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1. Technical Progress During Period July 1, 1983 - June 30, 1984

F This report period covers the second year of our research program on the
foundations of knowledge-based reasoning, with particular reference to

diagnostic, design and information retrieval tasks., We will proceed in this

interim report by first giving an outline of our general approach, then
briefly describe some problems in which we have made progress during the year.

We will enclose as appendices some papers which further describe some of our

Y

- accomplishments in greater detail. These papers typically have either

appeared in the literature during the year or will shortly appear.

2. Our Conceptual Approsch
t The primary focus of our work is on analyzing knowledge-based problem
| solving in information processing terms, i.e., in terms which highlight what

L kinds of information is being input to a reasoning process and is being output

by it, rather than in terms of the tools which are used to implement an expert
system. Analysis in terms of the latter will typically talk in terms of

" etc., while

"rule-bssed system"s, "frame-based systems,"” or "prolog systems,
we would talk about the nature of the tasks themselves: "the classificatory
task," the "abduction task," etc. The latter level of analysis enables us to
isolate the terms and relations that characterize the essence of the knowledge
structures that are needed to perform the variety of tasks that knowledge-

based reasoning is capable of handling.

Our emphasis on the close relationship between the knowledge structures and
the information processing for various tasks has increasingly taken us away

from the earlier generation of expert system theories which separate the

knovledge base from the inference engine. Our systems tend to be highly

organized symbolic structures built up of active specialized knowledge-using

St
‘At g

agents.

The search for the fundamental types of knowledge-based problem solving has




led us to think in terms of germerjc information procepsipg tasks. The basic
idea is that each fundawental type of problem solving activity accomplishes a
certain genmeric task, and has its own characteristic way of using knowledge.
A grasp of the "atoms" of intelligent information processing should provide ;'
the basic building blocks out of which more complicated forms of intelligent

problem—-solving can be built.

We bave identified several such generic tasks from our work on medical
reasoning and reasoning about mechanical devices. Diagnostic (classificatory)
problem solving, a particular form of predictive reasoning, a form of
knowledge-directed data retrieval, and a form of design activity are examples
of distinct problem solving types. We make no claim that these types are ;;'.“
exhaustive, in fact as our research proceeds we expect that we will identify “

more generic types.

This theory of generic types of problem solving is discussed more fully in -
[6]. The basic idea is that a complex task is broken down into a number of
generic subtasks, and each subtask is then solved by an appropriately
organized community of specialists. That is, the knowledge structure
corresponding to a problem solving type cam be decomposed into a number of ;-_
specislists who cooperate in solving that class of problems. We have |
developed approaches for a number of problems based on this overall approach.

Our work on these theoretical ideas is presented in [8, 1] and [5].

Recently we have been concerned with developing deep models of expert
reasoning. Most of the diagnostic systems that have been developed in
medicine and other domains have been called "compiled™ or "shallow" kmowledge
systems, pointing out that the knowledge base encodes in a fairly direct way
the relationships between findings and hypotheses. Yet often a human expert”s
knowledge of how the device functions is used to gemerate new relationships

during the reasoning process. So far we have developed a primitive language
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for representing the functioning of devices, and a "compiler™ capable of
I building a diagnostic problem—-solver from a device representation made in this

language [7, 10].

We made progress on a number of problem areas during the year under report.
We outline the projects and the basic ideas in the next few sections. As
mentioned earlier, we have also added appendices consisting of papers writtem

by us during the year which give the research progress in greater detail.

3. Project Progress Reports

3.1. A Method for Representing the Functional Organization of Devices which

Supports the Automatic Compilation of Diagnostic Systems

V. Sembugamoorthy and B. Chandrasekaran
Human experts often use in their problem solving a deeper understanding of
i their knowledge domsin than has been captured in the first generation of
expert systems. We have developed a representation for one aspect of this
deeper knowledge, corresponding to an expert’s understanding of how the
functioning of a complex device results from its structural properties. We

have built a compiler which automatically generates a diagnostic expert system

from this functiona]l representation of a device [10].

The first idea is that an agent”s understanding of how a device works is

" organized as a representation that shows hov an intended function is - {:}
sccomplished as series of behavioral states of the device, and bow each ;: ?E
behavior state transition can be understood as either due to a function of a >.'f

B component, or in terms of further details of behavior states. This can be fff ‘5

repested at seversl levels so that ultimately all of the functions of a device
can be related to its structure and the functionality of the components in the

structure. For exsmple, the function that we msy call "buzz" of & household

-
.

electric bugzzer may be represented as:

]
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FUNCTIOR: Buzz : TOMAKE buzzing(buzzer) IF pressed (switch)*
by behaviorl

and the relevant behavior, behaviorl, can be represented as:

BEBAVIOR: behaviorl:

Pressed(switch)*
|
| BY behaviorl
v
{Clapper electrical connection alternates}

| USING-FUNCTION mechanical OF
| clapper
v
Repeated-Hit(Clapper)
|
| USING-FURCTION electrical OF
| clapper
v
Buzzing(Clapper)
I
11
Buzzing(Buzzer)

Intuitively what is being said here is that the Buzz function is
accomplished when, if the switch is pressed, the buzzer goes to a state called
"buzzing," and this is sccomplished by a series of behavioral states that is
named behaviorl. Behaviorl says that the buzzer, on the occasion of the
switch being pressed, goes to a state where the electrical connections in the
clapper alternately close and open, which results in the state where the
clapper is repeatedly hit, which results in the buzzer being in the state of
buzzing. Each transition is further explained, either in terms of further
details in the state transition, or in terms of the functions of the
components. For example, the transition from the clapper being alternately
electrically connected and disconnected, to its being in the repeated-hit

state, is explained by relating it to the mechanical function of the clapper.
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Let us see how this fragment of functional representation can be used to
generate a piece of diagnostic knowledge that may be used by a diagnostic
expert system. A diggpostic compjijer will fumction as follows. Suppose a
buzzer does not buzz when its switch is pressed. In order to find out what
malfunctions are causing this, the diagnostic compiler will reason thus on the
basis of the functional specification and the behaviorl specification: The
functional specification tells it that the problem is in behaviorl, since the
Buzz function is failing. Behaviorl, on examination, can result in a series

of hypotheses:

Rl: If switch is pressed, but the clapper is not alternately electrically

connected and disconnected, problem is in behavior2.

R2: If switch is pressed, the clapper’s electrical connectivity alternates,
but the clapper doesn’t hit-repeatedly, the cause of buzzer not buzzing is

mechanical malfunction of the clapper.

The power of this method for representing how a device works is due in
large measure to explicitly distinguishing five aspects of an agent’s
understanding of the device, and treating each aspect appropriately. The
distinctions are made at every level of organization on which the device is

represented. 'The five aspects are:

- STROCTURR - this specifies the relationships between components.

- FURCTION - this captures the intended purpose of a device or
component, specified as WBAT the response is to a stimulus,

- BEBAVIOR -~ this specifies HOW, given a stimulus, the responmse is
accomplished.

- GENERIC KNOWLEDGE - chunks of deeper causal knowledge that have been
compiled from various domains to enable the specification of
behavior.

- ASSUMPTIONS - other specifications of the conditions under which
various behaviors or conditioms occur.
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Directions for future research include the following: We need to develop
methods to check the correctnese/consistency’of a given device representation,
We need to investigate the design of two other needed dimensions of device
representation, namely the temporal dimension and interactions of functional

units by way of feedback and communication., Also the csusal dimenmsion, which

we have discussed, has to be integrated with the other two in a disciplined,
practically useful, and cognitively meaningful framework. We need to identify

the compilation processes that come into play to generate other types of
%: expert problem solving structures, such as those that c¢an predict the

func;ional and behavioral counsequences of changes of structure.

In broader terms, This work is part of our on-going effort to uncover the
multiplicity of generic structures and processes involved in knowledge-based
problem solving. Whether or not one accepts the hypothesis that homogeneous
and unitary architectures such as production systems are adequate at the level
of symbol processing in the mind, we nevertheless believe that in order to
account for knowledge-based problem-solving activity at the information
processing level, there is a need to identify a richer collection of genmeric
knowvledge structures and a correspondingly rich collection of knowledge-

processing mechanisms that operate on them.

We enclose as Appendix A a paper that describes the problem and our

approach in greater detail. This paper is being prepared for submission to

journals, and is an elaboration of a paper presented at the 1983 Joint
Services Workshop on AI Applications to Diagnosis and Maintenmance that was

held in Boulder, Col. SRR

3.2. Expert Systems for Design Problem-Solving using Design Refinement with j;:;f};
Plan Selection and Redesign N ;jﬁf
David C. Brown and B. Chandrasekaran B

This research is concerned with the design of mechanical components, and
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views design as a problem-solving activity. The theory explains the activity
of a human designer when solving a problem that falls into a particular
subclass of mechanical design. An expert system called AIR-CYL has been
implemented that embodies the theory. The system will design a particular
type of Air-cylinder according to some set of user given requirements. The

behavior of the system closely follows that of the human designer.

Design activity in general has many components; such as planning, the use
of prestored plans, refinement of descriptions and the use of large amounts of
knowledge. Not all designing involves all of these. We have established
three classes of design activity which vary according to their problem—-solving
components. Our work refers omnly to the third class, which requires that at
every stage of the design the designer knows both what sequences of design
steps sare appropriate and also what knowledge is required. The theory
hypothesizes that such activity is organized around a hierarchy of concepts,
where each concept is active in the design, and may be considered to be a
specialist about some portiomn of the design. The hierarchy reflects the way
that the designer thinks of the object during design, and it shapes the design

process.

Each Specialist has its own set of Plans from which to select depending on
the current stage of the design. The plans may request portions of the design
from other specialists lower in the hierarchy, or may use Tasks to make small
additions to the design itself. Tasks use Steps to decide the value of each
attribute for which it is responsible. For example, a hole might be designed
by a Task, while a Step would decide the radius, Constraints may be planted
at sny point in order to test the validity of the design. The Design Data-
base contains the current state of the design and a record of its progress,
Plus the collected requirements from the user. Each task suggests changes to
the design, and when it is satisfied that they are locally coheremt it

produces an Update which alters the state of the design.




The complete design process proceeds by first obtaining and checking
requirements for counsistency. It then does rough-design to establish whether '
full design is worth pursuing. If the rough-design succeeds, then the full |
design is attempted by requesting a design from the top-most specialist. The
rough-design hierarchy consists of only the upper portiom of the design
hierarchy. Communicztion between active design agents is done by passing
messages that give instructions and report on success or failure. This is the

only way that a specialist can know what has occurred at lower levels.

If a step fails due to a failing Constraint a redesign phase is entered

until the problem can be fixed and design can continue. Step failure can lead

to task failure and subsequently to specialist failure. The redesign process .
is controlled by Suggestions about what might fix the problem. These
suggestions are produced by each agent that fails. Suggestions are examined
by a redesign strategy in the agent immediately above the failing agent.
Appropriate measures are then taken to follow the suggestions in order to
correct the problem. Different types of agents have different strategies.

This results in backing-up over prior design decisions in a manner which is

dependency-based by suggestion. The change/update mechanism of the design

data-base supports the redesign phase. -

To facilitate the building of the AIR-CYL system, and class 3 design
problem~solvers in general, a language has been provided in which to declare | "
design agents and describe plans. The Design Specialists and Plans Language
(DSPL) has been used to capture the Air-cylinder design knowledge. The system

takes about 5 minutes to design an Air-cylinder given 20 requirements.

We have presented an approach to building expert systems for a particular
class of design activity in the domain of mechanical components. Much work
remains to be done in this area before we fully understand what design is and T

how best to build systems to do it. However we feel that by using an - j
}
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hierarchically structured system of conceptual specialists with plan selection
Ii and failure handling we have captured the essential qualities of routine

design, while discovering many interesting and difficult issues.

We enclose as Appendix B a paper [2] that describes our approach to design
problem solving in greater detail. This paper will appear in the proceedings
of the IFIP WG5.2 Conference on Knowledge Engineering in Computer-Aided
Design, Budapest, Hungary.

3.3. CSRL: A Language for Designing Diagnostic Expert Systems

Tom Bylander, B. Chandrasekaran, Sanjay Hittall, and Jack W, Smith
f Many kinds of problem solving for expert systems have been proposed within
the AI community. Whatever the approach, there is a need to acquire the
knowledge in a given domain and implement it in the spirit of the problem
solving paradigm. Reducing the time to implement a system usually involves
II the creation of a bigh level languvage which reflects the intended method of
problem solving. For example, EMYCIN was created for building systems based
on MYCIN-like problem solving. Such langusges are also intended to speed up
the knowledge acquisition process by allowing domain experts to input
knowledge in a form close to their conceptual level. Another goal is to make

it easier to enforce consistency between the expert’s knowledge and its

.
.
-~y
L

X implementation. N

“ LI

. CSRL (Conceptual Structures Representation Language) is a language for oo

implementing expert disgnostic systems that are based on our approach to .?;~ﬁ

v diagnostic problem solving [3]. In this approach, diagnostic reasoming is oune T

of several generic tasks, each of which calls for a particular organizational .-1-‘

and problem solving structure. This approach is an outgrowth of our group’s ?f -

- | I

1Curtently at Knowledge Systems Area, Xerox PARC, 3333 Coyote Hill Rd., Palo f:;F

: Alto, CA 94304 USA L
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experience with MDX, a medical diagnostic program, and with applying MDX-like

problem solving to other medical and non-medical domains.

A diagnostic structure is composed of a collection of specialists, each of
which corresponds to a potential hypothesis about the current case. They are
organized as a classification or diagnostic hierarchy, e.g., a classification
of diseases. A top-down strategy called estgblish-refipe is used in which
either a specialist establishes and then refines itself, or the specialist

rejects itself, pruning the hierarchy that it heads,

CSRL facilitates the development of diagnostic systems by supporting
constructs which represent diagnostic knowledge at appropriate levels of
abstraction. Message procedures describe the specialist”s behavior in
response to messages from other specialists. Kpnowledge groups determine how
data relate to features of the hypothesis. Rule-like knowledge is contained
within knowledge groups. See [4] for a discussion on encoding diagnostic

knowledge in CSRL in the medical domain.

We have used CSRL in the implementation of two expert systems. Auto-Mech
is an expert system which diagnoses fuel problems in automobile engines [12].
It consists of 34 specialists in a hierarchy which varies from & to 6 levels
deep. Red is an expert system whose domain is red blood cell antibody
identification [11]. CSRL is used to implement specialists corresponding to
each antibody that Red knows about (around 30 of the most common ones) and to

each antibody subtype.

Appendix C is a paper that will appear in Interpational Jourpal of
Computers in Mathemgtics, special issue on AI applications. This describes

the CSRL language in greater detail. CSRL has been implemented in two
environments: UCI-Rutgers Lisp in Tops 20 for the DEC20 series, and for the

Interlisp/Loops environment that runs on the Xerox family of Lisp machines.

o

l

[y
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3.4. Using Consolidation for Reasoning about the Behavior of Physical Systems

Tom Bylander
A recent AI approach for reasoning about the behavior of physical systems
is qualitative simulation. The structure of the physical system, and
knowledge about the behavior of its components are used to derive a collection
of constraints. Using these constraints, the simulation is performed and its

results are interpreted.

This research investigates s new method of reasoning for this problem which

we call comsolidation.

The major processing sequence of consolidation is to hypothesize a
composite component consisting of a selected subset of components, and then to
infer the bebavior of the composite from the behaviors of the components.
Successful application of this sequence on increasingly larger composite
components results in inferring the behavior of the whole system. As a
byproduct, a hierarchical behavior structure is produced which explains how
the overall behavior is caused by the compoments” behavior. Also note that
each reasoning step is localized over s small number of components and
subsystems, avoiding the global problem solving required for qualitative

gsimulation.

This research also proposes a novel representation for behavior. Current
theories describe behavior as arithmetic constraints on variables and their
derivatives, which would imply that comsolidation is purely a matter of
mathematicsl manipulstion. Instead, we describe the behavior of a component

" e.g., fluids,

by the actions that the compoment performs upon "substances,
electric currents, control activations, or other stuff that can potentially
move., We claim that there is a small set of behavior schema which can
directly represent these actions, and which allow inferences about the

behavior of composite components. Exsmple schema include: permitting a

@
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substance to move from one place to another, and influencing a substance to
move. A behavior can be hypothesized based on patterns of other behaviors.
Its existence is confirmed, and its parameters are determined using knowledge
about the physics of the substance being acted upon. Comsolidation controls
the inference of behavior by specifying the context (the composite component)

in which inference can take place.

We are implementing a version of consolidation, which will depend upon a
few simplifying assumptions. The structural description will be limited to
connection of components and containment of substances, thus reducing the
amount of spatial reasoning required. Numerical attributes of behaviors (such
as amount of influence or rate of movement) will be specified qualitatively.
The qualitative language used will be similar to that developed by Kuipers

{9], and will also include a simple temporal component for expressing the
sequence of events. We hope to discover the limits of comsolidation under
these assumptions, and to 1learn how more complex spatial and temporal

reasoning can be integrated into this process.

4. Computing Environment

We are also in receipt of another AFOSR grant (Grant AFOSR 83-0300), under
the DOD-University Research Instrumentation Program, for a Lisp machine
facility for expert systems research. During the year under report, we
acquired for Xerox 1108 Lisp machines, which are currently connected in an
ethernet configuration with each other and with a VAX 11/780, Much of the
research for the AFOSR research program is moving to this environment from the

earlier DEC20/60 UCI-Rutgers Lisp ome. During the year, we implemented the

CSRL language (see section 3.3) in this new environment, and have used it to

implement & number of prototype diagnostic systems.

References

- o .
DAY

- .
L Al e & o

DG IR L N N SN P P . L v, - . . PP L




_ (1]
(2]
-
- (31
(4]
- (5]
| (6]
]
(7]
. (8]
_ (9]
- (10]
L (11]

- IEEE Transgctjons

AR A A s

13

Brown, D.C. / Chandrasekaran, B.
An Approach to Expert Systems for Mechanical Design.

In Proc. Trends & Applications “83, pages 173-180.
Society, Gaithersburg, MD, May, 1983,

IEEE Computer

Brown, D.C. / Chandrasekaran, B.

Expert Systems for a Class of Mechanical Design Activity.
1984
Paper for IFIP WG5.2 Working Conference, Sept. 84.

