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THE STABILITY OF AN INPINITE ELASTIC

PIPE WITH UNIFORM MEAN FLOW

The pipe conveying incompressible fluid is modelled using linear beam
t ry. The stability of the system is analysed using a causal approach which
is able to Aistinguish between absolute and convective instabilities. Closed-
form expressions for the stability boundaries of the beam theory wmodel are
derived analytically. The dissipation—-free pipe is absolutely unstable if the
ratio of the mass per unit length of the pipe to that of the contained fluid
is greater than one-eighth, otherwise it is convectively unstable at low
excitation frequencies and stable at high frequencies. The pipe is found to
be absolutely unstable when damping is included. Some numerical results
presented for a steel pipe and a rubber pipe, both of which contain water.
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LIST OF SYMBOLS

instantaneocus value of beam displacewent
instantaneous value of beam excitation

displacement amplitude

excitation amplitude

Fridt gt

Wz,0) Laplace transform of W(z,t)

v
[ U LI

Pourier transform of ?l( Z,W)

e M
X
2
£

Dx,w) beam dispersion relation
t time
i a«,n axial and circumferential wavenumbers
l‘ £ frequency in Hz
w radian frequency (=2nf)
4 Im{w]=c denotes the line of Laplace integration
* £1,€1.0y density, sound velocity and axial flow velocity of
interior fluid
g My Mach number of fluid, M;=U;/c,
a,h,pg radius, thickness and density of shell
E V Young‘s modulus of the shell
v Poisson's ratio of the shell
n hysteretic loss factor of the shell -
M mass per unit length of fluid, M=ma2p, i.
m mass per unit length of beam, m=2mahpg :} g
1 area moment of inertia of beam, I=rha3 ;‘_;.-;
* (as a superscript) denotes complex conjugate ?Z';
L)
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‘ INTRODUCTION B
s IR ik
I much theoretical work (1-9) has been done on the vibration and sound
7 - radiation of fluid—loaded structures, such as plates and shells, excited by
g, time-harmonic mechanical forces or acoustic point sources. These, and other,
3 authors deal with wave propagation in, and vibration response of, systems in

which the fluid is assumed to be stationary. Practical pipework systems,
however, usually convey fluid whose wotion may significantly change the
QO Aynamic charactexistics of the system. In particular, the interchange of
energy between the moving fluid and the pipe may result in an instability
which causes excessive vibration and sound radiation.

The stability analysis of systems conveying fluid usually proceeds via
the system dispersion relation. Cowmplex values of frequency corresponding
2 to real values of wavenumber are obtained and the sign of the imaginary part
of these frequencies indicates whether or not the system is unstable.
Dowell [10] has used this approach to investigate the flutter behaviour of
infinite shells. He concludes that the shell theory used was inadequate for
i, the n=1 harmonic, but for each n¥l circumferential harwonic a flutter
instability occurs above a critical flow speed, the lowest such speed being
the one associated with the n=2 harmonic. The effect of damping in the shell
was not considered.

b 0, by

Melcher {11)] describes an alternative approach to stability analyses
which was used by Briggs {12] in connection with beam—plasma interactions.
This approach demands that the system is causal, that is, it cannot respond e |

Y until an excitation is applied. At a sufficiently long time after the ) L
: excitation has been applied three types of behaviour may be identified. SRICN
3 Pirstly, there is the stable configuration in which the response is finite @f_‘:\;
everyvhere in space-time. Secondly, there is the convectively unstable oA
S configuration in which the response increases exponentially with distance from bl N

the excitation. Thirdly there is the absolutely unstable configuration in
2 which the response at all points in the system increases exponentially with
9 time. Brazier-Smith & Scott [13] have applied this causal approach to the
problem of uniform incompressible flow over an infinite undamped elastic
plate. The excitation was assumed to be a time-harmonic force switched on at
t=0. They found that at low excitation frequencies there are convective .
instabilities, and that above a critical flow velocity there are also absolute a |
instabilities. Atkins [14] has confirmed the main results of this paper and
has also dewmonstrated that plate damping may destabilise some free-waves at
all flow speeds and 4does not remove the absolute instability which occurs
above the critical velocity.

In the present work the causal approach to stability determination is
applied to an infinite pipe with uniform axial fluid flow. The pipe is
modelled as a beam conveying an incompressible fluid. The effects of pipe
damping are included in the model. The stability characteristics of the beam
theory model are deduced analytically, whersas a mmerical approach would be
Y necessary to determine the stability characteristics of shell theory models.




L

The transverse displacement W .(z.,t) of a pipe conveying an inviscid
incompressible fluid is often assumed to satisfy the differential equation

of beam theory (15]), viz.,

exa'n t/as’ + mfazw 1/«zazz + zmlazw _Jouat + (Mim)aw l:/zn:"" =P (2,t)  (2.1)

vhere M is the mass per unit length of the fluid, wm is the wmass per unit
length of the pipe and I is the area moment of inertia of the pipe.

The causal solution for the displacement may be obtained by expressing it
as the Laplace-Pourier transform

wtioc ®
2 Pa,w)
Wz,t) = (1/4n7 ) m exp( ixz-~iwt Ydodw (2.2)
-wot+ic -o

where the dispersion relation, D(«,w), is obtained from equation (2.1) as

D(x,w) = Bl‘.cx4 - miaz + zmlam - (H-Hn)uz (2.3)

3. MATHEMATICAL ANALYSIS OF BEAM STABILITY

(a) General

The symmetrical nature of the dispersion relation, viz.,

K@) = D (—& , 0 ) (3.1)

means that it is necessary to consider only those values of « such that
Re{w]>0, the stability analysis with Re{w]<0 being almost identical: the
root loci in the complex o-plane obtained for those w with Re(w]<0
are reflections in the imaginary o—axis of those obtained for Re[w]>0.
The analysis of beam stability is further simplified by the absence of
branch cuts in the complex a-plane.

T™he first step in the stability analysis, as described in the Appendix,
is to search for coalescing poles of the dispersion relation which originate
in opposite half-planes. If such poles exist, they indicate the presence of
absolute instabilities for both impulse and time-harmonic switch-on
disturbances. Secondly, in the absence of coalescing poles the form of the
response to the time-harmonic disturbance is determined, the response to the
impulse bdeing bounded in both space and time.
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(b) Coalescing Poles

Coalescing poles are present at those values of wp and ap wvhich
satisfy the simultaneous equations

D(a,w)=0 (3.2)
aMD( , w )/ dcm=0 (3.3)

It is straightforward to solve these equations for the beam to give the two
solutions

up-of< 2/E1) Y 310y 1-0m0) ) Y 3 32w 1-om/m) Y2 (3.4)
a =0, (W2E Y2 (1w 1-smm)) /33ty 1~smm) "1/ 2 (3.5)

where for the first solution the positive signs are taken throughout, and
for the second solution the negative signs are taken throughout. The
remaining two solutions of equations (3.2) and (3.3) are of opposite sign
to those given above, and in particular have n.[upjco. Por cases where
8m/M€1l Dboth of the solutions for wp given by equation (3.4) are purely
real, and therefore represent transient solutions, even if the root loci of
the coalescing poles originated in opposite half-planes.

If, however, Sm/M>1, then the second solution for (uwp,ap) is such
that has a positive imaginary part, indicating that an absolute
instability is present if the root loci of the coalescing poles originated
in opposite half-planes. The corresponding value of ap has a positive
real part and a negative imaginary part. The presence of an absolute
instability is determined as follows.

