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On June 15 and 16, 1983, the U.S. Army Research Office (ARO) convened
about 20 experts in a workshop with the theme "Aerosol Dispersion in the
Atmospheric Surface Layer" (Bach, 1984). This workshop brought forth the
recommendation that ARO establish a working group to investigate "large-eddy
simulation,” or three-dimensional, time-dependent, fine-mesh numerical
modeling of turbulent flows. Known as LES in the engineering community, it
had actually been pioneered by J. Deardorff of the National Center for
Atmospheric Research (NCAR) in the late 1960s. The ARO workshop recommended
further that this working group prepare long-range priorities for introducing
large-eddy simulation (LES) models into the Army research program.

ARO accepted these recommendations and assigned Walter D. Bach, Jr., a
meteorologist in the ARO Geosciences Division, the responsibility for their
implementation. He established as objectives for the working group:

A. To study the feasibility of using LES as a surrogate method of
obtaining the temporal and spatial distributions of mass, momentum, heat, and
moisture in the atmospheric boundary layer, subject to given initial and
boundary conditions and, using these distributions, to examine the behavior of
gases and aerosols within the modeled volume; and

B. To recommend a course of action for implementing LES techniques that
are feasible and appropriate for the Army's needs in basic rescarch on
atmospheric dispersion of gases and aerosol.

In October 1983, I agreed to head the Working Group on Large-Bddy
Simulation. I chose as members Dr. Stephen Burk, Waval Environmental
Prediction and Research Pacility, Monterey; Prof. William Cotton, Department
of Atmospheric Science, Colorado State University; Prof. Joel Fersziger,
Department of Mechanical Engineering, Stanford University; Dr. Steven Hanna,
Environmental Research and Technology, Inc., Concord, Massachusetts; Dr.
Parvis Moin, WASA Mmes Research Center; Mr. William Ohmsteds, Atmospheric
Sciences laboratory, White Sands; and Dr. Jeffrey Weil, Martin Marietta Corp.,
Baltimore. Walter D. Bach, Jr. also participated fully in our deliberations.
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> Our working group met in Boulder, Colorado, on Dec. S and 6, 1983, and on
; Peb. 6, 1984. Each member also spent a good deal of individual time in
researching and compiling his contribution, which I have tried to blend into a
unified document.
On behalf of the working group I want to thank Walter D. Bach, Jr. who
made it possible for us to participate in this most rewarding project, and
Shirley Michaels of Michaels Communications, who splendidly administered the

Working Group on Large-Eddy Simulation and expertly produced this report, our
final product.

John C. Wyngaard
Boulder, Colorado
August 1984
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The planetary boundary layer (PBL) has numerous challenging but
complicating features. 1Its physics are more intricate than those of many
other turbulent flows; buoyancy, phase-change, and radiative effects can
complicate the usual turbulence dynamics. Another challenge is its “"inherent
uncertainty,” the inevitable difference between its most likely (i.e.,

g ensemble-average) state and its actual behavior over a finite time interval.

r Inherent uncertainty is a major obstacle to the application of PBL models to
real problems. It also greatly increases the difficulty and expense of direct
measurenents in the PBL, making it necessary to assemble vast quantities of
data in order to produce reliable statistics.

i There are two broad approaches to the numerical modeling of the PBL--one
based on ensemble averaging, the other on volume averaging. The engemble-

:4-? average approach has traditionally used eddy-diffusivity closure, which began

to give way in the 1970s to second-order closure. Each has strong

. limitations, however, and simpler models using integral closures (e.g., the

. Gaussian-plume model for turbulent dispersion) also enjoy wide use. Three-
dimensional, time~dependent, fine-mesh, volume-average modeling (large-eddy
simulation, or LES) can in principle give far more powerful predictions than
these other methods, but is also far more expensive.

The engineering fluid mechanics community has invested considerable

resources over the past decade in developing LES for shear-flow

applications. Today it is a viable complement to experiment in both

fundamental and applied turbulence research. Its growing popularity reflects

-, both its promise of realistic answers to difficult problems and the continuing

- rapid decline in computing costs.

The roots of the LES technique actually lie in meteorology; the first
engineering application of LES was Deardorff's simulation of turbulent channel
flow, wvhich was carried out at the National Canter for Atmospheric Research in
the late 1960s. Today LES is used in small-scale~meteorology problems ranging
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from PRL structure to severe-storm dynamics.
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We drev three major conclusions from our assessment of the current status
of PBL research:

Inherent uncertainty is a major complication, strongly influencing
both experiment and modeling. There have been few attempts to
generalize models to include prediction of inherent uncertainty; in
general this remains a challenge for the future. Meeting this
challenge will require a broader, more reliable PBL data base than
now exists.

Because of their cost, difficulty, and limitations, field
experiments cannot be expected to provide the improved PBL data base
necessary for the next generation of models. However, this data
base would benefit greatly from measurements in carefully designed
laboratory experiments which simulate certain aspects of the PBL.
LES experiments also have the potential of contributing
substantially to this data base through "field programs®™ on the
computer. Although LES has some limitations in PBL applications
(e.g., loss of eddies larger than the domain size, poor resolution
near bottom and top, difficulties with boundary conditions), the
advances vhich we expect in supercomputers over the next several
years should ease these somevhat. LES experiments also have unique
advantages, such as allowing the experimenter to control individual
varisbles in order to study their effect on the flow.

In view of these findings and considering the recent history of LES in
both engineering fluid mechanics and small-scale meteorology, we perceived two
broad roles for LES in future PBL research:

Studying the sources and physics of inherent uncertainty and
quantifying it for applications, particularly in turbulent
dispersion.

Generating data bases for developing profiles for integral models:;
for studying dynamics; for developing parameterizations for higher-
order-closure models and for subgrid-scale processes in
meteorological models; and in designing and simulating PBL
experiments.

We established general guidelines for the development of LES models for
the planstary boundary layer in order that investments in LES research can
provide optimum returns. We recommend a development program having
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o~ theoretical, cowputational, experimental, and technology~-transfer ;

. components. Xsy challenges here include: ' s
. - ° Theory--subgrid-scale parameteriszation (including subgrid-scale ’“_
] t dispersion) in LES models; optimum choice of modes; boundary ‘_
R conditions; numerical techniques for dispersion applications; ‘-:E::*

inclusion of mesoscale-eddy effects.
. e ® Computation--the use of full turbulence simulation to stimulate LES ij:f:'._-_
o develogment. ”<
: ° Experiment--the use of both atmospheric and laboratory data to test
LES predictions.

. : ® Technology transfer--quantifying inherent uncertainty; developing
5o higher-order-closure parameterizations; developing subgrid-scale
: - parameterizations for larger-scale meteorological models. ‘
b C Supercomputers are revolutionizing the entire field of nonlinear -
N dynamics. Their most direct and powerful application to small-scale
.', '» meteorology is, in our view, in LES. The impacts of LES to date, while

) substantial, could be dvarfed by those over the next decade. An optimum B

' response to this opportunity will require the participation of a broad group A
N ' of individuals and institutions, but will, we believe, bring great rewards. i
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In examining the feasibility of three-dimensional, time-dependent, fine-
mesh numerical modeling (large-eddy simulation) of the lower atmosphere, we
identified several topics that we felt were pivotal and, hence, deserved
careful exposition in this report.

We recognized that the planetary boundary layer (PBL) has numerous
challenging but complicating features. These include what is called “"inherent
uncertainty,” the inevitable difference between its most likely (i.e.,
ensemble~average) state and its actual behavior over a finite time interval.
Inherent uncertainty has come to be recognized as a major complication in the
application of PBL models to real problems. The physics of the PBL are also
more intricate than those of many other turbulent flows; buoyancy, phase-
change, and radiative effects can all add complications to the usual
turbulence dynamics. Conseguently, we agreed that an optimum approach to PBL
research would combine the strengths of observational studies (both in the
laboratory and outdoors), theoretical work, and numerical modeling. We have
devoted Chapter Two to these issues.

