\' .~..:-\:..‘:-..: ot \v .‘a,‘. o ..._..‘q'.; ,-_ ..\...".‘_. ‘.. \.‘_.. ‘.“_. -~ ,'_‘___ .. . -‘:. .
PO LR SR OO R AN A . N '~: "-.‘ \'::.




EACRACNS 2ot MO RO R RO LR AR A pd g DAJCRAS

L ]
oA .

3.5 ;
'3
4
.“
o, -
(3.16) A,(z) = ff 1-—1h s
j=m+1l -
2
and o h, 3
-122 1 —_— ]
o ~
(3.17) Afz) = [ e =1 2-1%5 qun). K
]
We will first show that A, /A, A, are continuous functions on ' and analytic in 9. X
L . . i0 "
Since w—+ (w) © is an analytic function on ¢' ={re " : r>0, -m<B <7} and for

ze', z, z -iaj e¢', A (z) is continuous on ' and analytic on Q.

1l
Now, let 1+uj(z) (1 - ——l) for zeQ', j2m and Q; ={zeQ':0<1/r0s|z|sr0}.
0

It is easy to see that for some constant K., we have

(6]

1
-k

l(1+w) *-1] < Kolwl for wed, |w] <k .
Since 2 |a | <o, |0L |->0 and hence for fixed ro, there exists a 30 such that
ia,
for j 2j0, z EQ; , we have l—z-1| <% and hence
0
(3.18) luj(z)l < Kjx, la |

[+ o]
for all ijo, z eQ; . Thus, zj=m+l|uj(z)l converges uniformly on Q; . Since
o 0

o =U:_ZQ;, this implies that

A(z) = 1 (1+u.(z)
2 j=m+1 J

is continuous on Q' and analytic in .

As for A3(z) , first observe that for heH fixed, the series

[e o]
5.19) ) i = 6(h,2)
= 3

converges uniformly on Q; for all r, 21 and hence for all heH, $(h,z) is continu-
ous on ' and analytic inOQ. Also, it is easy to see that Re(¢(h,z)) <0. The
dominated convergence theorem now implies that A3(z) is continuous on ' and

_f Morera's theorem along with Fubini's theorem shows that A3(z) is analytic in Q.

Thus, Jé(z) =A1(z) ,Az(z) ,A3(z) is continuous on ' and analytic in Q. It is

easy to see that Jé()\) =JG(M for real X >0 and hence (by definition) Ia(G) exists

A R

AR .:_ A ‘ J. . Ve \.' :'
WA YERE WAL .J-i\..-r NN e v e Ty



=
A

DIGOOF \ XEI:

3.6
and
(3.20) 1 (G) = J%(-i)
- a = G 1).
Now,
m .
(3.21) a-i) = 1 o
j=1 (-i-ia,)?
3
m -iﬂ/4
= I ————+ , since 1+a, <0
j=1 l"/4|1+a | .
o -4 -im/2 ind(I+L)
= (0 ]a+a,)] e p
3=1 ’
foe) =l
(3.22) A(-i) = T (1+0a,) 2
2 . j
j=m+l
Py 1
= T |a+a)]|™?, as 1+a, 20,
j=m+1 ] J
and 2
(3.23) A (-1) = | _/2 —J—du(h)
J.—
Sfei2y, 3/ o) auh)
j=1
-i/2(h, (1 +A) th)
=fe ’ au(h) .
Thus, im i -1
1 © _!i - T ind(I +A) - E(hI(I +A) h)
(3.24) e =|Ta +aj1 e [y e auth)y. N
j:

(b) 1Integrals on Hilbert space

We now define analytic Feynman integrals for functions on H. Suppose f:H-+¢

is such that for all real A >0, fA eLl(H,C,m). For real A >0, let

A
(3.25) K ) = [ £7am.

Definition: Let f be such that there exists an analytic function Kg(z) on ) such




e 8 8 B T T T e ™ T T T Ve i " , Py W TR TR TRy "W v
R R R o A RIS U AN A DIOANCRACE e e INT M) -.Y:“.-"‘V.'_'.:‘_'.""_‘, R MO i S e fn A A e St pd

that K;(X)-=Kf(k) for real XA >0. Then we define K;(z) to be the analytic Gauss
integral of f over H with parameter z and denote it by Iz(f) .

Further, if for g real, the limit
136) = 1im 1%(£)
a . a
z?>-1q
zefd
exists, we define I:(f) to be the analytic Feynman integral of f over H with para-
meter g.
Remark 3: Suppose f is such that there exists an F:B —>¢ with the property

R(fk) FA

for all real A >0. Then, it is easy to see that for all A >0,

'
.' l"
1]

.
.

JFO\) Kf(l)

PR P ALY 2 4
N v '

and hence I:(F) exists if and only if Ig(f) exists and in that case both are equal.
Now Lemma 2.1, Theorem 3.1 and Remark 3 give us the following results.

z .
Theorem 3.3: Let f e F(H) be given by (2.7). Then for z€Q, I_(f) exists and

1
z - '2';|h|2
I (f) = J’H e au(h).

Further, for all g real, q#0, I:(f) exists and

i 2
- ‘2g|h|

qdefy =
(3.26) 1) = [ e au(h) .

Also, Remark 3, Proposition 2.4 and Theorem 2.2 yield the Cameron-Martin formu-

EI

1
[

la for ge Gq(H) .

'l
¢

L

(Y

r.~ Theorem 3.4: (Cameron-Martin formula). ©Let ueM(H) and let A be a self adjoint

::.:: trace class operator such that (I +i—A)-1 exists, (ge R, a#0). Let

7o i(h,Ah) "

a (3.27) ath) = e [ et aum .

‘e H 1

3~

:;Q Then Ig(g) exists and is given by

YA

I

A i i -

Gy . L, - 5 ind( +;1I-A) - 5=(h, (1 +%A) Lhy

s (3.28) I_(g) = |det(I +aA)| ‘e H au(h).