(i) At any real frequency w,, the four root loci for wmw,+ic, vhere o
iy large and positive, are found from the various combinations of

a = (o2 (mim)/a2r] /Y2111 (3.6)

Hence, each of the root loci originates in a separate quadrant of the
complex a—plane.

(ii) In oxder to determine whether or not the coalescing poles originated

in the same half-plane, it is convenient to solve the dispersion relation,
equation (3.2), for w, viz.,

u-u[mlz(u(m-)az-mf)"’]/(m-) (3.7)
and to consider where the root loci may cross the real and imaginary o—axes.

(1i1) If a root locus crosses the imaginary o-axis, al o=ir say, then
from equation (3.7)

1/2

u-i:[lﬂtti(tt(nh):sz} V(¥m) (3.8)
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and bacause, by definition, on a vroot locus Im{w] wust be positive,
equation (3.8) shows that r must also be positive. Hence, no root locus

may cross the negative imaginary o-axis.

(iv) If a root locus crosses the real a-axis, at o=s say, then by
considering the real and imaginary parts of equation (3.7) .
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and
ut-ﬂllil(lﬂ-l) (3.10)

Since the analysis has been restricted to only those values of « with
positive real part, equation (3.10) shows that s must also be positive.
Hence, no root locus may cross the negative real oa-axis. This result,
together with the result of paragraph (iii) shows that the locus which
originates in the lower half-plane, with Re([a]<0, must remain in that
quadrant of the complex ao—plane, and in particular it may not coalesce

- with any other loci. Thus, if the coalescing poles originate in the same
half-plane, it sust be the upper half-plane.
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(v) Suppose that the loci of the coalescing poles both originate in the upper

half-plane, then, because the imaginary part of op is negative, they must

both cross the (positive) real a-axis. Equations (3.9) and (3.10) show

that for a given real frequency uy, loci may cross the real a-axis at

(at most) one point. By substituting this (real) value of a into

aquation (3.7) it is clear that only one (positive) value of o is posasible

for both loci at this point. Hence, coalescence occurs on the real ao—-axis

and a contradiction to the results of equation (3.5) has been obtained. -
Thus the coalescing poles may not both originate in the upper half-plane.
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. Together, the results of paragraphs (iv) and (v) show that the loci
of the coalescing poles originate in opposite half-planes, and therefore
indicate that the pipe is absolutely unstable if Swm/M>1l, and, as described
in the Appendix, the pipe response is dominated by the frequency wp.
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{c) Response to Time-harmonic Switch-on

N2

In the absence of an absolute instability, the form of the pipe response
to a forcing excitation at a particular frequency wg may be determimed. For
sm/M<1l there is no absolute instability present, and the behaviour of the
pipe depends on the forcing frequency. It follows from equations (3.9) and
(3.10) that a locus for w=wg+ic crosses the real o-axis only if

Syl

‘.1‘.‘.55:

This is a necessary, but not sufficient, condition for a convective
instability since the locus may subsequently return to the real o-axis,
in which case the pole would represent a propagating wave.

NN |

uocmf( wem) Lpm/Ez(0em) /2 (3.11) Y
Ei‘

By considering the dispersion relation, in the form given by equation
(3.7) for real values of ¢ and @ it is obvious that the branch

& ‘ ."' ;;';." Pa b

-10-
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u(a)-c[m1+(zx(m-)az-cf)"2]/(m) (3.12)

is a monotonic increasing function of a, in the regions of the real a-axis
where it exists as a real function. Clearly, however, the branch given by

1/2

0(6)"![”1"(!1(“)“2-0:) 1/(¥im) (3.13)

is not, and the equation
uo-u(cl) (3.14)

may have 2, 3, or 4 real roots a, depending on the value of uwg. The
boundaries between these intervals on the w—axis are determined by solving
the equation

dw/ do=0 (3.15)

wvhere «(a) is given by equation (3.13). The pipe behaviour may then be
descibed in each of three frequency regions, using arguments similar to
those used in section 3(b). The behaviour is as follows:

Por

/ /2 3/2

0,0 2WED) Y 2(1-v( 1-om/m)) '/ 2 3v( 1-em/m)” (3.16)

the pipe is convectively unstable in the region 2>0. In this region two
waves whose phase propagates downstream from the excitation exist, one of
which decays exponentially with distance, whilst the other grows exponentially
with distance. In the upstream region, z<0, there are two free-waves which
propagate without decay, one whose phase propagates downstream and the other
upstream. However, the group velocity, 3duw/dx, of both of these waves is
negative, indicating that in both cases the energy flows upstream from the
source of excitation.

For w0, 0 2WED Y 2 (1 1-om)) 2 (3 1-om) /2
(3.17)
and 1/2 1/2 -3/2
w0y <0 (2WED) Y 2(14vi 1-0mm)) V2 (34w 2-emm)
s:,\':'.::\

the pipe behaviour is stable and consists of four free-waves. In the 2
upstream region, =<0, the phase of one wave propagates upstream from the point AN
of excitation, whilst the phase of the other propagates downstream from " \5 o
infinity. Again, in both cases, the group velocity is negative and the N N PCN
energy flow is upstream from the point of excitation. In the region, £:0, the 0SS

phase of both free-waves propagates downstream from the source. The group f_‘{.}:

velocity of both of these waves is positive, and the enexrgy flow of each
vave is downstream from the source of excitation unless NOEOCES

0, mi(nn)"[mx(mnvz

-)ll=-




vhen the group velocity of one of the waves is negative, and the energy flow
associated with that wave is upstream from infinity.

Porx

w0 2WED) Y % 1 1-amm)) Y 2340 1~em/m) /2 (3.18)

the pipe behaviour is stable and consists only of propagating and decaying
waves. In the downstream region, >0, two waves travel downstream from the
source, one of which is a free—wave which propagates without decaying and
the other is evanescent and decays exponentially with distance. 1In the
upstream region, z<0, one free-wave propagates upstream without decaying.

The amplitude of the second wave in the z<0 region decays exponentially with
distance from the excitation and is therefore stable.

(4) Effect of Damping

A positive hysteretic loss factor, n, may be introduced into the
mathematical model by making E cowplex, viz.,

E=E(1-1in), for w0
(3.19)

E=E(1+in). for w<O

vhexre n is small compared with unity. The symmetry of the dispersion
relation, equation (3.1), is preserved which mesans that it is again sufficient
to consider only those values of w with Re[w]>0.

Equations (3.4) and (3.5) again give the position of coalescing poles
except that now, for small n,

o = (1+iry/2)
PP (3.20)

=x_(1+iry2
Gp P( nv2)
Por the case 6w/M>l, the addition of damping has altered the location
of the coalescing poles slightly, but not enough to stabilise the system
from its previously absolutely unstable state.

Por the case Sw/¥<l, where there was no absclute instability, the
addition of damping alters the position of the root loci slightly, and may
result in coalescing poles. In the absence of damping, both solutions for
the frequency, given by equation (3.4), at which poles coalesce were real and
thus represented transient solutions. Equation (3.20) shows that with damping
both of these solutions have a positive imaginary part, and may therefore
represent abeolute instabilities if the coalescing poles originated in
opposite half-speces. The behaviour of the root loci in the undamped case
show that at the lower frequancy the coalescence is between loci which both
originate in the upper half of the complex o-~plane, but at the higher

frequency
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NP'UI(ZWEI)
the coalescence is between one pole whose locus originates in the lower half-
space and one whose locus originates in the upper half-space. There is thus
an absolute instability at the frequency given by equation (3.21).
Bowever, because the exponential growth rate is proportional to n, which is
small, this contribution to the displacement may not dominate the solution -
until t Dbecomes very large. Por small or moderate values of the time ¢,
the response will appear to be approximately as was determined for the
undamped case.

