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o ABSTRACT
NN
£y ‘The angle-of-arrival estimation problem for waves incident upon a sensor
\;.': array was examined through a Monte Carlo evaluation of the performance of the
:j:" Bayes—optimal MAP (maximum aposteriori) and MMSE (minimum mean square error)
V) estimators. The case of two independent wave emitters of known powers as well
:" as a multiple look, Gaussian signal in Gaussian noise statistical model were
-ﬁ}g ’ assumed. The Cramer-Rao bound on the estimator's rms error was computed for
'-“.:- comparison.
A o The evaluation proceeded with the computation of MAP and MMSE angle esti-
‘:-,_‘ mates for 1000 random samples of array outputs and the accumulation of their
'-j:',- rms errors. The probability of detecting both emitters with the optimal de-
N
e tector was also accumulated. This was done for .1, .03, and .0l beamwidths
‘ emitter separations and a range of signal-to-noise ratios (SNRs). The ac-
:i- curacy of the computations was assured through a simple finite grid approxima-
] ':;-.; tion for the estimates, with no convergence problems, and through the evalua-
X tion of statistical confidence intervals for the.Monte Carlo data. .
| The results of the evaluation indicated that the Cramer-Rao bound was
‘:::: achievable by both the MAP and MMSE estimators over a wide range of SNR pro-
':\:; vided a few as 10 looks had been taken. In general, the bound was achieved
-
\j’ wherever both signals were detectable. These results were surprising since
J the bound exhibited unusual behavior; for example, in one SNR region, the
PR bound showed smaller rms errors for more closely-spaced emitters.
;:.  Additional results included properties of the aposteriori probability
:EI:_‘ density and an analytical computation of the performance of the known angles-
) of-arrival optimal detector.
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1.0 INTRODUCTION

The estimation of the angles-of-arrival of wavefronts incident upon a
sensor array is a well-known and important problem, occuring in such varied
fields as geophysics, oceanography, emitter location, etc. For small angular
separations of the waves or for small array apertures, estimation is
difficult. As more and more performance is desired of such estimators, as the
cost of physically large sensor arrays increases, and as the cost of real-time
digital computation drops, the possibility of statistically optimum estimation
becomes increasingly interesting and practical.

The goal of this report is not to develop a practical optimal estimator
but rather to compute the performance of the optimal estimators and compare
this performance to the Cramer-Rao bound. More specifically, assuming a
Gaussian signal model with two incident waves of known powers, the rms error
of the Bayes-optimal MAP (maximum aposteriori) and MMSE (minimum mean square
error) estimators will be compared via a Monte Carlo simulation, and compared
to the known powers Cramer-Rao bound. These rms errors will provide an
absolute lower bound on the attainable rms error in angle-of-arrival esimation

and will determine the tightness of the Cramer—Rao bound for this problem.

1.1 AOA Estimation with Sensor Arrays

The angle-of-arrival (AOA) estimation problem in 1its most general form
congists of the estimation of the wavevectors ki of say D incident waves
based on the outputs of N arbitrarily placed wavefield sensors. Each sensor
output 1is some known function of the field in its vicinity.

In this report, we specialize the problem to a simpler though common
case. Later, we assume only two waves (D=2) ia order to make computations
feasible, but will keep D arbitrary whenever possible. Assume that all of the
D waves are monochromatic plane waves with wave-vectors k;, complex
amplitudes aj at the origin (r = 0), and frequency wy. The total field at
position r is then




D Jot jk,
E()= ] Refa e 0 1 ] (1.1)
i=]

by superposition (linear medium). Assume that the sensors are isotropic with

coherent detectors so that the output of a sensor at location r is

D Jky, o x

x(r) = } ae - (1.2)
i=]

and that the sensors are equally spaced along the x axis with spacing A/2, A =

wavelength, so that the position r, of the ath sensor is

n
2

L, - 8 s,n=1, ., .. N (1.3)

Finally, assume that all the wavevectors lie in the ypper x-y half-plane,
thus

. 2% sin4s1
X cosé - X X
1o o +{ ° I B

where ¢4 is the angle of arrival of the ith wave with respect to the y axis
(see Fig. 1.1). This is necessary to make the array output uunique for unique
dicections. Arbitrary wavevectors could be estimated by merely replacing the
array long the y and z axes, however.

Plugging these assumptions in Eq. (1.2), we have that the output of
gsensor n is

D 154 S D jm stn¢1 (1.4)
e L] L]
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We can rewrite (l.4) concisely by using vector notation. Define

"
3
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X = “received signal vector”

’__‘
{
=f*

e o
s
~
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,"

JPIE
]
—
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as= "gignal amplitudes at origin vector’

«’.
YARARAGS

PV

jno

L e n

."
rd

y(s) =« | “direction vector"

ejnwe

6, = sin by i=}, . . . D . “directions-of-arrival

)) "direction matrix."” !
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3 Then (l1.4) becomes
i
.‘ _X_ = VE . (1.5)
3
) We see that x 1is a linear combination of "discrete-space"” sinusoids, with
‘ spattal frequencies fy = 1/2 83 = 1/2 sin ¢4. Thus, this angle
- estimation problem is equivalent to spectral estimation for uniformly sampled
g time series, to within the non-linear transformation f = 1/2 sing¢. In this
j report, for the sake of mathematical simplicity, we will estimate the 6y's
N . rather than the ¢i's, thus the relation to time series frequency is a linear
) one, £ = 9/2, Our results are therefore directly applicable to time series
B! spectral estimation (for one look, see next section).
,
¢ 1.2 Statistical Model
‘S Any real sensor array 1is corrupted by noise. Thermal noise in the
i, receivers, for example, 1is inevitable. The sources, additfonally, are best
. modelled as noilsy due to propagation environment effects, etc. For the usual
,.‘ physical and analytical reasons, these noises will be taken as Gaussian,
, specifically zero-mean circular complex Gaussian*.
: Accordingly, our model for the actual array output is now
X=Va+n (1.6)
y *2z 1s circular complex Gaussian, CN (m, o2), 1f R, z and I, z are
' jointly Gaussian with
E (Re z) = Re m
S -
¥ E (Imz) =Imm
» ,
o
s 1 2
] 7 @ 0
. cov (Re z, Im z) =
1 2
M 0 —2' [+
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complex Gaussian sensor noise with
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E(n) = 0 zero mean,

WA
PR
-

Ny
<

o
)

»

E(n nH) =1 unit power, and independent from sensor to
sensor, and
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complex Gaussian signal amplitudes at
origin with
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kﬁ* E(a) = 0 zero mean and covariance

e E(aa) =P , the "signal-in-space” covariance matrix.

We assume also that the sensor noise is independent of the signal amplitude,
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which implies that the received signal covariance R is
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p = VE@aD) vV +0+0+EMDaD

P —_- —

4-2 = VeVl + 1 . (1.7)
e’

) We also assume that by sampling the array output at a sufficiently large
time interval (greater than the signal-in-space's (finite) correlation time),
W)

= we have access to L statistically independent samples of the random vector x,
d
e L _ et
- - X = {351} {=1 » L = number of "looks" at array.