Q.
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4. Sequential Feynman Inteqral
(a) On Hilbert space
In this section, we define the sequential Feynman integral and prove an analoque
of Theorem 3.4 (Cameron-Martin formula) for the same.
Let £f:H-¢ be such that for all Pe¢ P, for all real A >0,
_Amm 2
253=17)
(4.1) f lf(ZEe)le af < o
R j=1
where m=dim PH and (ei,..., er;‘) is an orthonormal basis for PH and then for ze¢ ()
define _ zem >
L 2
(4.2) 3 (z,P) = [ £ ) £jel)e =134,
f 2T
r" j=1
Observe that (4.1) implies that the integral appearing in (4.2) is a proper inte-
gral.
Definition: Let f satisfy (4.1) for all A>0 and Pe¢P. Let g#0 be a real num-
ber. Suppose that
lim J_(z_,P )
0o f " n n
exists for all zn->—iq, z € and for all Pn-s>I, P € P. fThen we define the limit,
easily seen to be independent of {zn},{Pn}, to be the seguential Feynman integral
of f with parameter g and denote it by I:(f) .
Remark 4: It is easy tc see that (4.1) is eguivalent to
A
‘.j: (4.1)' £ oPeLl(H,C,m)
:.f. and further that Jf(A,P) =K P()\) . Also, Morera's theorem and Fubini's theoren
- o
imply that if (4.1) holds for all A >0, Jf(z,P) is analytic on @ and thus
z
= * -
(4.3) Ia(fop) Kfap(z) J.(z,P).
So, the sequential Feynman integral can equivalently be defined as
. q z
N (4.4) 1.(f) = 1;m Ia (foP )

s_-_ _\_- AT \\ o>
‘J‘_. \ _f,_.\‘. .‘- *.q\
\(‘ LN L




4

i
!

.

ol i L S S At S AR L R U A

<
\
&

for zn*—iq, z €0, P §’I, if the limit in (4.4) exists for all such {z },{P }.
Remark 5: The sequentlal Feynman integral Iq(f) can be regarded as an inteaqral of
the function f(h)e 1q| ' with respect to a "uniform" (complex valued) measure D,
normalized such that the integral of eiqlhlz is 1. Of course, such a measure does
* not exist and hence this indirect definition. Many authors prefer the notation ';
f ic‘|h‘2f(h)v(h) (or some variant of this) for I (f). 1In physical problems, it E
is useful to think of I (f) as "f e qlhl £(h)D(h). 3
j

We now show the existence of IS for the classes F(H) and Gq(H) and obtain the
Cameron-Martin formula for the sequential integral.

Theorem 4.1: Let fe F(H). Then for q#0, I:(f) exists and is equal to I:'(f) ,
i 2
>=In]

(4.5) ey = Ye) = f e du(h),
S a H

where £ is given by (2.7).

s -
Proof: Let P_ *> pP. Let U =HoP 1. Then
—_— n n n

s B B

_ ¢ _i(h,hy)
(4.6) foP (h) = [ e 1'du_(h,)

I3 .
daidd

v

and hence by Remark 4 above and Theorem 3.3, for z ¢Q

TS I Kadas

- Lin|? - Xip h|
4.7 g.(z,p) =1%(fP) = [e 22 au (h) = [e ?Z au(h) . ,
) £ "''n a n n g
R
= Now, if zn*-iq, Zn € §l; then Pezn 20, and hence by the dominated converagence K
: -l
- {
. theorem, i ] |2 J
'.. - —— h -
w ; _ 2q N
N (4.8) lim J (z ,P ) = [ e au(h) . :
.“. n iR
iy q . N
.. Thus Ia(f) exists and (4.5) holds. O
< N
o Theorcm 4.2: (Cameron-Martin formula). Let g ¢ GI(H) be given by ::
x . ]
- (h,Ah) S
. (4.9) g(h) = e £ (h) R
::: where A is a self adjoint, trace class operator on H such that (I +§A) is inverti- E
[ A\
‘, L)Y
t:. ble and f e F(H) is of the form
-
)
. h
N,
I\:::o' - .-'A.'}_.4'.,.-':‘-"'."-".."'-"" R AP :' B .“ SRR .‘-..“ T _-_'.:_- ;_.'._-.-_.‘:_“..._A-- ~.‘_.-.“:._.'._ -.. -._.;'. :. .. B .,. -. __- - ’.

B

-

L, * - . . . .. ..
P A T AT A0 N P R R VAR .
. LA-J;.}A-AQMQ:‘_A&LLA’ s.":zu,‘_ Rt SR S SR S '.p\.r-\ n‘. -~ -".r“.r



(4.10) g = [t MM aum) |, weMm.

Then I:(q) exists, equals I:(g) and has the value

-
(4.11) I:(g) = |det(1 +%1-A)| iy 2 [.. e 9 au(h) .

H

- AT inda(r+ La) - Lin,r+i 7y
q 2a

Proof: We will prove the case gq=1. The proof for general q is similar. Let

S -
P ¢eP, P 3I. Let A =P AP , U =UoP 1. Then
n n n n n n n

i
>(h,A h)

_ 2 n 1(hlh1)
(4.12) goP_(h) = e [ e dau_(h,).
Now if X

n n
(4.13) Ah= Y (he,) o

n j=1 J

n . n . , .
where aj are the eigenvalues and ej the eigenfunctions of An, then proceeding as

in the proof of Theorem 3.2, it is easily seen

(h,e?)z
_x/gkn -3
kn (5 I il
3z = 1 —=Z e T au m).

j=1 (z - ia.) ’
J 3

Fix z »-i, z €Q. Then
n n

(4.14) Jf(zn,Pn) = an°bn
where 1
k 2z
n (zn)2
(419 n T 'Ei (z - ia™*E
J= n 3
2
and . (el
1.5 %n
-y -
(zn-ia.)
(4.16) b =fe ) au_(m)
n na B
(P h,e.)
_lxkn n_’
Ly=1 n
=z —i0h)

|l
[S—
o
2
g
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We will now show that an'bn have limits and evaluate them.
Let aj be the eigenvalues of A, enumerated such that l-+0tj <0 for j=1,..., m;
1+aj>0 for 32m+1 and m=ind(I +A). (Recall that 1+Ot_j;60 for all 4, as I +A

