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Introduction and Background

The feasibility of producing composite material leaf springs
for automotive applications has been demonstrated in the
industry. Various manufacturing processes have been utilized,
generally for producing prototype springs in small quantities.

When designing with composite, orthotropic materials the
interrelationship between materials, configuration,
manufacturing methods, cost and quality assurance must be
considered to a much larger degree than is generally the
practice with conventional materials such as metals. One
reason for this is that the material is processed to its final
form (cured) at the same time the part is being fabricated.
Of particular importance is a design which is cost-effective
and at the same time allows the use of manufacturing methods
whereby consistently reproducible, high material properties
can be assured.

The program called for a study to establish a manufacturing
process suitable for producing composite material, heavy duty,
leaf springs in modest quantities.

The Army had initially intended that the manufacturing study
be conducted on an existing composite spring design developed
under an earlier contract by EXXON Enterprises, Materials
Division. Reconfiguration was to be limited to that necessary
to the development of the manufacturing process. However,
load and deflection requirements listed in the contract
document showed a significant increase over the earlier
design, necessitating an entirely new design.

A fatigue study showed that E-glass fiber/epoxy material would
not give a sufficient life to the spring. Therefore, S2-glass
fiber was selected. A combination of graphite and glass
fibers in a sandwich configuration was considered, but was
rejected because of the high cost of graphite fiber.

The study further showed that only leaves with tapered
thickness would meet both envelope and weight requirements.
The requirement for a tapered thickness eliminated some of the
candidate manufacturing processes.

The program was divided into two phases. Phase I addressed
the design and manufacture of the rear spring assembly, while
Phase II did likewise for the front spring assembly. This
report covers work performed under both Phase I and Phase II.

~13-




Purpose and Objectives

The objective of this program was to design leaf springs for
the Army 5-ton trucks using composite materials and to
establish the best manufacturing process for producing the
springs in modest quantities (25 sets of spring assemblies per
day), while maintaining consistent material properties. Ten
rear spring assemblies (Phase I) and ten front spring
assemblies (Phase II) were fabricated from the established
process and delivered to TACOM for testing and evaluation.

-14-
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Fatigue Load Study

Automotive leaf springs are subjected to bending deflections,
and, in some cases, torsional loads which, during the life of
the vehicle, impose repeated stresses on the spring material.
Since practically all materials lose some of their initial
strength by repeated loading, it is necessary for the design
engineer to know both the load cycle requirements and the
degree of material degradation.

Therefore, before any design activity or material selection
could be initiated, it was necessary to establish fatigue
requirements for the composite spring.

For that purpose, a study was conducted to determine cycling
fatigue life for a number of different design concepts, and
for various loading combinations. From the results, the best
suitable design concept was then selected jointly by CIBA-
GEIGY and TACOM.

Several design configurations were investigated, including
leaves with tapered and constant thickness, as well as
different materials. Graphite fiber was ruled out because of
its high cost. Kevlar is not suited for applications
involving predominantly bending stresses, because of its poor
compression properties. The study evaluated E-glass
fiber/epoxy and S2-glass fiber/epoxy for fatigue properties.
CIBA-GEIGY and TACOM jointly selected load cycles
(combinations of maximum stress and load ratio R, where R =
ratio of minimum to maximum load cycle stress) for the front
and rear spring assemblies so as to represent loads
encountered in actual service. In evaluating spring
configurations, certain limitations had to be observed. The
stacked height of the assembled leaves cannot exceed that of
the present steel spring. 1In addition, the total weight of
the assembly was constrained by project goals,

Rear Spring (Phase I)

It was assumed that the two bottom leaves, which provide the
attach points to the vehicle, would be made of steel and have
a configuration essentially the same as that of the existing
steel spring. The remaining leaves would be made from
composite materials.

~15-




The following design configurations were investigated:

1. E-glass, tapered thickness

2. S2-glass, tapered thickness
3. E-glass, constant thickness
4, S2-glass, constant thickness

The effects of the jointly selected load cycles on fatigue
life were investigated for each configuration. Table 3-1
describes the four load patterns used as fatigue design
criteria.

The composite rear spring assembly must be designed such that
its deflection versus load characteristic duplicates that of
the existing all-steel rear spring. The required
load/deflection characteristics for the composite spring
assembly as a whole, and for the composite leaves alone, are
illustrated in Figure 3-1.

-16-




Loading Condition Load Ratio, R

(minimum/maximum load)

A. (Static load/2) to full jounce .16
B. Static load to full jounce .32
C. (Static load/2) to 2.5 times static load .20
D. (Static load/2) to 2.0 times static load .25
Notes:

1. Static load for composite leaves: 10,430 lbs (46,393 N).

2., Full jounce: G.V.W. load deflection + 7.25 inches (184 mm).

3. Load on composite leaves at full jounce: 46,128 lbs (285,177
N) .

Table 3-1. Loading Conditions And Ratios For Rear Spring
Assembly.
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Figures 3-2 and 3-3 are, respectively, Goodman diagrams for E-
glass and S2-glass fiber/epoxy composites in bending. These
diagrams present fatigue life characteristics for a given material
when subjected to various numbers of loading cycles in which the
stress varies between a minimum and maximum value. The horizontal
and vertical coordinates represent minimum and maximum stresses
expressed as percentage of ultimate flexural (or bending)
strength. Two sets of curves are plotted on these coordinates.
One set represents constant values of loading cycles expected
before failure, while the second set represents constant values of
loading ratio. The fatigue characteristics of E-glass and S2-
glass epoxy composites, as illustrated in the Goodman diagrams,
were used to determine expected life for various combinations of
maximum stress and loading ratio. This data is given in Tables 3-
2 and 3-3 for E- and S2-glass/epoxy, respectively.

CIBA-GEIGY prepared a computer program to calculate the number of
leaves required in a spring assembly for various combinations of
required fatigue life, material type, leaf configuration, and
loads. Figures 3-4 through 3-7 are graphs of this data for the
rear spring. Each figure describes the number of leaves as a
function of expected fatigue life for the four load conditions
given in Table 3-1. The four figures represent combinations of
material (E- or S2- glass) and leaf configuration (constant or
tapered thickness). The program also calculated weight and
stacked height, and these values are given on the graphs for each
data point plotted.

A typical computer printout for tapered thickness rear spring
leaves is shown in Figure 3-8, and for constant thickness leaves
in Figure 3-9,

The target weight for the composite leaves in the rear spring is
169 1b (45.4 kg), maximum. The stacked height of these leaves
must not exceed 6 inches (152.4 mm) so as to remain within the
dimensions of the currently used steel spring. From Figures 3-4
through 3-7 and the weight and height constraints, it is apparent
that for a fatigue life of 100,000 cycles, constant thickness
leaves are acceptable only if S2-glass is used, and, even then,
only for the least severe loading combination. Tapered thickness
leaves are more efficient in utilizing the strength of a given
material. With this configuration, the weaker E-glass will meet
the weight/height/fatigue life requirements for the least severe
load condition. With S2-glass, tapered leaves can meet these
requirements for all four load ratios.

The higher cost of S2-glass (approximately double that of E-glass
for prepreg material) is compensated for by the lower total weight
of an S2-glass spring. Fabrication cost is also lower because
fewer leaves are required.
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COMPOSITE PROPERTIES AT R.T.

E-GLASS +/- 5 DEGREES

Flexural Modulus, E = 5.5 x 10E6 psi (37.9 GPa)
Ultimate Flexural Strength, Fﬁl = 157,000 psi (1.88 GPa)
Ult. Interlaminar Shear Strength, Fz = 8,000 psi (55.2 MPa)
Allowable Allowable
Bending Shear N, Cycles
Stress Stress Loading Ratio, R
ksi (MPa) psi (MPa) .10 .16 .20 .25 .32
105 (724) 5360(37.0) 230 320 365 510 780
95 (655) 5020 (34.6) 600 8840 1100 1540 2400
85(586) 4400 (30.3) 1850 2800 3500 4800 8000
75 (517) 4240 (29.2) 6200 9000 11.6K 18K 32.5K
65(448) 3780 (26.1) 22K 36.5K 51K 75K 150K
55(379) 3450 (23.8) 100K 180K 280K 490K 1000K

Table 3-2. Fatigue Properties of E-Glass For Various Loading Ratios
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COMPOSITE PROPERTIES AT R.T.

$2-GLASS +/- 5 DEGREES

Flexural Modulus

Ultimate Flexural Strength,

Ult. Interlaminar Shear Strength, F

Allowable
Bending
Stress

ksi (MPa)

146.5 (1010)
139.5( 962)
131.4( 906)
122.7( 846)
114.0( 786)

103.6( 714)

Table 3-3. Fatigue Properties of S2-Glass for Various Loading Ratios

Allowable
Shear
Stress

psi (MPa)

7370 (50.8)
6903(4i.6)
6050 (41.7)
5830 (40.2)
5198 (35.8)

4744 (32.7)

E

fl

F

.10

230
600
1859
6200
22K

100K
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.16

285
765
2730
19.5K

38K

6.5 x 10E6 psi

185,000 psi

(44.8 GPa)

(1.28 GPa)

'N, Cycles

Loading Ratio, R
.20 .25

370 530

1000 1600
4000 6100

16K 24.2K

56K 92K

418K 9@@K

233K

11,000 psi (75.8 MPa)

'32

949
31549
12.7K
54K
282K

2709K
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Qurve A: i‘?*-zLuﬁ to full jounce (R=.16) |

B: Static Load to full jounce (R=.32)

1
c: Statlc 1o o 5 5 & static (R=.20) £

to 2.0 x static (R=.25)

W = Weight of composite leaves, lbs.