N3

,.-P

o

‘:{ Note that this is where the array processing problem differs from the time
‘:: series problem, where L is one though N may be large.

e The estimation problem 1is to determine the true directions of arrival
3:: _6*, given the observations X and knowing apriori the powers P, the number of
ﬁ: signals D, the number of looks L, and the array direction vectors v(6) for all
< 0, This 1s a classical parameters-in-the-covariance, zero mean complex
{ Gaussian estimation problem, described, for example, in [15].

A

b For such a problem, there is a simple sufficient statistic, the sample
.

_‘:. covariance matrix, which obviates the need to save all the data vectors xi,
) i=1, . . . L. This can be seen from the probability densities (pdf's): since

x is complex Gaussian with zero mean and covariance R, its pdf is

o

L -
& p(x) = 1 e‘EHR 15

8 - |1rR|

[ )

e

‘_'\- Since the xy vectors are all independent and identically distributed, their
'.: joint pdf is

°

3 H -1

- L Ry

0 p(X) = T W e

N i=1
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where the last step follows through the use of the trace identity
tr (AB) = tr (BA) .

Thus, 1if we define

N L
R & )

X x“
g1 ~i—1

] -

to be the sample covariance matrix, then

p(X) =

VR NN IIR

g

(1.8)
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which depends on the data only through R. Thus, R is a sufficient statistic
for the collection X. This fact 1is especially useful for Monte Carlo
simulations since random samples of R can be generated directly with no need
to generate the potentially large amount of data (L > 1000 for some
applications) in X. All these facts are well known [15].

By way of notation, we will often write the expression p(X) equivalently

as p(X|8) or p(ﬁ 6).

1.3 Cramer-Rao Bound

An effort to determine the best that one can estimate the parameters g*
leads naturally to the Cramer-Rao bound. The Cramer-Rao bound [15] 1is a
well-known lower bound on the mean-square error of any unbiased estimator.
Here, we assume that _e_* is a non-random, though unknown, vector parameter,
which leads to a more useful bound, although the random _Q* case will be
considered in following sections.

The bound is expressed in terms of the log likelihood function A(6),

where

A(® 2 1n p(x|8)

and the Fisher information matrix F, where

AO)  AAB)

4 g
13 p(x| ) 36, 98,

F

Then if 6 1s any unbiased estimate of g*, i.e.,

8o = o
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" ; the mean square error of the estimate, A, given by
@ } .
[
. A * - *
7 A 2E(G-06") (8- D)
» e - - - -
oy
L.
Pt is bounded below through
\)
N i
A A >F s
:C.i:_. e
(','_
vl
;
a where the matrix inequality means that A, - F-l is positive semidefinite.
}..‘.
;“ In particular, since a positive semidefinite matrix must have non-negative
,}‘, diagonal elements, this implies
*‘ -
.—
,»-0“'.-( 2 A ~ * 2 > (F-l) 1-1 D
". = - z ’ eee
- o E(e1 91) 11
<.
£ ge
\1
{ For our estimation problem, A is given from Eq. (1.8) by
\=Inp(x|®) = 4L (n|m| +eeRTR) L

After much algebra, detailed in [6], the bound emerges in the form

A >F where

Fe2LRe {(P-0) x (VW - o) + o x (a])T) (1.9)
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A
A xB = patrix direct product, (A x B)ij Aij Bij

I !

s A . .
V= 9)'...'()
(xCop) ! ' v(§,))

e
[1-3
%
<o

-1
04w+ p'l)

F e

Notice the appearance of ﬁ(e), which is the key dependence of the observed
data on small changes in the desired parameter 6, i.e., for small emitter
separations. Also notice that the number of looks L enters only as a scale
factor.

Due to the complexity of (1.9), the bounds' behavior was examined
numerically to generate the curves in Fig. 1.2, Here, we assume the case for

which performance evaluations were made i{n Chapter 3, namely two uncorrelated

A A I O T A R e R AT N,
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':-' signals of equal power. The rms error bound on 6);, in beamwidths (one
(* \ beamwidth = 2/N), is plotted versus the array signal-to-noise (SNR) Np, where
3
et
S - P Y
i L CR
e
)
for various values of the emitter separation A6,
-
,{; s
S o e* 6*
S 40=9 7%
{ .
o d
;.':; This 1is sufficient since, by symmetry, the bound on 6] equals the bound on
;ﬁ_; 87, and since by the isotropy of the sensors, the bound does not depend on
'*‘5 the absolute position of the emitters 6] and 63, but only on thelir
\. separation, A6,
b,
\__;: We see that the bound has an unusual behavior. In region 2 of SNR, as
N
:"{' shown in Fig. 1.2, the rms error is larger for larger emitter separations,
A which is saying that widely spaced emitters are more difficult to estimate
‘_P ) than closely spaced. This is counter to intuition and also in contrast to the
::"-j bound in the low SNR and high SNR regions 1 and 3, respectively.
W 0
:-p: Also in region 2, we see a plateau in the bound. This 1is saying that
o once a certain rms error is attained (namely, o} ~ A6/3 at L = 10 looks), a
. very large step in SNR is required to decrease the error further. Both of
-\.::\ these effects would be of great concern in the AOA estimation problem if they
d. ‘
1.:} were "real.” But the curves are only lower bounds on the rms error, hence 1if
?’ they are not tight bounds, the actual achievable rms error could behave
< differently. For example, since it is known that for high SNR the Cramer-Rao
Cal
:::-: bound is always achievable [15], the actual error might follow straight lines
":": coinciding with the bounds' high SNR asymptotes.
>
,' Additionally, the curves are bounds only on the etimation error and
'.' presume that it is known apriori that there are two signals present, or that
;::::- two signals have been detected. Where the rms error predicted by the bound is
% ¢
o
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boa much larger than the separation (region 1 in the figure), one would not expect
(' both signals to be detectable.

::::' These questions can be resolved by computing the actual achievable rms
'~

:: error and the actual achievable signal detectability {(probability of
334 detection), namely, the performances of the optimal estimator and detector.

\

Y

3‘4 1.4 Optimal Estimation and Detection

-::: -
)

-t: 1.4.1 Estimation

"', The obvious way to verify the tightness of the Cramer-Rao bounds of the -
*" previous section are through the evaluation of the rms errors of the
)sj statistically optimal estimators ML (maximum 1likelihood), MAP (maximum
"'2 aposteriori), and MMSE (minimum mean square error).

< The ML estimate 6y;, is defined to be the 6 which maximizes the
>, likelihood function A:

:-.'

P -

= A
( eML argmax A(6) .

o 0

.d': -

o,

:,::‘_ It has the important property that if any unbiased estimate achieves the
Cramer~Rao bound, then the ML estimate does if it is also unbiased.

. To define the MAP and MMSE estimators, we must assume that _9_* is a
I.

408 random unknown parameter with some probability density p(6). Here, we choose
Y

Ez p(8) to be a uniform density over all possible 6 values. Since 6 =
’

sin¢), we have -1 < 63 < 1 i=1,2, and since the labelling of "1" and "2"

o is arbitrary because the signals are symmetric (we assume equal power here),
:-,, we also have, without loss of generality, that 63 > 6). Thus, p(8) 1s a
"j uniform density on the triangle with p(6) = 1/2 (on the left in Fig. 1.3).