L . . . n .
is invertible.) Since An-*A is trace norm, we can rearrange {aﬁ}' i=1,..., kn

* such that

(4.17) lim Otx.1 = 0. , uniformly in j.
n ] ]

Also, An—*A in trace norm implies that ||An||1 -+ HAHl i.e.
[= o] oo}
(4.18) 1im Y o] = § CHIERS
o j=1 ) 5=l
We claim that (4.17) and (4.18) imply that
(4.19) lim Z ||a | -Ia Il =
n>e j=1
For this write

n _1.n - n
(4.20) ||aj|-|aj|| = |aj|+|aj| 2|aj|/\|aj|
and use dominated convergence theorem and (4.17) to get

oo
(4.21) lim } la] A |a | = ¥ la.].
n>e j=1 ] j=
Now, (4.18), (4.20) and (4.21) imply (4.19). Using usual arquments it can be

shown that (4.19) implies

b oo

- (4.22) lim (sup ) |a?]1 =

s k* n2l j=k

L; Now write

K= @

N (4.23) a_ = 1 (L+u)

i noE

‘s

b-:\ where

ARY L . .n

F‘:-} ” (zn) i 2y -k

o wf s ——— -1 = (1-—H77 -1,

s ] (z -ia.)’ n

Ry n 3

P

Ok

P

o

P,

g‘n

=

o o

| J

e I e e e e e T e e N N S S e e e S R e
R SRR S S AR S AT e SR A R R AASLRL S S L ,~.,~.,. R Mt - - -. /LU
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1 1

k) ~ l,
(Here we have used that if Rez1 >0, Rez2 >0, then (zlzz)"=z£ °zé.) Now, (4.17),

zn-*-i and Iujl -0 implies that there exist n_,j. such that for n Zno, 3 ?ﬁo,

0’0
.. .n
-ia, )
(4.24) |—3] < n, o] <k
z 3
n
and hence for nzx%r 3 zjo, )
.. n
n =10,
(4.25) luj{ <Ko —lzn [ =< K, °K o |al |

where K, ,K_ are constants such that

172
-1
(4.26) 1 +w| %=1 < K1|w| for |w| <%
and
-i
(4.27) |—z:| < K, for all n.

Now (4.25) and (4.22) give
[o o]
(4.28) lim (sup ) [ul]1 = o.
k> n j=k :
Also, (4.28) and the inequality
o© n
1§ n 2J'=kuj
I L (1+u,) -1| < e
3=k 3
imply

(4.29) lim supl.T (1 +u?) -11 = 0.
k> n 1=k J

Now, (4.29) and the usual arguments give

[e 2]
(4.30) lim .°I_I°1(1 +ul) = LT +uy)
B b j i= 3
where
1
.
T S 'L
n->eo (-i-iaj)2 .

For 3 - m, (1 +aj)‘/0 and thus




-im/4 .

£ |1+0Lj|~/2 . 17/2

in/4
e

-y
(4.31) u, = |1+a.]"? -
j j

and for j >m, (1 +aj) >0 and thus

o

(4.32) u, = |1+a,|”
j j

I'rom (4.23), (4.30), (4.31) and (4.32) we have

[t

e-iﬂ/z-m -im/2+ind(I + L)

3 ' - (1.8, a+o) 7% = |a |72
(4.33) 1;m an— 50y +0Lj ] = et(I +A) e

For heH and n21, let

kn (Pnh,et.'l):2
o ) = -4 ] —A—I—,

. . N
j=1 (z 1aj)
so that

O ()

b =] du(h) .

Yo claim that for all h e€H,

(4.34) o ) > om ¥ - 2, xan .
To see this, let
%1 (@ h,eN? . N
¢'(h) = -4 ) —2—Jd— = - Z(h, (1+A) h).
n . . ..n 2 n
j=1 (-1-1aj)
Now,
Iz +i|
- 1 1 n
-39 z -1cxn i -i-ial IS i} n "0
n j lz [l(xa- =@ +ah]
n Zn J

as n-—+®, since z »-i. 1In fact in view of (4.24), this limit is uniform in 3.
Let LHS of (4.35) be less than € for all j, where €n+0. Then
n

n
(4.36) l¢n(h)-¢;(h)| < e jZ

® h,e™? < e ||ph||? >0 as n-ow.
; 03 n’"n

Also, An~>A in trace class implies that

P
ARG
N A

- (4.37) (I+AJ-1—I+(I+M_1-I

v
ety
Vi

R S
N .

in trace class (see Lemma X1.9.15, Dunford and Schwartz [16]) and hence (i)l:l(h) +¢(h).

This and (4.36) imply (4.34). Since zneQ, it is easily seen that

g e min i
(Y000
Pt e

{'.'
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Re(¢n(h)) <0
and hence

|Sn )|

Thus, from the dominated convergence theorem and (4.34),

- %(h.(I-+A)-1h)

(4.38) > [ Maum) = [ e du(h) .

Now, (4.33) and (4.38) imply that Jf(zn,Pn) converges to the RHS in (4.11). Thus,

Ii(q) exists and (4.11) holds. Also, in view of (3.28), Ii(g) =Ii(q). N

We now consider sequential Feynman integrals

(b) On abstract Wiener space

Suppose F:B-*¢ is such that

(4.39) R(fx) = Fx for all X >0

for some fe L(H,C,m). For PeP, define Fp, by
(4.40) FP = R(foP).

By the definition of the R-mapping for cylindrical functions, it can be checked

that

(4.41) R(onP) = F; for all A >0.

