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( Directive/NSC-53, "National Security Telecommunications Policy," is funding a -
" comprehensive program on the effects of nuclear weapons on selected telecom- -
[ munications systems. A portion of this effort is directed at determining the °':,
. high-altitude electromagnetic pulse (EMP) vulnerability of the commercial Bell .':-
" Telephone T1 Carrier systems, and at developing a T1 Carrier system specifi- :a:.
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1. INTRODUCTION

Analytical techniques exist for determining the electromagnetic (EMP)
fields that are transmitted into the ground for given parameters of the ground
and the incident field. The main objective of this paper is to indirectly
measure the conductivity o, dielectric constant €pr and electric (E) field
below ground due to an incident EMP field as produced by the repetitive EMP
simulator (REPS). REPS is a horizontal dipole radiator driven by a 1-MV
repetitive pulse generator. The measurements were taken at the Harry Diamond
Laboratories (HDL), Woodbridge Research Facility (WRF), Woodbridge, VA.

There are two methods to accomplish this objective:

(1) The determination of the "calculated" transmitted E field, E, from
the measured magnetic field, “x' at 1 m above ground, and the associated
Maxwell equations and Fresnel coefficients in a continuous air/ground inter-
face. The ground can be treated as a good conductor whose most important
electrical parameters are conductivity and dielectric permittivity, €.

(2) The determination of the "measured” transmitted E field from the
induced voltage, V, across a buried capacitive parallel-plate E-field sensor
with a plate separation #. This V is "unfolded"” from the measured voltage,
V,+ at the sensor load through the use of the time-domain and frequency-domain
solution techniques. The time-domain solution is derived from an equivalent
circuit model of the E-field sensor. From this solution, the sensor can be
characterized as an E-field sensor and an E (first derivative of E) field
sensor. The frequency~domain solution technique depicts the behavior of the E
field below ground through parametric variations of frequency-independent
(constant) ground parameters. The frequency-domain solution of the same
equivalent circuit model of the E-field sensor uses ground parameters that are
either frequency independent (constant) or frequency dependent to describe the
transfer function, A, or sensor calibration of the sensor.

These two methods independently arrive at the solution of the transmitted
E field below ground but both depend on ¢ and €pe The parameters ¢ and €
were the only ones adjusted to provide agreement between the calculated and
measured E fields transmitted below ground. When the calculated and measured
E fields are in good agreement for given ¢ and €yr @ conclusion can be drawn
from the results.

A flow chart of an indirect measure of below-ground E field, conductivity,
and dielectric constant is shown in figure 1.

This report presents comparisons between calculated and measured trans-
mitted E fields using both constant and frequency-dependent ground parameters.
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}' €y, €y, Cg, €y — CONSTANTS, DEPENDENT ON 104N
- CICUIT PARAMETERS .
.. Figure 1. Flow chart of an indirect measure of below-ground '
, E field, conductivity, and dielectric constant. I
2. ANALYTICAL CALCULATION OF TRANSMITTED E FIELD ;;'T
- When an EMP is incident at the plane boundary of a linear, homogeneous, >
isotropic, and conducting medium, some of it is reflected and some is trans- L
-j mitted into the medium. The transmitted E field can be found with the use of ;‘ y
'. Fresnel reflection and transmission coefficients.!”3 The Fresnel coefficients b
P are a function of the electrical properties of the ground and the incident .
angle of the electromagnetic wave. It is assumed in this study that the 4
incident wave is a linearly polarized plane wave (of constant amplitude and
a phase) and the air/ground boundary is a semi-infinite plane.
"
The pertinent equations involve plane monochromatic waves (i.e., with
s single frequency) as directly derived from Maxwell's equations. Detailed
" derivations governing these equations can be found in works cited in the
; Selected Bibliography. Figure 2(a) diagrams the wave vectors of the incident,
: reflected, and transmitted waves used in this study. Figure 2(b) shows the
> conventional directions of electric and magnetic fields for horizontal polar-
: ization.
~
' g, ¢. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating
‘. Systems, Prentice-~Hall, Inc., Englewood Cliffs, NJ (1968), 2nd ed.; ch 5, p
- 144 £f.
-_' 23, p. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New )
» York (1962), ch 7, p 216 ff. :
. 3M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford (1970),
- fourth ed.; ch 1, p 40; ch 13, p 615 ff.
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Figure 2. Waves and fields: (a) wave vectors of incident reflected and
transmitted waves and (b) conventional directions of electric and magnetic
fields for horizontal polarization.