T. Bylander, S. Mittal, and B. Chandrasekaran.
CSRL: A Language for Expert Systems for Diagnosis.

T. Bylander, and J. W. Smith.
Using CSRL for Medical Diagnosis.

In Proc. Second Internatjona] Conf. on Medical Computer Scienmce and
Computational Medicipe. 1983.

Chandrasekaran, B.
Natural and Social Metaphors for Distributed Problem Solving:
Introduction to the Issue.

1EEE Transactions on Systems, Man, and Cybernetijcs SMC-11(1):1-5, Jan,
1981.

Chandrasekaran, B.
Towards a Taxonomy of Problem—-Solving Types.
Al Magazine 4(1):9-17, Winter/Spring, 1983.

Chandrasekaran, B. / Mittal, S.
Deep Versus Compiled Approaches to Diagnostic Problem Solving.

Interpationa]l Journal of Man Machine Studijes 19:425-436, 1983,

Gomez, F. / Chandrasekaran, B.
Knowledge Organization and Distribution for Medical Diagnosis.

on Systems, Map, apd Cyberpetics SMC-11(1):34-42,
January, 1981.

Kuipers, B.
Copmonsense Reasonjng about Causality: Deriving Behavior from

Technical Report 18, Working Papers in Cognitive Science, Tufts
University, 1982,

Moorthy, V.S8. / Chandrasekaran, B.

Functional Representation of Devices and Compilation of Diagnostic
Problem Solving Systems.

August, 1984

The Ohio State University.

J. W. Smith, J. Josephson, C, Evans, P, Straum, and J.Noga.

Design For a Red-Cell Antibody Identification Expert.

In Proc. Second Interpatiopsl Conf. on Medical Copputer Science and
Computational Medicipe. 1983.

......

R
e 24




14

[12] M. C. Tanner and T. Bylander.
Application of the CSRL Language to the Design of Expert Diagnosis
Systems: The Auto-Mech Experience.
In Proc. of the Joint Services Workshop on Artificial Intelligence in
Mgiptenence. 1984.




[P S I W A S S Alaia aaal a~ e e el

APPENDIX A

FUNCTIONAL REPRESENTATION OF DEVICES AND

COMPILATION OF DIAGNOSTIC PROBLEM SOLVING SYSTEMS




- e

FUNCTIONAL REPRESENTATION OF DEVICES AND
COMPILATION OF DIAGNOSTIC PROBLEM SOLVING SYSTEMS

V. Sembugamoorthy and B. Chandrasekaran
Artificial Intelligence Group
Department of Computer aud Information Science
The Ohio State University
Columbus, Ohio 43210

August 1984

A'cknovlodgutnt: This research was supported by Nationmal Science Foundation
grant MCS-8305032 and by Air Force O0ffice of Scientific Resesrch grant AFOSR

82-0255.

e S W St Wi Gt W N5 S N I S U Ut B P P

. . N N c
Sai .4 40 .. . .

. o
P




L

Table of Contents

1. Motivation
2. Components of a Functional Representation
3. A Representational Scheme for the Functioning of Devices
4, Compilation of a Diagnostic Problem Solving System
4.1. The Structure of a Generated Diagnostic System
4.,2. The Compilation Process
4,3. Mganing of Function in the Representation
5. The Diagnostic Task and the Structure Produced by the Compiler
6. "What Will Happen If" Problem Solving Using the Functional
Representation
7. BRalation to Other Work
7.1. The Work of de Kleer and Brown
8. Concluding Remarks

APPENDIX

List of Figures

Figure 1: A Schematic Diagram of a Household Buzzer
l?.su:o 2: An Illustration of Behavioral Specificatiom
Figure 3: An Example of a Generated Diagnostic Expert

10 S
10
11
13
14
18

22
26




s

LT T = o T ~ —

FUNCTIONAL REPRESENTATION OF DEVICES AND

COMPILATION OF DIAGNOSTIC PROBLEM SOLVING SYSTEMS
¥. Sembugamoorthy and B. Chandrasekaran
Artificial Intelligence Group
Departmant of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

ABSTRACT

Most of the diagnostic systems that have been developed in medicine as well
as other domains can properly be called "compiled” knowledge systems in the
sense that the Ikmowledge base contains the relationships between symptoms and
salfunction hypotheses in some form. However, often in human ressoning, ‘nn
expert’s knowledge of how the device "functions™ is used to generate new
relationships during the reasoning process. This deeper level representation
which can be procsssed to yield more compiled diagnostic structures is the
concern of this paper. Using the example of an household buzzer, we show in
this paper what our fumctional representation of a device looks like. We
discuss the nature of the compilation process that can produce the diagnostic
expert from this deeper representation. We also outline how another form of
problem solving, viz., predicting consequences to device functionmality of
changes in the structure of a device, can also be supported by this

Tepresentation.,

1, Motivation
The work to be described in this paper can be motivated by reference to a

number of issues that have recently sttracted attention in knowledge—-based

reasoning. Three of them are as follows:

1. What does it mean to understand how a device works; im particular,
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2.

3.

to understand how its fupction is related to and arises from its
strycture? How to represent the result of this understanding in
such a way that this representation can be used to support problem
solving, such as trouble~shooting a malfunctioning device, or to
predict consequences to device functionality of changes in its
structure? With human beings at least, it seems reasonable to
expect a person vho claims to understand how a device works to be
able to engage in the above forms of problem solving tasks. Some
recent work in artificial intelligence [5, 6, 11 deals with these
issues. In the countext of this set of research isiues, our goal in
this paper is to present a framework for approaching this problem,
to describe a language for representing fumctioning of a class of
dsvices, and to show how this representation can support problem
solving of the types mentioned above.

A related concern, especially in the literature on systems for
medical diagnosis, has been on causgl reasonipg. Typically this
bas meant <representing detailed causal relationships between
pathophysiological states that underlie a disease process and using
this information to make conclusions about disease entities, given
symptomatic information. The work in [13] and [14] exemplify this
approach, Such representations have been called dgep models
[9, 12], ia contrast to systems, such as MYCIN, whose knowledge
base contains the evidentiary relationships between disease
hypotheses and symptoms directly, without specifying the causal
pathways between them. From this viewpoint, the functional
representation advanced in this paper can be thought of as a
proposed form of deep model for diagnostic expert systems. It can
yield causal chains of behavioral states at several levels of
detail, and can also generate evidentiary relationships mentioned
above to the extent that they are derivable from causal models.

Related to the above notion of a deep model of a domain is the idea
of compiling from it different forms of knowledge structures useful
for different kinds of reasouning [1]. PFor example, for diagnostic
reasoning, we need malfunction hypotheses and pieces of knowledge
that relate symptoms to these hypotheses (the evidentiary knowledge
of the previous paragraph); for reasoning about consequences of
actions that may be performed on a system, ve need knowledge that
relates state changes at different levels of system description.
The intuition is that an agent with an appropriate deep model can
generate from it Imowledge in thease forms, and then use them
directly for the relevant problem solving task. An adequate deep
model can give rise to different compiled structures for different
tasks. If the tasks are generic in some sense, then one might look
for compilation procasses which are device~independent. (A theory
of gemeric types of knowledge-based problem solving tasks is
developed in [2].) 1In this perspective, the work to be presented
hers proposes an approach for compiling diagnostic problem solving
structures from deep models corresponding to a knowledga of how
devices function. We also outline how another problem solving
structure for predicting consequences of proposed actions can also
be compiled from the same representation, but the msjor emphasis is
on diagnostic ressoning. In these cases, compilation is meant to
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capture the ides that knowledge in a certain more general form is
transformed into knowledge of a more particular form, suitable for
particular classes of uses. (Whether a complete diagnostic
structure is compiled initially or portions needed for particular
diagnostic problems are compiled as these problems are encountered
is not of councern in this resesarch i.e, the word "compilation" is
oot used to contrast the process with "interpretation™ in the
computer science sense of the terms.) While the fumctional
representation will be more economical in storage, the compiled
structures will be more efficient for the particular problem
solving tasks.

2. Components of & Punctional Representation

We envisage that an agent represents the fumctioning of a device in many
dimensions which include cgyssgl, tepporal and jinteraction. In the causal
dimension a "unit of functioning"” (e.g: buzzing of a household buzzer) is
represented as a causally related sequence ~ a genetic, not a temporal
sequence - of device (or component) states. In the temporal dimension, these
units obey time constraints. For example, two units of functioning should
happen sequentially or overlap or their duration cannot exceed a certain
amount of time, etc. In the dimension of interaction they interact through
feed-back or by commumicating information, For example, kiduneys and lungs
interact with the "acid-base" buffer system by communicating through changes
in the comcentration of bicarbonate and carbomic acid ir blood. The
functional upnunutioﬁ of a device is an integrated whole of these various

dimensions.

In this paper we briefly describe the salient features of the causgl
digpensjon of our functional representational scheme, and how it can be used
for automatically compiling a djagnostic expert structure by using a
device~independent diagnostic compiler. The compiled diagnostic structure has
an architecture similar to the MDX system (3, 8] ie., it is a hierarchical

collection of diagnostic (more specifically, classificatory) specialists.
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Our representational scheme is rich in the number of primitives it employs -

to represent many aspects of functional knowledge., This richness is necessary
h to capture sll the uses to which this representation can be put. While we will
attempt to be complete in describing the causal dimension of the scheme in
this paper, only a portion of the scheme will be utilized by the diagnostic
L compiler to be described.

3. A Representational Scheme for the Functioning of Devices

One of the significant tools available to humans as well as machines to
combat complexity is abstraction, Accordingly, our scheme for functional
representation allows one to represent functional knowledge at many levels of

abstraction. BEach level recursively describes the functioning of a device or

component in terms of the abstractions of, aund relations between, its

components. At each level there are five significant aspects to an agent”s

functional knowledge:

= STRUCTURE: this specifies relationships between components, and
abstractions of thege compounents from lower levels.

~ FUNCTION: this specifies WHAT is the response of a device or a
component to an external or internal stimulus.

~ BEEAVIOR: this specifies HOW, given a stimulus, the response is
accomplished.

- GENERIC ENOWLEDGE: chunks of deeper causal lmowledges that have been
compiled from various domains to enable the specification of
behavior; for example, a specialized version of Kirchoff”s law from
the domain of electrical circuits.

~ ASSUMPTIONS: using which the agent chooses a behavioral alternstive
over other possible onas.

Next we describe how these five aspects together represent the functioning

of devices at each level of abstraction. Following de Kleer and Browmn [5, 6],

ve shall use the household buzzer (shown in Fig. 1) to illustrate our ideas. :ﬁ:.:_‘jfu




FUNCTION

The functional specif’ .ation of a device is illustrated below by describing
ons of the functions of the buzzer,namely 'buzz”.

FUNCTIONS:
buzz: TOMAKE buzzing(buzzer)
IF pressed(manual-switch)*
PROVIDED assumptionl
BY behaviorl
stop~buzz: ...
END FUNCTIONS

(Attached)

Figure 1: A Schematic Diagram of a
Household Buzzer

In the sbove description ™buszzing(buzzer)™ is a state dncription.l Pt

denotes repetition of a state. The buzzer is represented as having a nmbcr.of
functions viz., "buzz"™, "stop~buzz™, etc. The initial state, viz., "t7" and
"t8" (refer to figure 1) are electrically connected is specified by
"assumptionl” (more about assumptions latc:).. The "BY" claura relates the
function with its behavior i.e., the manner in which the fumction is
accomplished (behavioral specification is described below). As we shall see in
Sec. 4.2, this association between functiom and behavior is uvseful during
compilation. FNote that primitives such as TOMAKE (written out in capital
letters in our description) trigger specific subprocasses during compilation
and thus the compiler (described in Sec. 4.2) can be ssid to "understand” them

(and their syntactic constraints on their arguments). On the other hand names

l'lbre precisely, they are partial state descriptions oé the device as s
wvhole. We will use the tem "state" for simplicity.
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such as "behaviorl" are used for indexing; state descriptions are trested as

strings and used to synthesize piecas of diagnostic kmowledga.

SIRUCTURE

The structure of a device (component) is represented using the abstractiouns
of its components (subcomponents) and relations between them. As an
illustration consider the structure of the buzzer given below. Im this
illustration "tl", "t2",etc., are terminals of components. Relations such as
"urially-comct.od" are not understood by the compiler. "T1", "T2", etc.,
are local temminals. The function "magnetic" is defined at the next 1601 as a

function of the clapper in the ssme way as the functions of the buzzer are

described. Its function is to discomnect Tl and T2 electrically if space is

magnatized.

It is important to note firstly that the functional lmowledge of a
component is specified independent of that of a device which conpn'.‘u the
component. An abstraction of a component inside the specification of a device
represents the role of the component in the functioning of the device. This
20t only coucurs with the manner in which we store functional Inowledge
(e.g.,v¢ know the function of a battery independent of its role in a
car,camers,etc.) but also has an important practical significance, namely
storage efficiency. Secondly, what is carried over from one level to another
aTe not behavioral specifications but names of functions. This is important
vhen an agent needs to replace s malfunctioning component by & functionally

equivalent but a behaviorally different one.
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STRUCTURE:
COMPONENTS :
manusl-switch (tl1,t2), battery (t3,t4),
coil (t5,t6,spacel), clapper (t7,t8,space2)
RELATIONS: serially-counnected (manual-switch,
battery,coil, clapper)
AND includes(spacel,space?)
ABSTRACTIONS-OF-COMPONENTIS:
COMPONENT clapper (tl, t2, space)
FUNCTIONS: magnetic,acoustic,mechanical
STATES: elect-connected (tl, t2),
. repeated-hit(clapper)
ASSUMPTIONS: assumption2, assumptionl
END COMPONENT
COMPONENT coil (tl, t2, space)

END COMPONENT
END ABSTRACTIONS-(QF~COMPONENTS
END STRUCTURE

BEHAVIOR

The behavioral ipocification of a device describes the manner in which an
agent has composed the functions of the compoments to obtain the functions of
the devics. This specification also has pointers to any 'z.n.ric domain
knowledge and assumptions (relating to behavioral alternatives)-used by the
sgent in the process of composition. Fig. 2 illustrates how the “buzz”
function discussed above is realized. We have made use of three conceptuslly

important notations in behavioral specification. They are described below:

(Attached)

Pigure 2: An Illustration of
Behavioral Specification

Il BY <asme-of-a=behavior>

LAl
.
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h_ For example, step 1 in figure 2. This is intended to represent that the ' .

state sl (more specifically s state complex; see the states in step 1 of

£fig.2) causes the state s2 and the details are in another behavioral
specification ( "behavior2"). This relation enables a behavioral -
specification of a device (or & component)to be made at many further levels of
detail, but still within the overall level of the device (or component). We
call this hierarchy the ‘Hierarchy of Detaila”.
2: sl
I
|| USING FUNCTION <aame-of-a-function> _
i1 OF <component> - -
\/ .o
s2 .
For example,
sagnetized(space2)
1 — s
i{ USING FUNCTION magnetic —
M OF clapper(t7,t8,space2) '
I WITH assumption2

\/
~v elect-connected(t7,t8)

The specificstion in "assumption3™ is to represent the idea that if space2
is magnetized, the resulting force will be greater than the spring force. The
above notation means that state 32 is caused from sl by making use of a
function ("magnetic") of the component ( "clapper"). (Recollect the comments
on the "magnetic" functiom in the specification of STRUCTURE of the buzzer
above.) This makes it possible to glue the functions of the compoments ..
together to obtasin a behavior. In other words, it enables causal knowledge at
the level of device (component) be represented in terms of causal knowledge at

the level of its components (subcomponents). This hierarchy of causal
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i knowledge is called ‘Component Hierapchy”.
o
- Il AS=PER <aame~of-a-knowledge-chunk>
H IN-THE-CONTEXT-0F < s state
\/ description >
82

For example,

elect-connected(t7,t8)

| AS~PER knowledgel IN~THE-CONTEXT-OF
| voltage-svailable( t3,t4)A

| serially-connacted(battery,coil,

| clapper,manual~switch)

voltage-applied (tS5,t6)

This means that if the terminals t7 and t8 are clcc::ically connected, thui
voltage will be applied between t5 and t6., This is true as per the knowledge
chunk called “kuowledgel” when it is applied in the context of battery, coil,
clapper and manual switch being serially connected, and voltage 'boinz
avsilable at the battery’s terminals. (“kmowledgel’ is specified below.)
This primitive ensbles csusal knowledge (i.e., sl causes s2) to be represented
using more general causal knowledge (i.e., kmowledgel) and as described below,

the lntu_r be represented using still more generic knowledge (ie., Kirchoff’s

law). We call this hierarchy the " Generalizstion Hierarchy".

GENERIC XNOWLEDGE

The generic kmowledge specification of a device (component) describes all
chunks of deeper knowledge used in its behavioral specifications. The
following is a specification of “mowledgel”. There are other types of generic

knowledge requiring notations other than the ones used below,
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GENERIC KNOWLEDGE:
knowledgel:

volugrtpplicd (11,12)
|
|| AS=PER kirchoff”s-law
|| IN~THE-CONTEXT-OF
|| elect=counscted(T1,T3)
I} Aslect-connacted(T2,T4) /* T1...T4 are local symbols,
\

voltage~applied ( 13,T4)
END GENERIC KNOWLEDGE

We would like to draw particular attemtion to the notion of GENERIC
KNOWLEDGE in our representation. It enables us to capture the relation between
functionsl representation and deeper causal knowledge such as Kirchoff’s law.
This link will be useful when the correctness of an spplication of & generic
knowledge in a functional representatiun is checked. Moreover, an agent using
the functional representation can justify a step in a behavioral specification

by quoting the generic knowledge employed.

ASSUMPTIONS

All assumptions made use of in the behavioral specifications of a device

(componant) are described in ASSUMPTIONS as illustrated below with refersnce . - -

to the clapper.
ASSUMPTIONS :

sssumption2: IF magnetized(space) THEN magnetic-force > spring-force
assumptiond: IF ~/magnetized(space) THEN magnetic-force < spring-force

END ASSUMPTIONS
de Kleer and Brown (6] state that a difference between a novice and an expert
is that the latter has made explicit all the assumptions underlying behavior

of davices. Our functional representation has coustructs to reprasent
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assumptions and their role in behavioral specification. It is perhaps worth
restating here that though the compiler does not usderstand "magnetic-~force",

etc., it can use these strings to compose pieces of diagnostic knowledge.