We identified several contemporary approaches to the numerical wmodeling
of the PEL and, in particular, of diffusion within it. The traditional
closure for ensemble-averaged equations, eddy diffusivity, began to give way
somevhat in the 19708 to second-order closure. BRach has a range of
applicability, but since neither represents a fundamental solution to the
closure problem, neither cién be a general-purpose tool. Integral models, such
as the Gaussian-plume diffusion model well-known in regulatory applications,
are simple and cheap; however, they do not address some important questions
such as short-term behavior. Three-dimensional, time-dependent, fine-mesh
modeling (LES) can in principle give far more powerful predictions than other
approaches, but is also far more expensive. We devote Chapter Three to an
examination of these modeling techniques.
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The engineering fluid mechanics community has invested considerable
resources in developing LES over the past decade, and we felt it important to ‘
review the progress they have made. We do this in Chapter Four, and conclude

that chapter with our view of the future prospects for LES in engineering
flows. We include as an Appendix the paper, "Numerical Simulation of
Turbulent Flows,"™ by Robert S. Rogallo and Parviz Moin, which appeared - ""‘

originally in Annual Review of Fluid Mechanics, v. 16, and which describes the

current state of the art of LES in engineering.
The roots of the LES technique lie in meteorclogy, thanks to pioneering
work by D.K. Lilly, J.W. Deardorff, and others. Ironically, LES is
4 underutilized today in small-scale meteorology, in our view, although it is
B being fruitfully applied to studies ranging from PBL structure to severe-storm
, dynamics. We survey these meteorological applications in Chapter Five.
; Ve perceived two broad and important roles for LES in the planetary

4 A

boundary layer research of the future. It offers perhaps our best hope for
quantifying inherent uncertainty, which has recently emerged as an important
issue in Aiffusion modeling. PFurther, it has vast potential for building data
bases on PBL structure and processes; this is very important in view of the

s r
)
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increasing difficulty and expense of direct measurements. We cover these
issues in Chapter Six. ~.
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Chapters Two through Six thus provide a comprehensive assessment of the
LES technique in the broad context of research challenges in the atmospheric -
boundary layer. In Chapter Seven, we discuss our recommendations for an LES-
based PBL research program. We have avoided being overly specific, preferring

I
[ L

to leave a good deal to the creativity of the investigators; however, we have '.‘_ 1‘_:_-:

presented our views on high-payoff areas which deserve early attention.
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CHAPTER TWO
THE CHALLENGES AND COMPLICATIONS OF PRL RESEARCH

In this chapter we will first discuss those features which distinguish
the PBL from other turbulent flows. These include, most importantly,
buoyancy, phase-change, and terrain effects. Next, we will discuss another
feature, inherent uncertainty, which is very important in numerical modeling
and observational studies of the PBL. Then we will cover methods of attack.
At the present time, these include experiment, both in the laboratory and

i outdoors, and numerical modeling. Finally, we will discuss thoge features of
the PBL which are particularly relevant to dispersion problems.

2.9 ¥BL Physics

Unlike most turbulent flows in engineering, in which the turbulence is
produced by mean velocity shear, the PBL tends to be dominated by buoyancy
effects. With clear skies at night over land, stable stratification develops
in the lowest few tens to few hundreds of meters, suppressing the turbulence
levels and keeping eddy sizes small. As a result, turbulent dispersion is
greatly reduced. By contrast, surface heating in the daytime tends to produce
a convectively driven PBL whose eddies are mich larger, more intense, and
consequently more dispersive. Thus, the turbulence dynamics of the stable and
unstable PBLs are quite different, and also different from those of
engineering shear flows.

Thermal effects are also pronounced on the next larger scales, from a few
to a few tens of kilometers, where a horizontal temperature gradient
hydrostatically creates a vertical change in the horizontal pressure
gradient. For example, temperature gradients of a few K per 100 kilometers
(which are common after frontal passages, for example) can change the
horisontal pressure gradient substantially in the lowest 1000 m, and this can
lead to large msan wind shears in the PBL.
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Over land, the earth's surface is apt to have considerable "texture”--
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e.g., spatially varying albedo, surface roughness, and elevation. In

conjunction with heating or cooling, this can lead to “"standing" eddies of 7 '1
substantial magnitude. Land-sea breezes and the diurnal upslope/downslope K ‘l
cycle over sloping terrain are good examples. These can have very strong : ij‘-';‘.j'
influences on local diffusion patterns. o :-:
The PBL transports water vapor which forms clouds when lifted above the B
condensation level. The associated energy release can generate large vertical . '
velocities as well, and can lead to large-scale circulation patterns which - 4
strongly influence the structure of the PBL below. - ""'J

These are a few of the features which complicate the PBL. In the opinion
of the committee, they will prevent its early understanding at the level that
we now enjoy for canonical laboratory flows, such as the jet, wake, and mixing

i layer.

b 2.2 Inherent Uncertainty

v;_ A doninant trait of the PBL is its spatial and temporal variability.
Although this variability is common to all turbulent flows, it is more

T
ot

pronounced in the PBL than in typical engineering flows (e.g., in pipes)
because of the greater range of space and time scales involved.
Mathematical modeling of turbulent flows in general and the PBL in
particular becomes tractable only when the governing equations are averaged
over time, space, or an ensemble of realizations. Hence, any comparison of
model predictions with (error-free) observations under supposedly the "same" f:;fi:"
meteorological conditions is apt to reveal deviations between the two. These R =)

1)

deviations will have a mean, or bias, and a variance. The bias is due solely - e
to internal model errors (e.g., physics, parameterizations, coding), whereas N
the variance is due to three factors: 1) uncertainties in model input

variables, 2) internal model errors, and 3) inherent uncertainty (see Fox, .

1984; Venkatram, 1982). The bias can be reduced by reducing internal model - :
errors, but the variance cannot. R
The inherent uncertainty is typically a major component of the lj;;-
variance. It arises because the details of the initial and boundary
conditions describing the flow are not the same in individual realizations, :. :..,..
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even though the gross conditions (e.g., mean wind speed, surface heat flux)
describing the ensemble are. Clearly, an endless number of different initial
and boundary conditions (on a fine scale) could be associated with the same
gross conditions. The magnitude of the inherent uncertainty also depends on
the number of physical parameters entering the model. The ensemble is defined
differently as this number changes. In any event, we should expect departures
of individual realizations from ensemble averages. -

Inherent uncertainty in a property f is defined by 02 = C(f - <f>)z> .
where the overbar denotes a time or space average and the brackets denote an
engemble average. If the random process is stationary and ergodic, 02 is
given by

[ ]
- 2£ 2

02 T
T

v (t.1)
provided that T >> T, where T is the averaging time, T is the integral time
scale of the process, which we assume exists, and <t'2> is the ensemble
variance (Lumley and Panofsky, 1964). Thus, inherent uncertainty depends on
the particular process, through <f.2> and t, and on averaging time.

Basic to an ensemble is the requirement that individual realizations be
obtained under the conditions which are understood to define the experiment.
In model verification the definition of these conditions is of paramount
importance {(Chatwin, 1982; Venkatram, 1984a); it would be given by the model
inputs. Thus, we can gsee that inherent uncertainty is also model dependent.

Why is inherent uncertainty so important? The principal reason is that
for many PBL variables the ratio of 0 to the ensemble mean <f> is of order 1
for the short averaging times (~1 hour) typically of interest. Wyngaard
(1983) has discussed 0/<f> for some PBL properties and Venkatram (1979)
considers it for ground-level concentrations downwind of elevated stacks.
Worst-case examples are humidity fluctuations, especially in a cloud-topped
PBL, and ground-level concentration variability downwind of an elevated point
source. In the latter case, the geometric standard deviation of hourly
averaged concentrations is about 2 along the plume axis during convective
conditions (Weil and Brower, 1984).

Thus, it is necessary to know 0, the inherent uncertainty, to describe
fully the state of the PBL, and dispersing plumes within it, for short
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averaging times. 8Specifically, one needs it to predict the frequency of
occurrence of certain high concentration events in plumes, e.g., the
flammability, or toxicity, limits in dense gas releases (Chatwin, 1982). 1In
addition, inherent uncertainty is a key factor in model verification. One
thing is clear: when 0/<f> is large, simply describing the PBL in terms of

ensenble means is grossly inadequate, because many individual realizations

will have properties far removed from the mean.
Inherent uncertainty in dispersion modeling is closely related to the

concentration fluctuations in plumes. The latter subject has a history dating
back to at least 1959, when Gifford's meandering plume model appeared.
Concentration fluctuations in plumes are a strong function of the source

and plume geometry as well as the averaging time. On the basis of the models
of Gifford (1959), Sawford (1983), and Venkatram (1984b), as well as field
observations and laboratory experiments (Fackrell and Robins, 1982; Deardorff
and Willis, 1984), we know that for an elevated point source, lateral and
vertical-plume meandering by large eddies is the principal cause of the large
concentration fluctuations along the mean plume axis. These large
fluctuations (oc/<c> > 1) occur at all distances from the source because of
the presence of lateral energy at all scales in the atmosphere.

Simple models have been advanced to predict concentration fluctuations
for a variety of situations (see Hanna, 1984). For example, Csanady (1967)
and Netterville (1979) developed K-models to predict the ensemble
concentration variance, <c'2>, due to relative turbulence alone. BEmpirical
Gaussian models for the same purpose have been put forth by Wilson et al.
(1982). The Gifford (1959) model can be used to estimate the fluctuations due
to meandering, provided that one can estimate the dimension of the
“instantaneocus” plume and the characteristics of the lateral turbulences.
Venkatram (1984b) has developed a model for fluctuations of hourly averaged
concentrations about ensemble means based on the probability density function
of vertical and lateral turbulence velocities, specifically for eslevated
sources.

In a computer-intensive numerical approach, Durbin (1980) and Sawford
(1983) used Lagrangian statistical models to predict the ensemble
concentration variance due to meandering as well as relative turbulence in
neutral boundary layer flows. These models require information about the
turbulence as one follows the plume.
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Once methods are available to estimate concentration fluctuations and,
hence, inherent uncertainty for certain classes of models, it might be
possible to determine the type of model that would give minimum total error in
a given application. As shown in Figure 1, if errors in observing instruments
are large, a model with many input parameters could give a larger total error
than a model with fewer parameters. Hanna (1975) suggested that this is why
simple integral models can predict urban air quality as reliably as much more
complex, three-dimensional, time-dependent, gradient-transport models. The
complex model might contain much better physics, but requires a set of input
data from often poorly sited and maintained instruments.