The solution for the incident electric field above ground treated by Marx"

Eo(w) = {ZoHylw)/[sin ¥ (1 - Ry(w)e™ %) ]} |sin(wty)/(wtq)|? . (1)

Ey(w) is a function of the free-space wave impedance Z,, the magnetic field
Hx(w), incident angle Yy, Fourier transform variable w (w = 2nf), the Fresnel
coefficient for horizontal polarization Ry(w), and time delay tye The time
delay describes the difference of arrival time between the incident and re-
flected pulses at the field measurement point above ground as shown in figure
2(aj. The last term of equation (1) is a filter function that removes the
singularities at

0 3!

AT 0T,
MO

(I)td = km ’ k = 1, 3, 5, sve
Rh(w) is found to be

sin ¢ - [ep - j(0/eqw) - cos?y]i/2
sin ¢ + [ex - j(0/equ) - cos?y]l/2

Rp(w) =

where €, is the dielectric permittivity of free space. The time delay is

g - 2h sin Q (3)

c [4

where h is the height of the H-field sensor above ground (1 m) and ¢ is the
speed of light.

“Bgon Marx, Simulator Fields and Ground Constants, Harry Diamond Labora-
tories, HDL-TR-1785 (February 1977).
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SRS The transmitted electric field E,(w) is :-.
e v
Eg(w) = Tp(w)e Y9 (w) (4) :
S
AN where 4 is the distance from the interface in the soil and y is the propaga-
L tion constant, defined as i~
W
ate Y = (~w?ue + jwpo)l/2 (5) D
NN >
v ) The transmission coefficient® Ty (@) is A
-.‘;-:' v
-'$:C-. Th(u)) - 2 sin ¢ (6) 'r
{sin ¢ + [ey - 3(o/wey) ~ cos?y]l/2} by
. The time-domain electric field E.(t) is numerically computed through an in- #
~ T verse Fourier transform® of equation (4). Finally, Et(t) is averaged over a :
N 12-in. depth from 1 to 13 in. below the surface; the result is taken as the E ;
AN
K- field at 7 in. below the ground. ]
. " ;
= 3
3. EXPERIMENTALLY MEASURED FIELDS .
l‘\:f :
-*t{ Field measurements were made at the REPS facility at the following loca- K
':j- tions (see fig. 3): ;
fo st ¥
At (a) test point 4 (TP4), close to the centerline at x = 800 ft and y = 82.5 i
ft south of the centerline, and E
ot (b) test point 1 (TP1), off the centerline at x = 800 ft and y = 609 ft 8
'.:\f. north of the centerline. t
NN
e " 4,
WS At each test point, two field measurements were taken: (1) the total RS
_) magnetic field, H,(t), at 1 m above ground and (2) the transmitted component
5$'~ of the tangential E field averaged over a 12-in. depth from 1 to 13 in. below X
Ny the surface.
:::'_ The Hx(t) was measured with a conventional Stanford Research Institute
s (SRI) cubical sensor box.’ Figure 4 shows the measured Hx(t) at TPl and TP4.
1‘ &
» b
!
w.:;\
*'4‘: SEgon Marx, Reflected and Transmitted Fields for a Plane-Wave Pulse Inci-
‘::" dent on Conducting Ground, Harry Diamond Laboratories, HDL-TR-1740 (April
® 1976). .
S balfred G. Brandstein and Egon Marx, Numerical Fourier Transform, Harry ¥
"l Diamond Laboratories, HDL-TR-1748 (September 1976). ¢
‘-:: 7’B. C. Tupper, R. H. Stehle, and R. T. Wolfram, ENP Instrumentation Devel- '3
:'_’_- opment, Stanford Research Institute, report 7990, under contract to Harry v
2 v