4. NUMERICAL RESULTS

(a) General

Portran programs have been written for calculating the complex roots,
a, of the dAispersion relation given by equation (2.3) for complex values of
the frequency paramster w=w,+ic. The programs are written in double
precision complex arithmetic, which is simulated ([16]) by the use of double
precision real arrays of leading dimension two. This was necessary because
the programs were run on a PDP-11 computer whose single precision arithmetic
word length of 32 bits is inadequate for this type of problem.

™he material and geometric constants, in SI units, which were used in
the calculations for Pigures 6-11 are as follows:

Steel Pipe: E=19.5x1010 u=0.29 p=7700.0 a=1,0x10~2 h=0.05x10~2
Rubber Pipe: E=).23x1010 y=0.4 p=1100.0 a=1.0x10~2  h=0.05x10™2
water: P=1000.0 C=1500.0 U=10.0

Damping in the pipe wall was included in the calculations for Pigures 10 and
11 by setting E, the Young's wmodulus, to the complex value E(1l-in), vhere
the numerical value of 1, the hysteretic loss factor, was chosen as 0.2.

This value, which is an order of magnitude higher than practical levels, helpe
to clarify the effect of damping without significant change to the physical
interpretation.

(b) Beam Theory Reasults

Pigures 6a and 6d show the real and imaginary parts, respectively,
of the wavenumber—frequency plot for the undamped steel pipe, obtained from
the dispersion relation for a beam, equation (2.3). The branches labelled
1l and 2 are purely real, and branches 3 and 4 are complex conjugate roots.




The positive real branch, labelled 1, has a minimum value at approximately
0.1982 wvhich indicates an infinite group velocity and also a possible
instability at this frequency. Clearly, because these branches of the
dispersion relation do not intersect, no poles may coalesce at real values
of the frequency. -

Pigure 7 shows a root locus stability plot for the four roots (labelled
a, b, ¢c and Q) of the undamped steel pipe. All the loci labelled 1 correspond
to the frequency ,/2r=0.04Hz. The loci labelled la and 1b terminate on the
real o—-axis and for a tims-harmonic switch—-on excitation at this frequency
therefore represent free—waves, whose phase propagates upstream from the
excitation and downstream from infinity, respectively. The enexrgy of both of
these waves propagates upstream from the excitation. The locus labelled 1lc
crosses the real o-axis and terminates in the lower half-plane. This
represents a convectively unstadble wave propagating downstream from the
excitation. The locus labelled 14 terminates in the upper half-plane, and,
because there are no branch cuts in the complex a—plane, may be identified
with an evanescent wave propagating downstream from the excitation.

The loci labelled 2 and 3 correspond to frequencies w,/2m=0.08Hz and
Wy/27=0.122, respectively, and represent responses similar to those at 0.04#x,
The loci labelled 4 and 5, corxesponding to frequencies w,/2m=0.16Hx and
Wy/2m=0.20Hz, however show very different beshaviour. The locus labelled 4>
terminates in the lower half-plane, and may be identified with a wave whose
phase and group velocities both propagate downstream from infinity. The
amplitude of this wave decays exponentially with distance from the excitation
point, z=0, and, according to Melcher's classification it wmust therefore be
described as stable. In fact the amplitude of this wave increases in the
direction of propagation, i.e. it appears to be a convectively unstable wave
propagating downstream from infinity. The locus labelled 4¢ terminates on the
real o—axis and represents a free-wave whose phase propagates downstream from
the excitation, but whose group velocity is negative. The loci 4b and 4c
therefore both represent waves whose energy propagates towards the excitation
point. The locus labelled Sc terminates on the real o—-axis and represents a
free—wave which propagates downstream from the excitation.

The difference in the character of the response at frequencies below
0.12Hz and that at frequencies above 0.16HE, together with the form of the
response at 0.16Hz, suggests that at some frequency between these values there
may be a branch point in the complex uw—plane, as a result of poles from
opposite half-spaces of the complex a-plane coalescing. The form of the root
loci shown in Pigure 7, show that such a pair of coalescing poles must exist,
and hence that the pipe has an absolute instability which exists for both the
impulse excitation and the time-harmonic switch—on excitation whatever the
value of uwg, the excitation frequency. Purther numerical work, not presented
here, reveals that the coalescing poles are located at

ap = 0.18-0.081 (4.1)
wp/2w = 0,.1440,061 (4.2)
which may also be obtained directly from equations (3.4) and (3.5). The
componsnt the pipe response dus to the integral around the branch cut in
the

complex w-plane grows exponentially with time, and at large times the
is approximately at the frequency wp and wvavenumber ap, given by
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oquations (4.1) and (4.2). The frequency at which the absolute instability
occurs, equation (4.2), does not coincide with the frequency, cbtained from
Pigure 6, at vhich the group velocity appeaxrs to be infinite.

Pigures Sa and % show the real and imaginary parts, respectively, of
the vavenmber—-frequency plot for the undamped rubber pipe, obtained from
the dispersion relation for a beam, equation (2.3). The branches labelled
1 and 2 axe purely real, and branches 3 and 4 are complex conjugate roots.
At frequencies between fp (approximately 1.28:) and f (agproximately
1.3Hz), the number of real positive roots of the dispersion relation changes
from one to three. At frequencies below £; a pair of complex conjugate
roots exist, wvhich coalesce at f=f;. At frequencies between f; and £y
all four roots are real. At fg the two largest real roots coalesce, and
at higher frequencies this pair of roots are complex conjugates.

Pigqure 9 shows a root locus stability plot for the four roots (labelled
a, b, ¢ and 4) of the undamped rubber pipe. All the loci ladbelled 1
correspond to the frequency uy/27=0.75Hs. The loci labelled 1a ad 1d
terminate on the real o—-axis and represent fres-waves whose phase propagates
upstzeam from the excitation and downstream from infinity, respectiwvely. The
enaxgy of both of these waves propagates upstream from the excitation. The
locus ladbelled 1lc crosses the real a—axis and terminates in the lower half-
plane, vhilst the locus labelled 14 terminates in the upper half-planse. These
represent a convectively unstable wave and an evanescent wave, resectively,
both propagating downstream from the excitation. The loci labelled 2
correspond to the frequency «,/2m=1.0HE, and are similar to thoee at 0.73Ex.

™he loci labelled 3 in FPigure 9 correspond to the frequency «y/2w=l.25Rs,
The loci labelled 3a and id terminate on the real o-axis and represent free-
waves propagating upstream from the excitation. The loci labelled 3¢ and 34
also both terminate on the real o-axis and represent free-waves whose phase
propagates downstream from the excitation, but whose energy propagates
upstream from infinity and downstream from the excitation, respectiwvely.

The loci labelled 4 correspond to the frequency wy/2m=1.58x. The locus
labelled 4a terminates on the real ao—axis and therefore represents a free—
wave propagating upstream from the excitation. The locus labelled 4
terminates in the lower half-plane, and represents a wave whose amplitude
decays exponentially with distance from the excitation point. The locus
labelled 4¢ terminates on the real o—-axis and represents a free-wave
propagating downstream from the excitation, whilst the locus labeslled 44
terminates in the upper half-plane and represents a wave whose asplitude
decays exponentially with distance from the excitation point. The waves
represented by the loci 4b and 44 have positive phase speeds, but gero group
velocities. The loci labelled 5 correspond to the frequency «y/2m=l.75HE,
and are similar to those at 1.5Es.