In summaxry, we f£ind that inherent uncertainty is increasingly being
recognized as an important aspect of boundary-layer meteorology. It is
particularly important in dispersion applications, where it is central to the
taking of observations and the design of experiments, and to numerical
prediction and model verification.

2.3 Ilaboratory Experiments

Perhaps surprisingly, laboratory experiments offer a valuable and
attractive means of investigating flow structure and diffusion in the PBL.
Their main advantage is the opportunity they provide for studying a particular
phenomenon in isolation and over a range of controlled conditions. They are
probably most useful as a complement to other forms of PBL research (e.g.,
numerical modeling and field observations), but sometimes they offer the only
practical means of studying a problem (e.g., wake flows and diffusion).

In the following brief survey, we highlight some laboratory experiments
which have made important contributions toward our knowledge of the mean and
turbulent structure of the PBL and of diffusion within it. The typical
facilities used are wind tunnels, water channels (circulating water or tow
tanks), and water convection tanks (no mean flow).

a. PAL structure

The general requirements for similarity between laboratory and full-scale
flows are addressed in several articles (e.g., Cermak, 1971, 1975; Snyder,
1972). TYor problems in which Coriolis effects are not simulated, the
principal ioquiruonu are typically the matching of a Froude or bulk
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Richardson number (i.e., buoyancy force/inertial force) between model and
prototype, and the maintenance of a model Reynolds number above some critical
value.

Surface layer. The surface layer, that region where surface friction
effects are important, can be defined as z < |L|, where z is the height above
the surface, and L is the Monin-Obukhov (MO) length (Lumley and Panofsky,
1964). In the limit of neutral stratification (L + ®), it can be defined as
the region where the mean wind follows the logarithmic wind profile (typically
2 < 100 m).

The surface layer was probably the first and most explored region of the
PEL in laboratory experiments, with most work confined to wind tunnels, as
summarized by Cermak (1971, 1975) and Snyder (1981). Cermak's (1975) review,
as well as the experiments by Arya and Plate (1969) and Rey et al. (1979),
demonstrate that wind tunnels can simulate the mean wind and temperature
profiles. The velocity variances in the tunnel simulations also agree fairly
well with the field observations. However, the tunnel simulations are limited
to slight departures from neutral stratification (Iz/l.' < 0.3).

Panofsky et al. (1977) showed that horizontal velocity variances in the
surface layer depend on the mixed layer depth z; and, hence, on the large
convective circulations below z. This msans that to simulate properly the
horizontal velocity variances in the surface layer, one is required to model a
capping inversion layer and the large-scale convection. This remains a
challenge for laboratory experimenters.

Canopy Layer. The canopy layer lies between the ground and the top of
the surface roughness (crops, trees, etc.); in this layer biologically
important processes occur and surface fluxes of heat, moisture, and momentum
originate. The upper part of the canopy and the lower part of the surface
layer form a transition region called the "roughness sublayer.”

Raupach and Thom (1981) give an extensive review of canopy turbulence,
including many of the important contributions made by wind-tunnel
simulations. 8Such simulations, which typically have been conducted for
neutral flow, have benefited our understanding in at least three ways. First,
they have provided details on how the flux-gradient relationships in the
roughness sublayer depart from the well-established ones in the surface layer
(Mulhearn and Pinnigan, 1978). 8S8econd, they have shown that the turbulence
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Figure 2. Comparison between field and laboratory measurements of the verti-
cal and horizontal velocity variances in the convective boundary
layer (after Caughey and Palmer, 1979). a) Vertical velocity
variance, q,zp nondimensionalized by we?, whece wy, i the convec-
tive velocity scale. B8olid line is the free convection
prediction: (o,/we)2 = 1.8 (z/zi)2/3. b) Average of horizontal
velocity variances, 6,,y? nondimensionalized by ve2. Dashed lines
represent the average of S1 and §2 cases in Willis and Deardorff
(1974).
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: spectra and ocospectra within the roughness sublayer are height-dependent
(relative to the displacement height), vhereas they are not in the canopy
(Beginer et al., 1976), in agreement with field data. Third, they have helped
to demonstrate the importance of turbulent transport in the canopy by
organized structures above, and the inapplicability of local diffusion theory
. within, the canopy (Raupach and Thom, 1981).

Ve see three areas where further laboratory experiments could be of
particular benefit here. The first is the behavior of the flux-gradient
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- 4::: relationships for heat and moisture in the canopy and roughness sublayer. The
' - second is turbulent transport of heat, moisture, and momentum by organized

r structures. The third is the effect of waving plants on the mean and

. turbulent wind fields (Finnigan and Mulhearn, 1978).

{ Convective Boundary layer. One of the triumphs of PBL~oriented

i‘j laboratory experiments was the simulation of the convective boundary layer
(CnL) by willis and Deardorff (1974). These simulations, whose results have
been applied to diffusion as well as to PBL structure, were conducted in a
water-filled, free-convection tank, and were motivated by Deardorff's (1972)
i numerical modeling, which suggested that PBL turbulence properties above the
surface layer were independent of surface friction.
Three main aspects of the CBL have been explored with the convection
tank. The first was the time evolution of the mean temperature and heat flux
‘ profiles (Willis and Deardorff, 1974; Heidt, 1977), which were found to follow
s the same trends as their atmospheric counterparts. The second was the
. vertical profile of the velocity variances. Caughey and Palmer (1979) showed
) that the laboratory vertical component agreed well with field data (Figure 2),
but that the horizontal components were about 50% too small, probably due to

e the small aspect ratio (width/height; ~ 2 to 5) of the tank. The third was

;-Z h the entrainment of stable air at the CBL top. Experimental results from a

.' ::j-‘ tank investigation (Deardorff et al., 1980) were used to develop entrainment

L« parameterizations which would be quite difficult to achieve directly from the

f o atmosphere.

< R Extensions of these experiments would be extremely beneficial to our

:, - current understanding of CBL structure. Experiments in a tank of much greater
[ aspect ratio (say 30) would show whether larger horizontal eddies appear with

increased horiszontal velocity variance. It would be useful to know what o
aspect ratio gives horizontal variances matching those in the atmosphere.
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Another extension is the investigation of baroclinic effects on the mean
and turbulence structure; this is especially important for mesoscale
modeling. Baroclinicity could be explored in two ways: (1) by using a tank
with a slightly sloped bottom and perhaps rectangular rather than square
l" horizontal cross section (Deardorff, personal communication) and (2) by using

i a tank with nonhomogeneous heat flux to simulate, for example, land/water

interfaces.
A third problem worthy of study is the nature of the organized turbulence

: structure as the stability approaches neutral conditions, say 0 ¢ - zi/I- < 2,

l i.e., vhen surface friction cannot be ignored. BEvidence suggests that here

the random convective cell structure typical of very unstable conditions

changes to one of roll vortex nature (Deardorff, 1982). This investigation

would require an experimental facility capable of producing surface shear as

. well as convection; shear could be produced either by flow of the working
fluid over a rough surface or by moving the rough surface (e.g., a moving
belt) through the fluid.

: Finally, we would encourage further investigation of the entrainment

l process at the top of the CBL, especially when mixing may be driven by several
mechanisms operating simultaneously--convection, surface stress, and wvelocity
shear at the CBL top. Again, a different facility would be necessary to study
convectively driven mixing in addition to one of these other mechanisms.

i Stable Boundary Layer. Laboratory experiments have been conducted to
explore turbulence in several types of stably stritified flows: behind grids
(Dickey and Mellor, 1980), in shear layers (e.g., Thorpe, 1973; Lin and Pao, .

‘, 1979), and in the weakly stable surface layer. However, practically no

i experiments have been conducted on the strongly stable boundary layer (8BL),

because of the limitations in the commonly used facilities, i.e., wind tunnels

and towing tanks. As discussed by Odell and Kovasznay (1971) and Stillenger

et al. (1983), wind tunnels cannot simultaneocusly produce strongly stable

i stratification and high winds, both needed for a well-developed boundary

' layer, and towing tanks permit only very short duration experiments.

: Stillenger et al. (1983) descridbed a continuous-flow water channel that

can produce arbitrary velocity profiles in combination with stable density
gradients (by salt addition). Although this facility cannot simulate all
aspects of the atmospheric SBL (e.g., Coriolis and nonstationary effects), it
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: i could be used to study a steady boundary layer over a range of stabilities.
i ' Perhaps such a facility could also be used to study the time response of the
r{ boundary layer to changes in the surface heat flux, and to gravity waves.

~ Laboratory tow tank experiments have substantially advanced our knowledge
i of stadbly stratified flows about hilly terrain. For example, the experiments
of Riley ot al. (1976) and Hunt and Snyder (1980) for axisymmetric hills
showed that below a stability-dependent height, the flow was essentially
horizontally layered, while above that height, fluid passed over the hill.
Similar results were obtained for a long ridge notched by a gap (Baines, 1979;
Weil et al., 1981), but the depth of the horizontally layered regime was less
A than for the round hill. Both sets of experiments were consistent with

N Drazin's (1961) theoretical predictions on the existence of the horizontally

] layered regime.

