REQUIRED OPERATIONAL CAPABILITY (ROC) FOR A 40MM HIGH VELOCITY PRACTICE ROUND NUMBER INS 109(U) MARINE CORPS
WASHINGTON DC 24 SEP 84

UNCLASSIFIED

F/G 19/1

NL
From: Commandant of the Marine Corps
To: Distribution List
Subj: REQUIRED OPERATIONAL CAPABILITY (ROC) FOR A 40MM HIGH VELOCITY PRACTICE ROUND NO. INS 1.09
Ref: (a) MCO 3900.4B
Encl: (1) U.S. Army Training Device Letter Requirement (TDLR) for a 40mm High Velocity Practice Round

1. The enclosure, the TDLR for a 40mm High Velocity Practice Round, meets the Marine Corps requirement with the following modifications:

a. Paragraph 4c, the first sentence shall read, "Initial training for...of both service and practice rounds."

b. Paragraph 5a shall read, "Have the basic...following service rounds:"

c. Paragraph 5c the second sentence shall read," It is essential...visible at 1500 meters with..."

d. Paragraph 5d shall read, "cause barrel wear ... than that of service rounds."

e. Paragraph 5e shall read, "Provide a ballistics match to the service rounds."

f. Paragraph 5f shall read, "Provide a muzzle...that of service rounds."

g. Paragraph 5h shall have two sentences added as the first sentences which will read, "A self destruct mechanism is desired in order to render nonfunctioning projectiles inert. In the event a self destruct mechanism is not adopted, or if adopted does not function, minimum hazard to troops is desired."

h. In place of Table 1 to Annex B, the following annual training requirements apply:

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>395,208</td>
<td>$7,311,348</td>
</tr>
<tr>
<td>681,408</td>
<td>$7,011,688</td>
</tr>
<tr>
<td>1,076,616</td>
<td>$14,323,036</td>
</tr>
</tbody>
</table>

Cost of training using service round only = 1,076,616 rounds x $18.50 = $19,917,396.

The source for training rates is MCO P8011.4G.
1. Table 2 of Annex B under column "COST ITEM," the eighth line shall read, "Annual Savings = $9,690,000" vice "8,361,000."

2. In accordance with the procedures set forth in the reference, ROC No. INS 1.09 for a 40mm High Velocity Practice Round is hereby established and promulgated.

3. The sponsor at this Headquarters is the Deputy Chief of Staff for Plans, Policies and Operations (CMC (POG-33)).
DISTRIBUTION LIST

(Required Operational Capabilities)