Diamond Laboratories, Contract DAAK-02-69-C-0674.
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_;f: The transmitted E field was measured by the use of two buried parallel S
Vo" aluminum plates. These plates are 12 in. long x 12 in. wide x 1/4 in. thick. g
# They were separated a distance £ of 1.75 in. at TP4 and 2.5 in. at TP1. In F
o both cases the plates were inserted to achieve intimate ground contact. The é
. voltage Vo(t) generated across the plates by the field was measured by the use :
of a fiber-optic transmitter attached to the plate by an RG214, 50-Q coaxial &
' double-shielded cable. This cable was 1.75 ft long at TP4 and 3 ft long at %
TP1. The 50-R fiber-optic transmitter was connected to the instrumentation s
van remote-reading equipment by a fiber-optic cable and a 50-] fiber-optic ‘:
N receiver. The fiber-optic transmitter and receiver data 1link were designed >
s and built by Jim Blackburn of HDL. Figure 5 shows the measured sensor voltage :
e V,(t) at TP1 and TP4. ' >
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= 4. EFFECTS OF CONSTANT GROUND PARAMETERS--SENSOR CHARACTERIZATION 1
".r:' b
= The E-field data are obtained from the measured voltage by the use of the .
(' equivalent circuit model as shown in figure 6. This model is described by

o Baum® as a short dipole antenna model. When time variations are slow enough .
Qr_: that the short antenna approximation is valid, and assuming that the edge <
Sk effects of the plates are not a significant factor, the equivalent circuit is’ .
:}-'\ used to represent the following relationship between the voltage through the :
o load, V,(t), and the magnitude of the electric field, E (t): -
) y
S a Vol(t) dve(t) >
(cs at G)[V(t) - Vo(t)] = RL +C—4q¢ ¢+ fort20 . (7 X
2 ~
! ' Here V(t) = E (t)4, G = 1/R; = C 0/€, Ry is the load resistance, C, = area,
A €/% is the sensor capacitance, and C, is the cable capacitance. This is the

’.j:-. same model for the E-field sensors used in Aurora with time-varying air con- v
o ductivity.d

-f_'.

o V=t

N

[ ) =\ -
3 A e
N .1
‘} ..
:‘_.’- Figure 6. Equivalent circuit of E- .
_ \ . Cyo . _L . field sensor. _-:
L cs = € c-1— L .’
~‘:.‘ ?
-:_-. L4
“~ .
J508 >
-‘*’. -
"t" —— -

2
'.h:{ »
:,v.j The solution of differential equation (7) is composed of a complementary e
O and a particular integral. In network terminology, these are also referred to ‘f
e as the natural, source-free, or transient response and the forced or steady- “

state response, respectively. Examination of equation (7) reveals that when

.ﬁ Ry, is large and C. is zero, the source terms are zero and the solution is only
:-:':-: complementary. Solving equation (7) by the method of variation of parameters, he
SO the solution for E,(t) is “
- :
i) p
’-_, 8Cc. E. Baum, Electromagnetic Pulse Sensor and Simulation Notes, Vol. 1, Air
f{; Force Weapons Laboratory, Note 13 (June 1970). .
-,-:'.y 9Rolando P. Manriquez, George Merkel, William D. Scharf, and Daniel Spohn, K
;'.-\j Electrically-short Monopole Antenna Response in an Ionized Air Environment, o
12 Determination of Ionized Air Conductivity, IEEE Trans. Nucl. Sci. NS-=26, 6 R
¥op (December 1979), 5012-5018. x
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C Cg = GRL,C -t C
Ep(t) = slc = Vo (t) +—‘7R—C'IZ—‘—C' e /RaCs
8 A
t -t Cc
x [ e /Rs svo(t') at' , for t > 0 . (8)

o

Several important observations may be made from equation (8). When R is
large and Ce is zero, and the transit time (£/c) of the antenna model is long
compared to the rise time t of the incident pulse (i.e., R Cq >> 1), the first
term on the right-hand side of equation (8) dominates. In this case, the
sensor can be regarded as an E-field sensor. On the other hand, when R Cy <«
T, the second term of equation (8) dominates and the sensor can be regarded as
an E-field sensor. Otherwise, the sensor can be described as a combination of
an E- and E-field sensor. The transmitted electric field E_(t) can be numeri-
cally computed from equation (8) or, alternatively, the voltage V(t) = zn (t)
can be obtained by solving the differential equation (7) by a Runge-Kutta or
Gear method. The solutions of the first and second terms of equation (8) are
shown in figure 7 at TP1 and figure 8 at TP4, respectively, with a constant ¢
= 0,007 mho/m and €, = 15
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Figure 7. Results of first term (solid line) and second term
(dashed line) of equation (8) at TP1 with ¢ = 0.007 mho/m and