E E Currently, a controversy exists about the dependence of the flow field on
the hill aspect ratio (across-wind width to hill height; Snyder et al.,

1983). The key issue is the nature of the upstream influence (and blocking)

for a very large aspect ratio hill within a strongly stable flow and whether
l flow-field results, untainted by end-wall wave reflections, can be obtained in

a tank of finite length. A solution to this controversy may require new and
f-f;: clever experimental techniques, but should be pursued because it bears on the
- future of laboratory modeling of stratified flow over terrain.

| b. Diffusion Experiments
. Laboratory simulations of point-source diffusion in the PBL have been
conducted to test theoretical predictions and to gain new fundamental
understanding. In the following, we discuss such simulations for both buoyant
- and nonbuoyant tracers, with a view toward what has been done and wvhat is
o needed.

Weutrally buoyant tracers. Diffusion of neutrally buoyant tracers has
been studied much more extensively in neutral and convective cases than in
stable, primarily because of the difficulty of simulating the latter.

Neutral boundary layer. Diffusion in neutral (NBL) or weakly stratified
boundary layers has been well explored because of its ease of simulation, at
2 least in the absence of Coriolis effects. Although one might question the

applicability of these simulations in view of the rarity of neutral conditions

“
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in the atmosphere, we believe that they are useful as a limiting case from
which diffusion in convective or stable conditions departs.

Wind-tunnel experiments provided some of the earliest convincing evidence
(e.g., Cormak, 1963; Poreh and Hsu, 1971; Chaudry and Meroney, 1973) that
vertical diffusion from a surface source can be described quite well by
similarity theory (Monin, 1959). As a result of these and other experiments,
in both the laboratory and field, we have a fairly good understanding of
surface-source diffusion.

Comparable understanding does not exist for diffusion from elevated
sources. Wind-tunnel tests show that the Gaussian-plume model is a good
empirical description of diffusion from such sources. None of the
conventional theories--statistical, similarity, and gradient-transfer--applies
to the elevated source in the NBL, at least in the near-source region (Robins
and Fackrell, 1979). An adequate theoretical description requires an improved
understanding of the basic scalar transport mechanism in an NBL and, in
particular, the transfer by the large eddies. Wind-tunnel measurements
(FPackrell and Robins, 1982) should continue to contribute toward understanding
of concentration fluxes, but further measurements are needed to delineate the
role of the large eddies. Additionally, measurements of the probability
distributions of the vertical and lateral velocity fluctuations (including
their vertical profile) would be useful to advance and test lLagrangian
statistical models of elevated-source diffusion.

The Fackrell-Robins measurements have also provided benchmark
understanding of concentration fluctuations in turbulent plumes. They show
the important difference between the intensity (rms/mean) of fluctuations for
elevated and surface sources in wind tunnels. Along the tunnel floor in the
near-source region, the intensity for the elevated release exceeds unity and
is substantially higher than that for the surface release. The difference is
due to the presence of smaller eddies near the surface. However, large
lateral eddies can cause the concentration fluctuation intensity in the
atmosphere to be high even near the surface, so that these results are not

completely representative of atmospheric behavior. These measurements already
have been used in the development and testing of theoretical models (Lewellen
and Sykes, 1983), but more experimental investigation, a closer interplay with
theoretical modeling, and better understanding of the large-eddy structure of
the PBL are required to make progress on this important topic.
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Laboratory convection tank results showing nondimensional
crosswind integrated concentration (CWl) as a function of
dimensionless height, Z, and downwind distance, X, for sources at
three release heights in a convective boundary layer (CBL). The
CWI is nondimensionalized by Q/uzi, where Q is the source
strength, z, is the CBL height, and u is the mean wind speed. Z =

) z/zi and X = w.x/(uzi), where z is the height above ground, and w,

is the convective velocity scale. HRorizontal arrows denote the
release height z,: a) z./z1 = 0.067 from Willis and Deardorff
(1976), b) z,/2; = 0.24, from Willis and Deardorff (1978), and c)
:./:i = 0.49, from Willis and Deardorff (1981).
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Convective boundary layer. One of the most important recent advances in :
our understanding of PBL diffusion resulted from the laboratory convection -

tank simulations by Willis and Deardorff (1976, 1978, 1981), who simulated kﬂ

diffusion from release heights of 0.07z;, 0.24z;, and 0.49z,. They shoved R

that for the lowest source height the plume centerline ascended after a short .

travel distance, whereas the centerlines from the more elevated releases :":

SN descended until they intercepted the ground (see Figure 3). The diffusion g ‘f»_
E patterns were quite different from those predicted by a conventional Gaussian-
W plume model. The descent of the elevated plumes is due to the organized,
. long-lived thermal motion in the mixed layer and to the larger area occupied :':
S by downdrafts than updrafts; the ascent of the near-surface plume results from s
the "sweep-out" of material near the surface by updrafts before the material

aloft recirculates down. These unique simulations were recently verified in a

field experiment reported by Moninger et al. (1983). :

Although vertical dispersion in the CBL ig well simulated by the Willis o

and Deardorff experiments, the cross-wind spread of the laboratory plumes

appears to be about 25% smaller than that observed in the field, based on
Nieuwstadt's (1980) analysis. This is probably due to the small aspect ratio :

of the convection tank, which limits the size and magnitude of the horizontal e

eddies. ‘

Deardorff and Willis also have conducted simulations of two other \:

important problems: fumigating of an elevated plume into an entraining mixed :

layer and surface concentration fluctuations due to an elevated releases. s

These simulations have been important not only in advancing fundamental :t:fj:

understanding of CBL diffusion, but also in providing the stimulus, guidance,

and data for the development of improved theoretical models. The simulations -

could be extended in a number of ways, some of which overlap with our earlier -*

discussion of CBL structure. 3

One extension is the installation of a tank of much greater aspect ratio

to see if the cross-wind dispersion more closely matches the field :__
observations. One could also see if the Lagrangian time scale for the lateral .\
fluctuations increases over previocusly determined (laboratory) values ,EL.‘

(~0.6:1/v.) to produce a linear dependence of oy on travel time over a greater i:'x

range of time (Deardorff, 1982). e
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A second extension is the simulation of diffusion in the near-neutral
limit, say -zilh < 2., In particular, one wishes to know how diffusion
patterns in the CBL approach those in the NBL as "L/L approaches zero. Such
simulations would require an experimental facility that simulates both surface
friction and convection effects.

The third extension is the simulation of dispersion in very light winds
when axial diffusion becomes important; i.e., as the ratio of mean wind speed,
U, to the convective velocity scale, w,, becomes small, say U/w, < 1.5.
Experiments should also be conducted in the limit of gzero mean wind. The
second and third extensions would then give us a picture of passive tracer
diffusion in the CBL over the full range of stabilities.

A fourth extension is the measurement of the mean concentration field for
sources in the upper half of the CBL. Field observations (Caughey et al.,
’P 1983) show that above z/z; ~0.75 the probability density function (pdf) of
vertical velocity is symmetric, the probability of downdrafts and updrafts
being the same. Thus, one would not expect the plume centerline to descend as
it 4id for releases at 0.24 z; and 0.49 z;. However, these pdf obgervations
differ from those computed numerically by Lamb (1982). Lamb finds the pdaf to
be positively skewed at heights up to and exceeding 0.75 z;. In addition, his

- 3

numerical simulations of a release at 0.75 zy show centerline descent.

P A
N

Pinally, we encourage the continuation of concentration fluctuation

measurements for sources at a variety of release heights.

-

Stable boundary layer. Aside from simulations in the weakly stable
surface layer, laboratory experiments on diffusion in the SBL do not exist
because of the difficulties of producing a strongly stable boundary layer.
However, given the prospects of the Stillenger et al. (1983) facility, such
experiments should indeed be pursued.

In particular, diffusion experiments in a stationary, turbulent SBL could -{gi

help determine the applicability of a theory by Pearson et al. (1983). The ii éiii
theory predicts that at long travel times, the vertical plume width () can - :f"%
be constant and of order qw/N, vhere oy, is the rms vertical turbulence ‘Ti
velocity and N is the Brunt-Vaisala frequency. This result differs from lfJ
statistical theory (Taylor, 1921), which predicts that o  varies as t1/2 4n _ gfa
the large~time limit. SR
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Pearson et al. found that their theory agrees with diffusion measurements
in stably stratified grid turbulence (see also Britter et al., 1983), but
these results have been questioned because of the time decay of the turbulence
in the experiments. They also cite field msasurements of a power station
plume exhibiting a constant vertical thickness with distance; however, this
plume was 150 m above ground and may have been in a nonturbulent region above
the SBL.

assess the validity of this new theory.

Laboratory measurements in an SBL with nondecaying turbulence could

Another area for new laboratory experiments is plume diffusion on the
upstream gide of hills in stably stratified flow. Experiments for
axisymmetric hills in a uniformly stratified environment (Snyder and Hunt,
1983) show that the maximum concentration on the hill is approximately equal
to the plume centerline concentration in the hill's absence, in agreement with
theory (Hunt et al., 1979). These experiments need to be extended to hills of
aspect ratio much greater than 1 and to other density distributions, e.g., a
well-mixed layer capped by an inversion.

Obstacle wakes. ILaboratory experiments have been our principal source of

information on flow structure and diffusion in wakes. A major area has been
diffusion in building wakes, where the issues range from the minimum stack
height for avoiding plume downwash to the variation of plume widths with stack
height, building geometry, and distance. Much of this work has been
summarized by Hosker (1982).