H = Stacked height of composite leaves, inch.
includes spacers between leaves. Height
of present steel leaves minus two top
leaves = 6.01 in.
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Number of Leaves vs. Fatigue Life Cycles, Rear Spring. -
(E-Glass; Leaf with Tapered Thickness)
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Number of leaves
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to 2.5 x static (R=.20)
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) to 2.0 x static (R=.25)

W = Weight of composite leaves, 1lbs.

H = Stacked height of composite leaves, inch.
includes spacers between leaves. Height
of present steel leaves minus two top
leaves = 6.01 in.
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Number of Leaves vs. Fatigue Life Cycles, Rear Spring.
(S2-Glass; Leaf with Tapered Thickness)
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Number of leaves
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Number of Leaves vs. Fatigue Life Cycles, Rear Spring.
(E-Glass; Leaf with Constant Thickness)
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Fig. 3-9 Typical Computer Printout for Rear Spring.
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Based on these results, CIBA-GEIGY recommended a design for
the rear spring consisting of two steel bottom leaves and
three composite leaves of S2-glass fiber/epoxy with tapered
thickness. According to Figure 3-5, this design would have a
fatigue life of 30,000 cycles at load condition A (half
static load to full jounce, R = 0.16), or 3,000,000 cycles at
load condition C (1/2 to 2-1/2 times static load, R = 0.20).

TACOM agreed with the recommendation and this design concept
was selected for the rear spring.
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Front Spring (Phase II)

It was assumed that the two top leaves, which contain the
mounting eyes for attaching the spring to the vehicle, would
be made of steel and have a configuration essentially the
same as the existing steel spring. The rebound leaf would
also remain steel. The remaining leaves would be made from
composite materials.

The following design configurations were investigated:

1. E-glass, tapered thickness

2. S2-glass, tapered thickness
3. E-glass, constant thickness
4. S2-glass, constant thickness

Each of these configurations was evaluated for fatigue life
when subjected to loading cycles (given in Table 3-4)
representative of actual service. The composite front spring
assembly must possess the same load/deflection characteristic
as the corresponding all-steel spring assembly. The required
load/deflection characteristics for the front spring assembly
as a whole and the composite leaves alone are presented
graphically in Figure 3-14. :
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Loading Conditions Load Ratio, R

(minimum/maximum load)

A. (Static load/2) to full jounce
+ max. axle torque .11

B. Static load to full jounce +
max. axle torque $22

C. (Static load/2) to 2.5 times
static load + max. axle torgque .13

D. (Static load/2) to 2.0 times
static load + max. axle torque .15

Notes:

1. Static load for composite leaves: 3451 lbs. (15,350 N)

2. . Full jounce: G.V.W. load defl, + 4 in. (162 mm)

3. Load on composite leaves at full jounce: 10,606 lbs (47,175
N)

4. Max. axle torque load on composite leaves: 4608 lbs (20,496
N), added to forward half of the composite leaves and
subtracted from aft half.

Table 3-4. Loading Conditions And Ratios For Front Spring
Assembly
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Fig. 3-10 ©Load Deflection Diagram, Front Spring
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The Goodman diagrams for E- and S§2- glass/epoxy composites
were used to determine fatigue life for various combinations
of load ratio and maximum stress. This data is presented in
Table 3-5 for E-~glass and Table 3-6 for S2-glass.

The CIBA-GEIGY computer program used to calculate the number
of leaves required in the rear spring was used again to
calculate similar data for the front spring assembly.
Figures 3-11 through 3-16 are graphical presentations of the
number of leaves as a function of fatigue life for the
loading combinations given in Table 3-4. Each figure treats
one of four combinations of material type and leaf
configuration. The weight and stacked height of the
composite leaves were also calculated and are shown on the
graphs.

A typical computer printout for leaves with tapered thickness
is shown in Figure 3-17, and for constant thickness leaves in
Figure 3-18.

The target weight for the composite leaves in the front
spring is 25 1b. (11.3 kg), maximum. The stacked height of
these leaves should not exceed 4 inches (102 mm) so as to
remain within the dimensions of the existing steel spring.
From Figures 3-13 through 3-16 and the weight and height
constraints, it is apparent that, for a fatigue life of
100,000 cycles, only tapered leaves of S2-glass/epoxy are
acceptable. The curves in Figure 3-14 show that a spring
assembly with two composite leaves would have an expected
fatigue life of 230,000 cycles for load condition B (static

load to full jounce plus maximum axle torque, R = §.22), or
1,450,000 cycles for load condition C (1/2 to 2-1/2 times
static load, plus maximum axle torque, R = @§.13). The two

composite leaves used in this design solution weigh 21 1lb
(9.5 kg) and have a stacked height of 2.7 inches (69 mm).
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COMPOSITE PROPERTIES AT R.T.

E-GLASS +/- 5 DEGREES

Flexural Modulus, E = 5.5 x 10E6 psi (37.9 GPa)
Ultimate Flexural Strength, Fﬁl = 157,000 psi (1.08 GPa)
Ult. Interlaminar Shear Strength, Fz = 8,000 psi (55.2 MPa)
Allowable Allowable

Bending Shear N, Cycles

Stress Stress Loading Ratio, R
ksi (MPa) psi (MPa) .10 11 - .13 .15 .22
105 (724) 5360 (37.0) 230 235 257 283 495

95 (655) 5020 (34.6) 600 660 737 810 1240

85 (586) 4400 (30.3) 1850 19290 2220 24790 3909

75 (517) 4240 (29.2) 6200 6400 7390 8390 14.2K

65 (448) 3780 (26.1) 22K 23.3K 27.4K 30.8K 57.2K

55 (379) 3450 (23.8) 190K 105K 128K 146K 318K

Table 3-5. Fatigue Properties of E-Glass For Various Loading Ratios
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COMPOSITE PROPERTIES AT R.T.

$2~GLASS +/- 5 DEGREES

Flexural Modulus, E = 6.5 x 10E6 psi (44.8 GPa)
Ultimate Flexural Strength, é?' = 185,008 psi (1.28 GPa)
Ult. Interlaminar Shear Strength, Ei = 10,000 psi (75.8 MPa).
Allowable Allowable N, Cycles

Bending Shear Loading, Ratio, R

Stress Stress
ksi (MPa) psi (MPa) .10 .11 .13 .15 .22
146.5(1010) 7370 (506.8) 230 235 243 272 420
139.5( 962) 6903 (47.6) 600 605 640 739 1225
131.4( 906) 6050 (41.7) 1850 1860 2129 2530 4490
122.7( 846) 5830 (40.2) 6200 6800 8200 9500 17.5K
114.0( 786) 5198 (35.8) 22K 25.1K 30.2K 35.2K 66K
103.6( 714) 4744 (32.7) 100K 117K 155K 196K 530K

Table 3-6. Fatigue Properties of S§2-Glass For Various Loading Ratios
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Number bf leaves

E.Y i ..t

f
)
] "I'm -

: W = Weight of compos ite leaves, 1bs.

(max. allowable = 25 1lbs.)

' H = Stacked height of composite leaves,

inches, includes spacers. Height of

present steel leaves minus three top

~leaves = 4 inches.

.

#M’

3-13. Number of Leaves vs. Fatigue Life Cycles, Front Spring.
(E-Glass; Leaf with Tapered Thickness)
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Fig. 3-15 Number of Leaves vs. Fatigue Life Cycles, Front Spring.
(E-Glass; Leaf with Constant Thickness)

-41-




RE
Loading Ratio (Table 3-IV)

R= .11

R = .22

R= .13
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(max. allowable = 25 1lbs.) :
H = Stacked height of composite leaves, [
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Fig. 3-16 Number of Leaves vs. Fatigue Life Cycles, Front Spring

(S2-Glass; Leaf with Constant Thickness)
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Fig. 3-18. Typical Computer Printout for Front Spring.
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* Based on these results, CIBA-GEIGY recommended a design for the
front spring consisting of two steel leaves with mounting eyes,
steel rebound leaf and two composite leaves of S2-glass

| fiber/epoxy with tapered thickness. TACOM agreed with this

recommendation and this design concept was selected for the front
spring.

-45-




Composite Material Properties

The fatigue load study, presented in the previous section
(Section 3), showed that S2-glass fiber/epoxy would be
required for the composite leaves in both the rear spring
(Phase I) and the front spring (Phase II). Two resin systems
were selected for evaluation, CIBA-GEIGY Systems R7269-52 and
R9269-52. Preimpregnation of the S2-glass fiber was performed
in-house. The S2-glass fiber was supplied by Owens Corning
Fiberglass.

Flexural and interlaminar shear properties were obtained from
specimens with 0 degrees and +/- 5 degrees fiber orientation.
Specimens cured at 50 psi and 100 psi were tested. All tests
were performed at room temperature,.

Flexural tests were performed per ASTM D790 with a 32:1 span
to depth ratio. Shear tests were performed per ASTM D2344.

The results of the material properties testing program for the
two systems are presented in Tables 4-1 through 4-6.

The material properties for the two resin systems are very
similar, with R7269-S2 showing slightly higher values and less
scatter. The curing pressure had a significant effect on the
properties. This is because a net resin content was used for
the prepreg, requiring higher pressure for the laminate to
consolidate. A net resin content was desireable because it
simplifies fabrication of the leaves in that cleaning of the
molds is less time consuming than with excess resin.

Based on the test results, it was decided to use the R7269-S2
system and 100 psi curing preéssure for both front and rear
springs. Later in the program, after testing individual
leaves, the +/- 5 degrees fiber orientation was abandoned in
favor of # degrees orientation.

-46-
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Specimen

No.

Ut W N+

Specimen

No.

Ultd» 0N+

TABLE 4-1.