The only coalescing poles which originate in opposite half-planes
coalesce at a real frequency between 1.28Hs and 1.8Hs. It is shown in the

Appendix that coalescence at a real frequency corresponds to a transient
response, and the rubber pipe therefore has no absolute instability. The pipe
response is predominantly at the excitation frequency, and the nature of the
response depends on the value of the excitation frequency. 1If the excitation
frequency is less than £; the pipe is convectively unstable. If the
axcitation frequency is batween f; and fp the reponse consists only of

-18=
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free-waves, and if the excitation frequency is greater than £ the response
is again stable and consists only of free-waves, an evanescent wvave
propagating downstream from the excitation and a wave whose phase propagates
downstream from infinity, but whose asplitude decays exponentially with

The

distance from the excitation. values of £ and £y wmay be obtained NEACAG,
either by further numerical work, or directly from equations (3.16) and I A
(3.18). Por the rubber pipe they are found to be N
£y, = 1.2488 . (4.3)
£y = 1.2688 (4.4)

™he mmerical results presented in Pigures 7 and 9 were repesated with
pipe dmmping included in the calculations. T™he mumerical value of 1, the
hystexetic loss factor, was chosen to be 0.2, and the results are show in
Pigures 10 and 11. The positions of the root loci for the steel pipe, showm
in Pigure 10, are only slightly altered by the addition of damping. In
particular, the loci corresponding to free-waves propagating upstream with
nagative phase speed in the undamped case, move downwards, i.e. away from the
axis, and therefore repressent evanescent waves propagating upstream. The loci
corresponding to free~waves propagating upstream from the excitation with
positive phase speed in the undamped case, move upwards, i.e. they cross the
real a-axis, and therxefore represent unstable waves whose amplitudes increase
with distance from the excitation. However, it is clear from Pigure 10 that a
locus from the upper half-plane must coalesce with a locus from the lower
half-plane at a complex frequency whose real part is between 0.12Hs and O0.16H=
and that the pipe is therefore absolutely unstable. Whilst the addition of
damping to the pipe may stabilise or destadbilise individual free-waves which
propagate at the excitation frequency, it doces not remove the abeolute
instability, which dominates the solution at large times.

The positions of the root loci for the rubber pipe, shown in Pigure 11,
are again only slightly altered by the addition of damping. The individual -
free-wvaves propagating at the excitation frequency may be stabilised or
destabilised in the same wvay as for the steel pipe. However, at a frequency
of approximstely 1.25Hz a root locus from the upper half-plane coalesces with
one from the lower half-plane at a complex value of » indicating an
absolute instability. Whilst the addition of damping the pipe may
stabilise or destabilise the individual free-waves at the excitation frequency
its net effect is to destabilise the pipe by introducing an absolute
instability which dominates the solution at large times irrespective of the
excitation frequency. Thus the convective instability at low excitation
frequencies is converted to the more serious absolute instability which occurs
not only for all excitation frequencies but also for impulse excitations.

The stability characteristics of an undamped pipe, obtained from the beam
theory model, are summarised in Pigure 12. If 68m/N>1 the pipe response is ﬁ:;j.-‘;._;:';
absolutely unstable for both the impulse excitation and the time-harmonic RS LYRED
switch-on. If Om/M<1l the response to the impulse excitation is stable, being _:;f:;*‘:_.:
bounded in both space and time. The response to the time-harmonic switch-on AN

"I.

e
7
o

may be convectively unstable or stable, consisting only of free-waves or of a
combination of free-waves and evanescent waves, depending on the parameters of
the pipe, the fluid and the excitation frequency.

-16~
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T™he stability characteristics of a pipe conveying inviscid fluid have

. been examined using a causal approach which is able to distinguish between
an absolute instability, in which the amplitude of the response grows with
time everywhere, and a convective instabilty, in which the amplitude of the
response grows as the disturbance propagates away from the excitation. Two
types of initial disturbance were considared; type A, which is an impulse
applied at t=0, and type B, which is a tims—harmonic disturbance, sin(ugt),
which is switched on at t=0., If an absolute instability is present the
oscillatory part of the response is dominated by the ’'pinch’' frequency, ug,
whilst if a convective instability only is present the oscillatory part o
the response is predominantly at the excitation frequency, wg.

The main findings of the mathematical and numerical work on the beam
theory model werxe:

(1) If su/M>1l, the undamped beam has an absolute instabilty for both
type A and type B disturbances. One mode of the response grows
exponantially with time everywhere, and eventually dominates the
variety of other wave wotions which may also be present.

(ii) If sw/M<l, the undamped beam response to type A disturbances is
transient everywhere. Por type B disturbances the form of the
response depends on the excitation frequency as follows:

(a) At excitation frequencies, wg, less than a small value, ey,
the beam is convectively unstable. Its response consists of
two free-waves, the direction of whose group velocities are
upstream from the excitation, together with an evanescent

- wave and a convectively unstable wave whose group velocities

are downstream from the excitation.

(b) At excitation frequencies, wg, in a range wp to ey, the
beam is stable. Its response consists of four free-waves, two
of whose group velocities are upstream from the excitation and
the other two of which are downstream from the sxcitation.

(c) At excitation frequencies, uwg, greater than uy, the besm is SRRy

also stable, its response consisting of an evanescent wave and N

a free-wave whose group velocity is upstream from the Faiih
excitation, and an evanescent wave and a free-wave whose 3552?;, :,‘.

group velocity is downstream from the excitation. “a

(111) The addition of damping cannot remove an absolute instability, and q}-:f-.::«.
it introduces one for both type A and type B excitations if one is NN

not already present, the exponential growth factor in this case ;::'f::.:

S

e

being proportional to the loss-factor, n. Becausse the losa-factor

s
ase
“

is usually small, it is expected that the medium term behaviour of
the beam will be as described in (i) or (ii) above, but the long
term bshaviour must be absolutely unstable.

o
. 1)
®.
AT

K

)
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Some mmerical work, not presented here, has also been done (17] on the

stability of a pipe which is wodelled using a shell theory. The main findings Y
of this work were:
(1) Poxr the n=0 harmonic, the shell's axisymmetric wode, two notable .

features emerge, Vis.:

(a) Instabilities were not present for the gecwetric and material
constants of the pipes considered in Section 4.

(b) Because the n=0 shell mode must limit to the line—excited
plate problem [14) as the shell radius tends to infinity,
soms additional mumerical and analytical work was done which
suggested that convective instabilities occur only if

N T PV TR P

am > x(uzz— 1)/zp1c"; (5.1)

™his identity is unlikely to be satisfied for most practical
pipswork systems which convey waterx.

(11) Por the n=1 harmonic, the shell’'s ‘heam’' mode, the results were
identical to those of the beam theory model, as described
above, at the low frequencies at which instabilities occux.

(1i1) Por the n=2 harmonic, the first of the shell's ‘lobar’ wmodes, two
points are worthy of note, viz.:

(a) AMgain instabilities were not present for the geometric and -
material constants of the pipes considered in Section 4.