<table>
<thead>
<tr>
<th>Marine Corps</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG, FMFLANT, (Attn: G-3) Norfolk, VA 23511-5001</td>
<td>(5)</td>
</tr>
<tr>
<td>CG, FMPPAC, (Attn: G-3) Camp Smith, HI 96861-5001</td>
<td>(5)</td>
</tr>
<tr>
<td>CG, MCDEC, Quantico, VA 22134-5080 (Attn: DevCtr D037) [2-(C) 10-(U)]</td>
<td></td>
</tr>
<tr>
<td>CG, I MAF, Camp Pendleton, CA 92055-5401</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, III MAP, FPO San Francisco, CA 96606-8401</td>
<td>* (5)</td>
</tr>
<tr>
<td>CG, 1st MarDiv, (Attn: G-3), Camp Pendleton, CA 92055-5501</td>
<td>(5)</td>
</tr>
<tr>
<td>CG, 2nd MarDiv, Camp Lejeune, NC 28542-5501</td>
<td>(5)</td>
</tr>
<tr>
<td>CG, 3rd MarDiv, FPO San Francisco, CA 96602-8601</td>
<td>* (5)</td>
</tr>
<tr>
<td>CG, 4th MarDiv, 4400 Dauphine St, New Orleans, LA 70146</td>
<td>* (1)</td>
</tr>
<tr>
<td>CG, 1st MAW, FPO San Francisco, CA 96603-8701</td>
<td>* (1)</td>
</tr>
<tr>
<td>CG, 2nd MAW, MCAS, Cherry Point, NC 28533-6001</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, 3rd MAW, (Attn: G-3), MCAS, El Toro, CA 92079-6001</td>
<td>(5)</td>
</tr>
<tr>
<td>CG, 4th MAW, 4400 Dauphine St, New Orleans, LA 70146</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, 1st MARBDE, (Attn: G-3) FMF, FPO San Fran, CA 96607-8901</td>
<td>(3)</td>
</tr>
<tr>
<td>CG, LFTCLANT, U.S. Naval Phib Base, Norfolk, VA 23521</td>
<td>(2)</td>
</tr>
<tr>
<td>CG, LFTCPAC, U.S. Naval Phib Base, San Diego, CA 92155</td>
<td>(2)</td>
</tr>
<tr>
<td>CG, 1st FSSG, (Attn: CSS Ops), Camp Pendleton, CA 92055-5701</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, 2nd FSSG, FMFLANT, MCB Camp Lejeune, NC 28542-5701</td>
<td>(3)</td>
</tr>
<tr>
<td>CG, 3rd FSSG, FPO San Francisco, CA 96604-8801</td>
<td>* (1)</td>
</tr>
<tr>
<td>CG, 4th MAB, FPO New York, NY 09502-8504</td>
<td>* (1)</td>
</tr>
<tr>
<td>CG, MCGACC, 29 Palms, CA 92278-5001</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, MCLB, Albany, GA 31704-5001</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, MAWTS-1, MCAS Yuma, AZ 85369-6073</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, MAD, NAS, Patuxent River, MD 20670</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, MCC&E School, MCGACC, 29 Palms, CA 92278</td>
<td>(1)</td>
</tr>
<tr>
<td>CG, AIRTEVRON Five, China Lake, CA 93555</td>
<td>(1)</td>
</tr>
<tr>
<td>CO, MarcC Aide, ASN (R&E&S), Rm 4E736, Pentagon, Wash, DC 20350</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USA Abn Bd, Ft. Bragg, NC 28307</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, Directorate of Combat Dev, Ft. Knox, KY 40121</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, RDT&E, DCD, USAFAS (ATSF-CD-A), Ft. Sill, OK 73503</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USAAVNC, ATZQ-D-MCLNO, Ft Rucker, AL 36362</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USA ElecProGnd (STEEP-USMC), Ft. Huachuca, AZ 85613</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USA CECOM, Ft. Monmouth, NJ 07703</td>
<td>(2)</td>
</tr>
<tr>
<td>MCLNO, USA Missile Cmd, USAMCOM (Code DRDMI-USMC), Redstone Arsenal, AL 35898</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USA Tank-Automotive Cmd, Warren, MI 48090</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USA Test&Eval Cmd, Aberdeen Proving Ground, MD 21005</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USA Armament Material Readiness Cmd (MCLNO-IMC), Rock Island, IL 61299</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USA CbtDev Experimentation Cmd, Ft. Ord CA 93941</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, USA Natick R&D Cmd, Natick, MA 01760</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, NTEC, (Code N-001), Orlando, FL 32813</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, NWL/DL (Code C5), Dahlgren, VA 22448</td>
<td>(2)</td>
</tr>
<tr>
<td>MCLNO, USA TRADOC (ATPE-MC), Ft. Monroe, VA 23651</td>
<td>(2)</td>
</tr>
<tr>
<td>MCLNO, NWC (Code 03A3), China Lake, CA 93555</td>
<td>(1)</td>
</tr>
<tr>
<td>MCLNO, NCEL, Port Hueneme, CA 93403</td>
<td>(2)</td>
</tr>
</tbody>
</table>
Marine Corps

MCLNO, NOSG, (Code 033) San Diego, CA 92152
MCLNO, USAOTEA CSTE-TM-JT, 5600 Columbia Pike, Falls Church, VA 22041
MCLNO, HQ, USA Mat Dev & Readiness Cmd, 5001 Eisenhower Ave, (DRCGS-F), Alexandria, VA 22333
MCLNO, Naval Air DevCtr (09L2), Warminster, PA 18974
MCLNO, Directorate of Combat Developments, USAADASCH Ft. Bliss, TX 79916
MCLNO, USATECOM, DRSTE-ML, Bldg 314, Aberdeen Proving Ground, MD 21005
MCRep, (Code 03A3) Naval Post Grad Scol, Monterey, CA 93940
MCRep, USA Armor School, Ft. Knox, Ky 40121
MCRep, Engineer School, Ft. Belvoir, VA 22060
MCRep, Nuclear Wpns Trng Ctr Pac, NAS North Island, San Diego, CA 92135
Dir, MCOAG, 2000 N. Beauregard St, Alexandria, VA 22311
Dir, MCOTEa, Quantico, VA 22134

Army

DC/S for RD&A (DAMA-WSZ-B) DA, Washington, DC 20310
DC/S for RD&A (DAMA-CS), Attn: MCLNO) DA, Wash DC 20310
Chief of Eng, DA, Rm 1E668, The Pentagon, Washington, DC 20310
Cmdt, USA C&SC (Attn: Doc Ctr, Library Div), Ft. Leavenworth, KS 66027
Cdr, USACAC, Attn: ATZL-CAM-I, Ft. Leavenworth, KS 66027
Cdr, USA MICOM, DRSMI-ROC, Redstone Arsenal, AL 35809
Cdr, (Attn: ATZI-DCD) Ft. Benjamin Harrison, IN 46216
Cdr, USA Natick Labs, R&D Cmd, Natick, MA 01760 (DRDNA-E4L)
CAC LnO, USA CAC Ln Off, Attn: ATZL-CAA-L, Ft. Richardson, AK