; Notice that this does imply a nonuniform density for 6§ = sin"le, which )
o is seen by the change of variables formula from probability theory to be

4

>

)

~ 1 n n

--j P($) = 5 cos¢, cos¢, » "3354£, <5
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(on right in Fig. 1.3). This does not concern us here but would affect
estimators of ¢ directly.

’q‘.

J‘U' .

N With p(8) in hand, we now have the aposteriori density of 6, p(® R),

_;\' which is given by Bayes' rule:
SYAY

‘. ~

. R p(Rl 8 p(®

5 p(6R) = ————— .

~ p(R) .
P
. Now the MAP estimator :e}mp is the maximum of this density .
e

Cont

:a,-{‘ - A ~

.;.':: 8 MAP = argmax p(QIR) .

Because of our choice of a uniform prior on 6, the MAP estimate is identical
to the ML estimate,

~ a

a Sur " Sa ’

2oy so we will, for convenience, consider only &AP

The MMSE estimate Oyygr 1s the mean of the aposteriori density,
4 -~ A ~ ~
3 Smse © PR = [ e snceRy

and has the property that it minimizes the total squared error, averaged over

the aposteriori density p(6), i.e.,

v min E(tr A)) = min [ [ dO tr A, P(8) .
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This 18 not the mean square error A, defined previously, since A, did not

include the average over the prior p(8). The MMSE estimator is still
well-defined, however, and could be better than MAP.

The reader may be disturbed by our changing from nonrandom to random
_g*. In all of the work which follows, g* is actually assumed fixed and
nonrandom (though unknown to the estimator) because to average the statistics
over many samples of 2* from the density p(6) would wash out effects of
interest, for example, the dependence of the error on gf. However, assuming
random gf allows the definition and computation of the conceptually
appealing density of p(g_ﬁ), which describes exactly what is known about 6
given the observation R. By choosing a uniform prior, we make the random and

nonrandom gf viewpoints coincide (e.g., EhL = EMAP)'

1.4,2 Detection
In order to determine the regions where the Cramer-Rao bound 1is
meaningful, it is of interest to examine the regions where the two signals can
be detected. We assume that the presence of some signal is easy to detect so
that the problem is to distinguish one signal from two closely spaced ones.
Let p(D) be the apriori probability of the number of signals; thenthe
minimum probability of error estimate of the number of signals, D, is

D = argmax p(D|R) .
D

where p(D'R) is the aposteriori density of D given R, derived from Bayes' rule

as

p(D|§) = L—L———(ﬁ D) e(D)

p(R)

17




and the probability of error (Pg) is

;:;: PE 4 prob (6 # D*) ,
3
O
' where D* is the true number of signals.
2 This detector 1is closely related to the optimal estimators, as will be
f seen in Chapter 2. .
"¢y
-
” 1.5 Previous Work - Present Contribution .
_-. Research relating to optimal angles—of-arrival estimation has been
E:', carried out since the early 1960's. None of the published results solve the
:_f_' problem for our particular combination of assumptions, however. Most of the
v work assumed the easier deterministic model, which implied also that just one
\‘.'. look was considered. Sklar and Schweppe [12] and Pollon [10] computed the
::*\ Cramer-Rao bounds for this problem, for various array configurations and two
Eﬁ signals. Young [17] assumed a prior density on 6 as we have and derived the
" form of an analog signal processor for the MMSE estimator. Ksienski and
:{ McGhee [8]) considered the ML estimator for two signals and computed it
‘;4 approximately by maximization over a finite 10 by 10 grid of directions.
:: Pollon and Lank [11] ran an analog simulation of the two signal ML estimator
a for a certain circular array.
” Gallop and Nolte [4] and Hodgkiss and Nolte [7] examined the one-signal
’ case only, considered mainly the detection problem. Rife and Boorstyn [13,
-.-T 14) simulated the one- and two-signal estimators and compared them to the
< Cramer-Rao bound, but approximated ML by a simple discrete Fourier transform.
IEN The multiple look, Gaussian model problem is the more difficult one and -
;: has been 1little examined. El-Behery and Macphie [3] investigated the
f' one-signal ML estimator, which reduces to a discrete Fourier transform. They .
f performed an extensive Monte Carlo Simulation as we will here and found
:;‘ attainment of the Cramer-Rao over a surprising range of SNR. Lainiotis [9]
N4
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considered the Gaussian model for Bayes' estimation in a control theory

Lontext. The estimator was computed by a maximization over only 10 grid
points, however, one of which was the true parameter value. Such a choice
probably explains the performance observed. A control theory or state
variable approach with finite grid approximations is also considered by Bucy
and Senne [2], in the context of the phase demodulation problem, and with a
thorough Monte Carlo performance evaluation.

The contribution of this report consists principally of the accurate
computation of performance of the MAP and MMSE estimators for Gaussian
two-signal, known powers problem. The calculation 1s accurate enough to
distinguish the unusual features of the Cramer-Rao bound mentioned earlier.

Additionally, the performance of the optimal detector 18 computed and
compared to an ad-hoc approximation based on the Cramer-Rao bound, and to a
rigorous known-directions bound.

In Chapter 2, a more detailed derivation of the form of the MAP and MMSE
estimators and the optimal detetor for our problem is given. The chapter
closed with some example plots of p(6 ﬁ) for two emitters. These plots
provide insight into the nature of the estimation errors.

In Chapter 3, the results of the performance evaluation are presented.
First, error sources in the computer calculation are quantified and seen to be
acceptable. Then the results of the calculation are plotted and compared to
the Cramer-Rao bound and the Pp bounds. The bounds' behavior 1is seen to
indeed be real.

In Chapter 4, the consequences of the tightness of the bound are
discussed, along with suggestions for further research.

The appendices contain derivations of the confidence intervals for the
Chapter 3 results and of the known-directions Pp bound.
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X 2.0 THE MAP AND MMSE ESTIMATORS AND THE OPTIMAL DETECTOR

. In this chapter, the equations for the MAP and MMSE estimators and the
_¢¥ optimal detector are derived in detail. Although the derivations are classi-
_“::: cal [15], some simplifications specific to the two-emitter problem are ap-

plied. The equations center on the expression for the aposteriori density,

k 114:] ﬁ), and the chapter is concluded with example plots of p(6 R) illustrat-
.'{ > ing some properties which have been derived or observed.
L since p(p|R) embodies all the information about @ in R, it is an import-
) ant function itself in the angle estimation problem.
\
A
W 2.1 MAP and MMSE Estimators
.
.:;-J As mentioned in Chapter 1, the MAP and MMSE estimates of the direction
ALY
o parameters are given in terms of the aposteriori density p(8 R) by
. .
el 9 = argmax p(eli)
”'.-: =MAP 6 =
by
N B
ALY . .
Vol -
\ SuMsE J[dee p(_e_'R) .
::$\
’-.: The form of p(Q'R) now follows our Gaussian assumptions. We have first
\&" (from Eq. (1.8)) that p(R|6) is a multivariate Gaussian density with zero mean
N =
"" and covariance R(8):
SO e *
.q.‘: ~ "L -L R R
% p(R[0) = [mm(p)| " o T RQ®
R4
.."
®
e To define the aposteriori density, we must use the prior density of 8, p(8),
‘s defined in Chapter l. Then, by Bayes' rule,
7
_. : *The notation here is loose since this is actually p(X 0) is expressed in
P terms of R. R itself is Complex Wishart ([5}. ' This detail does not
D effect p(QIR)
() '...
2o
-4._:_.
_ad
@.
e
S
\$~ 20
‘f.'
3
N