4. Compilation of a Diagnostic Problem Solving System

Now we can proceed to a discussion of how a diagnostic problem solving
system can be generated from the functional representation by using a device-
independent compiler. As a pr?raqnilitc for this compilation, the compiler
needs to check the correctness/consistency of those portions of the functiomal
representation that it will use. An exsmple of incorrect specificationm is: A
behavioral specification may specify that sl causes s2 as per some knowledge
chunk in some coutext. But when the knowledge chunk is spplied in the context,
sl may not cause s2. We have not yet investigated this form of reasoning. The
compiler described here assumes that the rapresentation is correct/cousistent

in those aspects that it uses.

4.1. The Structure of a Generated Diagnostic System

As shown in tis.- 3, the z.u:a:;d expert system is a hierarchy of
specialists. The structure and problem solving of the diagnostic system are
similar to those of & medical disgnostic system called MDX (3, 8]. Each
specialist corresponds to a mslfunction in the device at a certain level of
abstraction, e.g., s bad clapper, bad serial connection, etc. Specialists
corresponding to more general or sbetract malfunctioning are higher in the
hierarchy. For example, node 2 corresponds to the following malfunction: the
buzzer does not buzz vhea the manual~switch is pressed. Ome of its sub-
specialists (node 7) corresponds to acoustically bad clapper. Every
specialist has knowledge to establish the associated malfunctioning. As shown

in Fig. 3, the knowledge is in the form of two types of rules: confimatory
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and exclusionary rules. A malfunction is diagnosed top-down by establishing a

specialist and refining the malfunction represented by it by calling its sub- _

specialists (see (8)).

(Attached)

Pigure 3: An Example of a Generated
Diagnostic Expert

We have identified three types of malfumctioning,namely & violated
assumption, faulty function or faulty relation. The corresponding specialists
can be viewed as Massumption chéckar". "tfunction checker”™ and "relation

checkar."”

4.2. The Compilation Process
The compiler first generates the root specialist which corresponds to a
"malfunctioning buzzer." The root specialist contains no rules. Iavocation of
the diagnostic expert will automatically establish the root specialist. The
compiler then generates a function checker for each function of the device
(since the malfunctioning must be due to one or more of the faulty functionms).
For example, given the "buzz" function in Sec. 3, the compiler will generate a
function checker with the following rule:
I¥ pressed(manual-switch)* A ~buzzing(buzzer)

THEN confimm

ELSE reject
(Bow the compiler operates on the PROVIDED clause is discussed later.) The
function checkers generated as above will be attached to the root specialist.
Afterwvards the compiler, wusing the "BY" clause in the functional
specification, obtains the behavior associated with each function and compiles

it, For example, if the behavior is specified in the form (we do not discuss
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hers multiple causes and multiple effects):

g8l =mmm) g2 =wm=md> ,,,,i00004 =mwS> gn

the compiler will generste a set of n-1 function checkers. (This is because
if the function is faulty, then one of the steps in the corresponding behavior
may be malfunctioning.) The rules for the ith specialist will be: "IF 8i-IA
~s8i THEN confirm ELSE reject"”,
“behaviorl”(given in figure 2) will be used to generate nodes 5,6 and 7 (in
figure 3).
conditioz in the PROVIDED clause msy not be holding. Therefore, the compiler
will genarate an assumption checker using the PROVIDED clause, if any. For
example, node & corresponds to th.- PROVIDED clause in the ™buzz" function.
Also, note that the condition in the rule associsted with node 5 does not

include "pressed (manual-switch)*" since it is checked st the parent node.

Further processing of a behavioral specification depends on the kind of

composition of behavior. The following cases arise:

1.

2.

P A e o s L . . ea’ "o

Step 1 in figure 2 will also result in compiling “behaviorZ”
(“behavior2’ is not specified in this paper) as described above,
and attaching the generated specialists to node 5.

Step 2 in figure 2 will result in obtaining the behavior associated
with the function "mechanical”™ from the functional representation
of clapper and compiling it. If there is no Dbehavioral
specification for the fumction, the specislist will be & tip
specialist (e.g. node 6). Also, If a function is used in a
bebavioral specification under an assumption (as illustrated in
section 2), ssy Tassumptionl"” and the specification of
"sssumptionl” is of the form " IF s3 THEN s4" then the additional
specialist with the rule "IF 83 A\ ~s4 THEN confirm ELSE reject "
will be generatad (since the function may be faulty due to a
violated assumption).

For the "uzz" function example given above,

Another possible resson for a function not working is that the
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3. The piece of causal knowledge

sl

|| AS-PER knowledgel

||  IN~-THE-CONTEXT-OF s3 A s4.A.sn

\/

82
will result in n-3 sub-specialists with the rule for the ith (3 < i
< n) specialist being "IF ~ Si THEN confirm ELSE reject”". This is
because the resson why the above step does not hold is that the
context of the application of “knowledgel” is different ( Note that
the compiler assumes the representation to be correct/consistent).

The ith specialist will turm out to be a relation checker if si
corresponds to & relation.

We have implemented the compiler described above in ELISP on a DECsystem
20/60. The compiler is being tested extensively in the medical and

electromechanical domains.

4.3. Meaning of Function in the Representation

In what sense can the fuprucnution proposed be said to correspond to
"understanding” how the device works? We can point immediately to seversl
aspects of understanding that is not meant to be incorporated in the

representation: e.g., it does not umderstand "buzzing" or "electrically

connected™ or any of the terminals that are treated as strings of symbols, not

to speak of any common sensa substratum of knowledge such as objects and

actions. What the fumctional representation really does in to orgapize the
agent’s understanding of how the device”s functjons result from behgviors made

possible by the structure of the device, and contains explicit pointers to
generic domain imovledge and sssumptions sbout behavioral alternstives used by
the agent in this process, Thus this representation is a piece in the total
understanding structure, and is responsible for elucidating the role of the

structure in the functioning of the device.
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There is a need to distinguish between the "intrinsic" fumction of a device '. ‘_ )

and the variety of functions it may be put to as part of a larger system. : "7"-:-'15‘1

Consider the exuplcz of a steam valve which opens and lets steam escape when j

the steam pressure goes over a& certain limit, One designer may use this to ; f

mske 2 high-pressure alam by attaching it to a whistle, and another may use l

it as an "explosion-preventer" in s stesam engine. But the typical functional ‘

Tepresentation of the stezm—valve will not have either of these functions ; ] j
tepresented in it, since representing them will go beyond the intrimsic

fumction of the device itself. What is an intrinsic function of a device is A

related to the "no~fimction~in-structure"” (NFIS) principle that is suggested » 4

by (5] [10] as a way of ensuring that the agent’s representation of a
component is specified independently of the contexts in which the components
wsy be used. Thus, this principle will forbid representing the battery”s
function in the buzzer as something that will help it to buzz, or that it is

to be connected in series with a clapper in a buzzer, etc.

5. The Diagnostic Task and the Structure Produced by the Compiler
It is important to note that diagnostic reasoning in general needs

strategies and knowledge that go beyond what is obtainable from considerations S

of functioning of the device slone. The final form of the diagnostic problem ,‘. . _‘
solver will reflect an integration of the diagnostic structure obtained from 4
the functional representation and thesse additional strategies and knowledge. 3 :
Some of this additional sources of complaxity in diagnostic ressoning are . ;.;43’
given in the following. 1
1. Not all diagnostic knowledge about a system is derived from a .-

2Bue to Ben Kuipers, personsl commmication . Aefe fhat Huw .pChimme prrm
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functional understanding of the system in question. This is
especially true of complex systems such as the humas body, where a
sizable portion of the diagnostic knowledge of physicians comes
from empirical and statistical means, rather than by a device-based
understanding of the body. Our approach can account for those
portions of the diagnostic knowledge base that are derivable from a
deeper functional model.

The diagnostic system in Fig. 3 has diagnostic rules which use
results of some tasts as evidence for or against malfumction
hypotheses, Often, however, these tasts cannot be performed, or
their results cannot be observed. B.g, one of the functioms of
liver is to secrets bile into the duodenm, and our functional
compiler will produce, "Check if there bile is secreted in the
duodemm” as a test to be performed for a liver malfunction. "Bile
in the duodenmm” is not directly observable, and thus additional
information-gathering procasses will need to be laumched to infer
this datum., Thers ars several strategies typically svailable for
this. One of them is to regard the presencs or absencs of bile as
state changes in another functional system that characterizes the
action of bile in the body, derive the consequencas (e.g, bile not
secTetad into the duodenum —=> high bilirubin in blood), and use
the latter data as evidence about the unobservable tast valuss, and
thus about the hypothesis. Sometimes, such anz iterated reasoning
process will only be able to give probabilistic evidencs. E.g.,
the test "Check if <organ> is enlarged" msy not be directly
observable, but pain in that region may result from the enlarged
organ. But other organs in that region, if enlarged, may also
result in pain. Thus "pain in <region>"” may give a probabilistic
evidence for the hypothesis for which "Check if <organ> is
enlarged” was to be & test.

Another strategy useful wvhen the functional compiler producss
nonobservable tasts can be illustrated by the following example.
Assume that a certain input, ssy sl, to & device will produce
sction al if the device is in mode ml, and sction a2 if it is in
mode m2. Consider the function corresponding to action al, and let
us sssume that the behavioral sequence that results in al can be
simply diagrammed as follows:

If device in ml

> al by device

| If devicr in m2
| > a2 by device

The fragment of the disgnostic hierarchy with the attached rules
will be as follows:
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[
|
| |
] |
If sl at input If sl1° at p, and device at mode ml,
and not sl at p, and not al at output,

confirm, else reject confirm, else reject

Let us now assume that sl” at p is not observable, but sl is at the
input and the device is not outputting al as action. Now a typical
strategy in diagnostic reasoning is to ask what other functions sl”
at participates in, (in this case it will be a2 at output if device
is in mode m2), and use it for ruling out. E.g., in this
situation, the strategy will call for trying to get the device in
mode =2, send sl at input, and see if action a2 takes place.

The point about this strategy and the one in 2. above is that they
are external to the functional representation and the compilation
process. The diagnostic structure produces by the compiler has

extracted the diagnostic knowledge diresctly derivable from .

functional kmowledge, and other uratenu nged to be called upon
to transform it further.

Another transformation of the diagnostic structure is quite common,
but also beyond the responsibility of the functional representation
and the diagnostic compiler. This transformation involves
incorporating knowledge about costs of malfunctions and their
relative probabilities into the diagnostic procass so that certain
malfunctions may be considered before others. E.g., in many
slectromic applisnceas, the first thing to check when it
malfuuctions is the battery, since it is the most common sourcs of
failure. Similarly scme malfunctions may be more costly, or tasts
for them msy be more economical, so they may be investigated before
others. This form of knowledge, and its incorporation within the
disgnostic structure, is not relstad to how the device”s function
arises from its structure, and thus requires processes outside of
the compiler described earlier.

Becsuse of the simplicity of the device, all the nodes in Fig. 3
could be established or rejected on the basis of obns test.
Typically, however, the knowledge needed for confimmation or
rejection of a malfunction hypothesis in complex systems would
cousist of s number of pieces, each contributing some evidence for
or against the hypothaesis, and these pieces of evidence may need to
be combined in a complex way. This complexity in the knowledge
needed for confirmation or rejection of a malfunction hypothesis
arises from s number of sources mentioned earlier: the fact that
some of the kmowledge is empirical and needs to be integrated; and
the introduction of probabilistic aspects dus to the need to
convert the tasts to observables.

Another exmmple vhere additional knowledge and reasoning beyond the
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functioning of the device is called for in reaching interesting
diagnostic comclusions can be illustrated by the following example.
Assume that the manual switch in the buzzer example has been so
altered thq.’: the circuit is closed when the switch is open, and
vice versa.” Now both the "buzz" and the "stop buzz" functions are
ot being fulfilled by the device. The diagmostic structure will be
able to recognize this, and will make two sets of diagnoses: "buzz"
function blocked because the Switch is not on vhen pressed, and the
"stop buzz" malfunction happens because the switch does not go off
vhe not pressed. To go from these correct conclusioms to
bypothesize that possibly the same structure chnnge is cauung both
the malfunctions involves a fomm of reasoning which is distinect
from the task of the diagnostic compiler.

7. In our approach, we define the diagnostic task as one of finding
the structure change that is responsible for an observed failure of
a function of a device. This is the diagnostic task that is
handles by the compiled problem solver such as the one in Fig. 3.
Note that this explicitly does not include having to account for
how the observed (malfunction) behavior is generated from the
changed structure. Human problem solvers socmetimes do the latter
as part of their diagnostic reasoning, somaeti~=«s they don”t. The
latter procass may gencrally requu'e a u of gqualitative
Simulation, called enyisjonipg [7], in order to resson from
structure to behsvior, In this paper we do not sddress tie problem
of envisioning, which is also related to how an agent may construct
a functional representation from the structure and fuactions of
components. Some of the references that propose some theories of
how this may be donme are proposed in [11, 7]. In Sec. 7.1, we
discuss this and related issues further.

. 8. A malfunction may be caused by introduction of alternate causal
pathways, without any particular component being faulted. Iu the
buzzer example, imagine that some form of leakage or short circuit
exists between terminsls t5 and t6, thus depriving the coil of any
current, There is nothing in’' the functional description that
specifically states that such a short circuit should not be present
for the device to work, nor would it be reasonable to expect it to
say 80, since such a statement will need to be made about every
component. This is general electrical knowledge that is implicit
in an agent’s understanding of how & wvhole class of such devices
work. During diagnosis, hypothesizing such short circuit for every
component would be prohibitive. The diagnostic system in Fig. 3
would identify the problem as ons of transiting from "elect-
counected(tl,t2)"” to "voltage-applied(t5,t6)" in behavior3 (see 4
sppendix). Under nomal conditions this can be interpreted as 1
failure of the coil (say an opem~circuit in it) indicating that it o f-_i:

)
p

should be replaced. However, vhen that fails to solve the problem,
other (typically pre-compiled) csuses of no voltage across the coil

skuplo due to Wendy Lehnert, personal commmication.
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terminals can be tested, and one would assume that such s list will
include short circuits around the component. Note that, while this
portion of the diagnostic reasoning is itself not driven by any
functional knowledge about the device, the problem solver in Fig, 3
derived from functional knowledge has nevertheless strongly focused
the problem. Without this focusing, the number of alternate
pathwvay bhypotheses that will need to be considered will be
prohibitively large.

E - 6. "What Will Happen If™ Problem Solving Using the Functional Representation

It is natural to expect an agent who understands how a device works to be

[N
Semali. MM A ko4 _ - L.

able to say what consequences to functionality s change in the structure of
‘ ; the device will produce., Again, similar to our comment in item 7, Sec. 5,
) this task has two components: one is to know vhich of the intended functious .

will be affected by a proposed structure change, m.d the other is to daduce

what new behavior will follow. .B.s., given an understanding of how
amplification is produced in an electronic amplifier, and given a change ia .
the value of some resistors, an agent may be able to say, "the device will
fail to amplify," while another agent may be able to augment this with, :
"instead, the device will oscillate.” Our functiousl representation car. 'ﬂ
support the former component (as wve will show shortly). The latter, as in the ‘

case with the diagnostic task, will in general require construction of a new .
functional representation. : B

o We can view this WWHI problem solving as being performed by a problem

solving structure that is compiled from the functionsl representation, similar

"
i ad

4ﬂav¢vc, wvhen alternative functions (such as oscillation) are the
. consequence of certain gssumptions in the functional representation being
- violsted (such as the value of certain resistors being greater than a certain -
» ., smount), it is possible to construct an augmented representation that N
essentially encodes the functions that would result f£from alternative -4
assumptions. In such a case both parts of the WWEI task can be answered from i
the sugmented functionmal representation., This sugmented representation bears
the ssme relation to our functional representation that the "intrinsic
mechanisa” of [6] does to their causal state sequencas.

t"‘l"l
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to the diagnostic problem solving described earlier. While we have not
implemented this compiler, we can outline this process in a fairly
straightforward manner. Let us motivate the discussion with the following
concrete questions about the buzzer that we might wish such a structure to
ansver. (These questions are slightly modified versions of those given in

(s51.)

1. What happens if we reverse the leads of the battery?

2. What happens if we switch the leads of the coil?

3. What happens if we remove the battery from the circuit?

4, What happens if we make the clapper spring tension lighter?

The general procedure is that given s proposed change in the structure, the
compiler looks to see in which behbaviors the component asffected by the
structure change participates. Referring to the appendix, wvhich gives
complete description for the BUZZ function, ve see thst the battery
participates in behavior2? and behaviori. Por question 1 above, them, the
relevant issue with respect to behavior? and behavior3 is whether "FUNCTION
voltage OF |Dbattery" is still delivered, and relation "serially-
connected(battery, coil, clapper, mapual-switch)" is still valid. The
functional representation itself cannot answer these questions, but points to
which quastions need to be answered by further domain knowledge. Ve know from
domain knowledge that for qult}.on 1 the answer is that neither the functiom
nor the relation is affected, thus the two behaviors are not affected, and the
"buzz" function is not affected. For quastion 3, a similar analysis will

result in the following sequence of reasoning steps. In behavior3, the

!
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transition from "elect-comnnected (tl, t2)" to "voltage~applied (t5,t6)" will
fail, which will cause behavior3, viz., the transition from "pressed(manual~
switch)” to "“elect-connected(t7,t8)" to fail. This will result in behavior2
failing, which will in turn result in behaviorl failing in the first
transition, i.e, continuous pressing of manual switch will not result in the
alternate connection and discommaction of t7 and t8. 4s a result, function

"buzz" will fail, since behaviorl is used to realize this function.

Auswering question 2 is quite similar. Question 4, however, is worth
considering in some detail. The compiler will note that this part of the
structure (i.e., spring temsion) plays a role in assumption2 and assumption3
(see Assumptions subsection in Sec. 3. Again further domain knowledge is used
to conclude that spring tension, if sufficiently wesk, will K violate
assumption3. The clapper”s functional representation describes its maguetic
function as consisting of:

FUNCTION: magnetic: TOMAKE elect-connected(t7,t8)
IF magnetized(space2)
PROVIDED assumption2
AND
TOMAKE ~ elect-conn(t7,t8)

IF ~magnetized (space2)
PROVIDED assumption3

Possible failure of assumption3 will imperil the second part of the above
magnetic finction, which will endanger the

> elect~connected(t7,t8)

~ uagnetized(spacel)
transition in behavior4 in "buzz" function (see appendix), thus putting the
"buzz" fwmction into question. Thus the final conclusion is that, for
sufficiently wesk tension (or sufficiently light am) the "buzz" fumction will

not be delivered by the devics.