Navy

CNR, Code 10OM, 800 N. Quincy St., Arlington, VA 22217
Dir, Office of Program Appraisal, Rm 5D760, The Pentagon, Washington, DC 20350
CNO (OP-098), Rm 5D760, The Pentagon, Washington, DC 20350
CM (NMAT QM [1]) (08D [1]), Washington, DC 20360
Cdr, Nav Elec Sys Cmd (Code RME 107) Washington, DC 20360
Cdr, Nav Sup Sys Cmd, R&T (SUP 033), Washington, DC 20360
Cdr, Naval Surface Force, U. S. PacFlt, San Diego CA 92155
Cdr, NavSurFor, (Code N66) U. S. LantFlt, Norfolk VA 23511
CO, U. S. Navy Reseab Lab (Code 2627), Washington, DC 20375
Cdr, D. W. Taylor Nav Ship R&D Ctr (0111) Bethesda, MD 20084
Cdr, Naval Surface Wpns Ctr (Code 730), White Oak, MD 20910
Cdr, Naval Air Test Ctr (CT 252), Patuxent River, MD 20670
Cdr, NOSC, San Diego, CA 92150
CO, Naval Underwater Sys Ctr (TechLib), Newport, RI 02841
CO, NAVEODTECHCEN, Indian Head, MD 20640
CO, Naval Coastal Sys Ctr, Panama City FL 32401
Navy

CO, USN Wpns Eval Pac (Code 60), Kirtland AFB, Albuquerque, NM 97117 (1)

CO, Navy Personnel R&D Ctr, San Diego CA 92152 (1)

CO, Naval Medical R&D Ctr, NM, Bethesda, MD 20014 (2)

CO, Nav Sub Med Rsch Lab, NSB, New London, Groton, CT 06340 (1)

CO, Naval Biosciences Lab, NavSupCtr, Oakland CA 94625 (1)

MGR, NARDIC, 5001 Eisenhower Ave, (Rm 8S58) Alexandria, VA 22333 (1)

MGR, NARDIC, 1030 E. Green St., Pasadena, CA 91106 (1)

MGR, NARDIC, Air Force Wright Aeronautical Lab/TST, Area B, Bldg 22, Rm S122, Wright Patterson AFB, OH 45433 (1)

Air Force

C/S, USAF (AF/RDQM), Rm 5D179, The Pentagon, Washington, DC 20330 (2)

TAC/DRP, Langley AFB, VA 23365 (1)

Dir, Air Univ Library, Maxwell AFB, AL 36112 (AUL3T-66-598) (1)

Hq, ESD, TCI/USMCLO, Hanscom AFB, MA 01731 (1)

Department of Defense

USDRE, Room 3E1044, The Pentagon, Washington, DC 20350 (3)

[Attn: DUSD (TWP)]

USDRE, Room 2C330, The Pentagon, Washington, DC 20350 (1)

[Attn: AMRAD Cte (MC/Nav Mbr)]

Administrator, DTIC, Cameron Station, Alexandria, VA 22314 (10)

Dir, NSA [R2 (4), P2 (2)] Fort George G. Mead MD 20775 (6)

CMC Codes:

A
L
P
RP
CC
INT
MT
RES
28 March 1983

SUBJECT: Tri-Service Training Device Letter of Requirement (TDLR) for
40mm High Velocity Practice Round

SEE DISTRIBUTION

1. Reference Army Regulation 71-9, Material Objectives and Requirements,
 16 April 1979.

2. Subject TDLR was approved by TRADOC 15 Nov 82 and by DARCOM 7 Feb 83,
 Enclosure 1. The following information is applicable to the document:
 b. Material Developer: DARCOM.
 c. Combat Developer: TRADOC.
 d. User Representative: TRADOC.
 e. Trainer: TRADOC.
 f. Logistician: USALEA.
 g. Cards Reference Numbers: 1900R.
 h. Operational Tester: TRADOC.
 i. TRADOC Proponent: USAMPS.

3. Subject requirement document is forwarded to major Army commands,
 other services, and other DOD agencies for appropriate action. It is forwarded
 to other addressees for information.

FOR THE COMMANDER:

1 Encl

DISTRIBUTION:
(Over)
ATIC-DST-PM

28 March 1963

SUBJECT: Tri-Service Training Device Letter of Requirement (TDLR) for 40mm High Velocity Practice Round