(b) Purther numerical work suggested, tentatively, that convective
instabilities (and hence also the possibility of absolute
instabilities) may be found if the pipe radius is increased
sufficiently. Mo formulas were obtained for this, but it is
thought that the identity would be less strict than equation

(5.1). ;

An interesting side—effect of the fluid flow is the generation of modes < I
whose phase and group velocities are in opposite directions. However, one G
must be very careful in interpreting the group velocity as the velocity of ,".'";":
enaxgy flow when instabilities are present because some modes admit of an ,._-..:"ggj'
infinite group velocity, which is clearly not a physical possibility. “'.::_';_:

Whilst the theory presented here may be applied to the determination of By
approximate stability boundaries, its practical usefulness may be limited by TN,
several factors. Pirst, the approximations which are implicit in the govern- ?",'-":-,"L:i
ing equation of wotion do not adequately describe all possible flow configur- PO
ations, some of which may result in other forms of instability. Por example, y:.-:'. ¢

94

thin, possibly turbulent boundary layers which may exist next to the pipe sur— o202
face are not included in this theory. The model is, however, believed to con- s
tain the essential features of low-frequency transverse vibration. Secomdly,
the linear theory used here should predict the occurrence of instabilities,
but, once an instability exists its amplitude and hence its practical import-

-10-
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ance will be determined by non—linear effects. Thirdly, the results presented
here are for infinite pipes, and the finite length of practical Piping systems
may not admit the long wavelength instabilities predicted. Pinally, the de-
stabilising effect of damping may render meaningless the analysis of the un—
damped case because sowme damping is always present in practice. The best way
to test the range of applicability of the theory is to conduct experimental
tests,

E. A. Skelton (HSO)

Manuscript completed January 1964.

~19~




1. JUNGER, M.C., PEIT, D., Sound Structures and their Interaction, MIT
Press (1972).

: 2. PEIT, D., Pressure radiated by a point-excited elastic plate,
J. Acoust. Soc. Am. 40(6) ppl4a89-1494 (1966).

. 3. CRIGHTON, D.G., The free and forced waves on a fluid-loaded elastic plate,
I J. Sound Vibr. 63(2) pp225-235 (1979).

4. SPICER, W.J., Acoustic intensity vectors from an infinite plate with
S line atgact-.ntl. Admiralty Marine Technology Establishment, Teddington,
AMTE(N)TMB1086, October 1981.

5. PULLER, C.R., PAHY, P.J., Characteristics of wave propagation and energy
distribution in cylindrical elastic shells filled with fluid,
J. Sound Vibr. 81(4) pp501-508 (1982).

6. PULLER, C.R., The input mobility of an infinite circular cylindrical
elastic shell filled with fluid, J. Sound Vibx. 87(3) pp409-427 (1983).

- 7. JAMES, J.H., Sound radiation from fluid filled pipes, Admiralty Marine e
l Technology Establishment, Teddington, AMTE(N)TMB81048, September 1981. oo

[
e,
'

8. JAMES, J.H., Computation of acoustic power, vibration response and
acoustic pressures of fluid-filled pipes, Admiralty Marine Technology
Establistment, Teddington, AMIE(N)TMB2036, May 1982.

roew a-e
'.l-l (s
LA

v TEEM, LY,

9. SKELTON, E.A., Sound radiation from a cylindrical pipe composed of
. concentric layers of fluids and elastic solids, Admiralty Marine

v-e, .
7o IOULN

2 Technology Establishment, Teddington, AMTE(N)IMB83007, January 1983, vl

~ 0'_‘.- wa

| -

B 10. DOWELL, E.H., Plutter of infinitely long plates and shells. Part 11l: PN

‘ Cylindrical shell. AIAA J. 4(9) ppl510-1518 (1966). Nineei

¢ i PR

: PR ORK

. el
11. MEICHER, J., Continuum Electromechanics, MIT Press (1961). AR

Ty e B8 BRI

T

-21~

et e N TWERA

[




R N R R N R N T A= B T R T — .

12. BRIGGS, R.J., Electron-stream Interaction with Plasmas, Monograph Mo. 29
MIT Press (1964).

13. BRAZIER-SMITH, P.R., SCOTT, J.P., The influence of flow on flexural waves,
Proc. Inst. Acoustics Conf. on Advances in Underwater Acoustics,
AUNE Portland (1981).

14, ATKINS, D.J., The effect of uniform flow on the dynamics and acoustics
of force-excited infinite plates, Admiralty Marine Technology
Establistamsnt, Teddington, AMIE(N)TWS2087, December 1982.

15, BLEVINS, R.D., Plow Induced Vibration, Van Nostrand Reinhold (1977).

IASSAN e d R
L) »

16. SPICER, W.J., PFree-wvave propagation in and sound radiation by layered
media with flow, Admiralty Marine Technology Establistment, Teddington,
AMNTE(N)YTNMES2102, December 1962.

DEEY

17. SKELTON, E.A., Unpublished work, 1984.

THW
.‘

LTSRN
[ 4

REPORTE NUNTED ARE ™0 HUCESS AR
et = GF THE PUBUG

AVANAZTE T
Oh TO COMMLERCIAL ORGANISATIONS

7

5

LY I 0 )

S LR

£
y

5

i
L1 1)
3¢
A

% X

l‘f_‘ &Ig\n _‘-5

‘ s ,\;

N 1l
NN

-22-

rvam:cmmu.n‘mwz




VACUUM

ELASTIC PIPE

ok ol L

Lol V4 Z AR A

——
UNIFORM MEAN FLOW

T T T 7T

FI1G. 1

AMTE(N) TM84087

?

OISTURBANCE
E(t), t>o

PIPE WITH UNIFORM MEAN FLOW




.......
..................

ST A

~
-
e e

I-‘-.

~ --I.~.-' - -.

-
.....‘- _.

—p Re (]
AMTE(N)TM 84087

Oqa

Im [a]
CLOSURE OF THE FOURIER CONTOUR
‘2‘-

® aT
a
FIG. 2




o $o
[+]
(A)
NO POLES OR |BRANCH POINTS
lm((ﬂli -
\ -wg 1 t>0
Im{WwWl=0 \\
N— ——
\ RelW])
~
\\‘--
Im{w] s 0
(B)
FiG, 3 CLOSURE OF THE LAPLACE CONTOUR
-’,_
AMTE(N)TMOL0S87

. SN ALY TR ATRY K.'L'J.“.‘I‘&x; 'v

tfa"’.;’:’
D

ALY




. PR A E™ T il i Lary e il T
3 70, WA AP Gt K g™ A ARV T A, RS EARE Ar A AR R  A BT AT T A A SRV, IR Y e h Al MO M
-------- - - . - - ale “a. s e e bRy ot . .- . Ca el

LY ¢

(&) (3) .
(2)
(%) ?
(6) (1)
(A)
X 1 [ / — Rele)
(7N 4
(8)
(9) (10) (1M (02)
Iim{a(]
t
(1)

—pp Re [« ]

® DENOTES WHERE A LOCUS TERMINATES

O OENOTES COALESCING POLES

FIG. 4 EXAMPLES OF ROOT LOCI AND COALESCING POLES

-2‘-

AMTE(NITME4087




NN ICHCE SR IR SO OPWENER S SIS MR e it Mt i M N S gy Sl Pt I e i ‘i A S i
.

wp
wp

(A)

(8) wp

€
o
&

FIG. 5 EXAMPLES OF ROOT LOCI NEAR COALESCING POLES

27~

AMTE( N)TM84L0S?







Ui At e

L ORI iy SR S el N

.