. .
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In the sbove description, we have used the word compilationm, but in fact
actually described the problem solving. More precisely, we should show that
the compiler actually builds a problem=solving structure (like the diagnostic
structure in Fig. 3) which then solves the WWHI problem. However, for
purposes of this discussion, our aim was only to show bhov the functionsl

representation can support this type of problem solving.

Note that the WWEI problem solving described above moves through behavioral
levels of abstraction made possible by the hierarchical structure in the
functionsl representation. This is consistent with the nature of information

processing for this generic task as described in [2].

7. Relation to Other Work
Our research differs from those of de Kleer and Brown [5, 6], Patil (13],

and Davis l4] in the following three significant respects:

1. Our representation identifies and relates the five aspects of
functional lmowledge, namely "function", "behavior", "structure",
"assumptions" and "generic knowledge” in a specific scheme.

2. We hsve refined the notion of causation in terms of three
bierarchies,nsmely "Hierarchy of Detsils™, "Component Hierarchy"
and "Generalization Hierarchy”, and used it to represent the
functional knowledge of devices. :

3. We have been directly concerned with compilation of expert problem
solving structures from the functional representation.

Kuipers [11] discusses s form of envisiomment about changes to an oq;;ilibr:’.un
condition in a physiological system, and proposes this as a kind of
understanding of the human body that may be incorporated in medical expert
systems. The issues discussed by him are orthogomal to our concerns here, In
110] he critiquas the representation proposals of de Kleer and Brown. Our

discussion in Sec. 7.1 subsumes his critique.

1]
1
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7.1. The Work of de Kleer and Brown -
X We were originslly motivated in our work by our concern with deep models .
. for problem solvers, and thus we wvere searching for "mental models" of devices e
that would permit compilation of problem solving. Once we formulated our '_.»T'_
theory, we noted that the work of de Kleer and Brown, which proposed using ‘
I envisioning to produce such s mentsl model, had some elements in common, but '
the representation was significantly different. The desire to understand the
points of contact snd departure betvees our points of view was in fact ome of .

the reasons ve chose the same device they had used, viz., the buzzer. In this

section we compars the representation and the underlying points of view.

De Kleer and Brown”s proposal for the "mental model™ for the un. srstanding
of devices consists of representing qualitatively the causal sequences of
behavioral states that the device needs to pass through during its

functioning. In the buzzer example, & portion of this mental model can be

stated as follows: "The clapper being open results in no current through it,
which results in no curreat into the coil, which results in no magnetic field,
which results in clapper being closed, which results in current flowing

through its input aund output, which results in current into the coil, which

results in & magnetic field, which results in the clapper being open."™ The

slternative representation proposed in [10], while different in a number of

details, is also essentially a sequence of behavioral statas. In our

approach, however, the fumction is distinguished from the behavior of the -
device to accomplish it. Our functional representation is a hierarchical .
organization of behavioral segments of components into a representation which ;;.}
itself is not a causal sequance of partial states, but can be processed to |

obtain such s sequence. Further, uwlike the causal sequence of [6], the _.f:
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sequence that can be produced by our representation can be in varying levels
of detail, because its hierarchical structure reflects the component hierarchy
in the device. The hierarchical nature of the functional description is very
important; otherwise describing the fumctioning of a complex system will
involve an excruciatingly long sequence of causal states st a lov level of
asbstraction. Simply out, we distinguish the description by an agent of the
causal/behavioral sequence that a device undergoes, from the representation
used by the sgent to produce such a description, and identify the latter with

the functionsl representation or the mantal model of the agent.

Another advantage of distinguishing between functiomn and bebavior in the
manner we do is that ve are able to represent functions which prevent certain
things from happening. (See footnote on "explosion—preventer™ in Sec. 4.3.)
This would be difficult to do if function is represented as tﬁe actual causal
sequencs followed by the device: prevented situstions will hardly occur unless

the devics were malfunctioning!

Historically, de Kleer and lro;m have been concernad with the issue of how
an agent composes the behavior of the components of a device to obtain the
behavior of the device itself. This process they hsve called gnvisioning.
. While this is an important part of the comprehension process, we feel that
understanding the functioning of the device consists of a further activity of
constructing s functionsl representation along the lines advanced io this
paper. How an agent constructs such & functional representation by combining
envisioning, functional representation of components of the device, some
global properties of the device, and sssumptions about the device itself is an

open question,

'
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We have said several times that a test of a functional representation is
its ability to support differemt types of problem solving such as trouble-
shooting. While, to our knowledge, de Kleer and Brown have not reported on
any implememtation of a diagnostic reasoning system based on their causal
sequences as mental models, they have described how such a process may work

(6], and it is instructive to compare that process with ocur approach.

They regard diagnostic ressoning as a task of accounting for how an
observed behavior, which differs from an intended behavior, is actually
produced by a malfunctioning device. They indicate that if the malfunctioning
device essentially follows the same causal sequence (with some of the
attributes of the states or assumptions possibly being different) as the one
correspon(fina to the functioning devicse, then the structure causing the
difference in behavior can be identified relatively easily. (For large
systems, this might still require following an equally large state causation
chain.) If the structure change is such that the device is not undergoing
essentially the same causal chain, this task calls for a new envisioning for
each structure change hypothesis. The causation chain itself is not useful
for genserating structure change bypotheses efficiently, or for the aew
euvisioning that would be needed for each candidate structure change
hypothesis. They correctly point out that the diagnostic procass would now

face a prohibitively combinatorial search.

The diagnostic task, as mentioned in item 7, Sec. 5, can be decomposed into
two components: i. identifying the part of the structure that is responsible
for the original function (for which the agent has a functional
representation) not being delivered, and ii. explaining, if possible, how the

changed structure produced the observed malfunctioning behsvior. To use an
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exapple well-known in electronics, amplifiers may sometimes malfunctiom, and
behave as oscillators. The first part will -correspond to saying,
“Amplification is not taking place because resistor Rl“s value is less than
required,” and the second part will explain how the change in the value of the
resistor resulted in the device scting as an oscillator. HNote that if one can
do the former without being able to do the latter, one would still bave
accomplished s significant diagnostic act. It is not clear that most trouble~
shooting situations necessarily require the latter part in any case, since the
goal of the trouble-shooting process if often identifying the components to

replace that are causing the malfunctiom.

The first part is not subject to a combinatorial search problem in our

theory: the functional representation and the compiler in principle can

identify the component at faults < .

coram e mmmee ¢ —e meemm——. 3 because of the

bierarchical structure of the resulting diagnostic structure as well a3

because the representation encodes the relation between structure and the -

intended function. The second part, viz., explaining how the new behavior is
produced, may or may not be subject to combinatorial search, depending upon
the degree of change to the structure and the resulting need for new a

functional representation.

53¢¢ item 8, Sec. S for some qualifications to this statement, but the
argument here is not affected.
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8. Concluding Remarks

As we have indicated the task of accounting for how complex systems asnd
devicas are understood has many components. We have developed a framework in
which this comprehension process and its relation to problem solving can be
investigated. In particular, we have proposed a language for the
representation of what we call the causal component of this comprehension that
captures some sspects of how a function of a device arises from its structure,
and shown that this structure can support problem solving for diagnosis sud

some kinds of predictionm.

Directions for future research include the following: First, we need to
develop methods to check the corr;ctunn/ consistency of a given functional
representation. This requires domain knowledge for interpreting atate
descriptions as well as the relations such as "serially-connected.” Second,
ve need to investigate the design of the other two dimensions of our
representationsal schqc, namely temporsl and intersction. Also, the causal
dimension has to be integrated with the other two in a disciplined,
practically useful and cognitively meaningful framework., Third, wve need to
identify the compilation processes that come into play to generate other types
of expert problem solving structures, such as predicting functionsl and
behavioral consequences of changes in structure or assumptions. Finally, it
is a matter of significant theoretical and practical interest to ask how an
sgent can incrementally acquire a functional representation of a devica from
its structure, generic knowledge, inadequacy of the current representation for

supporting the compilation of adequate problem solving systems, etc.

In broader terms, this research is part of our on-going effort to uncover

the multiplicity of generic structures and procasses involved in knowledge-
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based problem solving. Whether or not one accepts the hypothesis of
homogeneous and unitary architectures such as production systems as adequate
at the level of symbol-processing in the mind, we feel we need a richer
collection of generic knowledge 'structureu and a correspondingly rich
collection of knowledge-processing machanisms that operate on them, in order
to account for lmowledge-based problem—solving activity at the information—
processing level. In expert systems work especially we feel there is a need
to explore richer architectures that capture the information-processing
activity. PFrom this perspective, the functional representation is ome of the
information-processing level theorias that ares needed for understanding

knowledge—based reasoning.
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APPENDIX
To the paper
"A REPRESENTATION FOR THE FUNCTIONING OF DEVICES
TEAT SUPPORTS COMPILATION OF EXPERT PROBLEM SOLVING STRUCTURES'

by V.S. Moorthy and B. Chandrasekaran
Details of the functional. representation of FUNCTION: buzz of the buzzer

NOTE: We have reprasented below only the buzzer;
Battery,coil,clapper and manual switch have NOT been represented.

DEVICE  Dbuzzar
FUNCTION:
buszz: TOMAKE buzzing (buzzer)
IF pressed (manual-switch)*
PROVIDED INITIAL elect-counnacted (t7,t8)
BY behaviorl .

stop~buzz:TOMAKE “buzzing (buzzer)
IF “pressed (manual-switch)
PROVIDED INITIAL buzzing (buzzer)
BY behavior$5

STIRUCIURE:
COMPONENTS :
manusl-switch (tl,t2), battery (t3,téd),
coil (t5,t6,spacel), clapper (t7,t8,spacel)

RELATIONS: ,
serially-connected (manual-switch,battery,coil,clapper),

includes (spacel,space2)

ABSTRACTIONS-OF-COMPONENTS :
COMPONENT clapper (T1,T2,SPACE)
FUSCTIONS: mechanical,acoustic,magnetic
STATES: slect-connected (T1,T2),
repeated-hit (clapper)
COMPONENT coil (T1,T2,SPACE)
FUNCTIONS: maguetic
STATES: magnetized (SPACE), voltage-applied(T1,12)

COMPONENT manual-switch(T1,T2)
FUNCTIONS: connect
STATES: elect-connected (T1,T2),
pressed (manual-switch)

COMPONENT battery (T1,T2)
FURCTIONS: voltage
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BEHAVIOR:

bebaviorl: KO
pressed (msnual-switch)¥ %

|| BY behavior2 _ i 4:

\ o

1

USING FUNCTION machanical OF
clapper(t7,t8,spacel)

I
/
{ elect—connected fc?,:s); elect~connected (t7,t8)} *
|
|
I
/

o e e, s S

repeated-hit (clapper)

{| USING FUNCTIOR acoustic OF
” clapper (t7,t8,spacel)
\/ ) o ‘

buszzing ? | Tlapper)

LA
<

I .

buzzing (bazzer) -
behavior2: .
{ pressed fuml-ni.tch) 3
' s "
H BY behavior3 _—.'_,:
\/ S
'oloc:-etlnlmnc:od (t7,t8) 4
AS-PER knowledgel IN-THE-CONTEXT~OF o
serially-connected (battery,coil, 9
°  clapper,manvaleswitch) -

B!

Il

11 -
{ } FUNCTION voltage OF battery e

'voltsseTlpplicd (cS,t6)
|

ll { BY behavioré —
\/ R
elect-connected (t7,t8) } » Sl
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i bebavioz3:
pressed (manual-switch) -]

USING YUNCIION connect OF
masusl~switch (t1,t2)

il
A
Il
\/
elect-comnected (tl,t2)
AS~-PER knowledgel IN-THE-CONTEXI-OF
YUONCTION voltage .F battery ,

|
|
| serially-connected (battery, coil;
{ . clapper,msnusl-switch)
/

P R ———

voltage~spplied (t5,t6)
. ll
! H BY behavioréd

\/
~elect~connected (t7,t8)

B behavioré: I¥Y
voltage—spplied (t5,t6)

I
|| USING FUNCTION magnetic OF
A ecoil (tS5,t6,spacel)
I
.- \/
K umcizﬂ (spacel) .
[l AS=-PER knowledge2 IN-THE-CONTEXT-OF
H includes (spacel,space2)
\/
umtizt? (space2)
|
|| USING FUNCTION magnetic OF
{l clapper (t7,t8,space2) o
' | o
- \/ o
“elect-connected (t7,t8) S
D
Note: IFF (8]l ==> 32 ==> 83) is the same as A
81 ==> 32 ==> $3 and “S1 ==> “32 ==> “§3 ]
v <Y
i .
. .7: ;1
e S R SRS S S AR




GENERIC XNOWLEDGE:
knowledgel:

Voltage—applied (tl,t2)
AS-PER kirchoff”s-law
IN~-TRE=-CONTEXT-OF

|

I

| elect-connected (tl,t3),
: elect-connected (t2,t4)

voltage~spplied (t3,t4)

kunowledgel:
magnetized (spacel)
| AS-PER lsws-of-space
i I¥-=-THE-CONTEXT-OF
{ includes (spacel,space2)

maguetized (space2)

END-DEVICE buzzer
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" BEHAVIOR: behaviorl:

\

{elect-connected (:7, :8);
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Fig. 2

Pressed (manual-switch)*

BY behavior2
~elect-comnectad (t7, ca) 1

USING FUNCTION Mechanical

Notes:

Y TH ey

—r—r

.....................................

\/V OF clapper (:.,, tgs spaccz)

- Repeated-hit (clapper)

USING FUNCTION Acoustic

Buzzing (clapper)

[

Buzzing (buzzer)

1. "=" equivalences two states
2. ’1;’2 neans s, follows sl

/ OF clapper (:7, :8' spu:tz)

Step 1

Step 2

Step 3

Stap 4
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EXPERT SYSTEMS FOR A CLASS OF

MECHANICAL DESIGN ACTIVITY




To appear in Proc. of IFIP WG5.2 Working Conference on Knowledge
Engineering in Computer Aided Design, Budapest, Hungar;, Sept. 84,

EXPERT SYSTEMS FOR A CLASS OF
MECHANICAL DESIGN ACTIVITY

D. C. Brown, B. Chandrasekaran

Artificial Intelligence Group
Department of Computer & Information Science
The Ohio State JUniversity
Columbus, Ohioc 43210, U.S.A.

We are investigating the structure and operation of expert
systems for the design of mechanical components, Our
approach, referred to as Design Refinement, applies to a
particular class of design activity. A hierarchical
structure of conceptual specialists solves the design
problem in a distributed manner, top-down, choosing from
sets of plans and refining the design at each level of the
hierarchy.

1. Introduction

l.l. Our Research

The research reported here is concerned with the design of mechanical components
by computer. We are investigating the structure and operation of expert systems
for this task, As design in general is a very poorly understood activity we have
chosen to limit ourselves to a particular class of design activity, understand it
thoroughly, and build expert systems that will simulate that activity in a
realistic way., Our initial discussion of this problem and presentation of a

simple prototype system has been presented elsevhere}

1.2. Other Work in Design

While there has been some AI-related work in constructing aids to designz, in

particular in the electronics domain3’ 4, 5, the key issues of the structure of
knowledge and control in design problem~solving have been given less attention
6,7,8,9, 10, 11, 12, 13 One promising short term approach is that of
extending the existing CAD concentration on design support systems to include AI.
Some research has been done by our group and others on intelligent graphical

aids, and in knowledgeable data-basesl4’ 15.

1.3. Problem~solving Types

Most first-generation expert systems bhave been rule-based with a separate
inference engine. The rule-based approach has proven to be both practical and

profitable, and resulted in a number of expert systems, However, for handling
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more complex forms of expert problem solving, there is a need for knowledge
representation approaches with a richer set of constructs. These constructs
should be helpful in capturing other more structured forms of knowledge and
should be such that they bhelp organize both knowledge and problem solving

behavior for more focussed problem—-solving.

We have been developing an approach to problem-solving that views a complex body
of knowledge as being decomposed into a structure of Specialists engaged in
collective, cooperative action., Each gpecialist does the same kind of problem—
solving but contains different domain expertise. The organization of the
specialists depends on the problemsolving type and will reflect the conceptual
organization imposed on the domain by a human problem~solver. A Problem—solver
therefore consists of a well organized collection of specialists each doing the
same type of activity, while an Expert system consists of a well organized

collection of onme or more interacting problem—solvers.

We have identified several distinct types of problenr—solvi.ng16 — such as

diagnosis, which reasons about how to classify a complex description of reality

17 , consequence finding which reasons about

as a node in a diagnostic hierarchy
the consequences of contemplated actions on complex systems, and design which
reasons about providing values for the attributes of some entity which has
constraints placed om it. Clearly these are unot the only types. Once these
types are well understood, we will be im the situation to be able to categorize
which kinds of expert problem-solving we know how to mechanize, something with

which current approaches offer little help.

2, Three Classes of Design

2.1. Design in General

In general, design is a highly creative activity involving diverse problem~

solving techniques and many kinds of knowledge., We know very little about what

‘creativity is, although there has been some work on discovery processes and
heurilticals’ 19. Often the goals for a design are poorly specified, and these

goals may be altered during the design by feedback from successes or failures.
Clearly, as we don”t know many of the components of design in general, and as we
poorly understand those components we do know about (for example, planningzo), a

general approach to design is currently out of reach.

However, opinions in the literature agree about many components of design
activity, There is an element of refinement., That is, descriptions get refined
into less abstract forms. Plans are used in recognizable situations where
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experience has produced a sequence of design decisions that will usually work.
Such plans are the result of past planning and validation by repeated use.
Design activity often has & rough design phase followed by design proper. Design
activity is organized in ways that reflect the structure or functionmality of the
entity being designmed. Similarly the representation of the design is also
structured. For example, blueprints will have detailed drawings and general
drawings. A single blueprint will have areas reserved for differeant sub-
components or functionally related entities. During the design wvarious
restrictions on what is allowable for this kind of entity will be checked at
appropriate points, and the initial conditions (ie. requirements) form a starting

set of restrictions imposed on the design from outside.