Cr = 15.
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r

Actual measurements of ¢ and €  were not available for the time this test
was performed. However, previous data collected by the National Bureau of
Standards (NBS) show that the ground conductivity is approximately 0.007 who/m
and the € is 15 at 1 MHz. These data are discussed elsewhere!? and measured
for a limited frequency range. The results from equation (8) and the time-
domain Fourier transform of equation (4) are shown in figures 9 to 13, at TP4,
for o varied with 0.001, 0.007, and 0.02 mho/m at € = 15, and € varied with
1, 15, and 80 at ¢ = 0,007 mho/m. Figure 14 shows the comparison between the
results of equation (8) and the time-domain Fourier transform of equation (4),
at TP1, for ¢ = 0.007 mho/m and €, = 15. The significance of the parametric
variational effects to the expected values at the extreme is apparent. As O
and €, increase, the amplitude of the electric field decreases. The
waveshapes at late times and low frequencies are somewhat altered at higher
conductivities. The peak amplitude is particularly sensitive to the changes of
the dielectric constant at higher frequencies.

10Norman v. Hill, Effect of Frequency-Dependent Soil Parameters on Reflec-

tion Coefficients, Harry Diamond Laboratories, HDL~-TR-2004 (December 1982).
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One of the unique features of the measuring system, depicted in figure 3,
is the fiber-optic system. The advantage of implementing this system is to
electrically isolate the E-field sensor from the instrumentation van, thereby
eliminating the need for a long cable between the sensor and the van.

5. EFFECTS OF FREQUENCY-DEPENDENT GROUND PARAMETERS--SENSOR CALIBRATION

The use of constant (frequency-independent) values for ¢ and €, results in
a sensor calibration (or transfer function) A that is a constant. This A can
be used to determine the transmitted E field across the parallel-plate sensor
as

Vo l(w)
Et(w) = ) A . (9)

However, in reality, o and €, are frequency dependent, and for larger varia-
tions of frequency, a more accurate calibration of the buried E-field sensor
must include a frequency-dependent transfer function.

Let A(w) be the transfer function of the buried E-field sensor as deter-
mined by taking the Laplace transform of equation (7) in the s-domain (s =
jw). In general, the transfer function is a complex quantity and can be
written as

Alw) = V(w)/Vo(w) . (10)
A(w) is also stated in terms of magnitude and phase as
Alw) = |a(w)|ed®(@) (1)

where |A(w)| is the amplitude-response function and ¢(w) is the phase-shift
function of the sensor. The transfer function depends on the circuit parame-
ters as

M + 8B (12)

Alw) = G +8Cg '

Therelu = (1 + R.LG)/RL and B = Cg + C.. The amplitude-response function
A(w)] is

[atw)| = [1/(6® + w?c3)][(Mc + w?BCg)? + w?(BG - cgM)2]l/2 (13)

and the phase-ghift function ¢(w) is

w(BG - cgM)

2 . (14)
MG + w“BCg

¢(w) = tan~l
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The results for |V (w)|, |V(w)|, |A(w)|, and ¢(w) as a function of fre-
quency are shown in figures 15 and 16 at TP4, respectively, for a constant o =
0.007 mho/m and €, = 15, Ideally, this sensor should produce an amplitude
frequency response that looks "flat"™ in the frequency band of interest and a
phase shift that is a linear function of frequency. In other words, the
spectrum of the measured input voltage V(w) is identical to the spectrum of
the output voltage V, (w) as expressed in equation (10). This means that the
input voltage is passed undistorted by the measuring system. But for some
cases, when the amplitude and phase frequency response are functions of o and
€., that vary with frequency and moisture content, the output voltage may be
substantially different from the input. From these viewpoints, depending on
the ground parameters, the sensor's transfer function could appreciably alter
or distort the output voltage.

Finally, the "unfolded" measured transmitted electric field is

E(w) = A(w)V (w)/8 . (15)
10 0 _:'_ ) R | TV T T N | { *‘_I ] ]
10! | .
102 | _
103 —
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Pigure 15. Magnitude of transfer function A(w) (solid line),
measured sensor voltage V (w) (dashed line), and "unfolded”
sensor voltage V(w) (dash-dot line) at TP4, with ¢ = 0,007