A A A Ay, .
Now, FP converges in V-probability to F° and thus for each A, {FP} is a finite
. . A . . :

dimensional approximation to F . Suppose that the analytic Wiener integral
IZ(FP) exists for all P e P and further assume that for all znesQ, zn-*-ia, (g #0)
and for all Pn 3 I, PnesP, the limit

z
(4.42) 1im 1."(F_ ) = 13(F)

a P [

n>e n

exists. Then we define I (F) to be the sequential Feynman integral of F with para-
meter g.

It is easy to see in view of Remark 4 that

N
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2
Ta(FP) = Jf(z,P)

and hence I:(F) existr if and only if I:(f) exists (where F,f are related by
(4.39)) and then both are equal.

Thus, Lemma 2.1 and Theorem 4.1 imply that for F e F(B), IZ(F) exists and is
caual to I:(F) . Also Proposition 2.4 and Theorem 4.2 imply that for Gef (B) ’
q . . a
IS(G) exists and is ecual to Ia(G).

Remark 6: The equality of the sequential and analytic Fevnman intearals can be

viewed as an approximation result for the analytic Feynman intearal in the fol-
. S
lowing sense: Let qeGa(H) ’ zneQ, zn->-1q and Pn > I. Pne P. Then
a z
(4.43) I(o) = 1im T "(aoP ).
a a n
n
Similarly, for G e (3(B) aiven by (2.21) and Pn as above let Gn be defined by
i(x,PnAan) i(Pnh x)
(4.44) G (x) =e [. e au (h) .
n H
Then, for zn->-iq, z € O we have
a n
(4.45) I.(6) =1im T _"(G ).
a a n
n
2
In (4.43), Zan(gopn) can be evaluated explicitly as we have seen already.
Ulsino these observations, we can agive a formula for analytic Feynman intearals
for the @ class involving a sinole limit and prorer intearals We state this

result as a theorem for future reference.

Theorem 4.3. Let ceﬂq(H) and GECC(B) be agiven by (2.22) and (2.23) respectivelv.

Lot 1(»1'1} be any complete orthonormal basis in H and let Zn € QO be such that zn—>-iq

(say Zn =-iq+1/n). Then

Ay = 19,y _ 194 = 19
(4.46) Ia(g) = Is(g) Ia(G) IS(G)
z
nen 2
z - —2.= £
= lim (=D 4" g<2£e)e 273= T g
2m 373
n-o IR =1
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From now on, we will drop the suffix "a" and "s" from Iq and Iq when the intc

grands belong to the class F or GZ.
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S. Applications to Feynman path integrals

(a) Feynman path integrals and the Schrodinger equation

Feynman's fundamental idea was to show that the solution of the Schrodinger

equation of Quantum Mechanics (for a single particle of mass m)

2
1 ﬂ: - E—
(5.1) iM St 5 Ay +wyp

Y(0,x) = ¢d(x)
can be expressed as

i met, e 2 irt,
%;IO(ﬂs)) ds - [ vivis))as

¢ (Y(0))D(y)

J

Y(t)=x

(5.2) P(t,x)

where the integral is carried over a suitable space of paths and D(Y) is a uni-
s form "measure" on the space of paths normalized so that

) 10/ s %as
2 f 2O

* Y(t)=x

D(y) = 1.

. . h . .
In (5.1) above, A is the Laplacian, M=2—“ where h is Planck's constant and V is a
:::" suitable potential.
For simplicity, let us consider the one dimensional case. 1In (5.2), let us

write X(s) =y(t ~s) -x, so that X(0) =0 and Y(s) =X(t-s) +x, to get

imet

‘r e2 K0
X(0)=0

(X(s)) 2ds - %f;v(x(t-s)+x) ds

¥ (5.2) " Vit,x) = (X () + ) D(X) -

Assuming that the 'paths' Y have finite kinetic energy, we get that Xe Ht' where

Ht is the real separable Hilbert space of functions X:[{0,t] >R with X(0) =0,

s _dx 2 . .
é X = as €L [0,t) with the inner product
n (5.3) (X.,%.) = [°X (s)X_(s)ds
) i 1'% 0718 %2 .
j..::: ‘ Then (5.2)°' can be rewritten as
] . .
e %§|x | 2_ al-j;v(x(t-s) +x)ds
" (5.2)" Yit,x) = [ e H(X(t - s) +x)D(X)
) XeH

t

AT LT RN DR R
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and in view of Remark 4, the integral appearing in (5.2)' can be regarded as a
Feynman integral with parameter g =m/M of the function % « defined by

- %ISV(X(t-s)+x)ds
(5.4) I X = e (X (t) +x)

over the Hilbert space Ht' Thus, Feynman's idea can be expressed as follows: The
solution to the equation (5.1) can be represented by

(H)

(5.5) v(t,x) =1 ),

(9¢,x
where Ie « is given by (5.4).
’

Let the potential V be given by
(5.0) V{x) = ax2-+bx-+c-+fnzeixydul(y)
and let ¢ be given by
(5.7) d(x) = fmeixyduz(y)

where ul,uz are complex Borel measures on IR with bounded variation. Assume that
¢ eLZ(HU. Then, it can be shown that gt’xequ(Ht) (with g =m/K{) and ¥ defined by '
{(5.5) is a (weak) solution of the SchrSdinger equation (5.1) (see [1],[15]). We
will not give a proof of this assertion. We just remark that Y defined by (5.5)
can be computed using our Cameron-Martin formula (Theorem 3.3 and 4.2) and then
we can proceed as in [l] or [15] to show that Y is a solution to (5.1).
In (5.7) above, the solution to the Schrodinger equation was represented as
an integral over the path space Ht-which happens to be the RKHS of the Wiener
measure. We now show that instead of Ht' we can take the path space to be
COIO,t]—-the space of real valued continuous functions X on [0,t] with X(0) =0
For X <Ht, let ||X|h)= sup |X(t)|. Then

0<s<t
and the completion of Ht under

I‘HO is a measurable norm on Ht

o is CO[O,t]. (See Kuo [13]). -

For V,¢ satisfying (5.6) and (5.7), let

it
(5.8) Gy (¥) = exp(- o [oVX(t-5) +x)ds) b (X(t) +x) , XeC, 0, ¢].
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. A . . .
Then, it is easy to see that Gt is a continuous function on Colo,t] for all