After discussions with practitionmers, keeping the above opinions in mind, we have
roughly classified design activity into three classes -— although it is clear
that there are subclassifications that make the classes overlap in some ways.
They vary from completely open-ended activity (design in general) to the most

mundane,

2.2, Class 1 Design

The .average designer in industry will rarely if ever do class 1 design, as we
consider this to lead to a major inventions or completely new products. It will
often lead to the formation of a new company, division, or major marketing
effort, This then is extremely innovative behavior, and we suspect that very
little design activity is in this class. For this class neither the knowledge

sources nor the problem-solving strategies are known in advance.

2.3, Class 2 Design

This is closer to routine, but will involve substantial innovation. This will
require different types of problem—solvers in cooperation and will certainly
include some planning. Class 2 design may arise during routine design when a new
requirement is introduced that takes the design away from routine, requiring the
use of new components and techniques., What makes this class 2 and not class l is
that the koowledge sources can be identified in advance, but the problem-solving

strategies, however, caamnot.

2.4, Class 3 Design

Here a design proceeds by selecting among previously known sets of well-

understood design altermatives, At each point in the design the choices may be
simple, but overall the task is still too complex for it to be done merely by




looking it up in a data-base of designs, as there are just too many possible
combinations of initial requirements., The choices at each point may be simple,
but that does not imply that the design process itself is simple, or that the
components so designed must be simple. We feel that a significant portion of

design activity falls into this class,

2.4,1, A Class 3 Product

In a large number of industries products are tailored to the installation site
while retaining the same structure and general properties, For example, an Air—
cylinder intended for accurate and reliable backward and forward movement of some
component will need to be redesigned for every new customer in order to take into
account the particuiat space into which it must fit or the intended operating
temperatures and pressures., This is a design task, but a relatively unrewarding
one, as the designer already knows at each stage of the design what the options
are and in which order to select them. Thus there is strong economic

justification in attacking this problem.

2.4,2, Class 3 Complexity

The complexity of the class 3 design task is due not only to the variety of
combinations of requirements, but also to the numerous components and sub-
components, each of which must be specified to satisfy the initial requirements,
their immediate consequences, the consequences of other design decisions, and the

constraints of various kinds that a component of this kind will have,

While class 3 design can be complex overall, at each stage the design
alternatives are not as open—-ended as they might be for class 2 or 1, thus
requiring no plamning during the design. In addition, all of the desigrn goals
and requirements are fully specified, subcomponents and functions already lkmown,
and knowledge sources already identified, For other classes of design this need

not be the case., Comsequently, class 3 design is an excellent place to start in

an attempt to fully understand the complete spectrum of design activity.

2.4,3, Classification as Class 3

If, during an attempt at class 3 design, all of the design alternatives fail,
then it is possible that the designer will switch to class 2 activity., This is
most likely to happen if the problem is on the border between classes or if the
designer has little experience with this type of component and has not yet fully
formed a completely satisfactory class 3 approach. We have no way as yet of
knowing whether such a distinct inter-class border exists, It appears that

experienced designers are able to judge whether a project is class 3 or not, the
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main clue being, of course, whether they have designed that component often

before with initial requirements that are judged to be similar.

2.4.4, General Description

It should be clear by now that we consider class 1 and class 2 design to be
outside the reach of effective contributions from AI technology at present.

Class 3 design however can benefit from other work in knowledge-based systems.

It is our working hypothesis that there is a very specific type of problem
solving behavior associated with design activity of the class 3 type.
Specifically that a hierarchy of conceptual specialists solve the problem in a
distributed manner, top-down, by choosing at each stage of the design from a set
of plans, thus refining the design. Specialists can use the expertise of other

specialists below them in the hierarchy in ways specified by the plans,
3. An Approach to Class 3 Design

3.1. Introduction

A design problem—solver will consist therefore of a hierarchical collection of
design specialists, where the upper levels of the hierarchy are specialists in
the more general aspects of the component, while the lower levels deal with more
specific subsystems or components. They all access a design data-base possibly

mediated by an intelligent data-base ass;stantls’ 21.

1

We will first describe the

design agents”, and then the phases of their interaction.

3.2, Design Agents

3.2.1. Specialists

A Specialist is a design agent that will attempt to design a section of the
component. The specialists chosen, their respomsibilities, and their
hierarchical organization will reflect the mechanical designer’s underlying
conceptual structure of the problem domain, Exactly what each specialist’s
responsibilities are depends on where in the hierarchy it is placed. Higher
specialists have more general responsibilities. The top-most specialist is

responsible for the whole design. A specialist lower down in the hierarchy will

lny the term "Agent" we mean a Specialist, Task, or Step -- ie. any active
module of the problem=-solver
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be making detailed decisions, Each specialist has the ability to make design
decisions about the part, parts or function inm which it specializes. Those
decisions are made ir the context of previous design decisions made by other
specialists, A specialist can do its piece of design by itself, or cam utilize
the services of other specialists below it in the hierarchy. We refer to this

cooperative design activity of the specialists as Design Refinement.

Every specialist also has some local design knowledge expressed in the form of
constraints. These will be used to decide on the suitability of incoming
requirements and data, and on the ultimate success of the specialist itself (ie.
the comstraints capture those major things that must be true of the specialist”s
design before it can be considered to be successfully completed). Other
constraints, embedded in the specialist®s plans, are used to check the
correctness of intermediate design decisioms, Still more constraints are present

in the design data-base as gemeral consistency checks.

3.2.2. Plans

Each specialist has a collection of plans that may be selected depending om the
situation, and it will follow the plan in order to achieve that part of the
design for which it is responsible., A Plan consists of sequence of calls to
Specialists or Tasks (see below), possibly with interspersed constraints. It
represents one method for designing the section of the component represented by
the specialist. The specialists below will refine the design independently,
tasks produce further values themselves, comstraints will check on the integrity
of the decisions made, while the whole plan gives the specific sequence in which
the agents may be invoked. Typically as oune goes down in the hierarchy, the

plans tend to become fewer in number and more straightforward.

As each plan is considered to be the product of past planning, refined by
experience, onme should not expect many failures to occur, However, as not all
combinations of values have been handled before or anticipated it is possible for

plan failures to occur due to intra-plan and extra-plan comstraint violations.

3.2.3. Steps, Tasks, and Constraints

We consider a Step to be a design agent that can make ome design decision given
the current state of the design and taking into account any constraints. For
example, one step would decide on the material for some subcomponent, while
another would decide on its thickness, A Task is a design agent which is
expressed as a sequence of steps, possibly with interspersed constraints. It is
responsible for handling the design of omne logically, structurally, or

functionally coherent section of the component; for example a seat for a seal, or
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a hole for a bolt.

A Comstraint is an agent that will test for a particular relationship between two
or more attributes at some particular stage of the design., Comstraints can occur
at almost any place in the hierarchy. For example, a comstraint might check that
a hole for a bolt is not too small to be machinable given the material being

used. Constraints will be discussed further when we address failure bandling.

3.3. The Four Phases

3.3.1. Requirements

The design activity can be comsidered to f£all into four phases., Initially, the
requirements are collected from the user and are verified both individually and
collectively. For example, it may be reasonable to ask for a component to be
made of lead, and for it to weigh less than 5 ounces, but the combination will
often be unreasomable, Once it has been established that the system is capable

of working with those requirements, a rough~design is attempted.

3.3.2, Rough-design

Rough~design is poorly understood at present, but it serves at least two
purposes. First, those values on which much of the rest of the design depends
will be decided and checked, If they can”t be achieved then there is little
point going on with the rest of the design. This also has the effect of pruning
the design search space, as once the overall characteristics of the design are
established it reduces the number of choices of how to proceed with the rest of
the design., Second, as any mutually dependent attributes can prevent a design
from progressing (ie. A depends on B, and B depends on A), rough-design can, as
human designers do, pick a value for one of the attributes and use that as if the

dependencies didn“t exist,

It appears at present that rough-design and design share the same conceptual

‘hierarchical structure. However, that remains to be confirmed. The rough-design

hierarchy is in gemeral much shallower than the design hierarchy as more general
decisions are being made, We are proposing that specialists have both desigm and
rough~design plans to select from depending on the current phase. Not all
specialists will need both, It is entirely feasible that phases could be
intermixed during problem-solving, but we have chosen to restrict the rough phase
to be first, followed by the design phase,
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3.3.3. Design

Once rough-design has completed satisfactorily, the design phase can proceed.
Design starts with the topmost specialist and works down to the lowest levels of
the hierarchy. A specialist S begins by receiving a design request from its
parent specialist, which might include some design requirements (constraints).
It refers to the specification data-base and obtains a list of specification data
relevant to its further work. A plan is selected using these data and the
current state of the design, For ezample, if one of the requirements is low
cost, a plan with that quality can be selected. The exact nature of the plan
selection process is a matter for further research, and, with a language for

plans, will be a major part of the theory of design.

Thus, S fills in some of the design, then calls its suctessors in a given order
with requests for refinement of the design of a substructure. If some of the
substructures are independent of 'each other, then they may be invoked in
parallel. The knowledge in the specialist prioritizes the plans, and invokes
alternative plans in case of failure by ome of the successors., Parts of a plan
may indicate immediately that constraints cannot be satisfied, This is.
considered as failure. When all of a specialist”s plans fail, or when failure

can be deduced immediately, the specialist communicates that to its parent.

3.3.4. Redesign

If any failures occur during the design process then a redesign phase is entered.
If the phase succeeds then a return can be made to the design phase, At the
lowest level, failures occur when a constraint fails in some step. The system
attempts to handle all failure at the point-of-failure before admitting defeat
and passing failure information up to its parent, A step, for example, maj be
able to examine the failure and then produce another value, in order to satisfy
the failing comstraint, while still retaining local integrity. This fgilure

bandling activity and the associated redesign phase will be discwrsed later,

Otber work on redesign in the literature has concentrated onm '"functional
redesign", that is, "the task of altering the design of an existing, well
understood circuit, in order to meet a desired change to its functional
specifications"a. Here we use redesign to mean an attempt by a design agent to
change a value to both satisfy a constraint while keep as much as possible intact

of the previous design.
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3.4, Communication

The main means of communication in the system is by passing information and
control between specialists across the coanections forming the hierarchy. In
this way the flow of control is restrained and the system exhibits clear, well-
focused problem-solving activity. It remains to be shown whether this form of
control is sufficient, but it is based on a belief that Class 3 design systems

"22 and that "the interactions between subsystems are

are "nearly decomposable
weak but not negligible"™. We believe that for Class 3 design the structure is

dominantly hierarchical and that interactions are handled by specific strategies.

Information is passed in the form of messages that can, for example, request
action, report failure, ask for assistance, and make suggestions. This rich
variety of messages is the key to handling subsystem interactions. In additiom,
oue part of the emerging theory of design problem—-solving will be the form and

content of these design oriented messages,

3.5. Other Agents

In general, a collection of design specialists will not be sufficient for the
design task, and will, at least, need an intelligent data-base to keep track of
the ongoing state of the design. Other specialists outside the design "specialist
bierarchy could provide calculations, such as stress analysis, and other data-
base functions such as catalogue lookup. In a more general design system,
requests could be made to other types of problem-solversle. It is perfectly
aéceptable to consider the human user as one of the problem—solvers? as requests
for assistance will occur at well defined points in the design with precise
pieces of design to do. The expert system can subsequently check the
acceptability of the results provided by using constraints, Here the usual image
of the designer controlling the invocation of analysis packages and problem

solvers is reversed,
4, An Instance of Class 3 Design

4,1, The Air-cylinder

Let us consider a real, but not overly complex example for illustrative purposes.
In our collaborationm with AccuRay Corporation, we have selected an Air-cylinder
(AC) as a suitable object for our continuing studies of design problem-solving.
Our preliminary work on design problem-solving was reported in Brown (19831, we
are now working on extending the theory and examining the issues and problems
using the AC as our test case. The AIR-CYL design problem-solving system is
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currently under development using Rutgers ELISP and FRL23 on the OSU CIS e %fiéf
department”s DEC system-20. i B
TUBE ‘ I
T i1 11 > .
(I ] [ '
[ | / / / I 1 \
1t/ / SPRING / ! I J
11/ / / / / i I | PISTON & ROD
[ Il I e
‘ | CAP| | HEAD | - .
Spring return Air actuated ﬂ?
-> Cmmmam -
Figure 1: Air-cylinder »
The AC has about 15 parts, almost all of which are manufactured by the company ;{7'é
according to their own designs, as their requirements are such that the _ .k :
components caanot be purchased. The AC is redesigned and changed slightly for - 'l;;i
applications with markedly different requirements, and, comsequently, the domain ’ ..V,,
is Class 3 in type. 1In operation, compressed air forces a piston back into a o }:fgﬂ
tube against a spring, Movement is limited by a bumper. The spring returns the if:,;
piston, and the attached "load", to its original position when the air pressure D
drops. : ' 2
4.2. The Conceptual Structure x
R
An Ai: Cylinder Designer was interviewed over a period of time, the protocols e e ;;
were analyzed and the "trace” of the design process was obtained. Figure 2 shows - !—*~ﬁ
the progress of the design over time (from left to right) and the groupings of .n; R
the decisions (from top to bottom). i N
Air-cylinder Dsgn ‘~“

1 —
| | | Lo T | RN
Init. Rough Spring Head Piston Cap Weight Cost o
Constr. Dsgn Dsgn Dsgn Dsgn Dsgn Eval.& Eval.é& REEANE

& | ReDagn ReDsgn o
Init, | I
decisions SR

| | | | ! I T

| Mounting Bearings Seal Air Air S
Catalog holes & cavity inlet _ f}
lookup Wiper A

- D

Figure 2: Design Trace

The trace was subsequently analyzed to establish the underlying conceptual
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structure, For example, the Head was clearly treated as a separate conceptual
entity, as it occupied a substantial portion of the designers time and effort.
The Spring was actually designed by a different person as an essentially parallel
activity, while the rest of the decign was "lumped together” by the designer as
the third major activity. The fact that the specialists can be fairly easily
identified, and that the plans for each specialist are also identifiable and
small in number strongly confirms that this is a class 3 activity. On
examination we could see that this organization tends to localize dependencies,
and allows for parallel design activity —- something of which most designers are

not able to take advantage!

AIR CYLINDER EVALUATION
/ | \ / } \
/ | \ / I \
/ ] \ WEIGHT STRESS COST
/ | \
SPRING HEEAD REST DATA-BASE
/ \ /I \
/ \ / \
CAP P&R / \
!\ SPECS PARTS
!/ A\ D-B D-B
PISTON ROD

Figure 3: Partial AIR-CYL Structure

4.3, Design Agents

Currently we are considering two—level plans, where a plan comsists of a set of
tasks, possibly with some in parallel; a task being of a set of steps, with each
step corresponding to a single design decision, We are developing a language for
expressing design agents which will, when complete, allow a designer to write a
design problem—solver with only minimal assistance from the knowledge engineer.
Our group has designed and implemented a language for building diagnostic

syatemsza.

PLAN
NAME Air Cylinder Design Plan
TYPE Design
USED BY Air Cylinder SPECIALIST
USES Spring Head Rest SPECIALISTS
QUALITY Reliable BUT Expensive
FINAL CONSTRAINTS Design details OK?
TO DO

Validate and Process Requirements
ROUGH DESIGN Air Cylinder
PARALLEL DESIGN Spring AND Head
TEST Head and Spring Compatible?
DESIGN Rest

Figure 4: A Plan
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For example, in figure 4 we show a plan, where "Validate and Process
Requirements" is the name of a task, "Head and Spring Compatible?" is the name of
a set of constraints, and "Rest" is the name of a specialist., Note that this is
a deéign plan. Some specialists will also have rough-design plans. A task will
consist of the sequential use of a number of steps, and a step consists of
obtaining required information followed by calculations and a decision about the

value of a single attribute.

STEP
NAME Piston Seal Seat Width
USED BY Piston Seal
COMMENT Written by DCB, Sept. 83
ATTRIBUTE NAME Seal Seat Width

FAILURE HANDLER
FOR DECISION FAILURE |©Piston Seal Seat Width FH

FAILURE SUGGESTION INCREASE Piston Thickness
REDES IGN NOT POSSIBLE
T0 DO

KNOWNS FEICH Piston Thickness
FETCH Piston Material
FETCH Minimum Thickness
OF Piston Material
FETCH Spring Seat Depth
DECISION Available IS
(Piston Thickness
MINUS DOUBLE Minimum Thickness)
Seal Seat Width IS 0.156
COMMENT Using one size omnly
TEST Available > Seal Seat Width?
STORE Seal Seat Width

Figure 5: A Step

Figure 5 shows a step to decide on the width of the seat for the piston seal,
where "Piston Seal" is the name of a task, "Seal Seat Width" is what is being
decided, "INCREASE Piston Thickness” is what the step will suggest if it" s not
possible to make a decision, "Piston Seal Seat Width FH" is the name of the
failure handler that will analyze the proBlem and invoke the redesigner (not
possible for this step), "Piston Thickness" is an attribute that should already

bave been decided, and "Available > Seal Seat Width"™ is the name of a constraint.

4.4, Example of AIR-CYL operation

The Air-cylinder plan given above calls for the use of the Head specialist, Part

of the Head design plan is as follows:-

TO DO
Air Cavity
Air Inlet
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The compressed air rushing into the AC through the Air Inlet is buffered slightly
for better Piston activation by a chamber, called the Air Cavity, that is cut
into the Head., The Air Cavity is designed to fit into the available space in the
Head so as not to intrude on any other cut or component, The Air Inlet enters
the Cavity through the top surface of the head, and is restricted by the size of
the Air Cavity amongst other things., If the cavity is too small the inmlet will

not be able to enter it in a suitable way.

The Air-cylinder design plan, after requirements checking and rough design, will
ask the head specialist to design the Head. A Head design plan will be selected
~- let"s presume for its "low cost" quality -- and design activity will proceed
according to the plan. Eventually the Air Cavity will get designed by the Air
Cavity task, and, when that has completed successfully, the Air Imlet task will

be activated.

A major factor in determining the size of the cavity is how much material should
be left between it and other cuts to allow for strength in operation and for
manufacturability. Let us suppose that the low cost material chosen for the Head
needs 1/8th of an inch clearance. The Air Inlet task discovers that the Air
Cavity is too small for it to correctly position the inlet, and, after looking to
see if some local changes can be made (ie. to the inlet), a step, and
subsequently the task, will fail. This will cause the plan to fail. Amongst the
suggestions of how to make the design succeed will be one that suggests that th:
Head" s material be changed to ome which requires a smaller clearance. The next
plan to be activated will be the "strength/medium=-cost" plam, which will use a
harder more expensive material, This time the plan will succeed as clearance
need only be 1/16th of an inch and the Air Cavity can be larger, emabling the Air

Inlet to be positionmed correctly.