Fiber Direction:

FLEXURAL STRENGTH

Specimen Dimensions

Width Thickness

In (mm)

750 (19.05)
.750 (19.05)
750 (19.05)
750 (19.05)
750 (19.05)

In (mm)

.136(3.45)
.136(3.45)
.135(3.43)
-134(3.40)
.135(3.43)

Material Properties for R7269-52

+/- 5 degrees

INTERLAMINAR SHEAR STRENGTH

Curing Pressure: 50 psi

Load Flex. Str. Flex. Mod.
Lbs (N) ksi(MPa) msi (GPa)
746 (3318) 174 (1299) 8.01(55.2)
725 (3225) 179 (1172) 7.69(53.0)
636 (2829) 151(1941) 7.52(51.8)
680 (3025) 164 (1131) 7.69(53.9)
660 (2936) 157(1@83) 7.69(53.0)

Average 163(1124) 7.66(52.8)

Specimen Dimensions

Wwidth Thickness

In (mm)

.511(12.98)
.524 (13.31)
.511(12.97)
.510(12.95)
.511(12.98)

In (mm)

.501(12.73)
.502(12.75)
.502(12.75)
.500(12.70)
.502(12.75)

Load

Lbs (N)

I.L.S.

Strength

psi (MPa)

2790 (12,411)
2325(10,342)
2640 (11,743)
2825(12.566)
2675(11,899)

8173 (56.4)
6629 (45.7)
7719 (53.2)
8309(57.3)
7821 (53.9)

Average
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Specimen

No.

U b W N

Specimen

No.

U s W N

TABLE 4-2. Material Properties For R7269-S52

Fiber Direction:
Curing Pressure:

FLEXURAL STRENGTH

Specimen Dimensions

wWidth Thickness

In (mm)

.748(19.00)
750 (19.05)
.747(18.97)
.751(19.08)
.752(19.19)

In (mm)

.162(4.12)
.162(4.12)
.160(4.06)
.161(4.99)
.162(4.12)

Load

Lbs (N)

817 (3634)
673 (2994)
813(3616)
825(3670)
826 (3674)

@ degrees
50 psi

Flex. Str., Flex. Mod.

ksi (MPa)

216 (1489)
178 (1227)
221 (1524)
220 (1517)
218 (1503) T

Average

INTERLAMINAR SHEAR STRENGTH

Specimen Dimensions

width Thickness

In (mm)

.498 (12.65)
.500(12.70)
.500(12.70)
.498 (12.65)
.500(12.70)

In (mm)

.318 (8.08)
.315(8.00)
.315(8.00)
.314(7.98)
.309(7.85)

Load

Lbs (N)

2221 (9880)
2203 (9799)
2229 (9915)
2192 (9751)
2170 (9653)

211(1455) ' v

I.L.S. Strength

psi (MPa)

16,518 (72.5)
10,490(72.3)
10,614 (73.2)
19,513(72.5)
16,534(72.6)

Average
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Specimen

No.

Specimen

No.

W N =

TABLE 4-3.

Fiber Direction:

Material Properties for R7269-S2

@ degrees

Curing Pressure: 100 psi
FLEXURAL STRENGTH
Specimen Dimensions Load Flex. Str. Flex. Mod.
Width Thickness Lbs (N) ksi(MPa) msi (GPa)
In (mm) In (mm)
.741(18.82) .148(3.76) 834 (3719) 183(1262) 7.88(54.3)
.742(18.85) .147(3.73) 809 (3599) 180 (1241) 8.50(58.6)
.740(18.80) .150(3.81) 842 (3745) 180 (1241) 8.69(59.9)
Average 181(1248) 8.36 (57.6)
INTERLAMINAR SHEAR STRENGTH
Specimen Dimensions Load I.L.S. Strength
Wwidth Thickness Lbs (N) psi (MPa)
In (mm) In (mm)
.252(6.40) .145(3.68) 534 (2375) 10,961(75.6)
.252(6.40) .145(3.68) 587 (2611) 12,048(83.1)
.252(6.40) .145(3.68) 585 (2602) 12,007 (82.8)
Average 11,672(80.5)

~49~




Specimen

No.

W N

Specimen

No.

Uk W N

TABLE 4-4.

Material Properties for R9269-S2

Fiber Direction:

+/- 5 degrees

Curing Pressure: 50 psi
FLEXURAL STRENGTH
Specimen Dimensions Load Flex. Str. Flex. Mod.
Width Thickness Lbs (N) ksi (MPa) msi (GPa)
In (mm) In (mm)
.751(19.08) .134(3.40) 753(3350) 179(1234) 7.89(54.4)
.752(19.10) .133(3.38) 702 (3123) 169 (1165) 8.06 (55.6)
.751(19.08) .134(3.40) 750 (3336) 178 (1227) 7.89(54.4)
Average 175(1207) 7.76(53.5)
INTERLAMINAR SHEAR STRENGTH
Specimen Dimensions Load I.L.S. Strength
Width Thickness Lbs (N) psi (MPa)

In (mm)

.515(13.08)
.512(13.01)
.5106(12.95)
.512(13.01)
.511(12.98)

In (mm)

.499 (12.68)
.503(12.78)
.503(12.78)
.503(12.78)
.502(12.75)

2425 (16,787)
2600 (11,565)
2060 ( 9,163)
2400 (10,676)
2255(10,031)

7,077 (48.8)
7,572(52.2)
6,023 (41.5)
6,989 (48.2)
6,593 (45.5)

Average
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TABLE 4-5. Material Properties for R9269-52

Fiber Direction: @ degrees
Curing Pressure: 50 psi
FLEXURAL STRENGTH
- Specimen Dimensions Load Flex. Str. Flex. Mod.
Width Thickness Lbs (N) ksi (MPa)
In (mm) In (mm)
.741(18.82) .152(3.86) 691 (3074) 210 (1448)
.748 (19.00) .154(3.91) 758 (3372) 222 (1531)
.746 (18.95) .150(3.81) 618 (2749) 191 (1317)
.745(18.92) .157(3.99) 735(3269) 208 (1434)
.744(18.90) .155(3.94) 744 (3310) 216 (1489)
Average 209 (1441)
INTERLAMINAR SHEAR STRENGTH
Specimen Dimensions Load I.L.S. Strength
width Thickness Lbs (N) psi(MPa)

In (mm)

.496 (12.60)
.498(12.65)
.497 (12.62)
.498(12.65)
.486 (12.34)

In (mm)

.509(12.93)
.505(12.83)
.508(12.99)
.507(12.88)
.508(12.90)

3076 (13,683)
3133(13,936)
3115(13,856)
3109(13,830)
3136 (13,959)

9,138(63.0)
9,343 (64.4)
9,253(63.8)
9,235(63.7)
9,335(64.4)

Average
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TABLE 4-6 Material Properties for R9269-S2

Fiber Direction:

@ degrees

INTERLAMINAR SHEAR STRENGTH

Curing Pressure: 100 psi
FLEXURAL STRENGTH

Specimen Dimensions Load Flex. Str. Flex. Mod.

Width Thickness Lbs (N) ksi (MPa) msi (GPa)

In (mm) In (mm)

.746 (18.95) .145(3.68) 803 (3572) 179(1234) 7.94(54.7)
.747(18.97) .148(3.76) 811 (3608) 174 (1200) 7.46 (51.4)
.747(18.97) .145(3.68) 813(3616) 181(1248) 8.40(57.9)
Average 178 (1227) 7.93(54.7)

Specimen Dimensions Load I.L.S. Strength
wWidth Thickness Lbs (N) psi (MPa)
In {(mm) In (mm)
«253(6.43) .144(3.66) 569 (2531) 11,714 (80.8)
«252(6.40) .144(3.66) 535(2380) 11,057(76.2)
.251(6.38) .143(3.63) 546 (2429) 11,409(78.7)
Average 11,393(78.6)
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Design Studies

Introduction

The objective of this program was to develop a
manufacturing process by which lightweight composite leaf
springs for a 5-ton truck could be produced in quantity.
An existing composite spring design, developed under an
earlier contract, was to be used for the manufacturing
study. Reconfiguration of the existing design was to be
limited to that necessary to the development of the
manufacturing process. However, as mentioned earlier, the
Army had increased load and deflection regquirements
significantly, necessitating an entirely new design. The
new spring design was selected based on the results of the
fatigue load study described in Section 3.

Two spring assemblies were involved in the program, which
was divided into two phases. Phase I involved the rear
spring assembly, Ordnance Part no. 7409613, while Phase II
involved the ‘front spring assembly, Ordnance Part no.
7411114.

Design Criteria

Design criteria for the composite leaf spring are
structural integrity, interchangeability with the present
metal springs, lighter weight than the metal springs, cost,
and, most important, compatibility with current
manufacturing technology to allow quantity production (25
sets of springs per day).

Other requirements for the spring assemblies are as
follows:

Rear Spring Assembly

. The rate of spring deflection for an unclamped spring
assembly shall be 5983 +/- 618 lbs per inch (1048 +/-
108 N/mm) and the deflection at a load of 12,680 lbs
(56,404 N) shall be 2.125 +/- .125 inches, (54 +/- 3
mm) from the free state. :

. The operating temperature range shall be -65 to +250
degrees F (-56 to 121 degrees C).

. The weight of the spring assembly shall be 175 1lbs (79

kg) or less. Current steel spring weight is 293 1lbs
(133 kg).
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. The maximum vertical load on the spring assembly shall
be 56,0608 lbs (249,367 N). This is the sum of the
static load, 12,680 lbs (56,483 N), and 7.25 inches
(184 mm) jounce.

. The composite leaves shall be designed for a fatigue
life as described in the fatigue load study presented
in Section 3.