’

.,
A

e
P

t A >0 and its restriction to Ht is gi’x. Thus we have (by Theorem 6.3 in [13])

" (5.9) R(gt’x) = G:’x for all A >0,

:: . where R is the 'm-lifting' (see Section 2). Hence, by Remark 3,

(5.10) Iq(gt'x) = Iq(Gt,x)

i; and thus the solution ¥ to the Schrodinger equation can also be represented as

" (5.11) vit,x) = 1™W (G, -

:i: In other words, the solution to the Schrodinger equation can be represented as a !
2¥ Feynman integral of a functional over either Ht or CO[O,t].

k; In most of the physical literature on Feynman integrals, H is taken to be Ht—-
2; the RKHS of the standard Wiener process with paths X e C[0,t] with X(t) =0. We

tl ‘ have used Ht instead of Ft' so that the representation (5.6)-(5.7) is similar to
B the Feynman-Kac -formula.

i; (b) Feynman integrals on the RKHS of the pinned Wiener process and the Gauss

o function for the Schrodinger equation

5; According to Feynman, the Green's function G (or the fundamental solution) for
:EE the Schrodinger equation (5.1) is given by

:: (5.13) G(t +s,b,s,a) = G(t,b,0,a)
:_~ and i
- =5 (X)
":[ (5.14) G(t,b,0,a) = f M Dix)
-:; Xel,X(0)=a

= X(t)=b
:E' where the action functional
* s(x) = f;L(Xs)ds = fé[%(i(s))z-wx(s))]ds,

.

. L being the Lagrangian and ' is the ensemble of all possible quantum mechanical
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paths with finite kinetic energy and D(X) is a "uniform measure” on I' with thc

normalization

imete2
ei Rfoxsds K -4

(5.15) D(x) = (2nitﬁp .

Xel',X(0)=X(t)=0
Here ' = {XeT: X(0) =a,X(t) =b} is not a linear space (unless a=b =0) and .
thus we cannot use our definition of Feynman integrals directly for the integral
appearing in (5.14). 1Ito (9] has given a proof of (5.14) (for a class of poten-
tials V) by directly defining Feynman integrals over I'' via an isometric mapping
between ['' and a Hilbert space.
We shall proceed somewhat differently and follow Feynman more closely. If one
regards the path X of a quantum mechanical particle which is at position a at
time 1 =0 and at position b at time T =t as a random path which deviates in a ran-
dom fashion from the classical path X (i.e. the path it would follow under the
laws of classical mechanics), then it is natural to write X=X+Y, Y being the
random deviate and write the integral in (5.14) as an integral over Y.
In his book [7] with Hibbs, Feynman has included a brief discussion of this
point of view with special emphasis on the case of the harmonic potential.

2 . . .
Let V(x) = %wzx so that the action S(X) is given by
m t 2 2.2
= — - W .
s(x) =3 [ (X]-wx)ds

Since the classical path X satisfies

X o+ wX = 0,
s S

it can be easily checked, using integration by parts, that

(5.16) S(X) = S(X) + S(Y).

Since D(X) is a "uniform" measure, D(X +Y) D(Y), Feynman argues that

i i = i = i
=5 (X) =5 (X+Y) =5 (X) =5 (Y)
(5.17) [ & oy = A Diyy = &M [ & o
Xel! YeFO Yel

0

-.'_ o 's. x' ‘.'
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in view of (5.16), where FO = {yel: ¥Y(0) =Y(t) =0}. It is a simple exercise to

show that the first factor on the RHS in (5.17) equals

inw
(5.18) exP[Eﬁéinﬂt

((a2-+b2)cos wt - 2ab)].

We now show that the second factor can be expressed as a Feynman integral as
defined in Sections 3 and 4, and can be evaluated using the Cameron-Martin formula
(Theorem 3.4 and 4.2) and that G given by (5.13), (5.14) is the Green's function
for the harmonic oscillator.

Let HO,t be the RKHS of the pinned Wiener process on [0,t] i.e.

Ho,t = {Yeth: Y(t) =0}. Then, as sets HO,t:=r0' Let

2t 2
w?[ (¥ (s)) “ds

i
(5.19) gly) = e 2 .

=|g

Then i im 2
SO 3yl
e = e * g(Y).

We shall regard Feynman's heuristic integral

i im, 2
=5(Y) S| y|
(5.20) ] o= [ R gwmom
YGE YeHO ¢
m
n-t 0

as the integral given by (2ﬂit;? I (g) in view of Remark 5 and the normaliza-
tion (5.15).

We now show that g'eGq(Ho’t) and evaluate Iq(g) (with g =m/}{) using Theorem
4.2. We adopt a method used by Ph. Combe et al. in [4) for the case of Ht'

Define a bilinear form A on Ho ¢ by
’

(5.21) Ay, ,v.) = w2ftv (s)Y_(s)as.
172 o1 2

It is casy to see that A is continuous and symmetric and hence
A(Yl,Yz) = (Y ,AY,)

for a symmetric bounded operator A. It can be checked that the eigenvalues of A




(Y,AlY)

and hence

for n=1,2,... and hence A is a trace class operator.

= —qw2f;(Y(S))2ds

Let A

L = "9A.

gl(y) = el(Y'Aly) .
nf 1 . \ gq
For t;é—w—, (I +aAl) = (I -A) is invertible and hence g e¢G (HO t) and by Theorem
’
(4.2) .
L - Snar el
(5.22) 19q) = |det(1 +EA1)| %e !
-
Ly, - Srind(I-2)
= |det(1 -n)| Ze
iT wt
@ wti -y T 20w
= |1 - |
2 2
n=1 nTmT
‘sinwt -4 2°m
= |—=— e
wt
wt . wt . c s
where [_n_] is the largest integer less than —. Finally combining (5.17)-(5.22),
we have iT wt i -
m % wt o _2-[?] RS“()
(5.23) G(t,b,0,a) = (5= (Isinwtl) ‘e ‘e
1Tr[wt]
. 2L el 2
mw 3 2T : 2 2
!ZTTibf sinmtl e exp[zu sinwt{(a +b”) cos wt ~2ab}]
w2 2
which is the Green's function for the Schrodinger equation when V(x) = 2x . (See [91).