An edited and annotated trace of the AIR-CYL system in its preseant version cam be

found in Appendix A.

‘5. Handling Failures

5.1. Our Philosophy

5.1.1. Restricted Rnowledge

Much of tbe work on failure handling in the literature considers all relevant
knowledge to be available at failure time., If one views the problem solver’s
complete internal model as the "state-of-the-world", then, as one has complete
knowledge of the form of the model and ome knows that it completely captures the
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state of the world, it is easy to do any kind of model manipulations that ome
deaiteszs. If the state—of-the-world model is in fact an incomplete one, possibly
augmented by "“observations" from outside the model, then this kind of freedom of
manipulation is not available. If, in addition, the model is structured in some
way, 80 that at some failure point only part of the whole model is available (ie,
that pertaining to just the most local problem~solving) then the manipulations
are still further comstrained. Our view is that the models of data and control
in human problem—solving are structured and probably incomplete, thus restricting
the kinds of information available for handling failures and the manipulations

possible,

The structure of the design problem-solving system (ie, specialists, plans,
tasks and steps) provides the context in which to structure failure handling. We
will assume that at any point in the structure omly the minimum knowledge is
available locally about the problemsolving task., An agent knows about the

following:-

- The agent that asked it to act

The information passed to it by the calling agent

The sub-agents it is able to use

The informatiom returmed to it by the sub-agents that it has already
called

All the information about its own state

- The partial design as produced by prior agents

In addition, the specialist knows which plans are appropriate, which one has been
selected, and how it is progressing. We will restrict the information passed to
an agent from above to that which does not provide history but merely makes
requests, provides requested information, gives suggestions, and passes
constraints. The information received from sub-agents is restricted to reports of
success or failure, and suggestions, with a minimum of information about what
took place at the lower levels of the problem—solving structure, except where

required by failure reporting.

5.1.2, Social Metaphor

We will continue to use the social metaphor when discussing the system -- that
is, we can learn about possible behaviors of an agent in the system by

considering it to be a person working in a design team organized with the same
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structure as we are suggesting for the class 3 design systemz. By using this

idea, and the minimum-knowledge restriction discussed above, we hope to establish

what is essential for failure handling in this kind of design activity.

This metaphor bhas proven very useful in our group”s other work on problem
solving, especially for diagnosis, where efficient knowledge structuring and
control strategies can be observed in the medical comunity”. We feel that

there is much to be gained by applying this strategy to the design domain too,

5.1.3, Local Decisions

In this work we are trying to make sure that all design agents detect their own
failure, are able to determine what went wrong (at least superficially), attempt
to see if they can fix it locally, do so if they can, and report failure oanly if
all attempts fail. Agents which have some control over other agents can use

those agents in their attempt to correct the detected problem.

5.1.4. Domain Driven

In gemeral, any wholesale adoption of an AI mecharism will often lead one astray.
For example, use of complete global dependency structures and pure dependency
directed backtracking3 is inappropriate in this design domain, as it would be
unconstrained use of a mechanism in a way that did mot reflect the structure of
the problem—solving activity. This should not be interpreted to mean that we
consider that belief revision behavior does not occur in humans, rather that
analysis of the domain should lead one to it, and that the mechanisms are surface

forms of richer problem-solving behavior,

5.2. Redesign

5.2.1, How Redesign Occurs

Each kind of agent can have differemt kinds of reasons for failing. For example,
a step finds that a decision violates some constraint, a task discovers that a
step’s failure can’t be mended locally, a plam can fail if it is discovered that

it°s not applicable to the situvation to which it is being applied, while a

26

2, discussion of this metaphor can be found in and other papers in that

issue.

3A clear and concise introduction to and bi.bliogr:aph!7 for techniques such as
these, referred to as "belief revision”, can be found in“’/,
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specialist can fail if all of its plans fail.

For every kind of failure a message giving details is generated and passed back
to the calling agent., The message includes, wherever possible, suggestions about
what might be dome to alleviate the problem, As there are usually many kinds of
problems that cam occur, an agent will first look at the message to decide what
went on below. This is dome by the Failure Handler associated with the agent.
Much of the failure analysis is provided by the system, but for some cases, for
example for constraint failures, the user (that is the person using the plan
language to write a design system) has to supply some details, For some
conditions immediate failure can be specified, for others an attempt to redesign

might be made.

The agent alsoc has associated with it a Redesigner -- except in the cases where
redesign is not possible, and then this is specified in the declaration of the
agent, Here too, much of the redesigm activity will be provided by the system,
but in some places the user needs to be quite specific., An adequate language for
flexible control of redesign has yet to be developed and it remains one of our
research goals. Consequently, for the most part redesign activity will initially
be fairly inflexible. We hope, for example, to incorporate "advice" about how to
proceed -— such, as which suggestions should be ignored even though they appear

relevant,

5.2.2. Design vs, Redesign

Design and Redesign are different problem-solving activities. We are also
concerned with re-design -— ie, design again., For example, if during failure
handling so much has changed since the last attempt that it makes no sense to

even try redesign, then design should be attempted again,

To see that design (or re~design) and redesign are clearly different consider the
step. A step chooses the value for one attribute. For design a step is more—or—
less pure calculation in most cases. This corresponds to a specific style of
deciding a value that a person seems to have -- use known values, make a decision
(calculation), check to see of it"s ok, make a report. This is the style used
during design and re-design.

In the case of redesign it seems that the step acts quite differently. The
suggestions it receives guide the process of deciding on a value. Suggestions
will, in some way, be “clashed” against each other to produce a value or range of
values., If a range is produced, then local knowledge is used to select a value
from the range. The other possible result is that the suggestions are

incompatible and that there is no value,
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5.3. Agent Failure

5.3.1. Constraint Failure

Behind almost all failures is constraint failure, A constraint will collect
information about the state of the desig: -4 will test some relationship between
these attributes, A constraint failing will make suggestions about what could be
causing the problem and will indicate the values that caused the failure, and
what values would have caused success, These suggestions are entirely made on
the basis of the form of the comstraint, ie, entirely local. It is up to the
agent in which the constraint is embedded to interpret these suggestions, and to

make its own more informed suggestions.

5.3.2. Step Failure

A failing step will, via its failure handler, determine what to do mext., If
redesign is appropriate and possible then the redesigner for that step will be
given amy available information about the failure (eg. details from the failing
constraint), Some of this redesign action will be provided by the system, and
some must be specified by the expert system implementor. If the attempt succeeds
thern the step will return to its caller without any sign that a local failure
occurred, If it fails, then the step will make its suggestions to the calling
agent and include it with other suggestions it was given., There are interesting
issues here about how much effort a step should expend before admitting failure,

and how to reasonably capture that process in the system.

5.3.3. Task Failure

A task checks conditions on entry and exzit, and executes a sequence of steps,
with explicitly checked comstraints. Any constraints that are tested between
steps monitor the progress of the task. As currently implemented the task is an
ordered sequence of steps with mno possible variation. As the task represents the
designer’s concentrated effort in ome local context (within the broader context

of the selected plan) this fixed sequence is reasonable.

If one of the task”™s steps fails it will receive a failure message and a
collections of suggestions, It knows which suggestions apply to which steps
below it. Knowing which steps have already been activated it can therefore
decide which ot the steps referred to in the suggestions was active wmost
recently., That step will then be asked to do a redesign, If it can, then there
is a good chance that the failing step can now succeed, as long as the steps
after the redesigning step but before the failing step are not disturbed by the
redesign., They will be asked, and if there is a problem then some strategy will
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be selected. This a matter for further research, Clearly failures can produces
failures and so on, until the original purpose becomes obscured. Also, clearly, a
human is not able to deal with such nested failures. The simplest strategy is to
fail if an attempt to correct a failure itself fails, If an attempt to follow a
suggestion fails, then another ome is tried until all of the suggestions have
been tried by the task. In that situvation the task will fail, and itself make

suggestions, passing on those to which it couldn’t respond.

5.3.4., Plan Failure

A plan is currently implemented as an ordered sequence of actions, To be

successful, all of the actions must succeed. Note that this doesn”t imply that
nothing failed at a lower level, but merely that eventually every action in the
plan returned success. Other plans in other specialists may have failed on the
way to this success, The details of what happened below is of essentially no
concern to this specialist. We are still investigating the degree to which it is

reasonable and possible to attempt failure handling at the plan level.

A plan in a specialist represents a method for designing that part, area, or
function of the device. The plans provide alternative ways of achieving the same
portion of the design, all expressed at the same level of detail. At lower
levels other specialists will also make choices. If & plan fails, all the
decisions made by the plan up to the point of failure must be retracted., That
is, the "drawing" is returned to a previous version, Opn real-lite drawings
(blueprints) changes are accumulated on the drawing until enough exist to warrant
producing a new version. In the design system, prior to every major activity,
the current state of the data-base is given a version identifier. If the
activity fails, the version need not be changed, otherwise the new version is
adopted for active use, and the old ome is stored away to provide a record of the

history of the design.

5.3.5. Specialist Failure

Specialist failure on entry is a sign that conditions are in some way

inappropriate for this specialist to act. For example, a specialist.may only be

able to design air-cylinders smaller than a breadbox. On emtry to a specialist,
prior to plan selection, one would expect an examination of the gross conditions
of applicability, and if those are not met a failure message would be sent to the

calling agent,

Specialist failure during plan selection can occur for a variety of reasons
-~ there are no plans appropriate for this situation; all appropriate plans have
been used during this call of the specialist, The first type of failure occurs




on entry to the specialist, after it bhas passed the applicability tests, if no
plans are appropriate. The second kind of plan selection failure implies that
any local attempts to remedy the problems causing plan failure also failed.
Clearly the calling agent should be informed of this special situatiom, as it

represents the complete failure of the specialist.,

5.4, Other Research

5.4.1. DESI/NASL

In McDermott”s DESI/NASL systemzs‘ 9 failure handling is treated as just amother
task for the system to handle, The system is prevented from backing up over a
previously made decision about a value., McDermott argues that, in general,
backing up to a choice point using a universal mechanism is not appropriate, and
that consideration must be given to all the actions and choices made since that
point and prior to the failure, The failing primitive task produces a description
of the failure, and a failure task is set up to attempt to deal with the
situation. As well as that description, the task/subtask structure, the control
trace and the recorded data dependencies are available for use, New subtasks may
be added, old subtasks restarted, old subtasks re-expressed, or heuristics
abandoned. This is a very powerful failure handling mechanism. We feel that it
is too unconstrained and not structured enough, and more like a general

programming mechanism than a specific theory of failure handling.

5.4.2. BUILD

In the BUILD planning system Fahlman?® adopts an approach similar to McDermott”s.
After being frustrated by Micro-PLANNER s chronological backtracking Fahlman
wrote the system in CONNIVER using control structures that allowed "the BUILD-
PLACE-MOVE sequence to proceed in a headlong manner, " with very little pre-
checking of conditions", and reported that "trouble is met in a variety of ways

when it arises". |p.ll1l7).

In the BUILD system, every function which makes a major choice includes the
declaration of a "Gripe Bandler". If the subgoal selected fails in some way the
most local gripe handler is called with a failure message reporting the problem.
The gripe handler has access to the full environment of the failure situationm,
and can also examine the bindings of the choice function., Should the decision be
made that failure is due to some decision gt a higher level it may complain to
the next higher gripe handler, otherwise the problem is handled locally., The
problems with this method of failure handling are the same as for the DESI/NASL
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system. That is, there are no constraints on the backtracking dome. The BUILD
system in some ways is even less constrained than McDermott”s system as it
appears to be able to backtrack in any way over any prior decision. The failure
bandling behavior of the AIR~CYL system could probably be implemented in the

mechanisms provided by Fahlwan and McDermott.

5.4.3. EL/ARS

The EL/ARS system for electromic circuit analysiszg’ 10

is a system that uses
dependency records to keep track of failure situations, It avoids failure
situations in further processing by using all of the recorded "NOGOOD" situations
to affect the choice of actions, As not all NOGOOD situations are relevant for
any one problem-solving situation this method is missing some essential structure
and can be inefficient, The use of “pure” dependency structures in a global way
is unconstrained use of a technique, producing unstructured problemsolving

activity.

5.4.4, TROPIC

Latombe”s design system TROPIC3°’ 7

uses dependency directed backtracking to the
most recently contributing choice poinmt, Failure information is attached to the
chronological trace of control flow at a point singled out at backup time as
being responsible for the failure, This is clearly better than pure chromological
backtracking, and the controlled use of failure recording is to be preferred over
the EL/ARS method. However, there is mo control over the range of the backtracks

made, as the system maintains a global dependency structure.

5.5. Summary

It appears that this extended analysis of failure handling within the framework
of a class 3 design system has led us to a modified form of dependency-directed
backtracking controlled by suggestions and failure-handling advice., This control
regime is complicated by the notion of attempting repair of failures by doing
redesign. The whole activity is made to work by using a data-base to represent
versions of the drawing that record the state of the design, and by a variety of

messages that produce data and control flow.

6. Theoretical and Practical Research Issues
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6.1. Improvements te AIR-CYL

We have learnt much during the last year as a result of our efforts in

1 and the AIR-CYL expert system for a nontrivially

implementing a prototype system
complex mechanical engineering object. This implementation effort is not
complete, but we now have a better understanding of the strengths of and problems
with the approach. We feel that while the idea of design refinement captures the
esgsence of design problem solving, at least in its relatively routine aspects,
there are several important aspects of problem solving and plan specification
that need continued investigation. In addition to those aspects discussed below,
wve hope to improve the interface with the system to allow others to use it.
Eventually we expect to provide a graphical interface to show the development of

the design as® it progresses,

6.2. Plan Language

In our implementation, plans have shown a significant temndency to incorporate
selection schemata and constraint-checking. In addition there is a distinct
difference between specification checking, rough design, design and redesign
activity., Thus there is a need to investigate the form and content of the plan
structures that would be useful in class 3 design problems. In order for this
notion of design plans to find much practical application ir CAD it is necessary
that generic representations for plans and their coordination be obtained.
Updating the expert system to reflect changing products and any incresase in a
company”s expertise will aot be a practical wundertaking unless such

representations are availsable.

6.3. ProblemSolving

6.3.1. Direction of Refinement

It may be the case that we can alter plans depending on experience, or select
plans in a different order. This will have to be investigated closely to see
exactly what factors influence such changes, Clearly if ome plan consistently
leads to failure then it should be treated as suspect, but it may merely mean
that its conditions for selection have not been adequately captured. With
parallel sections of design it may be useful to hold up ome section until part of
the other has succeeded, This would be useful if one subsection is particularly
difficult to design, as it would save wasting effort on the other parallel

section,
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6.3.2. Plan Selection

The issue of how plans get selected is far from resolved. While it is clear that
many pieces of information are involved we do not yet know how they are combined
during selection, or what role suggestions, or the history of the design so far
play in this selection, Plans themselves have information attached to them that
may be used during the selection., For example, a plan may be known for its
qualities, such as producing a subcomponent cheaply, or tending to succeed more

than it fails.

6.3.3. Rough Design

There is one aspect of rough-design that we have not yet tried to capture and
that is the "rough" value. For example, when designing we often start by
assigning an attribute a small range of values -=- "it°s between 3 and 4 inches”.
Values in a design system may need to have qualities of "precision", "accuracy",
and "confidence". Accuracy is captured at present by using a form that includes
a value and its tolerances -- (LNGTH 2.3 0,001 0.02), Precision is to do with
how precisely one is able to state the range of possible values -— less than 4.
While confidence has to do with how allowable it is to alter that value — "a
good starting value for this is 3 inches + or - 1/10th, but if you want you can
change it if it doesn”t look right"™. Clearly these all interact in various ways,
and will pose problems for the system -- for example, what’s "roughly 3 but less
than 4" plus (LNGTH 2.3 0.001 00.02)?

6.3.4., Relaxation of Requirements

One possible way to deal with failures is to attempt to relax one or more of the
requirements, Clearly some requirements can be "softer" than others, and asking
the user for some relaxation may clear the way to a successful design. If a lot
of effort has been expended on a design by machine and human this makes a lot of
sengse. It may be possible for the system to choose requirements to relax, but a
lot of special knowledge would be necessary to implement that., Even knowing when

to ask for a relaxation will be difficult. This is a matter for future research.

6.3.5. Performance Degradation

We suspect that as designs get to be only just class 3 the performance of the
system will degrade in interesting ways. If there are many dependencies between
attributes then the system can be expected to fail wmore often. By observing this
behavior, and the ease with which a design system for an object can be captured
in the plan language, we hope to be able to make some observations about
categories of design smaller than the classes that we have outlined.
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6.3.6. Automatic Construction

Another interesting possibility for the system is the automatic ordering of steps
and tasks, At present ome has to be aware of the exact order that the designer
s uses in order to be sure that all required values are available before each agent
» acts, Due to the commonly observed difficulty in getting ones expert to recall
exactly what he or she does, it will often be possible to get only a partial
ordering. In fact, provided the dependencies are immediately available, or can
- be deduced, the agents could be presented to the system for it to decide on a

reasonable order, in the case that the designer is is doubt or doesn”t care.

6.4. Limitations of Approach

0f course, we are quite aware that there are bound to be other examples of Class

3 design tasks that cannot be brought under the plan refinement paradigm in a

natural way. There is a distinction between plan refinements in the abstract and
u ) a particular generic class of plans which we know how to represent and refine and

l handle failures with. Thus, even if it is true ir principle that design is a
process of choosing and refining plans in the abstract, our ability to write

expert systems for design is very much a function of the generic classes of plans

which we are able to describe and manipulate. We would like, as a result of our
regsearch, to be able to characterize the kinds of design problems for which the

plan refinement approach will lead to effective expert systems.