DISTRIBUTION:
EQDA (DAMA-QR/DAI-SSM-E/DAMPI/DAIQ/CAH)
DASP=HLC/RKZ-PAT/WGI-ARO-1/NGI/UAB/DACS-DPA
DAICA/PMI/DAHI)
CINC
USAREUR & 7th Army (AEAC-GSE)
USAREDCOM (J5E)
CDR
7th Army Tng Cmd (AEET-TD)
DARCOM (DECE-AT)
FORSCOM (AFOP-VA)
MTC
Eighth USA
INSCOM
USATC& Ft Diz (ATZD-TA/ATZD-DIO)
USACC
USACSC
USA Health Svc Cmd (HSC-LO)
USASIG, SC & FQ (ATZH-TD-A)
USA CA Cen & Ft Leavenworth (ATZL-TDA-AD)
USA Log Cen (ATCL-MS)
USA CD Exper Cen
TCAIA (ATCIA)
USA CAC LO (AK)
USAJ
USA Log Eval Agency (DAMO-LEZ)
USAOSA
USATC Engr & Ft Leonard Wood (ATAT-DPT)
USA Foreign Science & Tech Cen (DREXT-PO)
USA Arm Cen & Ft Rucker (ATZQ-TD-TAD)
USAICS (ATSI-TD-ITT)
USATC & 7th Jackson (ATZJ-DPTA/ATZJ-DIO)
WESTCOM (APOP)
USAOCS (ATSL-DD/ATSL-CLC-H)
USAARMY (ATZK-TD)
COMDT
USAMSCS (ATSL-TD)
TJAGSA
USAMS (ATSE-TD)
USAFAS (ATSF-TD-TS)
USAIS (HEIGHT-I-V-SD)
USAQMS (ATSH-TD-CT)
USAADAS (ATSA-TD)
USAMPS (ATZM-MP-C/ATZM-MP-D/ATZM-MP-CT)
USAMLS (ATZM-CN-CT/ATZM-CN-CT)
USATAC (ATSF-TD-PT)
USAINA
(see next page)
SUBJECT: Tri-Service Training Device Letter of Requirement (TDLR) for 40mm High Velocity Practice Round

DISTRIBUTION (Cont):
Academy of Health Sciences, USA (RSHA-TTC)
Dep Cmnd USAISD (ATSIE-TD-NS)
Dir, TRADOC
National Security Agency
FM TRADE (DRCPH-TND-PC)
TRADOC LO
USAREUR & 7th Army (ATFE-LO-AE)
GE
Eighth USA (ATFE-LO-AK)
DARCOM
TECOM (STEAP-LI)
ARRADCOM
MICOM
AVRADCOM
CECOM
TACOM (ATFE-LO-TA)
USAGTEA/CAA (ATFE-LO-CT)
USMC Dev & Educ Cmnd (ATFE-CO-DC)
Sr Std Rep
USA Std Gp - UK (Assoc)
USA Std Gp - Australia (Assoc)
USA Std Gp - Canada (Assoc)
CNO (OP-98)
CNO (OP-323-E)
Chief of Naval Material (NMAT-0302)
Cmnd of the Marine Corps (RD)
CG Marine Corps Dev & Educ Cmnd (Dev Cen)
HQ USAF (RDOM)
Cdr, US Tactical Air Cmnd (DRP)
HQ Air Force Systems Command/SDAE
HQ MAC/SPQ
Tactical Air Warfare Center
1st Special Operations Wing/DO
Chief, ADGRU, USAF Institute of Technology
Chief, ADGRU, US Naval War College
USA Rep, USMC Educ Cmnd, MCD&C
TRI-SERVICE TRAINING DEVICE LETTER OF REQUIREMENT
for
40mm HIGH VELOCITY PRACTICE ROUND
established by
Commander, US Army Training and Doctrine Command
and
Commander, US Army Material Development and Readiness Command

1. The undersigned agree that a program should be initiated forthwith to meet the requirement outlined in the inclosure. Validated cost data has been provided in the TDLR.

2. The TDLR is subject to review at any time, but annually as a minimum, at the request of either consignatory.

FRIDRIC A. BROWN
Major General, GS
Deputy Chief of Staff for Training
Date 15 Nov 82

ORLANDO E. GONZALES
Major General, USA
Director, Development, Engineering and Acquisition
Date 4 Feb 83
1. **Title of the Item:** Forty Millimeter High Velocity Practice Round (40mm HVPR).

2. **Statement of Need:**

 a. There is currently no effective 40mm High Velocity Practice Round. The use of service ammunition in training is not always desirable due to cost and range limitations. The 40mm HVPR is needed in order to maintain training proficiency on 40mm high velocity systems at a minimum cost to the US Government.

 b. CARDS Reference Number:

3. **Justification:**

 a. The MK19 MOD 3 40mm grenade machinegun will be fielded in FY 85. The weapons will be employed by combat, combat support, and combat service support units of the Army, the Air Force Security Police, and within US Marine Divisions. The weapons will be used to support land combat in static and mobile modes of operation. Training for personnel employing the weapon will consist of initial qualification training and periodic familiarization training. The use of service ammunition, high explosive, makes it very difficult for units to locate adequate range facilities for training. Additionally, the service round creates a "dud" hazard on a range, which severely restricts the training on the weapon and the range. A training round is needed to provide an effective, low cost alternative to using service ammunition for training on the 40mm grenade machinegun.

 b. Military Occupational Specialty Code (MOSC) device supports a wide variety of MOSC personnel from within DOD.