LN PV

cJ

[0y Wig Niiol I

“eteaddant

0-0=V13 S/WOl=N AHO3IHL Wv3E OU3IZ Ol 3IAILISOd 3 ONVT
WONd 0 ONIANVA AG CG3aNIV1IAO 1201 1004 (P'>'q‘D) UNO4 3IHL L '91d
VHdIY Luvd Tvay
20~
-0~
3¢
3
—~40-0
91 Qt q¢ 5¢ o] Oy O¢
0t-0 9
91-0 4
ty-0 3
90-0 4
%0:0 [}
(U /7'M HINVYE
20

A e

e as ZanT

-

Tia

aNia

K AR

‘m

SRR A

0=(oim'>»)0

MOI3 TYNEIINI HIW 3414 133188

R AANRE

L e e ey * Ir.e .
L el AL AR

-39~

VYNEIY LNVd ‘OVYNI

-~
[
o
-
[
x
~
-
=
-~
[ J
-
: 4
<




w

'u&z&&;ﬂh&QKUu&Ju

RO | 47

-
v
e fat

-

3% |

I“i v

|

FREQUENCY (Hz)

5.0
3.00 - ]
\ ”‘
: 100} I 5 — 3
< 1
- 3,4
o
u-!-dc*.
[ 4
~3-00
2
-5-00 ] \ [ ] ANES { [ ] | J
00 2% 50 75 1.00 1.28 1.50 178 2.00 2.28 2.50
FREQUENCY ( Hz)
s-oor-
3-00f
x s
* 100}
> 3 f,2
- ,
z w
=
9 =100~
3 ‘
*3:00)
-5-00 i ] ] L e ! 1 ] L j
0-00 -z8 '$0 ‘78 1-00  1.28 1-50 .78 2.00 B 2-30

FIG. 8 wavENUMBER VERSUS FREQUENCY PLOTS RUBBER pipg

AMTE(N)™ME40SY

-7 a
] 0 By
‘.

B eb_ 6 &
] a

’



- e W

BN

A . T

A iea

At

..‘

X

a

DL Null St N

Spber <ol SlNcIC Vel o L N8 el g T AT -

!

0-0=VLi3 S/WOI=N ANO3IHLI Wv3IH O0U3Z 0L 3IAILISOd 3IOYV
WOYd _© ONIAYVA AB G3NIVIGO 1501 L100W (P’>'q's) ¥WNO4 3IHL 6 Ol

YHAIY LuVvd VRN

0-Y 09
ot-
3
»
o
hJ
>»
oo
pjozogoy DY
»
-
9
b 4
>
sL- s
081 y
st 1 3
00 -4 F
sL-0 ]
sHtue 74 HONVYE
ot

0=z(2MM'»)0 MOTS TYNNILINI HLIIM 34K H3IEBONY

2, BMCRNYG AR RAR:  NBPRAAY] NP ¢ BVRTORAN - ORI KNI 10 S R T T 7

AMTR(N)TMOLOS?




2:0=V13 S/NOL=N AHO3IHL WV3E8
WOY4 -0 ONIAYVA AB 03NIVIBO 1001 100W

VHJIY LMvd 1v3Y

OM3Z 01 3AILISOd 3IOYV
(P'2'd’'D) YNO4 3IHL O 914

QY

s

F-]
]

(- - - I - - ]
- M 9o e

eH ( UL 7'M

0=z(01 M P)0 MOV TYNNILINI HLIIM 3did 1331S 03adNVE

70~
z.0-

VHIIY Ldvd 'OV W)




P PO N g0 i,

N N e

| R Py

RPN N g SRUC DU et o

RS )

AR

e

3

B Al P Bt

2:0=vi3 S/WOl =N AHO3HL Wv3d

WOYd o ONIAMVA A8 03NIVIiEO

VYHAIV L4Vd TVAN

0432 01 3IAILISOd 39UV
1901 10048 (P’'2'a’'D) HNO4 3IHL

LI |
o8-t
st-0
0014
$L-0

tHluz/7imm

toltd
09-
0-2-
[§
- »
z v
»
®
piozE YOy N
o »
-3
»
-
9
x
>
s
y
¢
4
0
HINVYe
ot

0=(o4mM'») 0

MO1d TYNUILNI

H1IM 3dId ¥3IBONY 03dNVO

AMTE(NITMELOST7




PR
. .

‘e teva B lL s

' 3SYI 03dWVANN ALITIEVYIS 3did 40 AHVWWRNS 2ZI 914

AMTE(N) TM8408?

] LA J

: 0.2 e 94 L Al ) 0t 8-0 90 -0 -0 o&.o
' I L 1 | ! T T T T

Ny : 1EVLAENN

. A12A1103ANDD
—i-0
€ .
° -
-~ -
z ]
»
3vevis g0 3
SIAVM - 33¥4 ¥ L
a
378VISNN S
o0 &
A131ntosey
»
[
L, ]
AN2ISINYAR 2 9.0

Ivevis
SAAVM - 3344 ¢

s " RARANRR " PR 2




APPENDIX

A Causal Approach to the Stability Analysis of Linear Systems

In the steady-state approach to stadility it is assumed that an
excitation of the form Re[Poexp(-~iugt)] exists for all time ¢. In
practice, however, the excitation will have been switched on at some time,
t=0, say. Three possibilities for the amplitude of the system response themn
arise: (1) it may settle down everywhere to finite values which are bounded
in both space and time and vhich may or may not be equal to the steady-state
values; (1ii) it may settls down everywhere to
exponsntially with distance from the point of excitation; or (iii) it may
grow exponentially with time at every point of the system. Melcher [11]) and
others have texmed case (ii) a convective instability, and case (1iii) an
absolute instability. The stability analysis proceeds as follows.

It is convenient to represent the system response, Wpy(=x,t), and the
excitation Py (2,t) as the real parts of complex functions Ws,t) amd
'("t)' mt‘.l?, mo' )

We(x,t)=Re{W(x,t)]
: (A)
Pr(s,t)=Re(F(z,t)]

otic o -
ws,t) 2 Wa,e)
= (1/4n) J - oxp( 1as—-iut Ydude (A2)
=, t) x,0)
-o+tic -o
- @ Y
wWo,e) Ws,t)
- l l oxp( ~iant+iut )aadt (A3)
Kaw)| . . |®st)

where o, a positive constant, is chosen to be such that the line in the
complex w—-plane Im(w]=c lies above any singularities of

o
W, 0)=(1/27) I W &, w)oxp( 1ax Yaa (Ae)

-

This ensures that causality is satisfied, i.e. the response of the system is
sezo for +€<0.
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The Laplace-Fourier transform of the linear differential equation
satisfied by the response Wz,t) way be written as

(&, 0 )W a, @ )=P(a, ) (AS)

vhere D(c,») is the dispersion relation of the system. Substituting
equation (AS) into equation (A2) gives the system response as

wtic ®
Wz, t)=(1/an2) J I -:{%:—:3 exp( Las-iut Jaads (AS)
-otic -o

T™he first step in the evaluation of the response W(z,t), is the
evaluation of the Pourier (w.r.t. a) integral of equation (M),_uhm
requires information about the behaviour of both D a,w) and P(x,w). The
dispersion relation D(a,w) is, in general, a multi-valued function which
may be made single—valued on the real a-axis by imposing any radiation
condition. In wmany problems involving fluid-structure interactions, for
example, the dispersion relation involves the radical v((w-aU)2/cZ—a?)
which may be made single valued by imposing the radiation condition that
In[v({(w-aU)2/c2-a2]] should be non-negative on the real o-axis. The
(single-valued) dispersion relation on the real o-axis may then be
analytically continued into the complex a-plane, where, in order to ensure
that the continuation is single—valued everywhere, branch cuts must be
introduced. Por sufficiently large ¢ the branch points will be off the
real o—axis. The associated branch cuts must not cross the real o-axis
and sust thexefore go to infinity in their respective half-planes. With the
exception of this restriction, the choice of branch cuts is arbitrary. The
behaviour of PF(a,w) Adaepends only on the type of forcing excitation applied
to the system. Two common types of excltation are an impulsive excitation

P(z,t)=Fo8(Z)8(t) (A7) "
whose transform is given by equation (A3) as
i(c,u)-ro (A8)

and a time-harmonic excitation switched on at t=0, vis.,

o t<0
P(z,t)= (A9)
Po 8(z)exp(-imgt) ¢>0

whose transform is

F(a,0)=1F /(0-w;) (A20) :

RN

e Pourier-integral of equation (A6) may be evaluated by suitably 1‘.'::'
closing the contour and applying Cauchy's theorem. Pigure 2 illustrates R
the case wvhen =2>0, requiring that the contour is closed in the upper half- "
plane. Por =<0 the contour must be Closed in the lower half-plane. This 2y
convention ensures that, as Im(a] tends to plus or minus infinity, ' L%,
%S
N

. z:":f'-“:-'
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respectively, the term exp(iaz) in the integrand remains finite.