Front Spring Assembly

. The rate of spring deflection for an unclamped spring
assembly shall be 2271 +/- 135 1lbs per inch (398 +/- 24
N/mm.)

. The operating temperature range shall be -65 to +250
degrees F (-54 to 121 degrees C).

. The weight of the spring assembly shall be 90 lbs (41
kg) or less. Current steel spring weight is 149 1lbs
(68 kg).

. The maximum vertical load on the spring assembly shall
be 14,613 lbs (64,999N). This is the sum of the load
at gross vehicle weight (GVW) 5,529 lbs (24,593 N), and
4.0 inches (162 mm) jounce.

. The maximum axle torque of 165,270 in-1bs (18,673 Nm)
shall be reacted by the spring assembly.

. The composite leaves shall be designed for a fatigue
life as described in the fatigue load study presented
in Section 3.

Design - Phase I, Rear Spring Assembly

The dimensions of the present steel spring assembly are
given on TACOM Drawing no. 7409613. The distance between
the center and the end support point is 27 inches (686 mm)
with the spring in the flat, unloaded condition. The
spring is symmetrical about its center line. The width and
thickness of the steel leaf are 4 inches (102 mm) and .558
inches (14 mm), respectively.
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The two long leaves (bottom leaves) in the steel spring
assembly are used in the composite spring because of
interchangeability requirements. The steel leaves provide
contact points to the vehicle and fit into the existing
support brackets. Composite materials have much lower
shear strength than steel, and a composite leaf or leaves
would have to be much thicker at the tip than the steel
leaves in order to take the vertical shear loads, and thus
would not fit the existing support bracket on the vehicle.
The maximum length for the composite leaves that can be
allowed without interference with the brackets is 49 inches
(1245 mm). Because of the shear characteristics, all
composite leaves were designed to have equal length.

The material and configuration of the composite leaves were
selected from the results of the fatigue load study. S2-
glass fiber/epoxy and a leaf with tapered thickness was
selected as the combination that would best satisfy both
fatigue life requirements and geometric constraints.

Spring Deflection Rate

Calculating the required spring rate for the composite
leaves is somewhat complicated because of the different
lengths of the steel and composite leaves. It is an
iterative process in that the stiffness factor (EI) must be
estimated for the composite leaves.

SN S Y —
(610 mm) i;////’<:> Composite
/. leaves
>/
r
4 7
Py F2 \\ .
: Steel
1 leaves
A
&——I.1=27"m—

(686 mm)

~55~




Stiffness factors

Steel (EI)
Composite (EI)

3.48 x 10E6 psi (24 GPa)
12.1 x 10E®6 psi (83 GPa)

Deflection of steel leaves at sect. A-A

2 3
8 _ Pl L2 (3L1"L2) _ P2L2
1 6 (EI), 3(EI),

Deflection of composite leaves at sect. A-A

3
5 - Poly
2° 3(ED),
81= 82 when steel and composite leaves are in contact.
P1Ly% (311~ Lp)  PoLy> BoL3
6 (EI)q 3(EI);  3(EI),
2 -1 3
P, L2 (3L1 L2)= P,oL, ((EI)1+ (EI)2>
6(EI) 3 (EI) (EI),
. . = p. 3L1°L2 (EI);
2 1 72L,  (ED);+ (EI),
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substitute Ll’ L2, (EI)l, (EI)2

Py = .92 Py
The deflection for the composite leaves is then,
5 = .92PL,3
3(EI)2
8= .000351 P
and the spring rate, P,/§ = ___L1 = 2846 lbs/in per
half or 5692 1bs/in (997 Njm) -000351

This is not an exact number since an average value of EI
was used for the tapered composite leaves.

A load/deflection diagram for the rear spring assembly is
shown in Figure 5-1.

Shear and moment diagrams show that there 1is no severe

stress concentration in the steel leaves at section A-A as
may be expected.

P

1 c.L. . . C.L.
SYM. SYM.
STEEL
LEAVES
.08P, .
SEEEERNNRENRERNN AT
| |
922 : |
COMPOSITE l
LEAVES |
l +
| I
SECT. A-A SECT. A-A
(TIP OF COMPOSITE
LEAVES)
SHEAR DIAGRAM MOMENT DIAGRAM
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Computer Analysis

A number of composite programs have been developed by CIBA-
GEIGY to analyze and optimize leave spring designs for
trucks and automobiles. The programs accept as input the
geometric restraints (such as length and width), load and
stiffness requirements, and material properties. The
output of the program is a spring design that meets load
(static and fatigue), stiffness, and deflection
requirements with minimum weight and number of leaves.

The CIBA-GEIGY computer programs cover leaves with constant
thickness, linear - or parabolic-tapered thickness, tapered
leaf width, and sandwich type leaves consisting of
different materials. Several of these programs were used
to establish the data in Section 3.

For the rear spring composite leaves, parabolic tapering of
the leaf thickness was selected as the best suitable
design. This tapering is based on a computer analysis
which optimizes with a constant bending stress along the
length of the leaf. Near the end, away from the seat,
shear stresses (rather than bending stresses) are critical
and, therefore, the thickness becomes constant. The
program output is shown in Figure 5-2.

The leaf thickness is calculated for 20 points between the
center of the leaf and the tip, but any number of points
may be requested. For instance, N/C machining of tooling
surfaces requires thickness dimensions at length increments
of .10 inch (2.5 mm) or less. The program output shows a
thickness distribution which is identical for all leaves.

The program output also shows calculated spring rate,
bending stress and combined weight of all leaves.
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5.3.4

Configuration

The configuration of the rear spring assembly is shown in
Figure 5-3. It consists of two steel leaves and three
composite material leaves made of S2-glass fiber/epoxy.
The fibers are oriented parallel to the length of the leaf.
A +/- 5 degree fiber orientation was considered earlier in
the program, but was abandoned when edge fiber delamination
problems were encountered in both testing and fabrication.

Spacers made of woven fiberglass fabric are bonded to the
leaves at the center to provide separation of the leaves
and also to reinforce the hole for the center bolt. The
bolt is used to align the leaves and to provide an indexing
point for the seat clamp.

.Stress concentration around the hole should be minimal.

The seat clamp is long enough, 16.75 inches (273 mm), to
ensure that there are no bending loads at the center of the
leaf. There are no lateral loads on the leaf causing
bearing stress on the composite laminate.

Rubbing pads of Teflon are bonded to the tips of the leaves
to provide wear surfaces. The pads are bonded to both
sides of the leaves so that the rubbing action is Teflon
against Teflon. This ensures minimum friction and maximum
protection for the laminate. The configurations of the
individual composite leaves are shown in Figures 5-4, 5-5,
and 5-6. Note that the drawings have not been revised to
show 0 degree fiber orientation.

Weight

The weight of one composite leaf shown in Figure 5-3 is 16
l1bs (7.3 kg). The weight of the assembled rear spring is

125 1lbs (56.7 kg). This is 50 1lbs (22.7 kg) less than the

allowable maximum weight of 175 1lbs (79.4 kg), and 168 lbs

" (76.2 kg) lighter than the current steel spring.

The weight savings over the current steel spring is then
57%.
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5.4

5.4.1

Design - Phase 11, Front Spring Assembly

The dimensions of the present steel front spring assembly
are given on TACOM Drawing no. 7411110. The distance
between he mounting eye and the center bolt is 25 inches
(1635 mm) with the spring in a flat condition. The spring
is symmetrical about its center line. The leaf width and
thickness of the steel leaf are 3 inches (76 mm) and .447
inch (11 mm), respectively. The rebound leaf is .360 inch
(9 mm) thick.

The two long leaves with mounting eyes and the rebound leaf
in the steel spring assembly are used in the composite
spring because of interchangeability requirements. The two
steel leaves with eyes provide mounting points to the
vehicle and fit into the existing support brackets.

Because of the much lower shear strength of the composite
material when compared to steel, all composite leaves in
the front spring were designed to have equal length. This
is because shear stresses, rather than bending stresses,
dictate the minimum thickness a commposite leaf can have at
the tip. There were no envelope restrictions at the
mounting brackets, so the composite leaves could be made
the same length as the steel leaves.

The material and configuration of the composite leaves were
selected from the results of the fatigue load study
presented in Section 3. S2-glass fiber/epoxy and a leaf
with tapered thickness was selected as the combination
which would best satisfy both fatigue life requirements and
geometric constraints.

Spring Deflection Rate

The required spring rate for the front spring assembly is
2271+/-135 lbs/inch (398 +/- 24 N/mm). To obtain the
required spring rate for the composite 1leaves, it is
necessary to know the spring rate of the two steel leaves
and the rebound leaf.

The combined spring rate for the steel leaves was
calculated to be 688 1lbs/inch (121 N/mm).
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The required rate for the composite leaves is then,
S/R = 2271-688 = 1583 1lbs/in (277 N/mm) .
Spring deflection,

at static load: 2.18 inches (55 mm)
at full jounce: 6.7 inches (170 mm)

Load on composite leaves,

at static load: 2.18 x 1583 = 3451 1lbs (15,351 N)
at full jounce: 6.7 x 1583 = 10,606 1lbs (47,178 N)

Axle torque is 165,270 inches-1lbs (18,673 Nm) per spring

Axle torque is reacted at the mounting eyes.

Torque load at eye 43§%§QQ = 3305 1bs (14,703 N).
Torque load on composite leaves 3395 . 1583 . 2304 1bs

(10,249 N). 2271

This load is added as a tip load to one end of the
composite leaves and subtracted from the other end.