4. **Basis of Issue:**

 a. Air Force: The 40mm HVPR will be used in lieu of service ammunition for initial and recurring qualification training. Service ammunition may still be used for portions of qualification training where adequate range facilities are available. It will be used by units tasked under Air Base Ground Defense and Ground Launched Cruise Missile (GLCM) programs. Initial qualification will be conducted at the Security Policy Academy, Lackland AFB, Texas or designated Tactical Air Command (TAC) ranges. Recurring training would be conducted at these locations and at others designated by using Major Air Force Commands.

 b. Army: The 40mm HVPR will be used in lieu of service ammunition for portions of qualification and familiarization training. Training practice rounds will be used in support of the Army Training Evaluation Program (ARTEP) tasks requiring high explosive projectiles. The 40mm HVPR will be used in institutional training.
c. Marines: Initial training for MK19 guncrews will be accomplished through current training establishments with a mix of both standard combat and practice rounds. Subsequent training and requalification will also utilize both types of ammunition, dependent upon the nature and availability of range facilities.

5. **Principal Characteristics:**

a. Have the basic configuration as the following standard 40mm high velocity rounds:

 (1) M383, 40mm HE Cartridge
 (2) M384, 40mm HE Cartridge
 (3) M430, 40mm HEDP Cartridge

b. Be capable of firing from the following weapon systems:

 (1) MK19 MOD 1 40mm Grenade Machinegun
 (2) MK19 MOD 3 40mm Grenade Machinegun
 (3) M129 40mm Grenade Launcher (Helicopter)

c. Upon impact, provide flash, sound, and visual signature to simulate impact of a high velocity projectile for day and night firings. It is essential that the projectile produce sufficient noise and flash to be audible and visible at 1,500 meters standard atmospheric conditions on level terrain.

d. Cause barrel wear no greater than that of standard high velocity rounds.

e. Provide a ballistics match to the service round.

f. Provide a muzzle signature and weapon recoil similar to that of standard service rounds.

f. The training round should offer no danger to the firer in the event of premature functioning of the projectile.

h. All nonfunctioning projectiles are desired to be stable to permit removal from the range facility for destruction. As a minimum, the nonfunctioning projectiles must present a minimum hazard if functioning occurs when stepped upon by troops engaged in training activities within the impact area. This minimum hazard is defined as the probability that injury received from the practice cartridge will cause permanent physical injury. The goal for the minimum hazard is one in 1,000,000.
1. Color coding and marking of the round must be in accordance with MIL STD 709C and MIL STD 1168A.

j. Be linked and packaged similar to the service rounds.

k. Be safe to transport, handle, and store.

l. Cause no additional environmental impacts beyond that of the standard service rounds. A goal for this cartridge is to reduce the environmental impacts caused by training on the 40mm machinegun. The cartridge and packing material will not include any substance known to have carcinogenic properties.

m. Reliability, Availability and Maintainability (RAM):

 (1) Reliability. The Minimum Acceptable Value (MAV) over the life of the system is 300 mean rounds between operational mission failure. The Best Operational Capability (BOC) over the life of the system is 400 mean rounds between operational mission failure.

 (2) Maintainability and Availability Parameters. These parameters are determined to be noncritical for the training cartridge.

n. A desirable feature of the HVPR is to produce it at no more than 50% of the cost of producing the service round (for large production quantities).

6. Testing Required: Planned development schedule for the 40mm HVPR is as follows:

<table>
<thead>
<tr>
<th>FY 83</th>
<th>FY 84</th>
<th>FY 85</th>
<th>FY 86</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>AD</td>
<td>ED</td>
<td>DT/OT II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEVA-IPR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TC-Standard</td>
</tr>
</tbody>
</table>

 Applicable Milestones are:

 TDLR Approved 3Q FY 82
 Advanced Development Initiated 4Q FY 83
 DT/OT II Initiated 3Q FY 86
 DT/OT II Completed 3Q FY 86
 VR/DEVA-IPR 4Q FY 86
 TC-Standard 4Q FY 86

7. Logistics Support Implications:

 a. Logistic Concept: 40mm HVPR rounds will be designed to simulate as close as possible the same features and characteristics as the respective service rounds so that the training value using 40mm HVPR will be identical to the service ammunition. The logistic concept to support and maintain
40mm HVPR should be the same as that of the service ammunition, to include accountability, handling, resupply, and maintenance. Future allocations of training unique and service ammunition will be within guidelines of TRADOC Circular 25-3, Training Ammunition.

b. Potential Logistic Problems. There should be minimal logistic problems related to the total quantity of ammunition for training in the logistic system, as the 40mm HVPR will be substituted for the service ammunition.

c. Preferred limits on the need for logistic support element resources: 40mm HVPR maintenance will be performed by the same organizations which maintain the service ammunition. This is currently the TOE 9-64 and TOE 9-74, Conventional Ammunition Companies.

d. The round must be provided with a suitable maintenance package to include operation and maintenance instructions in appropriate Skill Performance Aids (SPAS) format.

8. Training Assessment: There should be no impact on operator and maintenance personnel training since the 40mm HVPR is to be designed to simulate the service round.