=

-~ - e » - - - W LIPL R 'i"\?’d" LIPR) ?-’
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-',..
o
¢ .
> N p(R|6) p(8)
l: p(OJR) = —
ot p(R)
198 .
o Since p(R) is independent of 6, it is just a normalizing constant for the
::‘ density. Likewise, we chose a uniform prior density on 6 (in Chapter 1), so
) =
( that p(8) is also a constant. Therefore,
v p(8|R) = K p(R|8)
- .
i where K depends on R but not on 8.
a_._- We now absorb more constants by using a well-known matrix inversion
N~ .
}.:. identity,
3 1 -1 H
¢ RO) T = (1 +vev) =1 - vqv
L
o where Q 4 (P_l + W)-l
e
Pyl
!\a'; W 4 VHV
;»55 (same definitions as used for Cramer-Rao bound in Section 1.3), and get
29 . 4 _-Ler (1-voh)Rr
o) = x | * o

K 5 NL IR(E)l-L e-Ltr (R - VQVHR)

NSO

- K |R(.°_)|-L eL tr QVH’&V

Gr

-NL -L tr R
e

[ J-%

where K' = K 7 1s once again independent of 9.

Finally, the determinant can be reduced since we assume only two emitters

o

P2
% e N

by

|re@)| = |vpvH I = @A) Ay

__,4
XL

= 1+AI+A2+A1 Xz

Q) v,

e
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where A] and A2 are the two non-zero eigenvalues of VPVH, By a theorem
from linear algebra, A] and Ay are also the only two eigenvalues of
pviV, Thus,

A FA, = er®VY) = tr(ew)
and

A A, = IPVHVI - ,pw'
implying

'R(g)’ = 1+ tr(PW) + ’Pw,
which is convenient since PW is only a 2 by 2 matrix. Therefore, we now have

Kt Gl T QviRy
p(eR) = < y (2.1)
(1 + tr (PW) + le')

This expression, unfortunately, cannot be solved analytically for its
maximum or mean, S0 numerical procedures mst be used to compute ﬁmp and
§MMSE° For our two-emitter known power case, 6 1is only two-dimensional,
hence, such numerical procedures are reasonable. Of course, this was the
principal reason for limiting the investigation to this case. The procedures

used are described in Chapter 3.

2.2 Optimal Detector
The optimal detector, as also covered in the first chapter, is given by

D = max p(D|R)
D
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o and is the minimum probability-of-error (Pg) estimate of the number of
'~“" signals present. Since D must be determined without knowing the signal
%
e directions, this is the composite hypothesis testing problem as defined in
::-: [15], with & as the nuisance parameter. The test is seen to be simply
','_::: related to p(f R) of the previous section.
20N We assume as in Chapter 1 that the presence of some signal is easy to
_ detect, therefore we need only distinguish D=1 and D=2. Also, we assume that
:{:. these cases are equally 1likely apriori, thus the apriori density of D is
'f: p(D=1) = p(D=2) = 1/2. Finally, we must specify the known power if one signal
WK is present. The physically meaningful choice for this power is p; + p2 I
\..? - where p; and p2 are the powers when two signals are present. This choice
"",,2" also should be the most difficult detection problem since otherwise one and
":’{:' two signals could be distinguished on the basis of total signal power alone.
e Now, by Bayes' rule,
.
o . p<a|n) p(D)
3 p(D|R) -—— D=1,2 .
P p(R)
o2
{ =K p(R'D)
7
U since p(D) and p(R) are each independent of D. The constant K here is
V. ",
o unrelated to the K of the previous section.
" Now, p(ﬁlD) is obtained from p(R|D, 8) by
:\:. ~ ¢ ~
e p(R'D) = [ d8 p(R'D, 9) p(8) d8 , (2.2)
'.';f::-
:}.:: where the integral is one dimensional for D=1 and two dimensional for D=2,
® For D=2, p(ﬁID, 8) is what we actually meant by p(ﬁ 6) in the previous
‘::::: ) section, where two-dimensionality was implicit. Furthermore, p(ﬁ D=1, 0) is
::::‘;:I obtained by evaluating the former along the diagonal 6 =6,,
oo 0 st o3y
e
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which simply says that one signal in direction © with power p; + p2 is
‘ indistinguishable from two signals at the same direction & with powers p;
and p2. Also, we take the apriori density of 6 for D=1, p(8), to be uniform
on -1 < 6 <1, hence p(6) = 1/2. Therefore, plugging the above and Eq. (2.1)
into (2.2), we have

g T
.-'.r.’

.
\ ) H . 0
J . < [ a0 peo) |R(g)|"*e‘*"°"(e) RV( ¢ ), D=1
2 p(D|R) = . (2.3)
k' [f a8 p@) |[R@|T" " T Qv(®)" V(@) » D=2
y where K' is chosen such that p(D = lli) + p(D = 2 f{) = ] and where the
g determinant has been left unexpanded for conciseness. Thus, D is 1 or 2
-: according to whether the 1 dimensional or 2 dimensional integral of p(f ﬁ) is
i larger.
‘ The 1integrals are, as wusual, intractable and must be computed
18 numerically. Integration procedures used will be described in Section 3.2.
5
‘ 2,3 Examples of Properties of p(f ﬁ)
The aposteriori density reveals precisely how much information about 6 is
contained in R and is the function in terms of which the optimal estimators,
_s MAP, MMSE, and detector can be expressed. Therefore, before examining the
statistics of the estimators in the next chapter, it 1is interesting to see
: just what it looks like.
First, we see (Fig. 2.1) that for equal powers p; and p3, the pdf is
symmetric about the diagonal 6} = 65. This clearly must be true, since
the numbering of the angles as "1" or "2" is arbitrary. The positions of
2 QMAP and §msg are also shown in the figure. Note that §msg in -
: particular must be computed by integrating only over the triangle, since the
2 mean of the density over the square (due to the symmetry) will always be on -
; the diagonal.
" Another important feature we see is that extraneous maxima tend to be in
t the form of ridges along the lines 0; =~ e’f and 93 ~ 03, i.e., onme
b
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Fig. 2.1. Example of p(Glﬁ) for equal powers.
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angle correct and the other arbitrary. The ridges tend to disappear froa the
pdf as the number of looks increases (Fig. 2.2a) but, as can be seen from the
log pdf, which is the same as the log-likelihood function (Fig. 2.2b), are

. always present to some extent. This property could confuse a gradient search

-" type algorithm for finding the §MAP'

' If pp # p2, there is an ordering on the signals, say "l1" is the
::E‘,::: larger one. Hence, the pdf is not symmetric and should have a peak only on
‘:::.';: the correct triangle (Fig. 2.3). Notice that the peak i1is no longer
‘:\f approximately circular. In fact, it is about 10 times broader in the 8)
. . direction as the 8; direction, which reflects the greater uncertainty in the
:::::: smaller signal's location 8. Of course, if p; 1is almost equal to p3,
j.:: the estimator will have difficulty distinguishing which 1is actually larger,
.-:-’ hence there will tend to be peaks on each triangle until many looks are taken
(Fig. 2.4).