In Pigure 2, let ag (3=1,Ny) represent all the poles of the integrand
in the upper half-plane, and aj (3=1,Ny) represent all the poles in the
lower half-plane. If ¢ 1is sufficiently large then all these poles are well
separated from the real o—axis. The contours C; and C, are circular
arcs of large radiua and, provided that all these singularities of the
integrand in the upper half-plane lie inside the contours, the contributions
to the integral from integrating along C; and C,; tend to zero as the
radius tends to infinity. The integrals along By, By, and B3 are branch
cut integrals and will be discussed later. Similar results are true for the
contour for 2z<0 in the lower half-plane. The integral may be generally
expressed, as the sum of residues and branch cut integrals, in the form

N

x
W(z,w) = 13 P(q;,m)exp(ia;z)/o'(a;,u) + 8 (z,0) (A11)
j=1

where the + sign corregponds to positive values of z and the - sign to
neqgative values of z. By(z,w) is the contribution from the integral around
the branch cuts in the complex «—-plane, and

D' (o, w)=dD(ax,w)/dx

The system response W(z,t) is then found by evaluating the Laplace—
integral of equation (A6), using the result of the Pourier-integration given
by equation (All). Por +¢<0, the contour must be closed as shown in Pigqure 3a
in order to satisfy the causality requirement. PFor t>0, the contour may be
Closed by using the standard Laplace contour also shown in Pigure 3a. Any
numerical scheme for evaluating this Laplace integral would become numerically
unstable for large positive values of t because of the term, exp(ct), in the
integrand which tends to infinity as t tends to infinity for positive values
of o©. It is therefore necessary to deform the contour down to the real
w-axis by letting o tend to zero, not only to allow a numerical evaluation
of the integral, but also in order to identify the contributions to the
integral from branch cuts and poles in the complex w-plane., The resulting
contour, shown in Pigure 3b, lies just below the real w—axis, but is indented
around any poles and branch points in the upper half-plane or on the real
w-axis. If w, (n=0,N,) represent all the poles of the integrand, then the
system response, for t>0, may be expressed using Cauchy's theorem, as the sum
of residues and branch cut integrals, in the form

N N

(1] &
W(z,t) = Z(-—iﬁa(z,un)tz R(a;,un)exp( ia;z))exp(-iunt) + Bm(z.t) (A12)

n=0 =1

where R(a;.un) and ea(z'“'n) are the residue countributions, defined as
R(ay,w ) = Lim((w~w )P(a,0)/D (a,w)} (A13)
jl n w n qjl jl
n
-3 7

an




R T R N T R R R R Tt A A . XA I I D N S L A R R A A R N R T AT R

£ (2,0 )=lim((w-w_)B _(2,0)) (A14)
) [- n o n «
) ,
¥
2 and B,(z,t) is the contribution from the integral around the branch cuts
% in the complex w—plane. _ -
e In order to deform the contour in the w-plane as described above, the

continuation of W(z,») into the region Im{w]<c must be analytic. As
the lLaplace contour is moved down to the real w—-axis, the poles enclosed by
the Pourier contours also wmove in the o-plane and it may be necessary to
deform the Pourier contours so that they always include the same poles of
the response transform, W(a,w).

WO

In order to ascertain whether or not any physical significance can be
attached to each term of equation (Al2) for the response of the system, it
is necessary to use the root locus technique as described by Maslcher (11]
and Atkins [14]. Pirstly, consider the contribution from a siwmple pole on
the real w-axis at w=w,, wvhich arises from a time-harmonic excitation of
the form Pgoexp(-iupt). In the root locus technique the loci of roots
- (which are functions of «) are plotted for values of wmu,+ic for particular
values of uwy, a8 o varies from +m to O. Provided that these loci do not
- coalesce (i.e. intersect at the same value of wy and o) for any real uwy
- then there are twelve basic possibilities for each locus which are illustrated
- in Pigure 4a. The shaded circles in this Pigure denote points where the loci

2 terminate, corresponding to o=0.

The form of the system response may be determined from the loci for which
wy=Re(wp]. In cases (1) to (6), because each of the loci comes from above the N
real o~axis the PFourier contour must be indented where necessary to include
the pole in the upper contour. The response due to each of these poles is
non-2ero only for 20, in which case it is given by

o,

[y =Y
LK PY AR

R

N
AL AN

W
L

Wz, £ )=F exp(( 1o -0, )2 }exp(—1u t) (A15)

is the location of the pole when d‘h[unlﬂo.

iy
..

where crﬂ.n

ntf.b

i

In cases (1)-(3), vheaxe «cy>0, the phase disturbance propagates in the
positive z-direction. If a4>0, as in case (1), the wave decays exponentially
with distance and it is called an evanescent wave. If a;=0, as in case (2),
the wave propagates without decay. In case (3), where «aj<0, the wvave
increases exponentially with = and is termed ‘convectively unstable’. 1In
cases (4)-(6),vhere a,<0, the phase disturbance propagates in the negative
z~direction (i.e. towaxds the excitation ). In case (4), vhere a3>0, as the
phase propagates the wave amplitude increases exponentially with distance.

In case (5) cy=0 and the wave propagates without decay. If «4<0, as in
case (6), the wave decays exponentially with distance.

SNCRTAONY - OGO L

«
s

4 XF

cases (7)~(12) are similar to cases (1)-(6), except that the loci come
from below the real c-axis and the Fourier contours must be indented where
necessary to ensure that, in each case, these poles are included in the lower
éj contour. The contribution to the reaponse from each of these poles is

Py therefore non-zero only for =<0.

-
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The contributions to the displacewment from simple poles in the complex

N w-plane represent propagating, spatially amplifying or spatially decaying

¢ waves at the excitation frequency, w,. This description of the propagation
directions gives only the phase speeds of the individual waves. A more
realistic quantity physically is the group velocity, dw/da, the velocity at

- which energy propagates. This may be obtained from the direction of the
loci at o=0, viz.,

l.-l‘-l._ [ W EP e Tt}

dw/da=a( io)/a( ar+i<xi ¥={( aai/as »Hi( a«/aa Yl(ao/a8) (Al6)

vhere s 1is the arc length along the locus, measured from o=0,

In particular, the group velocity is positive if the initial direction of
the locus in the complex ao-plane is upward, and the group velocity is
negative if the initial direction of the locus is downward.