9. Manpower/Force Structure Assessment: The 40mm HVPR will be a substitute item for the service cartridge in normal weapon training. While procurement of the 40mm HVPR may not reduce the buy quantity of service cartridges, the only impact would be associated with storage space for the training cartridge. The marginal increase in manpower for the practice cartridge as opposed to the service cartridge would be associated with inventory control and accountability.

10. Other Service or Allied Nation Interest: This is a Tri-Service program. No known training cartridge of this type exists in the free world which could meet this requirement.

APPENDIX 1

LIFE CYCLE COST ASSESSMENT
for
THE TRI-SERVICE TRAINING DEVICE LETTER REQUIREMENT

a. Summary of estimated life cycle costs as expressed in constant FY-82 dollars and current (inflated) ($M-Millions).

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Most Likely</th>
<th>High</th>
<th>Low</th>
<th>Most Likely</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D</td>
<td>1.44</td>
<td>1.60</td>
<td>1.76</td>
<td>1.48</td>
<td>1.64</td>
<td>1.80</td>
</tr>
<tr>
<td>INVESTMENT</td>
<td>7.25</td>
<td>8.05</td>
<td>8.85</td>
<td>9.44</td>
<td>10.48</td>
<td>11.52</td>
</tr>
<tr>
<td>O&S (20 Yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>8.69</td>
<td>9.65</td>
<td>10.61</td>
<td>10.92</td>
<td>12.12</td>
<td>13.32</td>
</tr>
</tbody>
</table>

NOTE 1: Quantity of Prototype(s) 5000

NOTE 2: Sunk Costs (Excluded from Paragraph a).

a. R&D (Actual) $0. R&D (FY-82) $0

b. INVESTMENT (Actual) $0. INVESTMENT (FY-82) $0

c. Quantity/unit costs, estimated unit/system flyaway and unit/system procurement costs expressed in constant FY82 dollars.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
<th>UNIT FLYAWAY</th>
<th>UNIT PROCUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>40mm PRAC.</td>
<td>200,000/yr</td>
<td>$6.45</td>
<td>$6.45</td>
</tr>
</tbody>
</table>

c. Recommended funding profile expressed in constant FY82 dollars and current (inflated) dollars ($M-Millions).
R&D Phase

<table>
<thead>
<tr>
<th>Year</th>
<th>FY-82</th>
<th>FY-83</th>
<th>FY-84</th>
<th>FY-85</th>
<th>FY-86</th>
<th>FY-87</th>
<th>FY-88</th>
<th>FY-89</th>
<th>OYC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td>APPROVED PROG (CUR)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESTIMATE (CUR)</td>
<td>1.0</td>
<td>.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>ESTIMATE (CON)</td>
<td>1.0</td>
<td>.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
<td></td>
</tr>
</tbody>
</table>

Investment Phase

<table>
<thead>
<tr>
<th>Year</th>
<th>FY-85</th>
<th>FY-86</th>
<th>FY-87</th>
<th>FY-88</th>
<th>FY-89</th>
<th>OYC</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QTY</td>
<td>200K</td>
<td>200K</td>
<td>200K</td>
<td>200K</td>
<td>200K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPROVED PROG (CUR)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESTIMATE (CUR)</td>
<td>2.99M</td>
<td>1.75M</td>
<td>1.83M</td>
<td>1.91M</td>
<td>2.00M</td>
<td>8.05M</td>
<td>10.48M</td>
</tr>
<tr>
<td>ESTIMATE (CON)</td>
<td>2.49M</td>
<td>1.39M</td>
<td>1.39M</td>
<td>1.39M</td>
<td>1.39M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 3: Source document for QTY is not available.

NOTE 4: Inflation has been incorporated in accordance with DARCOM HTIS, DRCCP-ER, HQS DARCOM inflation guidance dated 13 Aug 81.

NOTE 5: Cost estimates are validated at level __________________ by __________________ on __________________ and HQ DARCOM on __________________.

OYC - Out year costs
ANNEX A

COORDINATION ANNEX

This requirement document has been coordinated with commands and agencies listed below.

<table>
<thead>
<tr>
<th>Command/Agency</th>
<th>Concur</th>
<th>Nonconcur</th>
<th>Comments Number</th>
<th>Accepted</th>
<th>Not Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>WESTCOM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eighth USA</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CINCSAREUR & Seventh Army</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA Log Ctr</td>
<td>X</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DARCOM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORSCOM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA LEA</td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
ANNEX B

TRAINING DEVICE STUDY (TDS)

Cost and Training Effectiveness Analysis (CTEA) for a 40mm High Velocity Practice Cartridge

1. Introduction.

 a. The Training Device Requirement for a 40mm High Velocity Practice Cartridge was initiated to provide the Army with a safe, effective and possibly less costly means of conducting training on 40mm high velocity grenade machineguns and launchers. This CTEA will focus primarily on the use of the training cartridge in 40mm grenade machineguns.