::,,:;_. Finally, we note that once the aposteriori density is essentially
"::'.- unimodel on the triangle, it can be well approximated by a Gaussian mound. In
::" fact, it is close to a Gaussian with mean given by the true signal locations
'." 9_* and variances given by the Cramer-Rao bound (Fig. 2.5). Notice that the
grid has been shrunk in this figure to a small region about the peak.
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3.0 MONTE CARLO PERFORMANCE EVALUATION

In this chapter, we present the results of the Monte Carlo evaluation of
the performance of the MAP and MMSE estimators (their rms errors) and of the
optimal detector (its probability of detection, Pp). The computational pro-
cedure and its sources of error are first described. The errors arise from
two sources, the plecewise constant approximation to p(g_i) and the finite
number of Monte Carlo trials performed. The results of the evaluation are
presented next and compared to the Cramer—-Rao bound. The main result is that
the rms error of the estimators achieves the Cramer-Rao bound wherever the
Pp is usefully high and deviates from the bound only for low Pp, where the
estimates become biased. This result is surprising due to the bound's unusual

behavior.

3.1 Computational Procedure

Simple approximations were used in the computations of performance to
make the program fast and to make the errors easy to understand and quantify.
The following sections describe first the rms error calculation and then the

Pp and blas calculations.
3.1.1 RMS Error Calculation

The conditional error covariance of an estimator §_- gﬂﬁ) is, by defini-~

tion,
A LE@-N @-eNTe) - f dRakeh) @-8h @-eHT G

where gf is the true theta value. The estimator's rms error on the ith

direction 18 the square root of the ith diagonal element of Ag,

o, =7 Ay, .
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In order to numerically compute A, from (3.1), we must make basically
two different approximations. One is the approximate computation of 8 given

an accurate ﬁ and the other is the approximate integration with respect to R
over its density. The approximations used and their errors will now be de-
scribed.

Given an R, the two estimates §MAP and §MMSE are computed as
follows. First, p(g_ﬁ)/K' (Eq. 2.1) is evaluated over a fixed finite grid of
9 values, say G by G, uniformly spaced over the square (see Fig. 3.1). Since
for high SNR or large numbers of looks p(g_ﬁ) is zero everywhere except in a
small region around gf, the square 1is taken to be the smallest one which
safely encloses the pdf's support. This is actually [-1, 1] x [-1, 1] only
for the low SNR cases examined. Then this is numerically integrated over the
upper triangle to find K'. éMMSE is now the numerical integral of gp(g_ﬁ)
over the triangle and QMAy is the 1location of the grid point with the
largest value of p(g_ﬁ). The integrals are taken such that they are exact if
p(gjﬁ) is assumed to be piecewise constant, i.e., constant on each grid cell,
as shown in Fig. 3.1. This implies that the computation is a simple summation
plus a few correction terms and that the only error source is the degree to
which p(gjﬁ) is not piecewise constant. The error will go to monotonically
zero as G is increased since this approximation converges uniformly om the
square to p(g'ﬁ) (2].

In fact, a plot was made of the integrals versus G to determine how fine
a grid was required (Fig. 3.2). For typically smooth true pdfs, G > 50 was
adequate for an accuracy of about 2% of the true value. Errors in §MMSE and
EMAP were not surprisingly of the order of the grid cell size. Making these
errors about 27 places them below the errors due to the second source, the in-
tegration with respect to ﬁ.

This integration, involving as it does the complicated function
p(ﬁlgf), is hopeless to perform analytically. It is also of such dimension-
ality (e.g., 8l-dimensional for nine antennas) that the only tractable
numerical integration method is the Monte Carlo method {16].
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Monte Carlo integration in this case amounts to the simulation of the

estimators, computation of the errors and squared errors, and accumulation of

their sample means, 1i.e.,

M
" 1 P L TP * T
iy =< 12-1 (bR -8 BR) -8

where M is the number of statistically independent Monte Carlo trials, ii is
the sample covariance chosen from the population p(ﬁ gf) on the ith
trial, and Ke is the estimated error covariance.

Now Ke is a random variable with some unknown probability density. Its
expected value is the true A, and its variance is determined by its pdf. If
we assume that its pdf is Gaussian, which will be approximately true for large
M, then its variance can be computed and used to compute the number of trials
required for a specified accuracy. Choosing a 99% confidence interval width
of *2 dB as adequate for distinguishing the interesting features of the
bounds, we found by making trial rums that about 1000 Monte Carlo trials were
required (see Appendix A).

Since the rms errors for each direction 6; and 67 are equal by symmetry,

the final egstimate of the rms error for either direction was taken to be

8 . 01 + 02
2
where
o =V )y

3.1.2 Probability of Detection Computation
The probability of detection (Pp) for the optimal detector is given by

)

- Io e p(z|e*) (3.2)




where

2= ! gl a0, a0, pefR) -/ a0 p((g)|R) (3.3)
=1 -1
1

*
and p(2 '9_ ) is &'s probability density. So Pp is the probability that the

| integral over the triangle is greater than the integral along the diagonal.
j:ii:: Unfortunately, p(% g*) is not tractable to compute analytically and
::ﬁv probably not easy to integrate as required in (3.2). So Pp must be computed
AN
- by a Monte Carlo simulation*,
{ We define the 0-1 random variable
st
:if'- 0 £ <0
R3S - s
L {1, 2 >0 (3.4)
o , i.e., 2' = 1 iff two signals are detected. Then Pp is the expected value of
N AR
]
*~ P, = E') .
! -'".j
'E?‘j Therefore, Pp can be approximated by
oo
. X Lo
R P.== 1 & (3.5)
i D H o 1
e
o where M is the number of statistically independent Monte Carlo trials, as
CaS
;’ before, and 2£ is a sample of £' from the population of p(!.'l_@_*) on the
}_:_.' ith trial. R.i' is generated, of course, by computing p(glﬁi), finding its
‘.;":-: 2-D and 1-D integrals as in (3.3), and using the definition (3.4).
l{.
e
0L
_ *If it is assumed that the detector knows _6_*, then this Pp can be computed
o and serves as a convenient upper bound for the present one (see Appendix B).
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P

9.8
(:::
r.u The approximations made here are in the piecewise constant approximation
iv for p(8 ﬁ) in the integrals and in the finite variance of the random variable
.:{' Pp. Assuming the grid has already been chosen fine enough to make the inte-
_:';- grals for the rms error calculation in the previous section sufficiently accu-
::'_::: rate, only the Monte Carlo error remains.
‘[_) As explained in Appendix A, this error is quantified by the observation
x‘_:- that I;D has approximately a Gaussian pdf. Using the 1000 trials required
:“-:_: - for the ris error calculation, we find in the Appendix that the 99% confidence
Oy

N interval for Pp is about +.05.

;.,- 3.1.3 Bias Computation

oad The bias b of an estimate 8 is defined as

,\. —

>

o . .

< b=Eg -8)

t_";: and was computed for MMSE and MAP exactly the same way as the rms error and
ol

:-_:-:: the probability of detection. Given M sample angle estimates, the estimate
e for the bias was
(' rd

v s

LG M

v., - ~ *

N b=2 Y (6, -8" .