6.5, Functional Understanding

One of the projects that we are working on in our expert systems research

concerns the representation of how a device functions3l

+ It ought to be possible
to cleanly derive a diagnostic structure from this representation., One of the
tests of someone understanding a device is that person’s ability to reasomn about
any malfunction in that device, What is the relationship of this functional
representation to the design representstions that we are studying? One would
‘expect that the designer's view of how and why he thinks that the design is
satisfactory, from the viewpoint of meeting the functional specifications, should
have close correspondences to the functional understandiug of the diagnostician.
Making these relationships clear will be an important theoretical undertaking.
It will show how understanding how a device works, being able to design a device
to fulfill certain functional requirements, and being able to trouble-shoot a

device all share certain representations,
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7. Concluding Remarks

We have presented an approach to building expert systems for a particular class

of design activity in the domain of mechanical components. Much work remains to

be dome in this area before we understand what design is and how best to build

systems to do it, However we feel that by using a hierarchically structured

system with plan selection we are capturing the essential qualities of routine

design, while discovering many interesting and difficult issues.

Acknowledgment: This work was supported by AFOSR grant #82-0255. We would also
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9. Appendix A

This

Annotated Trace of AIR-CYL

is a trace generated by the system. It has been edited for brevity and

presentation in this format. The trace was only turned on for the Specialists.

The trace is of a successful design with no selection of alternative plans. It

shows the attributes designed by the system.

*kdkkk ATR-CYL Air-cylinder Design System ¥¥¥¥k
*%* Version date: (4 26 84)

**% Todays date: (5 4 84)

*** Jser: DCBROWN

*** Requirements input

The following options are available :-
1 —— to use a set of standard test/demo requirements
2 -— to have requirements read from your disk file
3 =— to type them all im yourself

Note:

you will be able to make alterations

*%* Please type the number of your option >>>7777>1

* Standard test/demo requirements to be used

From file DCB:AC-Requirements-Test.LSP

Requirements:001

11! Note:

There are about 20 values given as requirements,
including the maximum operating temperature and
pressure, and the size of the envelope in which
the air-cylinder must fit.

* Do

you wish to make alterations to the requirements?
Please answer YES or NO or QUIT >>>??77>n

* No alterations to be made
*** Requirements Input Complete

-——= Entering Specialist
+soAirCylinder...Mode = Design

{I{ Note:
The first part of the design plan is to check
the requirements and then do a rough-design.
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---—- Entering Specialist R
«+sAirCylinder..,Mode = RoughDesign S

--——--- Entering Specialist
i ««.HBead...Mode = RoughDesign

PSS

———-=-- Leaving Specialist
«sssHead...Result> Success Msg

——————— Entering Specialist
«ssRest...Mode = RoughDesign )
——=—ew---- Entering Specialist o
.-.Qp...mde = RoughDe‘ign .

-=—==--e- Leaving Specialist
eceeeCapss.Result= Success Msg

«=-~w—e--- Entering Specialist [ ] _
eeesTube.,.Mode = RoughDesign :

11! Note:

At any point the system can ask the user for B
a value, or ask for a value to be checked. —
This is useful in sitvations where it is hard to | I
capture the judgment being made, or in

development situations where that part of

the design has yet has yet to be codified.

21?7 ASK-USER: Tube rough volume is 4.051
Is this OK for this design?
Answer is 7?7??>yes

—~—=————— Leaving Specialist
eessTube...Result= Success Msg

-=w——-——- REntering Specialist
.+.PistonAndRod... Mode = RoughDesign

=—~=—ew-- Leaving Specialist
«sesPistonAndRod,...Result= Success Msg

———ow--e- Entering Specialist
«esBumper... Mode = RoughDesign

. I-.'..'...‘,,.
. o Sette s

——————we- leaving Specialist
eee.Bumper...Result= Success Msg

- Leaving Specialist
seseRest.. .Result= Success Msg

-=w---- Entering Specialist
esoSpring... Mode = RoughDesign

==—==- Leaving Specialist o
eeesSpring...Result= Success Msg L

Leaving Specialist ﬁan}
esssAirCylinder.,.,Result= Success Msg R
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11! Note:
Now do the design.

---—= Entering Specialist
«ssSpring... Mode = Design

72?? ASK~-VALUE: Spring Wire Diameter
Value is 2727>,215

277? ASK-VALUE: Number of Coils
Value is 7772>11

SpringMaterial === NIL
Spring0D - 0.985
SpringID — 0.77
SpringWireDiameter — 0,215
SpringFreelength -=—— NIL
SpringCompressedlLength -——— NIL
SpringInstalledLength -——— NIL
SpringLoad ——= NIL
SpringNumberOfCoils - 11
SpringDeflectionPerCoil ———— NIL

-——=—- Leaving Specialist
«eeeSpPring...Result= Success Msg

-———— Entering Specialist
...Head... Mode = Design

?2?22? ASK-USER:

Head Air Cavity volume is 0,323
Is this OK for this design?
Ansver is 77?7>0k

11! Note:

The LNGTE form below is a way of expressing
tolerances. The first figure is the value,
the second the +ve tolerance, while the third
is the -ve tolerance.

HeadWidth — 1.5

HeadDepth ——— 0,97 '
HeadHeight - 1.5 o
HeadMaterial =---- StainlessSteel - T

HeadScrewSize (LNGTH 0,19 5.e=3 5.e~3)
HeadCenterCenterDistance

_ ~=== (LNGTH 0.625 S.e=3 5.,e-3)
HBeadMountingHoleDiameter R
(LNGTH 0.206 3.e-3 0,0) - o
HeadCounterSinkDiameter

(LNGTH 0.37 1l.e=2 1,e=2)

HeadMaxHtoFDistance

=—== (LNGTH 0.31 5.e=3 5.e-3)
HeadMountingHolesToFaceDistance
(LNGTH 0.2455 2.5e-3 2.5e-3)

HeadWiperSeatDepth —— 0.175854

BeadWiperSeatDiameter - 0.459841 o
HeadWiperType == UCup SRR
HeadAirHoleToSideDistance ~——— 0,75 e,
HeadAirHoleToFaceDistance -—— 0,701

.......
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HeadAirBoleDepth -=== 0.2105
HeadAirHoleDiameter -—= 0.374
HeadAirCavityID -——= 0.534
HeadAirCavityOD ——=- 1,089
HeadAirCavityDepth === 0.4565
HeadTRHCenterCenterDistance ——=— 1,115
HeadTRHDepth ——=- NIL
HeadTREDiameter - 0.19
HeadBearingThickness ———— 4,852
HeadBearingllength = 0.4765
HeadBearing2length ——— 0,.182646
HeadSealSeatWidth

(LNGTH 0,125 5.e=3 5.e-3)
BeadSealSeatToFaceDistance --— 0.3585

HeadSealSeatDiameter

HeadTubeSeatID

(LNGTH 1.21 6.e-3 3.e-3)
HeadTubeSeatOD

~—= (LNGTH 1.359 l.e=2 l,e~2)
HeadTubeSeatDepth ——— 6,25d-2

11! Note:

The system contains a table of standard decimal values
and is able to take the nearest higher or lower value,
or just the pearest, For example, a value of 2.4936 can
be stored as 2.5, or as 2.4844 (ie. 31/64ths).

~——-= Leaving Specialist
veso.Head.. . Result= Sulcess Msg

11! Note:
Once the Head specialist is completed the
Rest specialist can start.

-~——— Entering Specialist
.eoRest... Mode = Design

Entering Specialist
o..PistOnAndRod... mde il Design

PistonDiameter

(LNGTE 1.212 4.,e~3 0.0)
PistonMaterial ~—w- Brass
PistonThickness - 0.34375d
PistonRodHole ——— 0.25d
‘PistonSpringSeatDepth === 3.9e-2
PistonSpringSeatID —— 0,754375
PistonSpringSeatOD ——— 1,.00062
PistonSealType == UCup

PistonSealSeatDiameter
(LNGTH 0.885 0.0 l.e-3 ThreeDP)

PistonSealSeatWidth
(LNGTH 0.156 1.e-2 1.e-2 ThreeDP)

PistonSealSeatPosition ——— 9,4e-2
PistonBreakawayCutDiameter -—-- 0.729
PistonBreakawayCutDepth === 3 4e~2
PistonNotchCount — 4
PistonNotchWidth ——— 7 ,8e-2
PistonNotchDepth o 7.8e~2
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PistonBrazeSeatDepth === 7.8e-2

PistonBrazeSeatDiameter == 0,390625d

RodDiameter (LNGTH 0.312 0.0 2.e-3) .
RodLength — 4,095 -
RodThreadLength —— 1,031

RodThreadType -—= UNF24

RodMaterial -——— StainlessSteel

RodPistonSeatDiameter =—— 0.247 )
RodPistonSeatLength ———— 0.31 -
RodEndOfRodToHead —- 2,781

~————«= Leaving Specialist
«ssoPistonAndRod...Result= Success Msg

~-—--==- Entering Specialist
...Cap... Mode = Design

CapMaterial ~=== StainlessSteel
CapHeight ~—— 1,5
CapWidth w—m= 1.5
CapDepth ——— 0.625
CaplnternalDepth ——— 0.499 g
CapInternalDiameter —— 1.089 =
CapTubeSeatDepth . == 6,25d-2
CapTubeSeatID

——— (LNGTH 1.21 6.e~3 3.e-3)
CapTubeSeatOD
(LNGTE 1.359 1.e=2 l.e~2) RO
CapAirHoleDiameter 0.374 - R
CanAirHoleCenterToBackDistance —

~— 0.313 T

CapAirHoleDepth - 0.2055 .
CapBackFaceThickness NIL N
CapTRtoTRDistance - 1.115 -
CapTRDiameter

===— (LNGTH 0.203 S5.e~3 5.e=3)
CapTRDepth -——— 0,3125 U
CapTRRecessDepth ——— 0,3125 Tl
CapTRRecessRadius —== 1,003 RS

CapLargeChamferWidth NIL
CapLargeChamferAngle NIL S

CapSmallChamferWidth —-- NIL o
CapSmallChamferAngle ~——— NIL -

--+=-=-== Leaving Specialist
eeeesCap...Result= Success Msg
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-—————= Entering Specialist - -
+ssTube,,, Mode = Design . -

..!
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TubeMaterial -——- StainlessSteel RN
TubeLength — 3,5 B
TubeID — 1,214 o

TubeOD — 1.344 Lo
TubeChamferLength -——~— NIL -_— 0
TubeChamferAngle =-—- NIL T

.
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5.0
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==——=e= Leaving Specialist
eveslube...Result® Success Msg
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~w----- Entering Specialist
++.Bumper... Mode = Design

BumperMaterial -~—— StainlessSteel
BumperLength —~== NIL

Bumper ID -~ 0.390625d
BumperOD —— 0,69

BumperFlangeDismeter =-~-- 1,059
BumperFlangeThicknesg ~~—— 6.25e~2

==——=- Leaving Specialist
« s o Bumper...Result= Success Msg

Leaving Specialist
«seosRest,. . Result= Success Msg

--- Leaving Specialist
«esesdirCylinder, . .Result= Success Msg

*k*k Design attempt succeeds
**%* Version date: (4 26 84)
*** Todays date: (5 &4 84)
*%%* Oger: DCBROWN
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To appear in the Special Issue of Intn'l Jrnl. of Computers and Mathematics
on "practical artificial intelligence systems."
CSRL: A Language for Expert Systems for Diagnosis*

Tom Bylander, Sanjay Mittal**, and B. Chandrasekaran
Artificial Intelligence Group
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210 USA

Abstract

We present CSRL (Conceptual Structures Representation Language) as a
language to facilitate the development of expert diagnosis systems based on a
paradigm of "cooperating diagnostic specialists." In our approach, diagnostic
reasoning is one of several generic tasks, each of which calls for a
particular organizational and problem solving structure. A diagmnostic
structure is composed of a collection of specialists, each of which
corresponds to a potential hypothesis about the current case. They are
organized as a classification or diagnostic hierarchy, e.g., a classification
of diseases. A top-down strategy called establish~refine is used in which
either a specialist establishes and then r:fines itself, or the specialist
rejects itself, pruning the hierarchy that it heads. CSRL is a language for
representing the specialists of a diagnostic hierarchy and the diagnostic
knowledge within them. The diagnostic knowledge is encoded at various levels
of abstractions: message procedures, which describe the specialist”s behavior
in response to messages from other specialists; knowledge groups, which
determine how data relate to features of the hypothesis; and rule-like
knowledge, which is contained within knowledge groups.

*Thil an expanded version of a paper of the same title which was presented
at the 1983 Intermational Joint Conference on Artificial Intelligeace

**Currently at Knowledge Systems Area, Xerox PARC, 3333 Coyote Hill Rd.,
Palo Alto, CA 94304 USA
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P CSRL: A Language for Expert Systems for Diagnosis*

Tom Bylander, Sanjay Mir.:al**, and B. Chandrasekaran
Artificial Intelligence Group : :

Department of Computer and Information Science R
The Ohio State University

Columbus, OE 43210 USA * -

b

g 1 Iatroduction “"

_ Many kinds of problem solving for expert systems have been proposed within

%‘ the Al community. Whatever the approach, there is a need to acquire the .‘,-J
knowledge in a given domain and implement it in the spirit of the problem -0 o
solving paradigm. Reducing the time to implement a2 system usually involves )
th:. creation of a high level language which reflects the intended method of .._...__J
problem solving. .!'or example, EMYCIN [1] was created for building systems -9 - 4

based on MYCIN-like problem solving [2]. Such languages are also intended to

speed up the knowledge acquisition process by allowing domain experts to input

knowledge in a form close to their comceptual level. Another goal is to make
it easier to enforce consistency between the expert’s knowledge and its

implementation.

CSRL (Conceptual Structures Representation Language) is a language for

implementing expert diagnostic systems that are based on our approach to

, “This an expanded version of a paper of the same title which was presented .‘-ﬁ'.-"t

5 at the 1983 International Joint Conference on Artificial Intelligence. o
.0 ~

- ”Currcntly at Knowledge Systems Area, Xerox PARC, 3333 Coyote Rill Rd., J

. Palo Alto, CA 94304 USA RN
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diagnostic probler solving. This approach is an outgrowth of our group”s
experience with MDX, a medical diagnostic program [3], and with applying MDX-
like problem solving to other medical and non-medical domains. CSRL
facilitates the development of diagnostic systems by supporting constructs

which represent diagnostic knowledge at appropriate levels of abstraction.

First, we will overview the relationship of CSRL to our overall theory of
problem solving types and the diagnostic problem solving that underlies CSRL.
We then present CSRL, illustrating how its constructs are used to encode
diagnostic knowledge. Two expert systems under development in our laboratory
which use CSRL are then briefly described. Based om our experience with these

systems, we point out where improvements in CSRL are needed.

2 Classificatory Diagnosis

The central problem solving of diagnosis, in our view, is classificatory
activity. This is a specific type of problem solving in our approach, meaning
that a special kind of organization and special strategies are strongly
associated with performing expert diagnosis. In this section, we will briefly
review the theory of problem solving types as presented by Chandrasekaran (4],

and the structure and strategies of the diagnostic task [5].

2.1 Types of Problem Solving

We propose that expert problem solving is composed of a collection of
different problem solving abilities. The AI group at Ohio State has been
working at identifying well~defined types of problem solving (called generic
tasks), one of which is classificatory diagnosis. (For the purposes of this
n

discussion, we will use "diagnosis" in place of "classificatory diagnosis

with the understanding that the complete diagnostic process includes other
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elements as well.) Other examples include knowledge-directed data retrieval,

consequence finding, and a restricted form of desigm.

Each generic task calls for a particular organizational and problem solving
structure. Given a specific kind of task to perform, the idea is that

specific ways to organize and use knowledge are ideally suited for that task.

Even when the specification of a problem is reduced to a given task within
a given domain, the amount of knowledge which is needed can still be enormous
(e.g., diagnosis in medicine). In our approach, the knowledge structure for a
given task and domain is composed of gpecjaljists, each of which specialize in
different concepts of the domain. Domain knowledge is distributed across the
specialists, dividing the problem into more manageable parts, and organizing
the knowledge into chunks which become relevant when the corresponding

concepts become relevant during the problem solving.

Decomposing a domain into specialists raises the p:;oblan of how they will
coordinate during the problem solving' process. Firat, the specialists as a
whole are organized, primarily around the "subspeciazlist-of"™ relationship.
Bach task may specify additional relationships that may hold between
lpc;:ialists. Second, each task is associated with a set of strategies which
take advantage of these relationships and the problem solving capabilities of
the individugl specialists. The choice of what strategy to follow is not a

global decision, but chosen by the specialists during problem solving.
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2.2 The Diagnostic Task _ i

The diagnostic task is the identification of a case description with a BN
specific node in a pre-determined diagnostic hierarchy. ©Each node in the
hierarchy corresponds to a hypothesis about the current case. Nodes higher in
the hierarchy represent more general hypotheses, while lower nodes are more ' i
specific, Typically, a diagnostic hierarchy is a classification of
malfunctions of some object, and the case description contains the
manifestations and background information about the object. For example, the
Auto-Mech expert system [6] attempts to classify data concerning an automobile
into a diagnostic hierarchy of fuel system malfunctions. Figure 1 illustrates
a fragment of Auto~Mech’s hiera:rchy. The most general node, the fuel system

in this example, is the head node of hierarchy. More specific fuel system

AR
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malfunctions such as fuel delivery proBlems are classified within the
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hierarchy.
PUT FIGURE 1 HERE
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Each node in the hierarchy is associated with a specislist which contains
the diagnostic knowledge to evaluate the plausibility of the hypothesis from

the case description. From this knowledge, the specialist determines a

_ i
L]

confidence value representing the amount of belief in the hypothesis. If this

value is high enough, the specialist is said to be gstgblished. Do

s -
AR Py

The basic strategy of the diagnostic task is a process of hypothesis
refinement, which we call establish~refine. 1In this strategy, if a specialist _
establishes itself, then it refines the hypothesis by invoking its :'-':-' ‘-
subspecialists, which also perform the establish~refine strategy. If its ST

confidence value is low, the specialist rejects the hypothesis, and performs

.
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the specialist is eliminated from comsideration., <Ctherwise the specialist

suspends itself, and may later refine itself if its superior requests it.

With regard to figure 1, the following scenario might occur. First, the

fuel system specialist is inovoked, since it is the top specialist in the

hierarchy. This specialist is then established, and the two specialists below
it are iavoked. Bad fuel problems is rejected, eliminating the three
subspecialists of bad fuel from consideration. Finally, the fuel mixture

specialist is established, and its subspecislists (not shown) are invoked.