 b. High Velocity 40mm weapons have been used in numerous roles within the Department of Defense (DOD) over the past 15 years. The most predominate weapons were the M129 grenade launcher mounted on the Army's Cobra attack helicopter and the Navy's MK19 MOD 1 40mm grenade machinegun mounted on selected boats/ships. Familiarization and qualification training was conducted with service ammunition because no high velocity 40mm training cartridge was available.

 c. During early 1978, the US Army Military Police School conducted a hands-on evaluation on the Navy's MK19 MOD 1 40mm grenade machinegun as an area suppression weapon for various land combat missions. The success of this evaluation led to the development of a Required Operational Capability (ROC) to adopt the weapon into the Army weapons inventory. The ROC was approved by HQDA in May 1980 and the weapon was subsequently adopted by other Army service schools, the US Air Force Security Police, and the US Marine Corps.

 d. During the development of the Army's Individual Collective Training Plan (ICTP) for the MK19 weapon, it was recognized that the training on the weapon would be greatly enhanced with an effective training cartridge. This need was strongly reinforced by the USAF as they cited specific problems associated with firing the service ammunition in various geographic locations.

2. Statement of Training Effectiveness.

 a. Through its inherent design, the training practice cartridge will provide characteristics which will simulate the performance of the service cartridge. While efforts are currently underway within the USAAMPS to develop the qualification standards for the 40mm machinegun, the practice cartridge will be used during familiarization firings and selected segments of qualification firing.

 b. The training benefit from the practice cartridge should equal or exceed that for the service ammunition. Of prime importance is the fact that
the US Army Armament R&D Command estimates the practice cartridge will cost approximately one-half of the service round. This allows the option of doubling the amount of hands-on training for a fixed dollar expenditure of ammunition consumption.

c. Another aspect of the training effectiveness is that of safety. Historically, training with 40mm grenade launchers and machineguns has been conducted with service ammunition. Due to the "dud" hazard associated with unexploded 40mm projectiles, the impact area is hot until cleared by EOD personnel. The 40mm "duds" offer a serious threat to handling by untrained personnel. The training practice cartridge will significantly reduce the safety hazard associated with 40mm ammunition. By design, any unexploded 40mm training practice projectiles shall be safely removed from the impact area for eventual destruction. They will also be inherently safe whereas to provide a minimum hazard if functioning occurs when stepped upon by troops engaged in training activities within the impact area.

a. The life cycle cost analysis is based on using the training practice cartridge for all familiarization firings and for selected portions of qualification firings. The analysis includes Active Army and Air Force units. While it is applicable to National Guard and Reserve components, the delayed fielding of the 40mm weapons to these units would make any cost estimates highly subjective.

b. Active Army - Resident:

(1) BCT. No familiarization/qualification training envisioned.

(2) OSUT. MP students (MOS 95B) will receive training and weapon operations, maintenance, and firing. Approximately 25 rounds per student will be fired during the familiarization training. It has been estimated that approximately 10,000 students will receive this training each year for the period FY 84-87. All of this training could be conducted with training cartridges.

Annual Consumption = 10,000 students/year x 25 training cartridges/student

Annual Consumption = 250,000 training cartridges/year

(3) Advanced NCO, Officer Basic, and Officer Advanced. Training will concentrate on tactical employment, weapon operation, and weapon maintenance.

c. Active Army - Unit. Qualification on the 40mm machinegun will be a unit responsibility. Personnel that have previously qualified with the weapon will normally be able to complete familiarization and qualification with approximately 100 rounds of ammunition. However, due to turnover of personnel, approximately 25% of those attending the semiannual will not have
completed the qualification training. In those cases, approximately 200 rounds will be required to familiarize and qualify. At least 80% of firings can be accomplished utilizing the training practice cartridge. The semi-annual round expenditure for units is estimated as:

\[
\text{Semiannual Ammo Expenditure} = \left(\frac{.75}{\text{Active Weapons}} \right) \left(\frac{100}{\text{Gunners Weapon}} \right) + \left(\frac{.25}{\text{200 rounds weapon}} \right)
\]

\[
= \left(\frac{2500 \text{ wpns}}{2 \text{ gunners weapon}} \right) \left(\frac{125 \text{ rounds gunner}}{\text{1,000,000 training cartridges per year}} \right)
\]

\[
= 625,000 \text{ rounds}
\]

Annual Ammo Expenditure = 1,250,000

\# Training Cartridges Consumed = Annual Ammo Expenditure \times 80%

= 1,000,000 training cartridges per year

\# Service Cartridges Consumed = 250,000 cartridges per year

d. USAF Initial and Recurring Qualification Training. The USAF training strategy for the 40mm grenade machinegun does not differ significantly from that for the Army. From the Army estimates of annual consumption, 2,500 weapons would consume 1,025,000 training cartridges per year (25,000 + 1,000,000). Using an analogy, the Air Force's 1,000 weapons should consume approximately 410,000 training cartridges per year for training. Also, 90,000 service cartridges will be consumed.