Generic studies have been conducted for isolated buildings, thus enabling
much of this work to be transferred to a variety of situations without the
need for case-by-case simulations. However, for unusual geometries,
especially clusters of buildings, results are difficult to generalize and
probably would require separate laboratory simulation for each new
situation. Thus, experimental facilities (such as those used by Cermak and
colleagues at Colorado State University) will continue to be needed for these
problems for the foreseeable future.

Experimental investigations of dispersion in hill wakes have been
performed by Castro and Snyder (1982), with an emphasis on the effect of hill
aspect ratio, stack height, and gtack position relative to the "cavity,” the
recirculating, highly turbulent region immediately aft of a hill. As might be

expected, Castro and Snyder found that the maximum and minimum concentrations




occurred for stacks downwind of ridges and round hills, respectively. The

maximum concentration downwind of the ridge was as much as a factor of 10
greater than in flat terrain. The cavity for the ridge extended downwind to
about ten ridge heights, and surface concentrations were enhanced over an
extensive downwind distance.

While these studies have been quite informative, practically all have
been conducted in neutral boundary layer flows. Experiments in stably
stratified flows, where the potential exists for even higher concentrations,
are needed, especially for the hill-wake problem. Concentrations would be
expected to become most enhanced for moderate-to-large hill Froude numbers
(F > 1) when an extensive wake occurs.

Buoyant plumes. Laboratory experiments have shown the behavior of
buoyant plumes under a variety of ambient stratifications. Here we will
discuss only the experiments on positively buoyant plumes. Meroney (1982)
discusses wind-tunnel simulations of negatively buoyant plumes, and a survey
of important problems, field observations, and modeling of dense gas
dispersion can be found in a collection of papers edited by Britter and
Griffiths (1982).

Laboratory experiments of plume rise and dispersion downwind of a tall
stack have been conducted in neutrally stratified towing tanks (e.g., Hoult
and Weil, 1972) simulating a laminar crosswind. Results of the mean plume
trajectory (rise vs distance) agree with both field observations and a simple
entrainment model for plume rise (Briggs, 1982; Weil, 1982). However, as
shown by Fay et al. (1970), the pdfs of the entrainment parameter and
individual rise realizations are much narrower in the laboratory than in the
field, undoubtedly due to the absence of turbulence in the laboratory
simulations. As shown by Hoult et al. (1977), a reasonably good match of the
field and laboratory pdfs can be obtained, at least for short stacks, by
simulating the atmospheric boundary layer.

The mean trajectory and final rise of a buoyant plume in a stable,
uniformly stratified environment has also been successfully simulated in both
wind tunnels (Hewett et al., 1971) and towing tanks (Lin et al., 1974). Since
these simulations were done in a laminar crosswind, they 4o not display as
broad a scatter in rise realizations as 4o field data. The above two
problems--final rise in a stable environment and the mean plume trajectory
near the source--are now well-understood.
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Another important problem that has been simulated in a towing tank is the
penatration of thin elevated inversions by buoyant plumes (Manins, 1979). The
results show that penetration commences when the maximum plume density excess
at the inversion base exceeds the inversion density jump. Although this
result might have been expected, a previously used, simple theoretical model
(Briggs, 1975) predicted penetration based on buoyancy depletion of the entire
plume cross section at the inversion base:; this approach significantly
overestimated the degree of penetration.

Extensions of these experiments to a variety of inversion strengths and
thicknesses can bear directly on the problem of predicting stack-plume
dispersion under an inversion. In addition, experiments need to be conducted
in the presence of convection below the inversion, i.e., in a CBL, since the
convection will surely affect the degree of penetration and the dispersion.

Probably the most important and perplexing plume-rise problem remaining
to be solved is the effect of ambient turbulence at large digstances, where the
possibility exists of a "final rise” caused by such turbulence (in the CBL or
NBL). Very little field data exists on this subject; thus, theoretical models
are based on rather simple and speculative assumptions, with little testing.
We believe that this is a problem area where laboratory experiments can lead
to great gains.

Willis and Deardorff (1983) recently completed some preliminary
laboratory work on plume rise within the CBL. Their results showed the
looping character of full-scale plumes and much broader ensenble-averaged
plume outlines than found without ambient convection. They also suggested
that the conventional two-part Gaussian model--plume rise plus ambient
dispersion--is inappropriate; i.e., source-buoyancy and ambient-convection
effects need to be considered simultaneously.

These experiments should be extended in a number of ways. First, more

emphasis is needed on plumes with sufficiently low buoyancy flux that the mean
rise is terminated well within the CBL, i.e., rise limited by ambient
convection and not by the stable layer capping the mixed layer. Such
experiments will show when and where the buoyant plume behaves more or less
passively. Second, experiments are required on the partial penetration of the
capping inversion by buoyant plumes and the dispersion of material trapped
within the CBL. Third, experiments are needed over a full range of stability




conditions--from very light winds (U/w, < 1.5) to near-neutral stability
(-z4/L < 2). Experiments simulating final rise in the limit of a NBL could be
conducted in a wind tunnel. Fourth, measurements of surface concentration
fluctuations should be continued. Deardorff and Willis (1983) have already
made some such measurements and find that the maximum intensity of
fluctuations is greater for a buoyant than a neutrally buoyant plume from an

otherwise identical stack.

2.4 Atmospheric Experiments

Laboratory experiments are an attractive means of studying PBL processes,
in part because experiments in the PBL are so difficult and expensive. Some
of the obstacles to “direct” (atmospheric) experiments are:

1. The averaging times (or lengths, for aircraft measurements) required
to minimize inherent uncertainty (see Eq. 1.1) are often longer than
allowed by the diurnal cycle (or by local homogeneity). Some (e.g.,
Wyngaard, 1983) have suggested, in fact, that area averaging might
be required for particularly troublesome statistics, such as
stress. As a result, many runs are typically required to reduce
scatter to acceptable levels.

2. Mesoscale eddies, bad weather, and other unpredictable phenomena
often make conditions nonstationary during PBL measurements and add
noise to the desired signals. Laboratory experiments, by contrast,
can often be designed to be precisely stationary.

3. The much larger range of spatial scales in the PBL makes it
inherently more difficult to measure than laboratory flows. For
example, the vastly larger Reynolds number in the PBL makes its fine
structure much more intermittent and consequently more elusive.

4. while some have predicted that remote sensing would revolutionize
boundary-layer meteorology, to date it has been useful primarily in
flow visualization and in measurement of gross parameters such as
PBL depth. Traditional (in=-situ) sensors remain the standards for
detailed, quantitative measurement of PBL structure. Not only are
these sensors typically more expensive than their laboratory

counterparts (e.g., sonic anemometers cost more than hot-wire
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FPigure 4. Progress in boundary-layer research in the last three decades.

Theoretical/numerical milestones: (1) Monin-Obukhov (1954); (2)
Monin-Kazanski (1960, 1961); (3) Deardorff (1972). BExperimental
milestones: (a,b) Anegada, Scilly Isles observations (U.X.); (c)
Great Plains observations (U.S.); (d) Kerang, Hay observations
(Australia); (e) wWangara observations (Australia); (f) Kansas
observations (U.S.); (g) Minnesota observations (U.S., U.K.); (h)
Koorin observations (Australia); (3) AMTEX, GATE (international);
(k) impact of remote sensing of boundary layer. PFrom André et al.
(1982).
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; ’ anemometers), but their use in the PBL also requires expensive 2 "
i . platforms (tall towers, aircraft, or tethered balloons). L
: 5. It can take several years to accumulate the experience, funds, and :;.’;_i
__:' " equipment needed to carry out a successful PBL measurement : ¢
AR program. Por example, the benchmark 1968 Kansas expedition (Haugen
- et al., 1971) of the Air Porce Cambridge Research Laboratories was LW
i actually the last of three experiments, the first two serving only -_'-_ .
as tests of experiment design and instrument performance. The 1968
version covered most of the summer and involved about 15 personnel :7.;‘4 :
in the field and perhaps ten full-time over the next three years in L -
'.-‘: - data processing and analysis. WNonethelass, history will undoubtedly ]
r ) record these experiments as good value, even though the data extend
& S only to 32 m height, perhaps 2% of the daytime PBL depth.
i r In spite of the inherent difficulties with direct msasurements, they have
E" given us remarkable insight into the structure of the lower portions of the : _f:
S PBL. Bxperimenters have wisely restricted their studies to idealized cases .:'_-"_'
A {(quasi-stationary, locally homogeneous, flat terrain, good weather) and have
. carefully detailed the statistical bshavior of the surface layer.
3 The WMO Working Group on Atmospheric Boundary Layer Problems has charted
" ; (Andre et al., 1982) this progress schematically in Pigure 4. The WNO group
J advanced two reasons for the steady progress evident from the early 1950s to
the mid-1970s. PFirst, several major field programs (listed in Figure 4)
SEEA provided an extensive data base. Second, concurrent theoretical work was
closely coupled to this experimental activity and provided the framework for
. interpreting the data. This interaction between theory and experiment led to
- effective parameterizations for many important aspects of PBL structure. =1
. i..-j The WMO group suggested, however, that progress in this "one-dimensional®
‘3 ) era was diminishing, as indicated by the plateau in Figure 4. While they felt
'- 'L that progress in one-~dimensional problems would continue, they saw the future

challenges and opportunities to lie elsevhere--especially in the three-
dimensional, mesoscale PBL field. However, they cautioned that this
broadening of scope would severely strain the capabilities of experimenters to
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generate data bases of sufficient generality. To maintain progress, the WMO
group encouraged . T'
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1. development of more advanced instruments and experimental
techniques;
2. continued close coupling of theory and experiment; and
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3. the integration of numerical modeling into the scientific program

contributing to the data base.