An important companion to the diagnostic hierarchy is an intelligent data
base assistant which organizes the case description, answers queries from the
diagnostic specialists, and makes simple inferences from the data [7]. For
example, the data base should be able to infer that the fuel tank is no.t: empty
if the car can be started. The diagnostic specialists are then relieved from
knowing .111 the ways that a particular datum could be inferred from other

data.

There are seversl issues relevant to diagnostic problem solving which we
will not address here. The simple descriptiorn above does not employ
strategies for bypassing the hierarchical structure for common malfunctious,
for handling multiple interacting hypothesis, or for accounting of the
manifestations. Also, additional control strategies are required when many
nodes are in a suspended state. For discussion on scme of these topics, see
Gomez and Chandrasekaran [5]. Test ordering, causal explanation of findings,
and therapeutic action do not directly fall within the aguspices of the
claui;ica:ory diagnosis as defined here, but expertise in any of these areas

would certainly enhance a diagnostic system. Fully resolving all of these
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issues and integrating their solutions into cthe diagnostic framework are - eiid

problems for future research.
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2,3 Differences from other Approaches - ,_‘_J
The usual approach to building knowledge based systems is to emphasize a o

general knowledge representation structure gnd different problem solvers which
uge that knowledge. One difference in this approach is that the organization
of knowledge is not intended as a genreral representation for all problems. L4

Rather it is tuned specifically for diagnosis. By limit:ing the type of

AT &
t
L
R

problem to be solved, a specific organizational techaoique (classification j
hierarchy) and problem solving strategy (establish-refine) can be used to s j‘

provide focus and control in the problem solving process.

Another difference is that the specialists in the hierarchy are not a —
static collection of knowledge. The knowledge of how to establish or reject
is embedded within the specialists, BEach specialist can then be viewed as s

individual problem solver with its own knowledge base. The entire collection

of specialists engages in distributed problem—~solving. e

3 CSEL

b -
»
>~

CSRL is & language for representing the specialists of a diagnostic ) ——
hierarchy and the diagnostic knowledge within them. The diagnostic knowledge '~

- is encoded at various levels of abstractions. Msssgge procedures describe the

T
{

specialist’s behavior in respouse to messages from other specialists. These

contain the knowledge about how to establish or refine a specialist,

Enowledge groups determine how selected dats relate to various features or
= intermediate hypotheses that are related to the specialist. The selected data S

- may be the values of other knowledge groups, so that a single knowledge group
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can "summarize"” the results of several others. Kaowledge groups are composed
of rule-like lmowledge which match the data against specific patterns, aand

when successful, provide values to be processed by the knowledge group.

3.1 Specialists

In CSRL, a diagnostic expert system is implemented by individually defining
each specialist. The super- and subspecialists of the specialist are declared
within the definition. Figure 2 is a skeleton of a specialist definition for
the Bad Fuel pode from figure 1. The declare section specifies its
relationships to other specialists. The other sections of the specialist are
examined below.

PUT FIGURE 2 HERE

Since CSRL is designed to use only a simple classification tree, many
choices concerning the composition of the hierarchy must be made, This is a
pragmatic decision, rather than a search for the "perfect" classification
tree., The main criteria for evalm.cing a classification is whether enough
evidence is normally available to make coanfident decisions, To decompose a
specialist into its subspecialists, the simplest method is to ask the domain
expert what subhypotheses should be considered next, Usually the
subspecialists will differ from one another based on & single attribute (e.g.,

location, cause). For further discussion on this and other design decisions

in CSRL, see Bylander and Smith [8].
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3.2 Message Procedures

The messages section of a specialist contains a list of message procedures,
which specify how the specialist will respond to different messages from its
superspecialist.* "Establish", '"Refine", "Establish~Refine"” (combines
Establish and Refine), and "Suggest" are predefined messages in CSRL;
additional messages may be defined by the user. Below, we will examine how

Establish and Refine procedures are typically comstructed.

Message procedures are the highest level of abstraction for diagnostic
knowledge within specialists., Just as in general message passing languages,
messages provide a way to invoke a particular kind of response without having
to know what procedure to invoke. Strategies for diagnosis, such as
establish-refine, are usuzlly easy to translate into a message protocol.
However, CSRL does unot provide any way to specify and enforce message

protocols.

Figure 3 illustrates the Establish message procedure of the BadFuel
specialist. “relevant"” and "summary" are names of knowledge groups of
BadFuel. "self"” is a keyword which refers to the name of the specialist.
This procedure first tests the value of the relevant Imowledge group. (If
this lnmowledge group has not already been executed, it is sutomatically
executed at this point.) If it is greater than or equal to 0, then BadFuel’s

confidence value is set to the value of the summary kmowledge group, else it

*a specialist is not allowed to send messages to its superspecialist.
However, other message passing routes are sllowed. Specifically, a specialist
may send a message to itself, across the hierarchy, and to iadirect
subspecialists. In the latter case, each interconnecting specialist is sent a
"Suggest”™ message and decides within its Suggest message procedure whether or
not to pass the original message downwards.
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is set to the value of the relevant knowledge group. 1Ian CSRL, a confidence
value scale of =3 to +3 is used (integers only). A value of +2 or +3
indicates that the specialist is established. In this case, the procedure

corresponds to the following diagnostic knowledge.

First perform 2 preliminary check to make sure that BadFuel is a
relevant hypothesis to hold. If it is mot (the relevant knowledge
group is less than 0), then set BadFuel”’s confidence value to the
degree of relevancy. Otherwise, perform more complicated reasoning
(the summary knowledge group combines the values of other knowledge
groups) to determine BadFuel”s confidence value.

PUT FIGURE 3 HERE

Figure 4 shows a Refine procedure which is a simplified version of the one
that BadFuel uses. "subspecialists" is a keyword which refers to the
subspecialists of the current specialist. The procedure calls each
subspecialist with an Establish mesnge." If the subspecialist establishes
itself (+? tests if the confidence value is +2 or +3), then send it a Refine
message.

PUT FIGURE 4 HERRE

CSRL has a variety of other l;indl of statements and expressions so that
more complicated strategies can be implemented. For example, a "Reset"
statement deletes the confidence value and the knowledge group values of a
spccialist. This might be used when additional tests are performed, making it

necessary to recalculate the confidence value. Also, messages can be

*ror couvenience, many of CSRL”s control constructs mimic those of
INTERLISP; however, these constructs are executed by the CSRL interpreter, not
by using LISP EVAL. LISP code is allowed within message procedures, but only
by within & construct called "DoLisp”. This is not intended to 1let
specialists have arbitrary code, but to allow interaction with other LISP-
implemented systems,
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parameterized and message procedures canm declare local variables.

3.3 Knowledge Groups

The kgs section of a specialist definition contains a list of knowledge
groups, which are used to evaluate how selected data indicate various features
or intermediate hypotheses that relate to specialist”s hypothesis, A
knowledge group can be thought of as a cluster of production rules which map
the values of a list of expressions (boolean and arithmetic operations on
data) to some conclusion on a discrete, symbolic scale., Different types of
knowledge groups perform this mapping differently, e.g., directly mapping
values to concluqions, or having each rule add or subtract a set number of

"confidence™ units.

Knowledge groups are intended for encoding the heuristics that a domain
expert ugses for inferring features of a hypothesis from the case description.
The main problem is that this inference is uncertain -- there is rarely a one-
to~one mapping from data to the features of the hypothesis. The way that this
:i.s. handled in CSRL is borrowed from the uncertainty handling techniques used

in MDX [9].

Each feature or intermediate hypothesis is associated with a lnowledge
group. The data that the domain expert uses to evaluate the feature is
encoded as expressions in the knowledge group. These are usually queries to a
separate data base system. Esch combibation of values of the expressions is
then mapped to a level of confidence as determined by the domain expert. This
set of knowledge groups becomes the data for snother knowledge group, which

determines the confidence value of the specialist from the confidence values
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] of the features.” By examining the results of test cases, the knowledge groups
are relatively easy to debug since the attention of the domain expert cam be

directed to the specific area of knowledge which derived the incorrect result,

As an example, figure 5 is the relevant knowledge group of the BadFuel
specialist mentioned above. It determines whether the symptoms of the
- automobile are consistent with bad fuel problems. The expressions query the
user (who is the data base for Auto~Mech) for whether the car is slow to
respond, starts hard, has kmocking or pinging sounds, or has the problem when
accelerating. "AskYNU?" is a LISP function which asks the user for a Y, N, or
U (unknown) answer from the user, and translates the answer into T, F, or U,
the values of CSRL"s three-valued logic. Each set of tests in the if-then
part of the knowledge group is evaluated until one matches. The value
corresponding to this "rule" becomes the value of the knowledge group. For
example, the first rule tests whether the first expression is true (the "2"
means doesn”t matter). If so, then -3 becomes the value of the lmowledge
group, Otherwise, other rules are evaluated. The value of the knowledge

group will bde 1 if no rule matches. This knowledge group encodes the

following diagnostic Imowledge:

If the car is slow to respond or if the cgr starts hard, then
BadFuel is pot relevant in this case. Otherwise, if there are
knocking or pinging sounds and if the problem occurs while
accelerating, then BadFuel is highly relevant. In all other cases,
BadFuel is only mildly relevant.

PUT FIGURE 5 HIRE

Figure 6 is the summary knowledge group of BadFuel. Its expressions are

1"M:tmny. any number of knowledge group levels can be implemented.
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the values of the relevant and gas knowledge group (the latter queries the
user about the temporal relationship between the onset of the problem and when
gas was last bought). In this case, if the value of the relevant knowledge
group is 3 and the value of the gas knowledge group is greater them or equal
to 0, then the value of the summary knowledge group (and comsequently the
confidence value of BadFuel) is 3, indicating that a bad fuel problem is very
likely.

PUT FIGURE 6 HERE

3.4 Comparison with Rule~Based Languages

There is nothing inm CSRL that is not programmable within rule-based
languages such as OPSS [10] or EMYCIN [1]. The difference between CSRL and
these languages is that CSRL makes a commitment to a particular organizatiounal
and programming style. CSRL is not intended to be a genmeral purpose
‘reptuentation language, but is built specifically for the classificatory

diagnosis problem. It is possible to program in a rule-based langusge so that

there is an implicit relatiomship between rules so that they correspond to
knowledge groups and specialists. Rl, although not a diagnostic expert ‘*...v:_-;

system, is an excellent example of how one creates implicit grouping of rules

e,
H [

in such a system [11]. The central idea underlying CSRL is to make these

relationships explicit. The expert system implementor is then relieved from

trying to impose an organization on a organization-less system and is free to
concentrate on the conceptual structure of the domain., Also, there is a
greater potential to embed explanation and debugging facilities which can take

advantage of the expert system organization.
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A s aeamme . a

E D 3.5 The CSBL Environmeat .
The current version of CSRL is implemented in INTERLISP-D and LOOPS, an

object-oriented programming tool. Each specialist is implemented as a LOOPS

class, which 1s instantiated for each case that is run. The LOOPS class s
hierarchy is used to specify default message procedures and shared knowledge 1
groups, making it easy to encode & default establish-refine strategy, and

letting the user incrementally modify this strategy and add strategies as

desired. A graphical interface displays the specialist hierarchy, and through
the use of a mouse, allows the user to easily access and modify any part of
E : the hierarchy. Additional facilities for debugging and explanation are being ‘ 2

- implemented.

4 Expert Systems that use CSRL

4.1 Auto-Mech
Auto-Mech is an expert system which diagnoses fuel problems in automobile

engines [6]. This domain was chosen to demonstrate the viability of our

approach to non-medical domains, as well as to gain experience and feedback on
(:SR:[.."r The purpose of the fuel system is to deliver a mixture of fuel and air . :ﬁtj:
to the air cylinders of the engine. It can be divided into major subsystems :<
(fuel delivery, air intake, carburetor, vacuum manifold) which correspond to

initial hypotheses about fuel system faults.

Auto~Mech consists of 34 CSRL specialists in a hierarchy which varies from .
four to six levels deep. 1Its problem solving closely follows the establish~ ﬁi_‘{f

refine srrategy. Before this strategy is invoked, Auto-Mech collects some '_:_.'_-:

*Autq-mch was developed using an early version of the language. :?-;:,-
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initial data from the user. This includes the major symptom that the user

notices (such as stalling) and the situation when this occurs (e.g.,
accelerating and cold engine temperature), Any additional questions are asked
while Auto-Mech”s specialists are running. The diagnosis then starts and
contioues until the user is satisfied that the diagnosis is complete., The

user must make this decision since the data that Auto-Mech uses are very weak

at indicating specific problems and, more importantly, Auto-Mech is unable to

make the repair and determine whether the problem has been fixed.

A major part of Auto-Mech’s development was determining the assumptions
that would be made about the design of the automobile engine and the data that
the program would be using. Different automobile engine designs have &
significant effect on the hypotheses that are considered. A carbureted
engine, for example, will have a different set of problems than a fuel
injected engine (the former can have s broken carburetor). The data was
assumed to come from commonly available resources. The variety of computer
analysis information that is available to mechanics today was not considered

in order to simplify building Auto-Mech,

4.2 Red

Red is an expert system whose domain is red blood cell antibody -2 s 4
identification [12]. An everyday problem that a blood bank contends with is
the selection of units of blood for transfusion during major surgery. The
primary difficulty is that antibodies in the patient”s blood may attack the ) - 1
foreign blood, rendering the new blood useless ss well as presenting -
additional danger to the patient. Thus identifying the patient’s antibodies

and selecting blood which will not react with them is a critical task for 4

"
!

nearly all red blood transfusions.
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Tee Red expert system is composed of three major subsystems, one of which
is implemented in CSRL. The non-CSRL subsystems are a data base which
maintains and answers questioqs about reaction records (reactions of the
patient”s blood in selected blood samples under a variety of conditiomns), and
a overview system, which assembles a composite hypothesis of the antibodies
that would best explain the reactiom record [13]., CSRL is used to implement
specialists corresponding to each antibody that Red knows about (about 30 of
the most common omes) and to each antibody subtype (different ways that the

antibody can react).

The major function of the specialists is to rule out antibodies and their
subtypes whenever possible, thus simplifying the job of the overview
subgystem, and to assign confidence values, informing overview of which
antibodies appear to be more plausible, The specialists query the data base
for information about the test resctions and other patient information, and

also tell the data base to perform certain operations on reaction records,

An interesting feature of Red is how it handles the problem of interacting
hypotheses. It is possible for the patiemt®s blood to have practically any
number or combination of antibodies, making it very hard for a single
specialist to determine how well it will fit with other specialists in a
composite hypothesis. In Red, each specialist is encoded to assume that it is
independent ~~ it looks at the data as if no other specialist can account for
the ssme data., The kmowledge of how the specialists can interact is left to
the overview subsystem. This would be problematic if few specialists could
rule themselves out, but so happens that in this domain, it is rare to have
more than a few autibodies that cannot be independently ruled out. Thus Red’s

CSRL subsystem makes overview”s problem solving computationally feasible since

NSV

-0

———een et

_————

| ar= I




PPy
It

" A
L. LI

.
.l .. . *
sttt

16

it considerably reduces the amount of search that would otherwise be

necessary.

5 Needed Improvements in CSRL

The largest flaw in CSRL is that there is no strategy that determines when
diagnosis should stop. Currently, the default procedures simply ask the user
if the current diagnosia is satisfactory. Some notion of what it means to
account for the data needs to be added to the language. The work on Red’s
overview system is a step in this direction, but there needs to be more
integration of overview and CSRL (currently overview starts after the
specialists are finished), ‘and a better understanding of what kinds of
interactions can occur between two hypotheses. Progress in this area would
also help increase the focus of the diagnosis, i.e., the diagnosis could

concentrate on accounting for the most important manifestation(s).

Another problem is the meaning of the confidence value of a specialist, In
MDX, this value was directly associated with :he.anoun: of belief in the
specialist. However in both Auto-Mech and Red, this meaning had to be
slightly altered to fit the purposes of the expert system. In Auto-~Mech the
confidence value is used to indicate whether the hypothesis was worth
pursuing. In Red it is used to indicate the specialist”s plausibility given
the independence assumption mentioned earlier. It is not possible in either
expert system to confirm & specialist without outside help. In Auto~Mech a
repair or highly specific test must be performed while in Red all the
specialists must be considered together. This does not create s problem for
the process of establish-refine problem solving, but makes it difficult to
explain what the confidence value means. Any explanation facility must

understand the assumptions that are being made to make coherent explanations.
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6 Conclusion

We believe that the development of complex expert systems will depend on
the availability of special purpose languages with organizational and problem-
solving tools that match the conceptual structure of the dowmain, CSRL
represents am initial step in this direction. It provides facilities to
organize diagnostic knowledge in accordance with the structure of the domasin.
In particular, CSRL“s constructs facilitate the encoding of rule-like and
strategic knowledge into appropriate abstractions: knowledge groups, message

procedures, and specialists.
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FIGURE 1
Fuel System Problems
Bad Fuel Problems Fuel Mixture Problems
i \\~
Low Octane Water In Fuel Dirt In Fuel
FIGURE 2

(Specialist BadFuel
(declare (superspecialist FuelSystem)
(subspecialists LowOctane WaterInFuel DirtInFuel))
(kgs ...)
(messages ...))

FIGURE 3

(Establish (if (GE relevant 0)
then (SetConfidence self summary)
else (SetConfidence self relevant)))

FIGURE 4

(Refine (for specialist in subspecialists
do (Call specialist with Establish)
(if (+? specialist)
then (Call specialist with Refine))))
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FIGURE 5

(relevant Table
(match (AskINU? "Is the car slow to respond")
(AskYNU? "Does the car start hard")
(And (AskYNU? "Do you hear knocking or pinging sounds")
(AskYNU? "Does the problem occur while accelerating"))
with (if T 7 ?

then -3
elseif 7 T ?
then -3
elseif 2 ? T : ;
then 3 S
else 1))) -
. -— -l
h .
N "-7 ,{
FIGURE 6 f-}
N R
(summary Table C
(match relevant gas : ST
with (if 3 (GE 0) )
then 3 -
elseif 1 (GE 0) -
- elseif ? (LT 0) S
- then =3))) -
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-
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o
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Figure 1: Fragment of a diagnostic hierarchy

Figure 2: Skeleton specialist for BadFuel

Figure 3: Establish procedure of BadFuel
Figure 4: Refine procedure
Figure 5: relevant knowledge group of BadFuel

Figure 6: summary knowledge group of BadFuel 8
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