A load/deflection diagram for the front spring assembly is
shown in Figure 5-7.
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Computer Analysis

The computer program used for the analysis of the front
spring composite leaves is similar to that used for the
rear spring and is described in paragraph 5.3.2. As was
the case with the rear spring, a design with parabolic
tapering of the leaf thickness and S2-glass fiber material
was selected for the front spring composite leaves.

The program output, shown in Figure 5-8, shows a design
consisting of two composite leaves of equal length and with
identical thickness distribution. Also shown are
calculated spring rate, bending stress, and combined weight
of all composite leaves.

Configuration

Figure 5-9 shows the configuration of the front spring
assembly. It consists of two steel leaves with eyes, one
steel rebound leaf and two composite material leaves made
of S2-glass fiber/epoxy. The fibers are oriented parallel
to the length of the leaf. A +/- 5 degree fiber
orientation was considered earlier in the program, but was
abandoned when edge fiber delaminations problems were
encountered in both testing and fabrication of the rear
spring leaves.

Spacers made of woven fiberglass fabric are bonded to the
leaves at the center to provide separation of the leaves
and also to reinforce the hole for the center bolt. The
bolt is used to align the leaves and to transmit lateral
loads from the steel leaves to the seat clamp. Stress
concentration around the holes in the composite leaves
should be minimal.

The seat clamp is long enough (8.5 inches or 216 mm) to
ensure that there are no bending loads at the center of the
leaf. Lateral loads are transmitted from the seat clamp to
the vehicle structure through the steel leaves. This
design configuration minimizes bearing stresses between the
bolt and the composite leaves.

Rubbing pads of Teflon are bonded to the tips of the leaves
to provide wear surfaces. The pads are bonded to both
sides of the leaves so that the rubbing action is Teflon
against Teflon. This ensures minimum friction and maximum
protection for the laminate. The configurations of the
individual composite leaves are shown in Figures 5-1¢ and
5-11. Note that the drawings have not been revised to show
@ degree fiber orientation.
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5.4.4

Late in the program, a modification was made to the front
spring assembly in that a short steel leaf was added to the
underside of the lower composite leaf. This was prompted
by a reported failure in the rear spring, apparently caused
by high stress concentration in the composite leaf at the
edge of the seat clamp. The short steel leaf will provide
a smoother transition between seat clamp and composite
leaf. The short leaf used is number 10 leaf in the steel
front spring assembly. It is 15.75 inches (400 mm) long
and, therefore, it protrudes 3.6 inches (91 mm) beyond the

'seat clamp. A 5 degree chamfer, approximately 1.5 inches

(38 mm) long, and a corner radius were machined in the leaf
on the side which is adjacent to the composite leaf. This
will ensure that there are no sharp ponts in contact with
the composite leave as the spring is deflected. A .032
inch (.8 mm) thick sheet of Teflon, 17 inches (432 mm) long
by 2.75 inches (70 mm) wide, bonded to the lower composite

leaf provides a separation and wear surface with the short
steel leaf.

Weight

The weight of one composite leaf shown in Figure 5-9 is
16.5 1lbs (48 kg). The weight of the assembled front
spring is 85 1lbs (39 kg). This is 5 lbs (2.3 kg) less
than the allowable maximum weight of 99 1lbs (41 kg), and 64
1bs (29 kg) lighter than the current steel spring. The
weight savings over the current steel spring is then 43%.
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Fabrication of Prototype Leaf Springs

Introduction

The program involved the fabrication of 10 rear spring
assemblies (Phase I) and 10 front spring assemblies (Phase
II). The composite leaves in the assembly were to be
fabricated using a process which would be capable of
producing 25 sets (50 spring assemblies) per day. For this
purpose, a number of different manufacturing processes were
evaluated. As a rule, when designing with composite
orthotropic materials, manufacturing processes are considered
to a much larger degree than is usually the practice with
conventional isotropic materials., 1In this case, performance
requirements limited the number of design configurations and,
therefore, also eliminated some manufacturing processes from
consideration.

Manufacturing Process Evaluation

A spring leaf consists of essentially unidirectional fibers
oriented parallel to the length of the leaf, and embedded in
a structural resin matrix. The fibers resist tension and
compression resulting from bending forces. The resin
transfers shear loading between adjacent fiber layers, and
also supports fibers undergoing compression and thus prevents
buckling. After the resin solidifies from heat and pressure
applied during molding or forming, the resulting laminate
exhibits high strength in the direction of the fibers.
However, strength perpendicular to the fibers is relatively
low. 1If required properties in directions perpendicular to
the fibers can be improved by arranging some of the fibers in
the desired direction, or by arranging layers of fibers which
cross each other at alternating angles (such as + and - 5
degrees) to the longitudinal axis. The properties in the
longitudinal direction will then be reduced. .

Application of resin to the fiber can be performed in a
separate operation prior to lay-up on the tool (pre-
impregnated), or the fiber can pass through a batch of resin
at the time of lay-up (wet lay-up). Preimpregnation is
usually performed by specialty houses specializing in this
process. The fiber is then supplied to the user in the form
of rolls or narrow tapé or broadgoods. 1In this form, the
material is laid up on the tool by automated type laying
machines, or it is cut into patterns prior to depositing on
the tool. The resin in.the prepreg is slightly cured to form
a tacky surface, but it does not run. The amount of resin
deposited on the fiber is closely controlled. For very large
productions, the pre-impregnation process can be made a part

-75-




Wet impregnation is performed at the time of lay-up of the
fiber on the tool. The most common wet lay-up process 1is
filament winding where the fiber tow is wound over a mandrel
of the desired shape after it has passed through a bath of
liquid resin. A series of rollers squeeze out excess resin
from the fiber before it is deposited on the mandrel.

Three different fabrication processes, considered practical
for the manufacture of the spring leaves, were evaluated.

. Filament winding
. Pultrusion
. Ply lamination and compression molding.

Filament Winding

Filament winding consists of depositing a continuous fiber
strand over a rotating mandrel while guiding the fiber back
and forth along the axis of rotation to achieve the desired
winding angle and build up of material. For a spring leaf,
which consists of a slightly curved, narrow beam with the
fiber oriented along the length of the beam, the winding
mandrel would be shaped such that one winding operation
would produce two or more leaves. The concept is shown in
Figure 6-1. Constant thickness is easier to produce, but a
tapered thickness leaf, as in the selected design, can be
produced as shown in the illustration. To achieve the
desired fiber volume, material properties, and dimensional
control, it is necessary to cure the wound laminate under
heat and pressure in a closed, matched die. The mandrel
over which the fiber was wound forms a part of the mold.
After curing, the ends of the loop are cut off so that the
part can be removed from the tool. Either pre-impregnated
fiber or wet winding may be used for this operation.
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i Fig. 6-1 Filament Winding of Spring Leaf
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Pultrusion

The pultrusion method of fabricating composite components
consists of pulling continuous resin impregnated fibers
through a ceramic die to produce a given cross section. As
the resin-impregnated material is drawn through the die, it
is cured rapidly by R.F. heating. Pultrusions are normally
produced in straight, continuous sections but with proper
tooling the process is capable of producing parts with
varying cross sectional shape or with curvature, as long as
the volume of fibers drawn through the die is held
constant. The material is 90% cured at the time it comes
out of the die and, therefore, reshaping of the part is
limited to minor changes.

The pultrusion process is usually performed with polyester
resins, which process much more easily in pultrusion than
other resins. Polyester resin systems can be pultruded 10
times faster than epoxy resin systems.

The process of pultruding and forming the part in one
operation is called pulforming. A pulforming concept is
depicted in Figure 6-2. The pulforming machine was
developed and built by Goldsworthy Engineering in Torrance,

California. This process is still in the developmental
stage.

Compression Molding

Compression molding of ply laminations involves molding of
pre-impregnated plies in a heated, matched metal mold. The
process requires that individual patterns be cut from
broadgoods sheets and placed in the mold. The patterns may
be cut from pre-plied sheets consisting of as many as 10
plies. Thickness tapering, such as that of an automotive
spring leaf, is accomplished by stacking plies of different
lengths. These plies must be cut and stacked as individual
plies to minimize the effect of the steps. The process can
be automated. Machines which will cut and stack patterns
in a predetermined sequence, are available. The equipment
shown in Figure 6-3 is being manufactured by Century
Design, Inc., in San Diego, California. At present, the
machine requires a manual setting of the pattern length. A
computer controlled operation, where the length and

placement of the pattern can be programmed, is under
development.
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For very thick laminates, as in the spring leaf, the
stacked prepreg must be compacted or debulked in stages
before it is placed in the mold. This is normally done
under a vacuum at room temperature or slightly elevated
temperature in stack thicknesses of 1/2 inch (13mm) or
less. The purpose of the debulking is to remove trapped
air between the plies, which could result in voids in the
cured laminate.

For economic reasons, the mold should be large enocugh to
produce a laminate from which 1¢ leaves could be cut. This
requires a large press. A laminating pressure-of 100 psi
(690 KPa) on this type of mold for the rear spring leaves
requires a press with 125 tons capacity. The press platens
have to be a minimum of 5 x 5 feet (1.5 x 1.5 m) in size to
accommodate the tool,

Curing time and temperature requirements depend on the
resin formulation. Short time curing systems have also
short "out-life", the time from cold storage to curing.
This presents no problem in an automated fabrication
process, where the material flows rapidly. For prototype
fabrication, however, where hand lay-up methods are
substituted for automation, the "out-time" may be as long
as several days. The resin system must then be formulated
accordingly, and the curing time here may be as long as 3
to 4 hours at 250 degrees F (121 degrees C). For an
automated process the resin would be formulated for a
curing time of around 15-20 minutes at temperatures from
300 to 400 degrees F (149 to 204 degrees C). The part may
then be removed from the tool and post-cured in an oven,
thereby releasing the mold for the next laminate.
Turnaround time for the mold can thus be minimized. The
compression molding process is shown in Figure 6-4.
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Machining of Laminates

After curing, the laminates would be sliced into individual
leaves. Each leaf would then have its ends trimmed and a
corner radius machined along the cut edges to reduce stress
concentrations. This process would be identical for a
compression molded or a filament wound multi-leaf laminate.
The process can be automated as shown in Figure 6-5.