mho/m and €, = 15.
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co .
, j Several studies have been conducted concerning the measurements and theo- ‘C.'
‘ g retical formulations of the electrical properties of the soil, namely, ¢ and ::;
~\: €, as functions of frequency and moisture content. Longmire and Smith!l >
S develo a universal formula for ¢ and €, over the frequency range of 5 Hz to -
3 x 1012 Hz, based on Scott's datal? for soils and Wilkenfeld's data for some .
: concrete and grout samples (Wilkenfeld's data can be found in Longmire and k,
\J sﬂithll )e <
e 3
o o
:‘ — ‘e
Fa ' .
- )
\-f. e
Q.’u "\.
":-j ll¢, L. Longmire and K. S. Smith, A Universal Impedance for Soils, Nission b
r Research Corp., Santa Barbara, CA, Contract No. DNA0O0l-75-C-~0094 (October .
2 1975). .
N 125, H, Scott, Electrical and Magnetic Properties of Rock and Soils, Note )
%8 18, Electromagnetic Pulse Theoretical Notes, Air Porce Weapons Laboratory, ENP '
’ 2-1 (April 1971); also U.S. Geological Survey Technical Letter, Special Proj-
ou ect 16 (26 May 1966).
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The ¢ and ¢

o

derived from Longmire and Smith's “universal RC network

r :
model” are y
2 °n (relative) (16)
€, = + e relative) , ’
fo o v+ (£/£,)2 ;
i
N 2 >
. £/f 1\
0 =0, + 2mey ) af. -—(—'-’l-—z (mho/m) , (17) \
ne 1+ (£/€,)
b
where Y
X
N =13, .:
e‘, = 5’ v'
f = frequency (Hz), ‘:{
t
a, = the constant coefficients (see table 1),
£, = F(P)£,(10%), g
£,0108) = 107" ng, .
F(P) = (p/10)1+28, !
P = water content (percent), and :
0, = 8.0 x 1073 (£/10)1*54 (mho/m). N
Figure 17 shows the ground conductivity ¢ versus frequency for various volume ;
percentages of water. Figure 18 shows the dielectric constant ¢, versus \
frequency for various volume percentages of water.
A
2
TABLE 1, COEFFICIENT FOR UNIVERSAL SOIL .
(see eq (16) and (17)) :
i
n a, n a, n a, E
1 3.4 x 108 6 1.33 x 102 1 9.80 x 107} v
2 2,75 x 10 7 2.72 x 10! 12 3,92 x 1071 )
3 2.58 x 104 8 1.25 x 10! 13 1.73 x 1071 ;
N 4 3.38 x 103 9 4.80 )
;§ 5 5.26 x 102 10 2.17
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3‘_._-3 Because of the unavailability of Woodbridge's soil data over a wide range "
_»'*' of frequency, it was necessary to implement Longmire and Smith's universal :.
{* formula for o and €, in the program. However, some old data taken by NBS for
g Woodbridge's soil show relatively low o and €.; Hill}0 discusses these data. -
:-:f- In the analysis, 10-percent soil moisture content, ¢ = 0.007 mho/m, and €p = AX
b 15 provided close agreement between calculated and measured transmitted E "
: fields below ground. The results for lvo(w)l. ‘V(w)l, ‘A(w)[. and ¢(w) with Y
::\:; 10-percent moisture content at TP4 are shown in figures 19 and 20. The com-~ ::
) parison between the inverse FPourier transform of the calculated transmitted -
! electric field (eq (4)) and the "unfolded” measured transmitted electric field d
:-?: {eq (15)) using ¢ and €, dependent with frequency at 10- and 25-percent mois-~ ::
.;:;.‘ ture content are shown in figures 2t and 22 at TP4, and figures 23 and 24 at
} TP1. Indeed, the transfer function of the sensor is highly sensitive to the t‘.
o electrical parameters of the sgoil. N
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10Norman v. Will, Effect of Frequency~Dependent Soil Parameters on Reflec-
tion Coefficie.. ;, Harry Diamond Laboratories, HDL~-TR-2004 (December 1982).
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6. CONCLUSION AND RECOMMENDATIONS

This paper documents an attempt to experimentally measure the E-field
component of an EMP below ground and to compare the results to an analytical
calculation. The results of equations (4) and (15) showed good agreement for
10-percent moisture content, constant ¢ = 0,007 mho/m, and € = 15.