The Maslov index does not appear in the expression (l11) obtained by Ito in [9].

This is because he considers values of t<(-u_' The Maslov index is also missing in

the cxpression given in Feynman-Hibbs (7, Chapter 3}.

(c) Polygonal approximations on path space

As pointed out earlier, one important consequence of the equality of analytic

and sequential integrals in G is that the analytic Feynman integral can be written

- as a limit of finite dimensional integrals. When the underlying Hilbert space is
-
3
N
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Ht’ these approximating integrals can be taken to be integrals over "polygonal

paths."

. k k k
Let us fix a partition Hk={0 Syt <. <t =t} of [0,t) and let

K 1
(5.24) b, (s) = j 1(u) du.
* /tk t§ [t?_l,tEI

k k
Then it is easily seen that for i #3j, (bi and d)j are orthogonal and |¢}:| =1,

i=1,..., - Let Pk denote the orthogonal projection onto span(¢]1(,..., ¢l;k) .
Then it is easily secen that for Xth
K mx(t%) - x(e” -1
(5.25) (P'X) (s) = f 2 (—— =1y () L g du
-t t. ..t
i -1 [ j-1 J]
k
X(t.) -X(t )
3 -1 k k k
= X(t, ) + (s-t,; ) for t, , <s <t
-1 tk tk j-1 j-1 - " =73
i -1

. X ‘o k
which is the usual polygonal approximation of X for the partition {tj}.

It can be checked that if G(Trk) =sup|t};-t§_l| tends to zero as k -+, then

k =
>

P I. Let us fix such a double sequence {t]j(}.

Then for ge Gq(Ht) , we have by the definition of the sequential integral,

o k m ™ 2, "
(5.26) 1%g) = 1imliGp Y1 * [ g ] E, ¢% Jexp(- — § £2)ae
k-0 M g=1 13 =1 3
IR

where Zk €N, zk+-iq.

™ k .k 4

tiere, ). .5 .¢. is a lygonal path which is equal to (t,.-t, y° at
53=1 3¢ polyg P q XJ LA N

t = tt and linear elsewhere. Thus, for g eGq(Ht) , the Feynman integral of g can be
obtained as the limit of “proper® integrals over polygonal paths. The same is
true for g eGq(Ho’t) as Pk given by (5.25) is also an orthogonal projection on
Ho,t' Of course, in this case d)ki £ Ho,t and we have to choose a different basis

k
for P (Ho,t) .




(d) Fourier series approximation of the Feynman path integrals

In the sequential path integrals defined by Cameron and Storvick and by Truman
[3,15] only the sequence of projections on polygonal paths on Ht or Ht are con-
sidered (sce (b)). Theorem 4.3 enables us to choose other sequences {Pn} that

lead to interesting approximations. For example, fix the complete orthonormal

Va2t nmT
Sys e wher T) =-— sin —, i i : .
ystem { n}' ere e (1) =-— sin = in HO,t and define P to be the orthoqonal
projection with range, span {el,..., en}. In view of Theorem 4.3, for any

g«qu(HOIt) 13(g) can be calculated using {Pn}' With this choice of {Pn}, Theorem
4.3 makes rigorous Feynman's ideas of an alternative method of evaluating path
integrals using "Fourier series" (see [7], page 71 where the integrand g of (b) is
considered) .

(e) Remarks on the m-1ifting approach

In Section 2, the m-l1ifting R(f) has been defined as a random variable on thc

abstract Wiener space B associated with a measurable norm on H., It will be

recalled that R has been defined in terms of (h,x)~ which itself has been defined
to be a Gaussian random variable on (B,V) with zero mean and variance |h|2.

Besides the examples of (H,B,Vv) already considered one could take (i) B =CIl0,t]
and v to be a general Gaussian Markov process and (ii) B to be the space of con-
tinuous functions x(Tl,12), (Tl,Tz) e[O,tl] X[O,t2] and V to be the 2-parametcr
Wiener measure (sometimes also called the Yeh-Wiener process). It would appcar
that the former problem would lead to Feynman integral representations of solutions
of other types of Schrodinger-like equations. At present, we do not know of a
physical motivation for studying problem (ii) in detail.

We have defined m-1lifting in such a way as to facilitate comparison of our
results on Feynman integrals for integrands on Hilbert space with analogous results

for classes of integrands on abstract Wiener space. Our interest in abstract

Wiener spaces as a "ground space" for functionals for which Feynman integrals can

be defined is due principally to the following reasons: (1) A great deal of
e S, ';Z-Z;Ix::j
vt a ‘;\:.\:-\.J ..A :\." ".R.'-F} }.\_\-‘}-'_Nf}*
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cffort has been devoted to the analytic continuation approach based on Wiener
integrals; (2) The formal connection between Feynman's representation of the
solution to Schrodinger's equation and the so-called Feynman-Kac formula; (3) The
observation, apparently due to Feynman (which might have inspired most of the
Wiener space approach) that the quantum mechanical paths may be compared to the
irregular paths of a particle performing Brownian motion.

The m-lifting approach seems to make clear, however, that the Hilbert space is
the basic path space rather than Wiener space of any sort. It is possible, indeed
to extend our definition of m-1ifting to enable us to define Feynman integrals for
functionals of Gaussian white noise which may be conceded to be even more "irregqu-
lar" than the paths of Brownian motion. We outline this procedure without going
into details.