The LES Working Group notes, two years later, activity consistent with
these recommendations. For example, the proceedings of a recent AMS short
course, "Instruments and Techniques for Probing the Atmospheric Boundary
Layer,” (Lenschow, 1984) have a strong emphasis on new techniques.
Theoretical work in environmental fluid mechanics continues, closely coupled
with experiment (see, for example, Nieuwstadt and Van Dop, 1982) in accord
with the second recommendation. With regard to the third point, our group
notes increased use of LES techniques in PBL research (as discussed further in
Chapter Five).

2.5 FL Modeling = l:-:_:f‘
Our previous sections make it clear that much has been learned over the

past decade about the PBL. Some of this new knowledge came from modeling

studies~-but, as is usually the case in turbulence research, most came from

observations, both in the laboratory and in the atmosphere. Detailed

analyses of data from the Minnesota, Wangara, AMTEX, Koorin, and GATE

" atmospheric experiments have been most valuable; they have, for the first

time, given researchers detailed insight into the structure of the entire
PBL. Until these experiments, researchers had to content themselves primarily

LY.

A |

with data from the "tower layer,” the first 100 meters above the surface.

These atmospheric data bases also contain inputs from a new generation of -
sensors~-acoustic sounders, for example--which in the early 1970s dramatically
revealed the shallow nature of the nocturnal PBL and the abrupt moraing
transition to a rapidly deepening convective PBL. These new experimental
thrusts gave us for the first time a global view of the PBL, revealing through
flow visualization the striking differences between its daytime and nighttime
states.

On the modeling side, there were two developments of major importance.
The first was Deardorff's series of large-eddy simulations--the first computer -
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calculations of the details of convective PBL structure. Although they were

very expensive his simulation of the 24 hours of day 33 in the Wangara
l experinent (Deardorff, 1974) took 360 hours on the NCAR CDC 7600 , they gave
an unprecedented wealth of information. Deardorff soon established from these
. simulations the turbulent velocity and temperature scales for a convective
i PBL--scales which are in standard use today--and effectively put an end to the
controversy about what determines the height of an unstable PBL.

While Deardorff was doing this pioneering work, second-order modeling was

i also being applied to PBL flows for the first time. This approach was not new
l (the equations are discussed in Reynolds' classic paper of 1895), but large-
scale computers now made it feasible computationally. The rash of activity
which ensued carried through the 1970s. Second-order modeling was soon being
applied to a host of PBL problems, ranging from studies of structure and
dynamics in unstable, neutral, and stable conditions to PBL parameterization
and turbulent diffusion studies.

-

Virtually all of this early work with second-order models involved the
: wholesale use of closures developed a few years earlier for shear flows. A
I . generation or more of carefully made laboratory measurements had given a rich
data base, and the early experience with second-order models tested against
this data base was quite encouraging. It was relatively simple to adapt these
: shear-flow models to geophysical flows by adding the necessary conservation
i K equations for buoyancy variables and adding the explicit buoyancy terms in the

velocity field equations. The closure expressions were not usually modified
to include buoyancy effects.

This combination of experimental and numerical modeling activity over the -
past decade had one other important effect--it focused attention on the -

. I

inherent uncertainty issue. As a result, both modelers and experimentalists :
are now much more aware of the significance of scatter in PBL measurements, ;‘_::-i:
and much more sensitive in their interpretations of the discrepancies between _
- model predictions and experimental data. They know that models generally AR
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: predict ensemble-average properties, while experiments usually yield time
f: averages, and they understand the complication this brings to model

verification. In fact, as we mentioned earlier, we now recognize a need, in
some diffusion applications, for models which predict the inherent uncertainty
as well as the mean.
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a. Ensemble-average Models
i Any numerical solution for PBL fields necessarily involves averaged

equations, since the computer requirements are otherwise impossible. If the

g basic governing equations (i.e., the equations for momentum, temperature,
::‘ scalar contaminant) are averaged over an infinite ensemble of realizations,
' one obtains equations for the ensemble mean fields. These equations have the
well-known "closure problem™ that prevents their direct solution; it stems
from the nonlinearity of the conservation equations--which, upon averaging in
a random field, leads to unknown ("Reynolds flux") terms involving the
. correlations of the random field components.

The ensemble~averaged equations are the traditional ones in boundary-
layer mateoroloqy: they represent the essence of what we usually want to
know. The averaging process removes a tremendous amount of complicated,

burdensome detail. The closure problem brought on by ensemble averaging is
currently dealt with in two ways: through eddy-diffusion parameterizations
(first-order closure) or through higher-order modeling.

_ The traditional closure is the first-order type, which assumes the

i Reynolds fluxes are proportional to mean-field gradients, just as they behave

in molecular diffusion. The key difference, of course, is that molecular
diffusivity is a property of the fluid, while the eddy Aiffusivity (K) is a
property of the flow. This leads to the principal difficulty with this

. closure: specifying the eddy diffusivity.

X One approach is to specify K values at the outgset. This is crude and
unlikely to be successful because K, a property of the flow, is not known

P before the flow is known in some detail.

i' A second approach is to specify the functional dependence of K on other
‘ flow variables (e.g., to specify X profile shapes). This is better, but
unfortunately the functional d4ependence of K on PBL parameters is still a

2 research issue. PFurthermore, these dependencies can be very complicated.
Lamb and Durran (1978), for example, found that for continuous point source
diffusion in the convective PBL, K depends on z, w,, PBL depth gz, (all of
which would be expected), but also on the source height.

A third alternative is to specify what might be called K dynamics, i.e.,
. to carry within the model a routine which calculates the K field given the
global conditions, using some dynamical framework. One way to attempt this is
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through second-order closure, whereby one carries a set of equations for the
Reynolds fluxes. This set is based on the exact second-moment conservation

equations, but has its own closure approximations. This underlying closure

problem in turbulence affects moment equations of all orders and has to date
prevented any completely rational solution to the turbulence problem.

The second-moment equations explicitly contain a good deal of the physics
expressed by K. However, the unknown terms which must be parameterized in
these equations also contain much of the physics. This illustrates at once
the lure of second~order closure and its intrinsic difficulty.

Since second-order models use the ensemble-averaged field equations, they
attempt to predict directly the statistics of turbulence without dealing with
its instantaneous, random details. They are much faster computationally than
"brute force™ techniques such as large-eddy simulation, but their closure
problem is also much more difficult; approximations must be made for pressure
covariances, molecular destruction terms, and third-moment flux divergences.
The last ten years of PBL research have taught us that the first two of these
are very important in the second-moment equations, and the success or failure
of model predictions can hinge on the accuracy of their parameterizations.
These parameterizations, however, must express the effects of the entire
spectral range of turbulence, and we know that the energy-containing eddies in
any turbulent flow tend to be very sensitive to their environment. Thus,
while one might be able to tailor second-order closure parameterizations to a
particular type of flow, many researchers now feel that there is no reason to
expect that the model will perform as well in another type of flow.

Large-eddy simulation, by contrast, needs parameterigations only for the
turbulent motions too small to be resolved by the three-dimensional grid.

This task is much less demanding, because these smallest eddies are thought to
be more universal, i.e., less sensitive to the details of the flow in which
they are imbedded; it is also less important, because the flow dynamics do not
depend critically on the details of these unresolved eddies.

b. large—eddy (volume-average) models

An alternative to ensemble averaging is volume averaging. If the basic
conservation equations are averaged over space rather than over the ensemble,
we remove the smallest-scale turbulence components, thereby making it possible
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to solve these equations numerically on a computer. The averaged equations
govern the large-scale components of the fields~-that is, the means plus the
largest-scale turbulent fluctuations. 8Since the computed fields are still
random, even (statistically) one-dimensional problems require a full four-
dimensional space-time grid. This is also the strength of the technique,
because one calculates explicitly the largest-scale turbulent motions as well
as the mean fields; thus, it is called "large-eddy simulation” (LES).

The only closure parameterizations required in LES are those representing
the effects of the subgrid-scale eddies. If the spatial grid is fine enough
(on the order of 100 m in the convective PBL) to resolve the energy-containing
eddies, the subgrid-scale eddies will not carry appreciable turbulent flux,
however, and their parameterizations are not critically important.

A simple example might help to illustrate the difference between
ensemble~average and volume-average models. Consider a field experiment with
an array of sensors spaced 50 m apart in a cubical lattice, perhaps measuring
temperature fluctuations with a fast response time. Suppose we examine the
readout from each of these sensors only after the data have been time-averaged
for a period of one hour. This averaged data from the sensor lattice would
then have a character very similar to the output from a three-dimensional
ensemble-average model. The averaging removes the turbulent randomness, which
is desirable when we 4o not wish to deal with enormous detail. 1If we are to
explain temporal trends in these average statistics, however, we must infer
(parameterize) the behavior of the turbulent fluctuations that we have
smoothed. The parameterization must account for the total turbulent flux
divergence.