S
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The measurements can be improved by the use of a differential-mode voltage
probe to measure the transmitted E field. The RG214 cable can be removed and
the sensor directly connected to the fiber-optic transmitter. Another im-
provement would be to accurately determine o and €. over a wide range of
frequency and depth at the same location where the fields were measured, and
at about the same time. The availability of more soil data would reduce the
uncertainty in the sensor calibration.
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The assumption that the EMP was a plane wave over a homogeneous plane
semi-infinite ground in the far-field radiation zone may be justified by the
quality of the results. The transmitted E field vanishes at late times (>1
us) but the transmitted H fields may not. Also not taken into account were
the multiple reflection of the fields and the effects of dispersion due to the
existence of different layers of strata below ground. These uncertainties can
be resolved by measurement of the E and H fields at different depths below the

air/ground interface.
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Analysis has shown that it may be possible to indirectly measure ¢ and €
as a function of moisture content and frequency with the parallel-plate E-
field sensor. The sensitivity of the sensor is demonstrated through the
sensitivity (S) analysis of the equivalent circuit model of the sensor's
response to varying moisture content (P), i.e., S = 3IV/JP (see fig. 21 to 24).

Perhaps the most significant aspect of this effort is that, through an
adequate calibration of the buried E-field sensor, a method now exists for the
immediate and relatively easy indirect determination of ground conductivity
and dielectric constant. This method, through the Fourier transform, could
then be made available as frequency-domain data and applied as derived to all
EMP coupling programs.

The curve-fitting equations (eq (16) and (17)) used by Longmire and
smith!! that determined the €, and o based on Scott and Wilkinfeld's data can
be further modified by adjusting the necessary coefficients in the equations
to obtain a closer correlation between the calculated and measured transmitted
electric fields. A computer-aided optimization procedure13 is needed to
accomplish this task. This curve-fitting method can analytically improve the
determination of the ¢ and €, for Woodbridge's soil.

The use of calibrated, shallow, buried parallel plates should be made part
of all field-test system programs because it is a simple, inexpensive method
of determining the soil conductivity at the same time that the experimental
coupling data are collected on the system. Thus, a conductivity measurement
made at the beginning of each test day can be used to predict the signal
levels expected. And, in addition, an accurate evaluation of experimentally
collected data can then be used by the analyst to predict the levels of in-
duced signals for any conditions of soil.

Future efforts will be to explore ways of improving the measurement method
by (1) the determination of the effects of RG214 cable on the measurement,
(2) an independent direct measurement of o, €, and P by whatever means,
(3) the use of a different buried sensor (dipole, magnetic loop, two parallel
cylinders, two parallel spheres, etc), and (4) the measurement of conduction
current density (oE ) below the ground using the parallel-plate sensor. This
last measurement can be performed by connecting a large resistor between the
sensor and a short RG214 cable. In series with the cable will be an
impedance-matching device. This device will match the high-impedance sensor
system (sensor and resistor) to the low-impedance data-link system (cable and
fiber-optic system). The use of an impedance-matching device makes it possi-
ble to directly measure the induced sensor voltage. The signal propagated
balow the ground will be produced by the REPS.

e, ., Longmire and K. S. Smith, A Universal Impedance for Soils, Mission
Research Corp., Santa Barbara, CA, Contract No. DNA001-75-C-0094 (October
1975).

13R. Fletcher and M. J. D. Powell, A Rapidly Convergent Descent Method for
Minimization, Computer J. 6 (1963), 163.
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A fifth way to improve the method is by the measurement of displacement
current density--¢(dE,/dt)--below the ground. This measurement can be per-
formed by covering one of the plates with a thin insulator (e.g., plastic) and
burying these plates below the ground. The results of all these measurements
will further validate the results obtained from the existing analytical tech-
nigues employed in this report.

A conclusion reached as a result of this study is that the equivalent
circuit model of the sensor is an adequate model for REPS field rise times and
typical ground parameters. The modeled sensor system performed well and
provided physical insight to the problem. The transfer functions were eval-
uated directly from the circuit model and showed the characteristic response
of the sensor.

The determination of the E field below ground due to an incident EMP field
is summarized as follows:

(1) The H field above ground was measured and used to calculate the trans-
mitted E field with the aid of Maxwell's equations and the Fresnel coeffi-
cients.

(2) The induced voltage across the parallel-plate sensor was measured and
"unfolded” in two ways:

(a) time-domain formulation of the equivalent circuit model of the E-

.field sensor using constant ground parameters, and

(b) frequency~domain formulation of the same equivalent circuit model
using ground parameters dependent on frequency and moisture content.

Finally, the applied conceptual and measurement scheme showed satisfactory

results and provided vital information about EMP field sensors and the elec-
trical properties of the conducting ground.
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