Take H =L2(ngW . The canonical Gauss measure on H is then called Gaussian
white noise. Let us write ( , )O for the inner product in H. Let $=S(IR) be
the space of rapidly decreasing functions regarded as a countably Hilbertian nu-
clear space with semi-norms Hy“p such that Hy“;==2§=0f(l-+u2)P|y(j)(u)|2du,

() being the jth orderivative of vy.

(p=0,1,...), vy
Then S' the strong dual of S is also a nuclear space (but no longer metrizable).
For convenience let us write Q(y,y") =(y,y')o for y,y' €S. By the Minlos-Bochner
theorem, there is a unique (countably additive) Gaussian probability measure V
with covariance kernel Q (the "white noise" measure) on (S',B(S')) where B(S') is
the 0-field generated by the cylinder sets {xeS': [<yl,x>,..., <y rx>] < B}, B

. . k
being a Borel set in R , vy

sy yk'eS. It is well known that S is

1 O—dense

ian(KU and we have the following continuous imbedding S(:Lz(nU c S§'. For any
> ~

h ¢« L (R) we now define (h,x) exactly as was done in Section 2, taking {ej} c8

.. 2 . .
to be an orthonormal basis in L (IR) and <ej,x> to the evaluation of the functional

x¢S' at ej. For any continuous, complex-valued function f on Lz(nﬂ the defini-

tion of Rf is now obvious with (B,V) replaced by (S',v). Thus the entire theory




of analytic Feynman and sequential Feynman integrals can be transferred to func-
tionals defined on (S8',v). Theorems 3.1 and 3.2 immediately apply to classes
F(S*) ana Gq(S') whose definition is anologous to that of F(B) and Gq(B) and the

solution to the Schrodinger equation can be represented as a Feynman integral over

S, .
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6. Connections with some related work

(1) Relationship to Cameron and Storvick's papers

We now turn to some recent work of Cameron and Storvick. In [ 2], they have

. . \
given a definition of the analytic Feynman integral on CO[a,b], the space of con-

tinuous functions x:[a,b]-+]RV vanishing at a. In their latest paper [3], Cameron
and Storvick have introduced a sequential definition of the Feynman integral in
apparently a more general setting than [15]. The main result of [3] establishes
the existence of this integral for integrands belonging to two classes g and S*
which are closely related to the class S of [2]. We shall now discuss in some
detail the relationship of Cameron and Storvick's work with the approach and re-
sults of the present paper. Before we do so, however, two general comments seem
to be in order: (i) The integrands in {[3] are functions on domains contained in

WV
Cé[a,b] or on the RKHS of v-dimensional Wiener process. Even for this case,

while the sequential integral defined by Cameron and Storvick deals only with
polygonal approximations, the application of our results permits other kinds of
finite dimensional approximations. One typical and important special case of

the latter, as pointed out in the preceding section, leads to a rigorous justifi-
cation of the "Fourier series" method of approximation alluded to in Feynman and
Hibbs. (ii) All the integrands considered in [ 3] belong to the Fresnel class

(as will be seen later)--except for an example of a cylinder function (see Sec.

TR

PR}

2) which can be treated easily in our set up. The Fresnel class cannot be used

41’1 AR
ed et

‘."

when unbounded potentials are to be considered (see example of the harmonic po-

4% ;
."t"{"-‘ )
A

tential of the previous section). For this purpose, we need to consider the

4
.
.
.
.
1

.
ot

classes Gq(H) and Gq(B) for which a Cameron-Martin formula has been proved.

. o
»

...
2 1 * +
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N To relate their work with our present work, let us assume, for simplicity,
[ ] that v=1 and [a,b] =[0,1]. Let H be the RKHS of the Wiener measure on C0[0,1].

Then, as observed in Section 5, (i,H,CO[O,I]) is an abstract Wiener space (there,
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H was denoted by Hl) . The analytic Feynman integral, 9dr(x)dx in the notation
of [2] coincides with Ign(F) in our notation for the choice (H,B) = (H,COIO,I]) .
In fact, the definitions themselves coincide. See Kallianpur and Bromley, and
Johnson [11,10] for the relationship of this definition to that of Albeverio
and Hgegh-Krohn [1l] when F belongs to the Fresnel class.

Let us begin by recalling Cameron and Storvick's definition of sequential in-
tegral, again for the case v=1, [a,b] =[0,1] for simplicity.

The sequential Feynman integral of a functional F on C0 [0,1]1, denoted by

foc R x)dx, was defined in [ 3] as

z
sf . 1, 2
(6.11) [T2 Fr(x)ax = 1im C_  fexp—= [T|x(t,m &) |“at)F(x(-,7_,£))dE
n n 2 ‘0 n n
n R
n_.n n . L
where 1Tn={0 =ty <t <<t =1} is a sequence of partitions of [0,1) such that
n .n n %n Tmn n -4 M
S(m ) = max |t.-t, +0; z_ »-i, ¢_=(==) 21, _(t.~-t., .) % and for Ec¢ R ,
n lgj<mp 3 j=-1 n n 2m i=1"73j =1

X(*,Hn,i) is the polygonal path given by X(O'Hn'g) =0, X(t?,ﬂni) =Ej and linear

in each of the intervals [trjl_ ,t?]; 1 Sjsmn. (It is required that the lim in 6.11

1

exists for all zn—>—i, S(Hn) +0 and is independent of the sequences {zn},{ﬂn}) .
It is easy to see that for all Hn' & X(‘,Hn,é) belongs to H and thus in
(6.1) above, we can replace F by £, its restriction to H. 1Indeed, denoting by

PH the orthogonal projection on H given by (5.25), we have
n

X(',Hn,c:) € Pﬂ (H) .

n

Also, if (¢2,---, ¢:] ) is the orthogonal basis for P, (H) given by (5.24), then
n

il
n
it is easy to see that
"n (g, -E. ) .
(6.2) X(e,_,6) = § —L—2==2 . T, (£ =0)
" j=1 (¢7-D )7 3 0
57551
and
m 2
n (E.-&. )
e 2 2 -1
(6.3) [olxee, 10 |%at = |lxce,n 0l = L ——3——.
j=1 tj-tj—l