Now consider another experiment using a hypothetical remote sensor that
measures the average temperature within a volume 50 m on a side. If this
remote sensor could rapidly scan many such volumes, it would reveal the
thermal structure of turbulent eddies larger than 50 m. If we also had wind
velocity information on this scale, we could compute the turbulent fluxes
associated with eddies larger than 50 m. This experimental output is
analogous to that given by a volums~average model (LES). In this case, in
order to explain temporal changes in the volume-averaged variables we need
only infer (parameterize) the effects of turbulent fluctuations whose scale is
less than 50 m. As the volume sampled by our remote sensor increases, we
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increasingly lose information on the details of the turbulence field, and the
distinctions between the LES and ensemble-average models blur.

This analogy illustrates the distinction between LES and ensemble-average
models. But what, one might ask, is the primary difference in terms of the
actual coding of two such models? The answer lies in the nature of the
parameterization schemes needed to represent the unresolved turbulent
fluxes. The ensemble~-average model, needing to parameterize the total
turbulent flux, generally utilizes an integral length scale that represents
the scale of the large, energy-carrying eddies. Only the subgrid portion of
the turbulent flux need be parameterized in the volume-averaged model; thus,
its length scale prescription can be directly related to grid spacing. 1In
practical terms, this msans it should be possible to design a code in which
one can switch from an LES to an ensemble-average model simply by altering the
length scale prescription.

-
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In this chapter we discuss in more detail the basic PBL modeling
techniques in order to gain a broad perspective of "where we have been" and
. . "where we are,” and thereby to indicate areas ripe for advancement with LES.

3.1 Integral Models

b In some applications one does not need detailed information about the PBL
E r or about Adiffusion within it, but instead needs only gross properties. For
example, one might want to predict the evolution of PBL depth or surface
%i-j f.i‘ fluxes or the plume centerline concentration downwind of a continuous point
f source of pollution. Wwhat are known in engineering as integral models are
P . appropriate for euch applications.

Boundary-layer meteorologists know integral models by the terms mixed-
.. layer models, slab models, or PBL-depth models. As in engineering, they are
derived by integrating a governing equation (mean momentum, temperature,
- E scalar concentration, turbulent kinetic energy. . .) between the surface and

the PBL top. One must specify certain profile shapes in order to do this
integration, and these are usually obtained from experiments. This general
approach has been widely used in boundary-layer meteorology in the past

E - decade, yielding daytime entrainment and inversion-rise models (Mahrt and .-.,-;
] - Lenschow, 1976; Driedonks, 1982); nocturnal PBL depth models (Nieuwstadt and \1
:j:; . Tennekes, 1981; Stull, 1983); geostrophic drag law models (Wyngaard, 1983); a '~
::f h nocturnal jet model (Zeman, 1979); and a parameterization scheme for scalar :_:

transport through the convective PBL (Wyngaard, 1984).
Gaussian-plume models for pollutant dispersion are integral models as

N
LA |

well; the mean concentration profile is gpecified (Gaussian) and the scalar ::'-i

t conservation equation integrated over space to provide constraints on the "_f]
centerline concentration. Briggs' (1975) plume-rise esquations are another ‘ --?
example of the successful use of the integral approach. -‘,Z"
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As normally constituted, integral models predict only mean properties
and, by their nature, provide no new information on distributions within the
PBL. That information comes from what boundary-layer meteorologists call
*high-resolution” models, which we describe next.

3.2 mEnsemble-average Righ-resolution Models: K, Second-order Closures

We saw earlier that ensemble averaging of the governing PBL field
equations creates unknown second-moment terms (Reynolds fluxes). By analogy
with molecular diffusion, first-order (K) closures replace these unknown
turbulent fluxes with the product of an eddy coefficient and the appropriate
mean gradient. The closure problem thus is shifted to one of prescribing an
eddy coefficient.

Barly PBL models set K equal to a constant, or some simple function of
height; this permitted analytic solutions to PBL structure, of which the Ekman
spiral is a familiar example. Prandtl mixing length methods set K equal to
the product of a velocity scale and a length scale. The focus then switches
to specification of the length scale £ (the velocity scale generally being
determined from the mean flow speed), and a common approach has L = z near the
surface and ! constant aloft (Blackadar, 1962). A wmore modern approach
directly specifies the shape of the vertical K profile throughout the PBL,
with the magnitude of K being controlled by similarity expressions for K in
the surface layer (O'Brien, 1970). The latter technique has been used -
extensively by Pielke and his colleagues (Segal et al., 1982; McNider and - BN
Pielke, 1981; Pielke, 1974) in dynamic PBL modeling on the mesoscale. ; i 2

Other K~closure variations compute the eddy coefficients by using the e 'i}g

local msan wind shear and buoyancy through a local Richardson number and/or a -
local mean strain rate. This approach allows the character of the flow, as it -
evolves, to determine K.

On balance, however, K-closure has severe limitations when considered

against the real complexities of atmospheric turbulence. Experience with )
geophysical flows has shown that only rarely outside the surface layer are i
turbulent fluxes and mean gradients so simply related. A recent LES study by o j
Wyngaard and Brost (1984), for example, shows that K-closure is incorrect in : ,i‘ﬂ
principle for scalars diffusing through the convective PBL. The necessity of ~

..........
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providing a length-scale prescription can further restrict its utility. (See
Corrsin, 1974, for further discussion of this topic.)

Indeed, it is the surprising degree of success of K-closure models,
despite many apparently valid objections, which ultimately requires quiet
contemplation. Perhaps much of the answer is to be found in the nature of the
problems most frequently addressed in PBL modeling. Until recently the range
of flows simulated by PBL models has been relatively narrow, compared to the
wide variety of flows addressed in the laboratory. For example, in PBL
applications there generally are no recirculation, wake, and separation
phenomena, or multiple boundary layers (although buoyancy, phase-change,
radiative transfer, and terrain-induced processes can add considerably to PBL
complexity). Thus, often in PBL problems it is possible in a rough way to
specify a single integral length scale proportional to PBL depth. Once the
proportionality factors appearing in the eddy coefficient expression have been
adjusted to transport roughly the correct amounts of momentum and heat for
this simple class of PBL flows, then one generally has a model which will give
useful answers for different wind speeds, shears, and stratifications, as long
as the overall character of the flow being simulated is unaltered.

The failure of K-models to handle more complex flows, particularly those
in the laboratory, coupled with the increasing availability and power of
computers in the 1970's, provided impetus to the development of second-order
closures. Major production terms that require no approximation appear in the
second-moment equations, thus making it attractive to add these to the set of
equations for the mean field. One is thus able to carry expressions
describing the time history, turbulent transport, and nonlocal effects missing
in K=closure. However, unknown terms (some rather obscure looking at first)
also appear in these second-monment equations; these terms must be modeled to
achieve a closed set of equations, and it is the fidelity of such
parameterizations to the true turbulence dynamics that ultimately determines
the accuracy and reliability of a second-order model.

As with K-models, second-order models must be calibrated against well-
documented flows. This has been done extensively in the engineering
community, where a variety of high quality, well-defined laboratory data sets
can be used for judging model performance. The goal of some modelers has been
to achieve a "universal™ model which does not require new closure expressions
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or new closure "constants" for each new flow type. While some workers feel
that turbulence itself is far too complex to permit universal modeling of this
type, some do feel that progress in this direction has been made. Lewellen
(1977) describes numerous flow simulations, both laboratory and geophysical, N
that have been made with one second-order model. R
Perhaps the most widely used second-order model in meteorological =
applications is that developed by Mellor and Yamada (1974; hereafter, M-Y).
They present a hierarchy of different closure model formulations, differing in
the number of approximations made in the second-moment equations. The M-Y
hierarchy of models has been used by different investigators to simulate
laboratory shear flows, stabilization by flow curvature, the stability
dependence of turbulence within the atmospheric surface layer, free convective
growth of the PBL, the diurnal PBL behavior, pollutant dispersion, two- and
three-dimensional flow with orography, stratus-capped, foggy, and cumulus-
containing boundary layers, the behavior of the oceanic mixed layer, vertical
turbulent fluxes for a general circulation model, and operational forecasts of

microwave refractivity. In a recent review article (Mellor and Yamada, 1982)

1
P

the authors point out that this modeling success has been achieved, even

{
!
1

though the empirical constants appearing in the closure expressions are
derived from neutral laboratory flow data.

And yet, as might be expected of a model which has been in existence long
enough to have received such heavy use, the Mellor and Yamada formulation is -
now known to have deficiencies in several of its closure assumptions. As we
mentioned earlier, second-order closure models require parameterization of
three types of terms: triple-moment, pressure-strain rate covariances, and
molecular destruction rates.

Most second-order models (including the M-Y) treat the triple-moment
terms as a downgradient diffusion process, since this has been found to work R
well for laboratory shear flow simulations. In geophysical flows, however, . :§<
buoyancy forces often play a very strong role in turbulent transport, and o
Wyngaard (1973, 1980) shows that in the convective surface layer downgradient )
diggggion is a particularly poor approximation--with quantities such . T
as "2 being transported up-gradient. The vertical flux of turbulent kinetic . fi
energy, nqz. is everywhere positive in the convective PBL, whereas '
downgradient-diffusion models predict negative qu near the surface and
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positive values aloft. This has led Lumley et al. (1978) to state that
", « « & layer powered by a gradient-transport model cannot bshave properly,
and in fact the rise of the inversion base is very poorly predicted, while the
vertical distribution of turbulent energy is wildly in error.”