M 1=1 -1 -

ot
.\ Confidence intervals for b follow easily and are derived in Appendix A.

an

s:.\

._S
NN 3.2 Results
-:': A computer simulation program was written which performed the Monte Carlo
.. evaluation of rms errors, probability of detection, and bias of the optimal
TN
:-\ estimators (MAP and MMSE). The results of rumning that program for various
v

J‘: array signal-to-moise ratios, emitter separations, and numbers of looks are
e

c‘_-_. presented in this section. In every case, two equal power, uncorrelated emit-
.‘_ ters and a uniform linear aray with nine or five elements were assumed. The
o\
;2~ results indicate that rms errors and detection thresholds corresponding to the

-
25 Cramer—-Rao bound are in fact achievable given as few as 10 looks at the array.
."
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Incidentally, the running time for the program for 9 elements and a 50 by
50 grid was about 0.19 sec/trial on an Amdahl 470 and 3.1 sec/trial on a VAX
11/750.

3.2.1 RMS Error Results
Figures 3.3a through 3.3c show the computed rms errors of the MAP and
MMSE estimators versus SNR for emitter separations of .1, .0lVI0, and .0l
beamwidths, respectively, and all at 10 looks. Figure 3.3d is an overlay of
3.3a, b, and c. The array for these cases has nine elements implying a beam—
width of 2/9 = .222. For an emitter separation of A®, the true signal loca-

tions were taken to be

o LY

1 -z 4A ’
* 1

92 = -i-Ae s

i.e., centered on the array boresight,

Below about 5 dB in SNR, we see from the figure that the rms error is in-
dependent of the true signal separation. In fact, it is independent of almost
everything in this region since the aposteriori pdf is approximately uniform
over the triangle, on the average, implying that the estimates vary approxi-
mately uniformly over the triangle. An exactly uniform pdf would imply an rms
error of 4.5//3 ~ 2.6 beamwidths, approximately that of MAP, MMSE is somewhat
better since it tends to choose estimates in the center of the triangle given
a uniform pdf, and this happens. to be close to where the signals actually
are.

Above about 20 dB is the more interesting region of SNR. First, we see
that the MAP and MMSE estimator errors are identical. This is not surprising,
since the aposteriori density is substantially unimodel and symmetric about
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Comparison of MAP and MMSE estimator accuracies with

Cramer-Rao bound.
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LA A

its mode in this region, so that its mean and peak coincide. More signifi-

cantly, we see that the rms error is always less than or equal to the Cramer-

»
C

Ny gu gty
-

Rao bound (when less, the estimator was biased) and tracks the bound closely

"2: beyond its first "knee,"” which we will later see is for (L=10) at the detec-~
:'; tion threshold. At 40 dB SNR, for example, we see that the rms error is
l) clearly (including the confidence interval) smaller for the smaller separa-
‘-.'J, tions, verifying this unusual behavior of the bound noted in Chapter 1.
:‘-f - Additionally, we see that the rms error is approximately constant as the SNR
::.'.:E: increases from, for example, 50 to 70 dB for the .0l beamwidths emitter sepa-
- ration, verifying the plateau in the bound. Therefore, these counterintuitive
.'::. aspects of the known powers Cramer—Rac bound observed in Chapter 1 apply
:'f,- equally well to the behavior of the optimal estimators. It was not "just a
:" bound” after all.

Q* Of course, the preceding observations are for 10 looks, but this is a
j::i: surprisingly small number: the convergence of the rms error to the bound as
i_:j: the number of looks increases is quite rapid. Figures 3.4a and 3.4b show this
5::.'.5 convergence for two selected SNRs and separations, 50 dB, .0l beamwidths, and
{ 30 dB, .l beamwidths, respectively. The bound is achieved to within the 99%
u{'., confidence interval after about 10 looks and continues to track the bound for
'f-_:" higher numbers of looks.

2',::.: Expecting that the number of looks required to achieve the bound may be
' ' related to the number of antennas, a run was made at 50 dB, .0l beamwidths for
‘_::,‘ only five antenna elements (Fig. 3.5). As can be seen from the figure, the
:'_._: threshold is about the same as for nine antennas. It could be that the
'E:'s threshold depends on the number of signal directions one is trying to esti-
[ ] mate.

~B

-;:j 3.2.2 Probability of Detection Results

,-\} . Figures 3.6 and 3.7 show the probability of detection computed versus SNR
r'y for the same three separations and the same number of looks as used previous-
:- ly. From these plots, we see the region of SNR for which the rms errors are
',:}:: of any practical interest.
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Below 10 dB in SNR, we see that the Pp does not depend on the true sep-

aration, as was the case for rms error. The detection here is probably no
better than a random choice.

At higher SNR, we see sharply defined detection thresholds which, in
fact, occur at the point where the rms error began to track the Cramer-Rao
bound. If we take the threshold to be when Pp > .5, then a simple formula
based on the figures for the threshold SNR versus separation is

Detection Threshold SNR =~ 10 5 (3.6)

(88)

where A8 = emitter separation in beamwidths, valid for L = 10 looks. This
formula yields 20 d8, 30 dB, and 40 dB SNR for .1, .01 Y10, and .01 beamwidths
separation, respectively.

The dotted curves in Fig. 3.6 are an ad-hoc approximation to Pp based
on the Cramer-Rao bound. They were generated by assuming that p(g_ﬁ) was a
Gaussian mound with mean given by gf and covariance given by the Cramer-Rao
bound for the separation and SNR used. The integrals of the density over the
upper triangle (call this I2) and along the diagonal (Il) were evaluated
exactly as in Eq. (2.3). The approximation to Pp was then taken as

12
Py 17 + 11 .

Although this derivation ;s loose, here we see that it works quite well.
This implies that the aposteriori density is fairly well approximated by a
Gaussian mound with the Cramer-Rao bound as its covariance. This is also say-
ing that the off-diagonal term of the Cramer-Rao bound is being achieved,
since it corresponds to the orientation of the Gaussian mound, hence to the
relative values of I2 and Il and thus to the Pj. Such was expected from

examining the picture of the pdf for various cases, as in Fig. 2.5.
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In Fig. 3.7, the computed Pp's are compared to the known 6 Pp men-
tioned in Chapter 2 and derived in Appendix B. It is indeed an upper bound,
although not a very tight one. The known 8 curves also follow the 1/(a8 )2
dependence in Eq. (3.1) closely, indicating that knowing 6 1is equivalent to a
fixed gain in SNR, independent of separation.

In Fig. 3.8, Pp is plotted versus the number of looks, for the same two
cases as in Fig. 3.4. The threshold here is at about five looks, which agrees
fairly closely with the threshold observed for the rms error to achieve the

bound.