After inspection, Teflon pads and woven fiberglass spacers
would be bonded to the leaf. The Teflon pad would then be
temporarily masked off, and a polyurethane coating applied
to the leaf. The leaf would then be assembled together
with other leaves to form a spring assembly.

Selection of Fabrication Process

The compression molding process, described in paragraph
6.2.3, was selected as the most suitable process for the
manufacture of the composite spring leaves. The process
can be almost fully automated and there are no steps
requiring developmental work. The traditional and proven
process of hand-cutting patterns and lay-up in a mold can
be directly translated into automation, accurately
repeating an established operation without risk of human
errors, thereby meeting the requirement of producing
springs with consistent properties.

The filament winding process is also well established, but
it was felt that some development would be needed to adapt
the process for manufacturing tapered leaves.

Pultrusion or pulforming of spring leaves is still in the
development stage.
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Fabrication - Phase I, Rear Spring

Tooling

The three composite leaves in the rear spring assembly were
fabricated in matched molds made of aluminum,., Each mold
was of different width. The reason was to evaluate the
feasibility of molding laminates or billets of widths from
which several leaves could be obtained. The mold for the
lower leaf produced a laminate 18 inches (457 mm) wide.
From this laminate, four 4-inch (162 mm) wide leaves could
be cut. The mold for the center leaf produced one leaf at
a time and the mold for the upper leaf produced 2 leaves.

The size of the mold did not appear to affect the quality
of the laminate. Good laminates were produced from each
tool. Handling of the larger tool sometimes presented a
problem. On several occasions, the tool had to be
disassembled in order to remove the laminate, which meant
that the tool had to be removed from the press. This
operation is difficult without proper equipment since the
tool weighs in excess of 700 1lbs (317 kg). At least two
laminates were damaged as a result of improper handling of
the tool. This problem would not exist with proper
production tools and equipment. Features for reliable
ejection of the part from the tool would be incorporated
and handling equipment would be available.

The molding surfaces were hard-anodized for better wear
resistance. Each mold half was electrically heated by rod
heaters embedded in the base. The heaters were controlled
by thermostats. A 2 degree draft angle was incorporated in
the female mold half of the large tool later in the program
to facilitate removal of the part.

Figure 6-6 shows the large mold installed in the press.

Figures 6-7 and 6-8 show the molds for leaves number 4 and
5.
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. , Fig. 6-7. Mold, Rear Spring Leaf #4
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Fig. 6-8. Mold, Rear Spring Leaf #5
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6.3.2

Component Fabrication

Individual plies were cut from a 42 inch (1667 mm) wide
roll of S2-glass fiber/epoxy prepreg. The lay-up was done
in three phases. The lower and upper layers consist of
full length plies, while the center layer provides the
thickness tapering. The taper was achieved by cutting and
stacking plies of different lengths. The shorter plies in
the tapered section were placed in the center with
successively longer plies placed on either side of the
center line. Each ply was positioned carefully on the
stack to ensure parallelity of the fibers and symmetry of
the taper about the center line. This was aided by the
fact that a prepreg with net resin content was used and, as
such, was not very tacky. The ply did not stick
immediately to the next ply and allowed sliding the ply
into the correct position before applying a slight pressure
for permanent adhesion.

A system was devised to ensure the correct count of plies
in each stack. This operation must be very carefully
controlled in a hand lay-up process to achieve consistent
properties in the laminate. There are 150 plies in each
leaf and the risk for human error exists. 1In an automated,
computer controlled operation, this risk would be
eliminated. As a check of the number of plies, each stack
was weighed and compared with an established weight.

Each stack of plies was debulked under a vacuum before it
was placed in the mold. A vacuum release cloth was placed
between the mold surface and the laminate. No bleeder
cloth was used since there was little or no excess resin in
the prepreg. The small amount of excess resin filled the
cavities between the mold sides and the laminate. The lay-
up was cured at 100 psi (69¢ KPa) and 250 degrees F (121
Cc).

In a closed, matched mold the pressure on the laminate is a
calculated pressure. The calculation is based on a known
thickness of a cured ply. The desired molding pressure is
then converted to a press load. At the time the mold is
fully closed, the press load is observed and recorded.
Large deviations from the pre-determined load would
indicate an incorrect number of plies in the laminate.
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The mold was allowed to cool down before the laminate was
removed. In a production set-up the tool would be designed
with a rapid cooling system and only cooled to a
temperature where the laminate could be handled easily and
removed without causing damage. A molded billet from the
large tool is shown in Figure 6-9.

The laminate was then cut into leaves of the desired width.
The cutting was done with a 10 inch diameter water cooled
diamond coated saw. The arrangement is shown in Figure 6-
10. The cut surfaces were inspected for voids and
discontinuties in the fibers. The sharp edges left by the
cutting operation were then radiused. A generous radius
along the edges of the leaf is necessary to prevent stress
concentration. An abrasive routing tool producing a 3/16
inch (5 mm) radius was developed and the cutting was
performed in a water spray. It was found that a carbide
tipped router bit had a tendency to delaminate the outer
plies. Further development of this tool is necessary to
assure a smooth operation in a production set-up.

Spacers made of laminated E-glass fabric/epoxy were cut to
size, chamfered along the ends, and bonded with adhesive to
each leaf. Wear pads of Teflon were cut to size and also
bonded with adhesive to the tips of the leaves. Bonding of
Teflon requires special procedures to achieve good
adhesion. 1It also requires a locating fixture to prevent
the pad from sliding when pressure is applied. Figure 6-11
shows the locating fixture as used on a front spring leaf.
After drilling the bolt hole through the center of the
leaf, the Teflon pads were masked off and the leaf was
~ spray-coated with polyurethane.

A step by step procedure for fabrication of the composite
- leaves is included in Appendix A.




6-9.

Molded Billet
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Cutting of Laminate

6-10.

-Fig.
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6-11.

Fixture for Positioning and
Bonding of Wear Pad
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6.3.3

Assemblz

The three composite leaves were assembled to two steel
leaves in accordance with the assembly drawing shown in
Figure 6-12. The two steel leaves were obtained from the
existing steel spring assembly, Ordnance Part no. 7409613.
Ten of these assemblies were purchased from Rockwell
International, Suspension Components Division, Troy,
Michigan. No alterations were made to these leaves. The
center bolt in the steel spring assembly was also used in
the composite assembly. Because of the shorter clamping
length required for the composite assembly, the bolt was
shortened and re-threaded.

The clips used in the steel spring assembly to keep the
leaves aligned during handling and installation were not
used on the composite assembly. Attaching the clips to the
composite leaves with mechanical means, such as bolting,
presents a problem in that it weakens the area of the leaf
which is designed for maximum shear stresses. Attaching
the clip with adhesive was not considered practical. 1It
would be possible to weld the clip to one of the steel
leaves, if this operation is performed prior to heat
treatment and shot peening of the leaf.

Ten springs were assembled and shipped to TACOM, Warren,
Michigan, for testing. The rear spring assembly is shown
in Figures 6-13 and 6-14.
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Fig.

6~-13.

Rear Spring Prior to Assembly
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6.4

6.4.1

Fabrication - Phase II, Front Spring

Tooling

The two composite leaves in the front spring assembly were
fabricated in matched molds made of aluminum. The molds
were of a different construction than those used for the
rear spring described in paragraph 6.3.1. The slight
curvature of the rear spring leaves allowed the mold
surfaces to be machined from a solid aluminum plate. The
curvatures of the front spring leaves are more pronounced
and require a much deeper mold. Machining the mold from a
solid aluminum block was not practical because of cost
considerations. 1Instead, the mold was made from one inch
thick aluminum plates bolted and joined together to form
the required width. Eleven plates were required to make up
the mold. The contour was NC machined in each plate. Side
plates made of 1/2 inch (13 mm) thick steel were attached
to the convex half of the mold. Vertical slots provided
indexing and stops for the concave half. The ends of the
mold were left open. Figure 6-15 shows the mold design,
and Figures 6-16 and 6-17 show details of one of the molds.
The molds are wide enough to produce a laminate from which
three leaves can be cut.

Some problems were encountered with this mold construction.
When pressure was applied to the mold, the plates shifted
and spread apart enough to produce visible ridges in the
laminate. This condition was rectified by a thin metal
caul sheet placed over the contoured mold surface. The
molds were not heated internally as were the rear spring
molds. Heat was supplied through contact with heated press
platens,

Component Fabrication

Cutting and stacking of individual plies was performed in
the same manner as described for the rear spring leaves in
paragraph 6.3.2. See figure 6-18.

The stacks were debulked under a vacuum and placed on the
convex mold surface. A tedlar release cloth separated the
laminate from the caul sheet. No bleeder cloth was used.

The lay-up was cured at 100 psi (698 KPa) and 250 degrees
F. (121 degrees C).
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Fig. 6-16. Mold Detail, Front Spring
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Fig.

6-17 Mold Detail, Front
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6-18 Cutting and Stacking Prepreg
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6.4.3

The curing operation for the front spring leaves was
different than for the rear spring leaves in that a heated
press was used instead of an internally heated mold. The
mold, positioned in the press, in shown in Figure 6-19.
Not shown in the picture is the insulation blanket covering
the exposed surfaces of the mold during the curing
operation.