4 '
,'. 3, Il

25000

In order to consider the contribution, B,(z,t), to the response from
the integrals around the branch cuts in the complex w—plane possible
5 singularities in the complex w—plane must be identified. Equation (All)
" indicates that singularities in the w—-plane may be expected if, for some «

D'(aj(u).u)-o (A17)
_ wvhere o j(u) is a root of the dispersion relation
'T D&, (w),w)=0 (A18)

3
If a solution to the simmltaneous equations (Al7) and (Al8) exists, with
Im{w]>0, it indicates that equation (Al8) has a repeated root aq at that
“ value of «, which in the context of the root-locus method means that two
N root loci coalesce in the complex a-plane. There are two distinct
- possibilities here as illustrated in Pigure 4b. If both loci have come from
SN either above or below the real oa-axis, as in case (1), then the Pourier
contour in the complex a-plane may always be deformed to include both poles,
- and at the coalescence frequency the residue may be calculated as for a second
N order pole at amaq(w): this constitutes a removable singularity in the
complex w—-plane. Thus, as pointed out by Melcher [11], the coalescence of
poles illustrated in case (1) does not indicate a true singularity in the
B complex w-plane. In case (2), however, a locus originating above the real
a—-axis coalesces with one originating from below. The Pourier contours in the
complex o—plane can no longer be distorted to include only the poles
originating in the upper (or lower) half-plane, and they become ‘pinched' at
N the (complex) frequency, Wp, at which coalescence occurs. This confirms the
presence of a singularity in the complex w—plane at w=p, which wmay be
. identified as a branch point by considering the Taylor series expansion of the
dispersion relation about Wy, O™dp, viz.,

D1, )= s )AD/ Bk 1/2 X at y2a%D/0a%4+( a-a, ) 182D/ 000w

+ yz)(u—up)zazo/auz+ e (A19)
) where all the derivatives are to be evaluated at a=ap, w=wp. By cornwidering

the order of each of the terms in equation (Al19) as w=up, Melcher ([11] has
shown that in a neighbourhood of (up,up)

-39~
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" (o Jm 20w, ) 30/20)/( a%p/8a®yy /2 (A20) ;
s

X The residue contribution to W(%.w) in the neighbourhood of (ap,uwp). is givim .
N by equation (All) as

A

K

+4F( &,  )exp( 162)/0 (&, ®) (A21)

] Differentiation of the Taylor expansion, equation (Al9), with respect to a
2 allows the residue contribution, equation (A21), to be written to first
order in (o-ap) as

tii(c.u)e:p(wvua-ap)ozo/aaz) | (A22)
which may be expressed in terms of w, using equation (A20), as

£47(a, @ Jexp( 1a8)/ (200w, )X a%p/8a® )( aD/0w) 12 (A23)
demonstrating that wy ia, in fact, a branch point of W(s,w).

In the context of the root—-locus method, the presence of the branch
cut may be demonstrated by considering the possible behaviour of neighbouring
root-loci in the complex o-plane for w. and u,;, where u_m.[up] and
wyoRe(wy], as illustrated in Figure Sa and 5b. In both cases, it may be
shovm the residue contributions to the PFourier integral W(z,w) are
discontinuous at as[u]-m[up], indicating that the branch cut in the complex
w-plane runs from wp to -~im. This choice of branch cut is imposed by
the causality requirement wh determmines the poles to be included in each
Pourier contour.

The approximate value of the contribution to the response from the
integration around the branch cut in the complex w—-plane may be calculated
by making the assumption that F(«,w) way be approximated by F(ap,uwp).
This approximation is exact for an impulsive excitation, and the branch cut
integral then becomes

p -
tii( Cpp ﬂp Yexp( 1¢p8 ) exp( —iwt) '::):Eé:::.:.
B (s,t) = av (A24) .h_\.?:"&.l
“ n(2(8%D/8a2 ) 9D/ 0w)) /2 (w2 RN
ﬁ'-;o.;

{

which can be evaluated analytically as
*4(1-1)P(a_, ia_s~-iw t
B (5.t} = 4( >(“P»Pmi )
MO 2. 2 1/2.1/2 (A25)
2(m(9“D/3a“)(sD/0w) ]/ ‘¢

Bguation (A25) shows that if the imaginary part of w 1is positive
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the contribution to the response from the branch cut integral grows
exponentially with time at all locations, 2. This is texrmed an absolute

* instability, and occurs whatever the value of the excitation frequency, uy,
and in fact it also occurs for an impulsive excitation. When a system is
absolutely unstable, the system response is always dominated by the ‘'pinch’

° frequency and wavenumber, up and %p respectively, after a sufficiently
long time interval. If wp is real then the factor t~1/2 in equation
(A25) ensures that the response is transient, )

It is now necessary to discuss the branch cut integrals in the complex
a-plane. In general, provided that the branch cuts are well away from any
singularities of the integrand, the integral around the circular contour B
is zero, and the integrals along the contours B; and B3 contribute only
to the near fields because the integrands are bounded. Crighton [(3] has
pointed out that only those poles which exist for all suitable choices of the
branch cuts may have any physical significance at large values of z. The
remaining poles contribute only to the near field and their contributions
must always be combined with those from the branch cut integrals. The precise
form of the branch cut integrals depends on the choice of branch cuts and on
the form of the dispersion relation.

As already mentioned, if o is sufficiently large all the poles of the
integrand of equation (A6) are well separated from the real o—axis. A
consequeance of this is that the location of the poles depends on a particular
choice of branch cuts, and that no pole exists for all possible choices of
branch cuts. It also means that, as o varies, a root locus corresponding
to the movement of a particular pole may cross a branch cut and ‘disappear’,
or vice~versa. At o¢=0, the poles corresponding to evanescent waves also
depend on the choice of branch cuts. The contribution to the response from
these poles can therefore have no physical significance in isolation, but
must be combined with the branch cut integrals. A free—wave pole (i.e. one
which lies on the real oa-axis for o¢=0) always exists for all possible
choices of branch cut and therefore has physical significance. A pole
corresponding to a convective instability crosses the real o-axis at some
positive value of ¢ and therefore always exists in a neighbourhood of the
axis. Purthermore, according to Atkins (14)], if coalescing poles in the
a—-plans corrxesponding to a singularity in the upper-half w-plane exist, they
do so for all possibdble choices of branch cut.

In the absence of branch cuts in the complex o-plane, however, the
location of all the complex poles in the o—plane may be uniquely determinedq,
and their contributions to the response may be identified as propagating,
evanescent or convectively amplifying waves.

To summaxize, the root locus technique may be used to determine the
stability characteristics of a linear system. Pirstly, it is necessary
to plot the root loci for a range of frequencies in order to determine
whether or not there is a dbranch point in the complex w—plane as a result
of coalescing poles whose loci in the o-plane coms from opposite half-planes.
If such a branch point exists the system is absolutely unstable and the
response, which is predominantly at the branch point frequency grows
exponentially with time at all locations. If no such branch point exists,
the response of the system may be determined by the root loci in the o-plane
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UNLIMITED

which correspond to the excitation frequencies. . . wodes of the response may
be identified as non—decaying travelling waves or o nvectively amplifying
wvaves, and, in cases where there are no branch points in the o-plane,
evansscent waves may also be identified. In practice instabilities are
usually damped by some non—-linear mechanism, or othex factors not taken into
account in the current theory.

A necessary, but not sufficient, condition for instability (absolute
or convective) is that a locus in the o~plane crosses the real o-axis,
This implies that for some real wavenumber &, the dispersion relation must
have a root w with a positive imaginary part. This is the criterion which
is usually used to determine instability using the steady-state approach.
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