3.2.3 Bias Results
In Figs. 3.9a through 3.9c, the bias of the MAP and MMSE estimators ver-
sus SNR is plotted as a percentage of the rms error. Below »~20Z, one can con-
sider the estimator unbiased since the bias affects the rms error only by
(.2)2 = 4%. From the plot, we see that the estimator is indeed biased, as
it must be, in the low SNR region where its rms error was below the Cramer Rao

bound, but becomes unbiased at about the detection threshold.
The confidence 1interval shown 1is 8o wide because it was taken as the

maximum (most conservative) estimate, 1i.e.,

upper bias limit

lower rms error limit and

upper limit = 1007

lower bias limit

lower 1limit = 100% upper rms error limit
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4,0 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

The most important result of this research is the presentation of the
agreement between the rms errors of the optimal estimators and the known
powers, Gaussian signal Cramer-Rao bound. The two unusual features of the
bound, that the rms error is constant over a range of SNR and is smaller for
larger emitter separations over about the same SNR range, have been verified.
The verification was made rigorous through the use of a straightforward
finite-grid computation for the MAP and MMSE estimates and through the evalua- .
tion of statistical confidence intervals for Monte Carlo results.

As a consequence of this agreement, the Cramer-Rao bound can be now used
with some confideunce to predict the ultimate performance of angle-of-arrival
estimators for various combinations of assumptions. This is valuable since
the bound is considerably easier to compute than the optimal estimator per-
formance. One application of this was the ad-hoc formula for the Pp derived
from the Cramer-Rao bound in Chapter 3, which agreed well with the Py com-
puted by the simulation. Without running additional simulations, the bound
can be used for cases of different numbers of sensors, looks, or different
array configurations from those run in this research to predict performance.
The unknown powers Cramer-Rao bound may even be used, with some confidence, a
case for which the simulation is considerably more difficult, requiring a
4~dimensional grid.

Although it was the non-random parameters Cramer-Rao bound which was
actually verified, a random parameter (Bayesian) approach to the overall esti-
mation problem was used in order to define the MMSE estimator, for one, and
more importantly the aposteriori density of the directions-of-arrival
p(g_ﬁ). The properties of this function are important since they could lead
to efficient procedures for computing the optimal estimators and to insights
into the sources of estimation errors.

While the known powers problem 1s certainly of theoretical interest,
isolating as it does the difficulty in angle estimation alone, it might not be
of great practical utility. Further research should therefore center on the

unknown-powers problem. This research could be approached in several ways.
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A straightforward extension to a 4-dimensional grid search is, of course, not
computationally feasible. One could test the importance of knowing the
powers by providing the known powers estimator with incorrect powers, which
would determine how finely tuned the estimator is to the particular signal
model assumptions. If it is not very sensitive to misinformation about
powers, then one would expect completely unknown powers to cause little
additional degradation.

Extensions of this research to even more general cases, such as > 2
signals or to 2-dimensional angles parameters, await sophisticated but
provably accurate procedures to search a many-dimensional space. Our
restriction to just two known power signals was made specifically to avoid all
questions of convergence which typically arise with such procedures.
Hopefully, the results presented here will be of some help in the general
problem.

The plots of p(8 ﬁ), for example, provide some insight into the animal
which must be searched. The fact that p(f R) seems to approach a Gaussian
mound with the Cramer-Rao bound as its covariance, if quantified, could be

used.
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APPENDIX A
CONFIDENCE INTERVALS FOR THE MONTE CARLO RESULTS

In this appendix, we derive the confidence intervals for the estimates of
bias, mean square error, and probability of detection shown in the figures of
Chapter 3. Much of this appendix is abstracted from Chapter 4 of [l].

Let « be the true value of some parameter to be estimated and let a be
its estimate. Then a 100y % confidence interval for o 1s a pair of random

variables 2(a) and u(Q) such that

prob (2(a)< a < u(a)) = y

[18, p. 365]). Here we choose the symmetric interval where % and u are of the

form
2(a) =a-k
u(&)’&"‘k ’
thus,
prob(la - a‘.s k) =y .

To compute k, it suffices to know the pdf of z = a This

- a, say p(z).
implies that k is given by

K
| dz p(z) = v .
-k

In each of our cases, we are estimating the mean X of a random variable x

glven M independent samples {xl, s e ey xM} of that variable. Hence, the
best estimate of x is
calc
X =y Ll% .
AGE (&4
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If we assume now that M is so large that X is approximately Gaussian, then X -

¥ is Gaussian with mean, variance given by

Bx - %) =g § E(x) =%=0

2 -2
2_ °y = E(&xT) - x" var{x)
o = var(x) M m

and we can easily derive a symmetric confidence interval. In particular, the
99.74% confidence interval is given by

Ii-)—t|<3o .

Unfortunately, although the pdf of ¥ may be very nearly Gaussian, the pdf of x
is unknown so ¢2 is also unknown. Here, we get an approximate confidence

interval by using the estimate of o2
. L 2 x2 _ a2
c M 1 x

which should be a good approximation for large M.

For bias b and mean square error 8, we are estimating the means of

- *
X =0-90
and

a *
x=(6 -9 )2
respectively. Hence, given M sample angle estimates {61,...,9M}, we

compute the estimates

l a L]
6 = ﬁ'i(Si -90)
§ =y 1G5, - ohH?
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and the fourth moment
u, =3 168 - 0)

implying that the approximate 99.74X confidence intervals as derived above are

s - b|53Va-sz
|£ - 8| < 3Vu ISR

The interval for the rms error, vs, was derived from the interval for s as

Ve ofi ofive

On the plots, all of the 1intervals (for each SNR and separation) were
approximately the same so the largest one was taken as the interval for all
the points. By making runs for various values of M and computing the
confidence 1intervals, M=1000 trials was found adequate for a *2 dB interval
for rms error.

For the probability of detection, we can be a little more precise since

we are estimating the mean of a binomial random variable

0, no detection, probability 1 - Pp
x = .
1, detection, probability Pp

and can compute the worst case var(x):

2

2 2
var(x) = E(x") - E(x)” = Py - P = Pp(l = Pp)
1 1 1
33" 3% for all 0 { Pp <1 ,
implying
1
var(fn)s "y .
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Therefore, the worst case 99.74X confidence interval for Pp is (stil:

assuming Pp is approximately Gaussian)

|1’>‘D -PD| < —3—-—_
2™

which, at M = 1000 is

|6D - PD' < .047 ,

as shown in the Pp plots of Chapter 3. -

60

[T ST LT LT

.

’



3 - et Bt St S I L A o ot S Y ™ - < e AR wall i on Syl * gl » _-i;vr—_:f;va
>y
.
2
.
[
2 APPENDIX B
{ THE KNOWN ANGLE-OF-ARRIVAL DETECTOR
‘-‘
\ j-:
1S
f.:
; o The probability of detection (Pp) of the optimal Bayes detector
\ described in Chapter 2 can be upper bounded by the Pp of a detector which
;3 knows a priori the angles of arrival 6. This latter Pp, unlike the former,
i‘ - may be computed analytically and hence 1s a convenient bound. In this
5{ appendix, we derive in detail the Pp of the known 6 bound, which is seen to
?\' - be the solution of the general Gaussian hypothesis testing problem in [15].
f By the phrase "known 6," we mean more precisely that if there are
-,; actually two signals present (hypothesis Hjy), we know their angles
3
e 0
6 = ( 0 ) ’
‘ 2
.‘}
ot and if there is only on. signal present (hypothesis H)), we know its angle
{ 8. Of course, we assume throughout this report that the powers of all the
! signals are also known, say p; and p) for two signals present, and p for
~
;- one signal. Normally, for the problem to make physical sense, we assume
»
: P=P + P,
< (B.1)
Y
. p,9, + p,0
i o = 11 22 (center of power).
t LS} + Py
’.:
o Knowing the angles and the powers now means that we completely know the
. covariance of the observations &1}1.1 on each hypothesis. Therefore, the
¢ detection problem is to discern based on the L independent samples {xi}iam)
whether
y
‘|
N 61
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H: x, ~CN (0, R)

or
2t X~ (0 Ry)
where

R, = T+ pv(8) v(8)"

(B.2)

R, = T+ V(8) PV(D"

0

poa (] )
0 Py

v(6) = direction vector

v(e) = (v(o) ' w(e,))
|

CN(m, R) = complex normal pdf with mean m and covariance R.