Cutting of individual leaves from a billet and rounding of
the edges was performed in the same manner as was described
earlier for the rear spring leaves. Figure 6-20 shows the
three leaves sliced from one billet. The markings are
thickness dimension notations. This set was used to verify
the correctness of the mold contours.

Spacers and Teflon wear pads were added to the leaves.
After the hole for the center bolt had been drilled, the
Teflon pads were masked and the leaves were given a spray
coat of polyurethane. A step by step procedure for
fabrication of the composite leaves is included in Appendix
B. A completed leaf is shown in Figure 6-21. A detail of
the center spacer is shown in Figure 6-22, and of the wear
pad in Figure 6-23. The fixture for bonding of the wear
pad is shown in Figure 6-24.

Assemblx

The two composite leaves were assembled to four steel
leaves in accordance with the assembly drawing shown in
Figure 6-25. The steel leaves were obtained from the
existing steel spring assembly, Ordnance Part no. 7411114.
Ten of these assemblies were purchased from Rockwell
International, Suspension Components Division, Troy,
Michigan. No alterations were made to the three top
leaves. The bottom leaf, which is leaf number 16 in the
steel spring assembly, was machined per the drawing shown
in Figure 6-26. The chamfer and radiused corner were added
to prevent point contact and stress concentrations in the
composite leaf during deflection of the spring. The center
bolt in the steel spring assembly was also used in the
composite spring. The clamped thickness is approximately
the same in both assemblies so no alteration to the bolt
length was required.

-103-




L]

Front Spring Mold Installed in Press

6-19.
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Fig. . 6-20.

Spring Leaves Sliced from Billet
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6-21.

Front Spring Leaf
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Fig.

6-22. Detail of Spacer

=107~




Teflon Wear Pad
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6-24.

Fixture for Positioning and

Bonding of Wear Pad
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The clips used to align the leaves in the steel spring
assembly were deleted from the composite spring for the
same reasons stated for the rear spring in paragraph 6.3.3.

The springs were assembled and shipped to TACOM, Warren,
Michigan for testing. The front spring assemblies are
shown in Figures 6-27. Details of the assembled spring are
shown in Figures 6-28 and 6-29.
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Fig.

6-27.

Assembled Front Springs
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Fig.

6-28

Detail of Lower Leaf
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6-29.

Detail of Mounting Eye

-115-




7.1

7.2

7.3

Testing of Prototype Spring Leaves

Introduction

Testing of the spring assemblies was not a contractor
responsibility and was to be conducted at TACOM. CIBA-GEIGY,
however, decided to include a limited testing program of
individual leaves. The purpose of the in-house testing was
to assist in the evaluation of the design. The testing
consisted of static loading to verify spring rates and
fatigue loading. Test specimens were cut from some of the
leaves for testing of flexure strength and interlaminar shear
strength.

Test Set-Up

Static and fatigue testing of individual leaves conducted by
CIBA-GEIGY was performed in a test fixture specifically
designed for testing thin, flat beams in bending. The test
set-up is shown in Figure 7-1. The tips of the leaves are
clamped to pivoting links which compensate for changes in

-length during flexure. The load is applied at the center as

a point load to represent an unclamped spring leaf. The load
is applied downward by a hydraulic cylinder, and is measured
by a load cell. A linear variable displacement transducer is
used to measure deflection. For fatigue testing, the
deflections are controlled by micro limit switches. The load
and deflection are displayed on digital meters mounted on an
instrument panel in the control room. A load/deflection
diagram is obtained from an x,y, plotter and a counter
records the number of load cycles applied to the test
specimen. A pressure sensing device in the hydraulic system
provides automatic shut-off in case of changes in pressure
limits which would indicate failure of the test specimen or
failure within the test set-up.

Test Results

When testing individual leaves, the load is applied as a
point load at the center of the leaf, whereas in the
assembled spring the load is distributed over the area of the
clamp. 1In the assembled spring, the bending stresses at the
center of the leaf is, therefore, close to zero, but in the
tests the maximum bending stress occur at the center. The
deflection for the individual leaf must, therefore, be
adjusted so that the bending stress at the center of the leaf
does not exceed the calculated value. The center bolt hole
was not drilled in the test leaves for that reason.

-116-

»

*




i
i
L]
»
. *
&
.
»

Fig.

7-1 Test Set-up for Fatigue Cycling
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From the fatigue load study in Section 3.0, a fatigue life of
30,000 cycles was predicted for a loading ratio of R = .16 (R
= min./max. stress) at a maximum bending stress of 116,000
psi (800 MPa). One leaf was tested at this stress level, but
at a loading ratio, of R = . The expected 1life of this
combination is 10,000 cycles. The test was discontinued
after 11,000 cycles because of time limitation. The leaf 4id
not show any signs of degradation. The cycling capacity of
the test fixture at this load/deflection was four cycles per
minute and it was, therefore, decided to cycle the leaves at
higher stress levels and a loading ratio of @8, in order to
shorten the testing time. Three more leaves were tested at
stress levels of 121 ksi, 118.5 ksi and 117 ksi (834, 817,
and 807 MPa). All leaves failed at less than the predicted
number of cycles. The fatigue life was predicted from the
Goodman diagram for S2-glass fiber/epoxy shown in Figure 3-3
in Section 3.0. Assuming that the Goodman diagram reflects
realistic numbers, the test results of the three leaves
indicate that the ultimate flexure strength was 168 to 165
ksi (1163 to 1138 MPa), instead of 185 ksi (1276 MPa) as used
in the design calculations. The probable reason for this is
that these leaves were made from a prepreg batch which has
lower than nominal resin content, although still within the
specified limits. Coupon testing also indicated lower
flexure strength for laminates made from low resin content
prepreg. A typical leaf failure is shown in Figure 7-2.

As a result of the testing, prepreg rolls with higher than
nominal resin content were selected for fabricating the
leaves used in the delivered spring assemblies. Time did not
permit testing of these leaves.
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7-2.

Typical Fatigue Failure of

Rear Spring Leaf
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Economic Analysis

Introduction

An economic analysis was performed for quantity production
of composite leaf springs using the manufacturing process
described in paragraph 6.2. The following quantities were
used in the analysis:

Yearly Quantity Production Rate
1,200 each* 100 per month
5,100 each 425 per month

10,200 each 850 per month

*Front spring assembly and rear spring assembly
All costs are expressed in FY80 dollars and are based on one
shift, eight hours per day, and five days per week (1-8-5).
All research and development costs are considered sunk and
have not been included in the analysis. The costs have been

divided into the following elements:

Non-Recurring Costs

Initial production facilities

Production Costs

Manufacturing costs
Engineering costs
Sustaining tooling costs
Quality control costs

Non-Recurring Costs

A detailed breakdown of the non-recurring cost elements for
the three production rates is shown below. '
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8.2.1 Initial Production Facilities

Tooling and "Equipment

1.
2.

4.
5.

8.
9.
10.

11.

12.

13.
14.

Prepreg handling and storage racks

Prepreg cutting and stacking
(modified Century Design Model
M-5100)

Debulking Molds
Rear Spring, 3 req'd @ 3K
Front Spring, 2 req'd @ 3K

Rf Staging Equipment

Misc. Handtools, Work Tables,
Carts, etc.

Compression Molds (produces 13 leaves
per operation)

Rear Spring, 3 req'd @ 60K

Front Spring, 2 req'd @ 55K

.Mold Handling Equipment (Die Truck

and Storage Racks)
Press, 200 ton @ 300 K
Heating Source for Press @ 200K
Restraining Fixture for Cool Down of
Laminate @ .5K

Rear Spring

Front Spring

Automated Equipment for Cutting
Billets and Routing Leaves

Cutting and Shaping Tool for Spaces
and Pads

Bonding and Drilling Fixtures

Cost, K$ (FYS80)
Units* ‘Per Year: 1,200 5,100 - 10,200

19 49 5@
5@ 50 5@
9 9 9
6 6 6
25 25 25
5 12 24
180 1840 1840
1149 119 119
25 25 25
3040 3040 604d
2049 200 200
3 12 24
2 8 16
15 120 249
10 25 25
5 18 36
- 3 3

Adhesive Mixing Facilities
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8.2.1 Initial Production Facilities (con't.)

Tooli

Cost, K$ (FY80)

15.
16.

17.

18.

19.

Units* Per Year: 1,200 5,100 10,200
ng and Equipment
Spray Paint Booth and Heat Curing 25 35 35
Q.C. Equipment, Measuring Tools and
Fixture 6 20 20
Test Fixture for Measuring Spring Rate 10 10 10
Assembly and Installation of Tools
and Fixture
Plant Engineering, Preparation for
Production, Operations Check Out,
N.C. Computer Tapes, etc. 90 200 280

* One unit is one front spring assembly and one rear spring assembly.

8.2.2

Plant Facilities

Plant 7500, 20,000, 25,000 sq. ft. 225 600

750

(697, 1858, 2323 sg. meter)

Total Non-Recurring Costs 1,311 2,008

Production Costs

Production costs have been based on the following:

Direct Labor Charges

Labor Overhead, 150%

Material Charges

Material Handling Overhead, 10%

General and Administrative expenses, 15%
Profit/Fee, 8%
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Burdened Labor Rate, dollars/hour

- Fabrication 23.75
Inspection 23.75
Engineering 39.50

Burdened Material Costs dollars/pound $/kg
Fiberglass prepreg (S-2) 8.00 17.64
Steel (as fabricated) .70 1.54

Costs to manufacture the 588th unit was estimated.