e. Summary. The projected consumption for the two training strategies is shown at Tables 1 and 2.

f. Recommendation. Based on the projected savings of Table 2 and the improved safety aspects of the training round, that the 40mm high velocity training round be developed and fielded.
TABLE I
Annual Consumption and Cost of 40mm Cartridges
under Alternative Training Strategies

<table>
<thead>
<tr>
<th>Training Type/Location</th>
<th>Combination Training Practice</th>
<th>Service Cartridge</th>
<th>Service Cartridge Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Army-Resident MP OSUT</td>
<td>250,000</td>
<td>250,000</td>
<td></td>
</tr>
<tr>
<td>Active Army-Unit</td>
<td>1,000,000</td>
<td>250,000</td>
<td>1,250,000</td>
</tr>
<tr>
<td>USAF</td>
<td>410,000</td>
<td>90,000</td>
<td>500,000</td>
</tr>
<tr>
<td></td>
<td>1,660,000</td>
<td>340,000</td>
<td>2,000,000</td>
</tr>
</tbody>
</table>

Annual Cost of Training Strategy

Cost of Combination Strategy = \(340,000 \text{ rounds/ year} \times \left(\frac{12.00 \text{ per service}}{\text{round}} \right) + 4080\)
\(= 1,660,000 \text{ training cartridges/ year} \times \left(\frac{6.00 \text{ per training}}{\text{cartridge}} \right) = 9960\)
\(= $14,040,000 \text{ per year}\)

Cost of Service Cartridge Only Strategy =
\(2,000,000 \text{ Service Rounds/ year} \times ($12.00 \text{ per Service Round})^1\)
\(= $24,000,000 \text{ per year}\)

\(^1\text{Cost based on projected cost of M384 Cartridge (FY 81 Constant) Source USARRADCOM}\)

\(^2\text{Cost based on estimate that training cartridge will be produced at 50% of cost of producing service cartridge (FY 81 Constant)\)
TABLE 2

Life Cycle Cost Analysis

40mm Training Practice Cartridge (TPC) vs Service Cartridge (SC)
(FY 81 Constant, 10-Year Period, FY 84-94)

<table>
<thead>
<tr>
<th>Training Strategy</th>
<th>Combination Training Practice/Service Cartridge</th>
<th>Service Cartridge Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Item</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonrecurring Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDTE*</td>
<td>$1,600,000</td>
<td>0</td>
</tr>
<tr>
<td>Production/Capital Equip*</td>
<td>1,100,000</td>
<td>0</td>
</tr>
<tr>
<td>Recurring Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammunition Costs</td>
<td>$140,400,000</td>
<td>240,000,000</td>
</tr>
<tr>
<td>(See Table 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total LC Costs</td>
<td>$143,100,000</td>
<td>240,000,000</td>
</tr>
</tbody>
</table>

Annual Savings = $8,361,000

Total 10-Year Savings = $96,900,000

Annual Savings = $9.69 MIL

*ARRADCOM Cost Estimates
APPENDIX 1
LIFE CYCLE COST ASSESSMENT
for
THE TRI-SERVICE TRAINING DEVICE LETTER REQUIREMENT

a. Summary of estimated life cycle costs as expressed in constant FY-82 dollars and current (inflated) ($M-Millions).

<table>
<thead>
<tr>
<th>ITEM</th>
<th>LOW</th>
<th>MOST LIKELY</th>
<th>HIGH</th>
<th>LOW</th>
<th>MOST LIKELY</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D</td>
<td>1.44</td>
<td>1.60</td>
<td>1.76</td>
<td>1.48</td>
<td>1.64</td>
<td>1.80</td>
</tr>
<tr>
<td>INVESTMENT</td>
<td>7.25</td>
<td>8.05</td>
<td>8.85</td>
<td>9.44</td>
<td>10.48</td>
<td>11.52</td>
</tr>
<tr>
<td>O&S (20 Yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>8.69</td>
<td>9.65</td>
<td>10.61</td>
<td>10.92</td>
<td>12.12</td>
<td>13.32</td>
</tr>
</tbody>
</table>

NOTE 1: Quantity of Prototype(s) 5000

NOTE 2: Sunk Costs (Excluded from Paragraph a).

a. R&D (Actual) $ 0.
 R&D (FY-82) $ 0.

b. INVESTMENT
 INVESTMENT
 (Actual) $ 0.
 (FY-82) $ 0.

-2: Quantity/unit costs, estimated unit/system flyaway and unit/system procurement costs expressed in constant FY82 dollars.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
<th>UNIT FLYAWAY</th>
<th>UNIT PROCUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>40mm PRAC.</td>
<td>200,000/yr</td>
<td>$ 6.45</td>
<td>$ 6.45</td>
</tr>
</tbody>
</table>

c. Recommended funding profile expressed in constant FY82 dollars and current (inflated) dollars ($M-Millions).