Thus, substituting £!'=(§.-£E, ) e (g7 -t" ).-lj
J j Til i i1

calling that f =F|y, X(e, 0,8 eH, we get (using (6.2),(6.3)), that the integral

in (6.1) (with €0 =0) and re-

appearing on the RHS of (6.1) is Jf(zn'PH ) (see (4.1)).

n
Thus their definition can be rewritten in our notations as

f
(6.4) [fta =
F(x)dx = 1%m Jf(zn'PH )

n
if the limit exists for all zn-+-i, {Hn} such that G(Hn)-+0 and f==F|H. Thus it
is clear that in the definition of the sequential integral of F, the values of F out-

side H do not play any role. Also it is easy to see that
f
(6.5) [FPa F&)yag = 12(£)

if the latter exists, where f==F|H. These remarks show that the sequential inte-
gral of Cameron-Storvick is really an integral over H and not over CO[O,l]. (The
authors of [3] themselves seem to have realized this. See note at the end of
Section 3 and the counterexample in [3]).

In [3], Cameron and Storvick have shown the existence of and evaluated the

integral 9 F(£)dE for FeS, where (in our notation)

Ianf

s = {F: F(£) =fexp(i(n,€)~)du(n) s-a.s., uei}.
As has been pointed out in Johnson [10] and Kallianpur-Bromley {[11], the evaluation
of this integral follows immediately upon observing that S is, in fact, the Fresnel
class

s = F(COIO,l]).

. . A
As regards the sequential integral, they have shown its existence for FeS,

where

]
st

P
A

::::.. S = {r: D(F) »¢; D(F) 2H and for some u e M(H)

'E F(n) = fexp(i(n,n'))du(n') for all nef}.

3;; It is clear that g essentially coincides with F(H) and the existence of the se-
Eé& gquential integral for F eg follows from our result (Theorem 4.1), the proof of
-, o,
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the latter being quite elementary and short.

In addition to S and g, Cameron and Storvick introduce yet another class of
integrands S*, the motivation for which seems to be to get a class of functions
F on C[0,1] such that the restriction f of F to H contains all the "information"
about F (or in other words uniquely determines F) so that even though their de-
finition of the sequential integral involves only f, the integral can be called

"the integral of F". The class S* is defined as

s* = {F: gu e M(H) such that F(§) = IH ei(n’E) du(n) , s-a.e. &

and

F(n) = fx elm'n )du(n') for all n' eH}.

For F € $*, we have for all A >0,

(6.6) R(£Y) = B

where f==F|H and thus for F € S*, we have

(6.7) [Ffa rerag = 13m.
c, 0,11

Thus, for F € S*, the Cameron-Storvick definition does give the "right" answer,
but that is because (6.7) holds and the fact remains that their definition of the
sequential Feynman integral of F over CO[O,l] really defines the sequential Feynman
integral of f==FiH over H.

We feel that though the analytic Feynman integral on C[0,1] can be defined
without any reference to the RKHS H of the Wiener measure; the abstract Wiener
space structure (i,H,C({0,1]) and the m-lifting R are crucial for ¢+. lefinition
of a sequential Feynman integral over C{0,1], as indeed they are for the gencral
theory developed in this paper.

(2) Truman [15); Elworthy and Truman [5]

These authors have given a sequential definition of the Feynman integral, not

for an abstract Hilbert space, but for the Hilbert space F£ of paths. They use

. s e -:: :.\;' :.4.:.‘-:,‘-:]*-:."5:."- '-q"-
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polygonal projections PTT of the form (5.25).

function £ on H, they first

define the Feynman integral of the finite dimensional functional foPn, denoted by

Fi(f) as an appropriate improper integral in [15] and oscillatory integral in [5].

1 . .
Then the Feynman integral of f, F (f) is defined as

Fle) as 6 ) ~o0.

the limit (if it exists) of

Their definition for the class Gl(H) can be stated in our notation as follows:

F#(f) = lim. Jf(z,Pn)
z1i
2eQd
and
Flie) = 1lim F_rlr(f).
S(P“)*O

Thus, their definition involves a repeated limit and as a consequence, they can

not have a formula like (4.46) that evaluates the Feynman integral as a single

limit of proper Lebesgue integrals.

In [15], the Feynman integral for the Fresnel

class was evaluated and further the Cameron-Martin formula was obtained under the

condition that the Maslov index of (I +A) is zero.

However, the change of varia-

bles of integration and the use of the 'Jacobian' formula for improper integrals

cmployed in the proof needs justification.

(3)

space which is closer in spirit to our sequential definition.

be roughly described in our notation as follows:
A
(6.8) Jf(z) = lim Jf(z,P)
PeP
and
q . A
(6.9) I'(f) = 1lim Jf(z)
z>-iqg

exist, then define Iq(f) to be the Feynman integral.
ferent form:

A
(6.8) Jf(Z) =

i P
lém Jf(z, n)

»
R

In [14], Tarski has given a sequential definition for an abstract Hilbert

His definition can

If

He states (6.8) in a dif-




where {Pn} belongs to a "determining" class. (6.8)' can easily be seen to be cqui-
valent to (6.8). However, this is not his precise definition. It is more compli-
cated, and it is such that the formula

Li -ig(e
- ettalasa)q  -iq(-,a)

13(£) £(*))

is built into the definition.
Observe that the limit in (6.8)"' is taken along increasing sequences {Pn} in
a 'determining class', and thus in the case when the underlying Hilbert space is

the space of paths Ht or ﬁ;, the polygonal approximation to the Feynman integral

MO
LI e ]

may not be valid. Even if the determining class consists of all increasing

sequencns, the polygonal approximation will be valid for only successively finer

.l
)
S
\
)
b
s

'l"”'

partitions.

e

Since Tarski's definition also uses a repeated limit (see (6.8) and (6.9)
above) like that of Elworthy and Truman--though in the reverse order--the same

criticism applies to Tarski's definition as well.
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