Rear Spring

Fabrication of Leaves 4.95 mhr @ 23.75
Assembly and Packaging .80 " @ 23.75
Inspection and Testing .35 " @ 23.75
Production Engineering .35 " @ 39.5¢

Burdened Labor Cost for 500th unit, $159.00
Using a 90% learning curve the cost of the first unit is

$296.00. Figure 8-1 shows the learning curve for the rear
spring assembly.
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Burdened labor cost, dollars/unit

1000
T 90% Learning Curve
. | i
i b
i I
| ! [
100— ; ! -
i | '
o
o | | |
| L
4 I I
. | { I
10 L 1 T —
1 10 102 - 103 10

Number of units produced

Fig. 8-1. Learhing Curve for Composite Rear Spring
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Sustaining Tooling Costs, Rear Spring

Cost, K$ (FY880)

Units Per Year: 1,200 5,160 10,200
1. Tooiing Maintenance ‘ 9 12 15
2. Replacement of Tooling ' 12 50 100
(cutting tools)
3. Modification of Tooling 8 25 45
TOTAL 29 87 160
Costs per unit, § 24 17 16

Manufacturing costs to produce the 1,200th, 5,100th and 10,200th rear
spring assembly is shown below. Non-recurring costs are not included.

Cost, $ (FY89)

Unit Number 1,200 5,100 10,200
Summary, Rear Spring
Burdened Labor 142 122 113
Material
Prepreg, 56 lbs @ $8.00 448 448 448
(includes 20% scrap)
Spacers, pads, adhesive 27 27 27
Steel parts 70 70 70
Shipping Costs 21 21 21
Sustaining Tooling Costs 24 17 16
TOTAL 732 705 695
Selling Cost 909 876 863
8.3.2 Front Spring
Fabrication of Leaves 3.30 mhr @ 23.75
Assembly and Packaging .75 " @ 23.75
Inspection and Testing .30 " @ 23.75
Production Engineering .30 " @ 39.5¢@

Burdened labor cost for the first unit is $214.
the learning curve for the front spring assembly.
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Burdened labor cost, dollars/unit

1000
] 90% Learning Curve
. : | :
I
- i L
: | |
100~ I l l
- I‘—
. | ' I
I Loy
“ l l |
| { I
10 T ] — T L Y '
TZ l3 I
1 10 10 10 104
Number of units produced
Fig 8-2. Learning Curve for Composite Front Spring
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Sustaining Tooling Costs, Front Spring

Cost, K$ (FY80)

Units per Year 1,200 5,100 10,200

1. Tooling Maintenance

2. Replacement of Tooling
(cutting tools)

3. Modification of Tooling

TOTAL
Cost per Unit, $'

Manufacturing costs to produce the 1,200th,
spring assembly is shown below.
included.

Unit Number:
Summary, Front Spring

Burdened Labor

Material
Prepreg, 26 lbs. @ $8.00
(includes 20% scrap)
Spacers, pads, adhesive
Steel Parts

Shipping Costs

Sustaining Tooling Costs

6 8 19
8 34 68
5 17 30
19 59 108
16 12 11

5,180th and 10,200th front
Non-recurring costs are not

Cost, $§ (FY80)

1,200 5,100 10,200

TOTAL

Selling Cost
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16 .16 ; 16
33 33 33
14 14 14
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8.4

Economic Analysis Summary

From the preceding analysis it is apparent that the cost to
manufacture composite leaf springs is material rather than labor
intensive. Therefore the difference in unit cost for the
production rates of 1,200, 5,100 and 10,200 units per year is
relatively small.

For a largely automated manufacturing process the cost of
tooling and equipment becomes very high. The non-recurring
costs itemized in paragraph 8.2.1 and amortized over one year
show the unit costs to be $1093, $394 and $266 for 1,200, 5,100
and 10,200 units respectively.

From this it appears that the minimum economical yearly

production quantity would be around 58600 units with a monthly
production rate of 410 to 428 units.
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Conclusions and Recommendations

The results of the program show that the selected manufacturing
process is suitable for producing heavy duty composite material
leaf springs in modest quantities. A large mold, producing wide
billets from which several leaves can be cut, is more economical
than a single leaf mold, provided that proper equipment for
handling the heavier mold is available.

Leaves made of S2-glass fiber and designed with a tapered
thickness to produce a constant bending stress along the length
of the leaf are necessary to meet the performance requirements.

Testing of the rear spring assemblies by TACOM revealed a stress
concentration problem at the center clamp. This problem was
solved for the front spring by the addition of a short steel
leaf between the lower composite leaf and the center clamp.

The arrangement is described in paragraph 6.4.3. A similar
arrangement is recommended for the rear spring. A suitable
steel leaf to add to the composite spring assembly is leaf
number 12 in the current steel spring assembly, Ordnance Drawing
number 7409613. This leaf is 17.3 inches (439 mm) long and would
protrude 3.3 inches (84 mm) on either side of the center clamp.
The ends of the leaf should be modified similar to the front
spring leaf shown on figure 6.26.
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APPENDIX A

FABRICATION PROCESS SHEETS

REAR SPRING ASSEMBLY
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APPENDIX B

FABRICATION PROCESS SHEETS

FRONT SPRING ASSEMBLY
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APPENDIX C

COST SUMMARY

DD FORM 633




DEPARTMENT OF DEFENSE

FORM APPROVED

OMB NO 23 ROISS
CONTRACT PRICING PROPOSAL

TAU form b for use (R Procurements when mbdm maion Of coesl or pricing dele s required (Se¢e DAR )-807)

NAME ADDRESS AND TELEPHONE NUMBER OF ORGANIZATIONAL ELEMENT RESPONS!

CIBA~-GEIGY CORPORATION

€ FOMSUPPORTING PROPOSAL TYPE OF CONTRACT

COMPOSITE MATERIALS DEPARTMENT
10910 Talbert Ave.
Fountain Valley, CA 92708

PLACEIS) AND PERIODISI OF PERFORMANCE

tem comt breakdown up.uuu this recsp s required uniess otherwism mpecifisd by the Contracting Officer. (Altach
continuetion page if required )

SEE SECTION 8. OF REPORT

TOTAL COST TYPE OF PAOCUREMENT ACTION
OOTHEN (Spevity)
Ownew procunemenT [w]
Tr "
PROFITIEEE LETTER CONTRACY
Ocranae onoer Ounericeo onoen
TOTAL OrRICE APVISION/REDETERMINATION
LINE IDENTIFICATION QUANTITY TOTAL PRICE ner
ITEM NOTE Listand and total prce proposed for esch contrect line ileme. A line
NO

YEARS OV A GOVERNMENT AGENCY O"HER THAN IRS OR GAQ. PROVIDE NAME, ADORESS AND TELEPHONE NUMBER BELOW-

1 IF YOUR ACCOUNTS AND RECORDS HAVE BEEN AEVIEWED IN CONNECTION WITH ANY GOVERNMENT CONTRACT (PRIME OR SUBCONTRACT}. GAANT OR PRAOPOSAL WITHIN THE PAST 3

CONTRACT ADMINISTRATION OFFICE AUDIT OFFICE

1 WILL YOU REQUIRE THE USE OF ANY GOVERANMENT PROPERTY IN THE PEAEORMANCE OF THIS WOAK?
Oves Owno 1F YES IDENTIFY

i DO YOU REQUINE GOVERNMENT CONTRACT FINANCING TO PERFOAM THIS PROPOSED GONTRACT?
Qves Ono tFvES IDENTIFY TAOVANCE PAYMENTS (JPMOGRESS PAYMENTS OR (JGUARANTEED LOANS

tV HAVE YOU BEEN AWARDED ANY CONTRACTS OR SUBCONTRACTS FOR THME SAME OR SIMILAR ITEMS WITHIN THE PAST J YEARS?
* DOves ONO IF YES IDENTIFY ITEM1S). CUSTOMERIS: AND CONTRACT NUMBER(S)

V 1S THIS PROPOSAL CONSISTENT WITH YOUR ESTABLISHED ESTIMATING ANO ACCOUNTING PRACTICES AND PROCEDURES AND DAR SECTION XV COST PRINCIPLES?
Oves Owno 14 NO. ExPLAIN

VI COSY ACCOUNTING STANDARDS SCARAD (CASE) DATA (PUBLIC LAW 91 379 AS AMENDED)

8. WILL THIS PROCUREMENT. ACTION BE SUSJECT TO CASS REGULATIONS?
Oves DOwno 1 N0 ExrrLAIN

5. HAVE YOU SUBMITTED A CASS DISCLOSURE STATEMENT (CASS O3 1 or 212
Oves ONO  1F v&s. SPECIFY THE OFFICE TO WHICH StSMITTED AND IF DETERMINED TO B ADEQUATE

HAVE YOU BEEN NOTIEIED THAT YOU ARE OR MAY BE (N NONCOMPLIANCE WITH YOUR OISCLOSURE STATEMENT OR COST ACCOUNTING STANDARDS?
Oves ONO 1F vis. exPLAIN

4 1S ANY ASPECT OF THIS PROPLSAL INCONSISTENT WITH YOUR DISCLOSED PRACTICES OR APPLICABLE COST ACCOUNTING STANDARDS?
Oves Ono 15 YES EXPLAIN

Thuyp 1 in rew 1o (R¥'P. contract/mod. ete.)

and reflects our best eslumates and/or actual conts as of thus data, 18 ac with the

of s form

TYPED NAME AND TiTLE SIGNATURE

K.R. BERG S
Manager, Composite Engineering 414:1

NAME OF FIRM

CIBA-GEIGY CORPORATION e 13
COMPOSITE MATERIALS DEPARTMENT ’

1984

DD roRM 633 Previous edition ss obsoiete. Replaces DD Forms 633-1 through 8. Apr 68 and DD Form 6334, Jun 72, which arv obsolete,
1 Aprit 79 Cc-2
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