This 1s the well-known equal mean, differing covariance Gaussian hypothesis
testing problem [15, p. 113, case 1C]. The computation of its Pp is
tedious, but straightforward.

The likelihood ratio test is

H
L 2
ol 1) 5.5
L < iy
el lalt) g
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where Y' = 1 for minimum probability error (Pg) detection assuming each
hypothesis is equally likely (P(H;) = p(Hp) = 1/2).

Plugging the complex normal distribution into (B.3) and using the
independence of the x;'s, we get

I“RllL L -1 H -1 >

e 0\ ®RexyoxRix)) T

Inkzl i=1
or

L R

H, -1 _ -l by . 2

Vooxg (R, R, ) x, ¢ my-Lm g

1=1 1
or

-1 -1y 2y )
- 7 U

Ler ((R) RZ)R)<Rny+L2.nR1
or, finally,

er (R - RyHR) 2 BY 44 2 (B.4)

1 2 < L R .
where
L
~ 41
R = — Z X, X .
I
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Let

A -1 -1, 2
L= cr((R1 - R,) R)

be the statistic and

R
A n v' 2
Y I + &n R
1
be the threshold. Then the Pp of this test is N
(.-}
Py = prob(2> 1Y) = { pz(“lﬂz) du

where pg () 1is the pdf of £, which will be obtained through the
characteristic function of 2.

The characteristic function of £,
L
¢, (Ju) & gled®ly .

is given on hypothesis Hy by

l—L

O T R
as derived in [5, Lemma 4.1]. Pulling out an Riﬁz )

o, Quli) = |1 - Laur)/ - ‘

2 , -1 ~1, . 1/2
(R}" - R RS
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Now let

1/2

U = R;/Z ’Ry' - &y') Ry (B.5)

be the eigenvalue decomposition of the Hermetian matrix on the right-hand

side. Then,
- J_u-) _L
o, Gufr) = | T -4 va|
] -de
|-
-1
w
1 "JI A
= det .
* W
1 - 117 A
by Jufm) = L : L y
jw >‘1 jw An
(1 - I . . . (l - I

This is a difficult characteristic function to invert until we note that only

three eigenvalues are non-zero since

-
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rank (R.ll‘/z (R,” - R; ) Ry

[
"
2
~
-]
-
b
[
=

rank (I-QXXH' (I-VQVH))

rank (VOVH-q!_!H)
= 3 at most.

Now

- nE

koo 5o 5 (s -3

¢, (leuk) - T

L
A

which may be expanded into partial functions

3 L a

1 13
¢ (Ls[H ) = (8.6)
oo % b AL gel el (s - bj)1

where by = 1/)4 and the coefficients aj; are given by

(-1 )L L-1

d L
8 " =DT T (8 - 57 (s = b
ds s =b
1 -
(-t L g 2 (L +2=1)1 =L+ R)
"T =01 zzo (Mg ) D @ -1 (b = b x .
L-1-2 (L+L-i-2-1)1 ~(LH~1-1)
= -t (®r by
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- - =) x
@=- 01 (b - bY" b - b8 k=0 P17 P2
(L-1)! (L+¢-1)! (2L-1-4-1)!
8 (L-1-2)1 (L-1)12
or, finally,
i
81 ° e -Lbl) pIn L? Y2 et
(b, - b)" (by - b)) =0
where
b, - b
<3 1 o f2L -1 -1)! 2L -1 -1
TRy, -, 0 Yo TE-DT @ - e )
J(L+2-1)1 (2L -4 -2-1)! _ L+2e~-1)(L-4i-2+1)
gL -1~ )1 (L_mz -1 2 (2L -1 - %)
and aj2 and aj3 are obtained symmetrically.
Given these ajj, we now inverse transform Eq. (B.6):
P () = Flo,(Ju|8 )}
3 L -1
) I; A" 321 AT ol
17273 L = Lot
. L 3 {“(”’ y >0 } LU L oay -0t
()‘1 Az A:’)L =1 -u(~2), Aj < 0 4 A=D1
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Therefore,

Lx
© 3 L a © Y
L i u(x) i-1 3
P.= [ dxp,(x) = ———r ) = Jdx {_ ;77 ) (Lx)" e
D y L (Al A Aa)L y=1 1=1 (1-1)! Y u(-x)
or
3 L
L i
P =— 7 Joa, A I (B.7)
D L L& s 13 73 13
(A A 230" 3=1 =]
where

(sgn 1,) (sgn v)
P(ia %l ) ’ - -
1 0 . +
1] 1 X N -
1 - P(i: % ) ’ + +

3

and P (-, ¢) is the incomplete Gamma function

P 1 X n~-1 -t
(n, x) = 5= [ dat t e
(o]

Equation (B.7), of course, gives the probability of false alarm (Pg)
also 1if the eigenvalues Aj are those corresponding to R} instead of R
in Eq. (B.S).

A RATFOR program was written which computes Pp and Pp for arbitrary
choices of 6;, 62, p}, p2, and L from Eq. (B.7), and was used to
generate the solid curves in Fig. B.l,

68

MY SR O S X NN Y]

L7 B )5y ] " X K
Sl o ST A" o P Pl T L E N WL L LA T YR AR T X T N AU R P o Pt

°'Lv‘t.: N ,&'-4 &




1.0

[D = 2 SIGNALS .
KNOWN POWERS
EQUAL POWERS
L = 10 LOOKS
N 9 SENSORS .
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\;' Fig. B.l1. Known-0 probability of detection comparison of exact and
e, Gaussian computations.
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" Unfortunately, there are numerical problems in computing the aij's.
Fortunately, the pdf of 2% approaches Gaussian for large numbers of looks and
:‘:: is reasonably close to Gaussian at the point where the exact computation
b .*

:.: fails. Accordingly, the program optimally computes Pp and Pp based on a
:’ Gaussian approximation given by

L

_, N P = 7 A= 2 e-(x - 5)2/202

s S s T

Y

N

'."
i\ 1 -3 - .
A 7 erf (-—__}_——2—- R A< 2 R

i - V2 [+

" -

b

Y -

. 1 - -

% 2 (1+ere (—2=2)) ,  agi o,

4 o

'o

0 where

~y

R
{ - ( d ¢£(8)

- L= E(L) = ——t——

R ¥ ds §=0

4

MY

. oIV WL W

A4

and

L4

€
.

LY

2
d"¢,(s)
02 = var(L) = + -2

ds g=0

AR

vl.'l."l. LA Ry N

'i;w )

2. 2
(A + %

®
]
=

2
+ A3) .

P N

This approximation appears as dotted curves in Fig. B.l.
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