Most second-order closures for the pressure-strain rate covariance use
heuristic arguments drawn from examination of a Poisson equation for

fluctuating pressure, which in turn is derived from the Navier-Stokes

equations. This Poisson equation indicates that (in neutral shear flows) the
}i. pressure-velocity correlations are governed by two contributions: turbulence-
) turbulence interactions and turbulence-mean shear effects. The former tern is
invariably modeled in a manner suggested by Rotta (1951), i.e., as a "tendency

\EAGNET  iatessssad

towards isotropy" term. This term acts to redistribute energy components
towards an igotropic state without altering the total amount of turbulent
kinetic energy. However, Wyngaard (1980) found that this RFotta

parameterization does not properly represent the observed behavior in the

atmospheric surface layer.

There are several methods for parameterizing the turbulence-mean shear
contribution to the pressure~strain correlation. Perhaps the most widely used
form is that proposed by Launder et al. {(1975), which also takes on the form
of a "tendency to isotropy”"--but in this case it is the production tensor
{shear plus buoyancy) that is being redistributed towards a more isotropic
state. Mellor and Yamada use a form of this term that contributes only to the
off-diagonal elements of the stress tensor, and further modify it with a very
small coefficient that reduces its importance. However, most parameteri-
zations ignore buoyancy effects.

The final type of term requiring closure, the molecular destruction term,
is usually parameterized as

Yy “1 2
axk axk 3 i

in the case of the Reynolds stress equations. Here q2 is twice the turbulent

3 (3.1)

kinetic energy, V the kinematic viscosity, and L is a length scale
characteristic of the energy-carrying eddies. However, Wyngaard (1980) shows
that this parameterization requires ad hoc adjustment to account for observed
PBL behavior over a range of stabilities.
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The results from second-order models under convective conditions seem
considerably better than one might expect, given the weaknesses in their
closures. Pigures 5-7, from Mellor and Yamada (1982), show some results of
their second-order model simulation of the laboratory convection tank
experiment of Willis and Deardorff (1974). The agreement with the
neasurements is good. This illustrates that the overall performance of a
second-order model can be better than that of its various closure
parameterizations, because these parameterized terms are not always vitally
important. FPFor example, near the surface, where the sign of qu is wrong when
it is parameterized as downgradient diffusion, production and dissipation
terms dominate, and transport plays a relatively minor role. Perhaps the
biggest concern arises from the underestimation of the downward heat flux at
the top of the convective layer in models using downgradient transport.

Models which carry dynamic equations for the third-order transport terms have
been developed and applied to a limited set of convective situations (Lumley
et al., 1978; Sun and Ogura, 1980; Andre et al., 1976). The resulting
distributions of third-order quantities are clearly improved in these models,
whereas improvements in lower-order terms are more difficult to discern.

We must add, however, that second-order modelers of the FBL do not have
access to "calibration"™ data sets of the scope and quality that laboratory
flow modelers routinely expect. As we discussed in the previous section, much
of this is due to the inherent uncertainty problem and to the great aifficulty
and expense of making PBL measurements. As a result, we actually know very
little about the true behavior of the terms that are parameterized in second-
order models, and not enough about the structure of the PBL to make definitive
assessnents of model predictions. Some researchers suspect, in fact, that
some of our parameterizations are rather poor descriptors of nature, and that
they (and perhaps some of our current models) survive only because of our
ignorance of the real behavior.

The second-order modeling of Lumley and his colleagues is quite different
from that generally practiced. Lumley has developed a more general approach
to closure, one that emphasizes realizability constraints and tends to give
more ocomplicated closure expressions. This work is still in its relatively
early stages and has yet to be exhaustively tested, but Lumley remains
optimistic about its potential.

~~~~~~~~~
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Lumley has summarized his perspective of second-order modeling in a 1983
reviev paper. His section 3, "Performance of Existing Second Order Models,"
is particularly relevant here:

Just as in the case of the first order models, such as mixing
length or K-theory models, we are dsaling with a calibrated
surrogate for turbulence, albeit ome that contains a little
] more of the physics. We would thus expect that the models
o would work satisfactorily in situations not too far removed
” geometrically, or in parameter values, from the benchmark
situations used to calibrate the model. To the extent that
more physics has been retained, we might expect the range of
R satisfactory performance to be greater. If the modeled terms
I behave correctly physically, there does not seea any reason
REES not to hope for a very extensive range of satisfactory
performance, supposing that the relevant physical mechanisms
have been retained in the equations.

D e SN S s .
bolaty,

In 1981-82 a competition was held (Kline et al., 1981) between
various methods for calculating isothermal flows of
engineering interest. Nearly all the methods in competition
o were either k~€ (. . « an eddy viscosity model in which the
v local value of the eddy viscosity is calculated), algebraic
stress (. . . the Reynolds stress is given by an algebraic
expression somewhat more complex than an eddy viscosity) or
second order . . « « The conclusion of the judges was that
- the range of satisfactory performance of the models was rather
N narrow, and that we should probably expect to use for some
time a variety of models optimized for particular geometrical
.‘ - situations and parameter ranges. The judges were split on the
: 1likelihood of ultimately improving this situation: the
' pragmatists felt that there was no objective evidence for
putative universality, while the optimists (including the
present author) felt that improvement of the physical behavior
e of the modeled terms held considerable hope. Most of the
nY models have been constructed in a somevhat haphasard manner;
as we shall see below, there are many restrictions which they
should satisfy which are generally violated. Much of the
modeling is not based on first principles, but is almost
completely ad hoc. It seems there is enough room for
improvement here to justify a certain optimism.
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Many of the initial successes of the models (in comparison to
first order ones) have been in more complex flows, involving
heat transfer, buoyancy and the like, because the relevant
physical mechanisms are included. In addition, somes of the
successes have been in flows dominated by inertia or mean ,_‘-'.3:-‘
. buoyancy, where the details of the turbulence model are ~l
E irrelevant. Thus emboldened, the modelers have been T
oversnthusiastic in promoting their models for other complex
situations, often without considering at depth the difficult
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questions that arise. Consequently, there is some
disillusionment with the models, a feeling that they embody
too many ad hoc assumptions, and that they are unreliable as a
result . . - « This reaction is probably justified, but it
would be a shame if it resulted in a cessation of efforts to
put a little more physics and mathematics into the models.

Lumley refers to the split between pragmatists and optimists on whether
second-order models can achieve universality. In the engineering community
there seems to have been a marked shift (numerically, at least) toward
pragmatism. As research revealed the complex details of engineering flows,
many researchers have concluded that there are as many kinds of turbulence as
there are kinds of flow, and that it is unlikely that a single
parameterization can apply to all situations. This pragmatic view has led to
the concept of “zonal" modeling (Kline, 1981).

3.3 Volume-average High-resolution Models: Ilarge—eddy Simmlation

LES models are computationally demanding, requiring a three-dimensional
grid in space plus stepping in time. In fact, they can easily require several
orders of magnitude more computer time than integral models; K and second-
order closure models lie in between. This spread is so striking that one
would expect each to have its own optimum area of application, and this is
broadly the case. Within some problem areas, however, there still is some
healthy competition. For example, both integral and high-resolution PBL
modules are used within current dynamical mesoscale models. As another
example, second-order closure and LES compete in certain research
applications, including some problems in turbulent diffusion.

Nonetheless, LES models are more faithful to the underlying physics than
any other type of PBL model. Given that reality, our working group saw that
one profitable use of LES is in testing and refining the simpler, faster
models. For example, integral models require specification of mean profile
shapes, which LES can provide. The Wyngaard-Brost (1984) LES results give
scalar concentration profiles in the convective PBL as functions of the scalar
fluxes at top and bottom and certain PBL turbulence parameters. Wyngaard
(1984) used these results to develop a scalar transport module (an integral
model) for the convective PBL. This could be extended to momentum profiles
and to neutral and stable states. As another example, Lamb (1982) used

...................... . - - - - - - - - - - - . s _ = - L
, e AR RGN T RN e e et T 5 4}. T T T T T T AR SRS SR
L TP I AR AR AP L AL S 2R R AW R, PRPL. PU PR PR P, Sl BEPER SN T AT S R A Py IR

X: A
L ot
e Ratd IR
LR
. ]

- "
o
asa .,




SR 0 v v

RN

B\ SRR

PRI & S O]

[

3s

Deardorff’'s LES convective PBL velocity field to do continuous-point-source
diffusion calculations. His results, (and those from the Willis~Deardorff
tank experiments) are now being used to improve the Gaussian-plume models. It
would be worthwhile to extend these LES studies to concentration fluctuations
in order to quantify the inherent uncertainty in the predicted mean
concentration fields.

We also see considerable potential for using LES models to develop
improved second-order closure parameterizations. Since LES models can
directly compute many of the details of the turbulence field that mast be
parameterized in second-order closure models, LES could provide a "numerical
laboratory™ for testing closure parameterizations, mach in the same way that
Deardorff's LES results have been used in developing turbulence scaling
expressions. This could be particularly valuable, for example, if the LES
resolution were gufficient to resolve directly most of the flux in the
entrainment zone at the top of the convective PBL, since this is a region that
has given ensemble-average models particular difficulty. In addition, the
systematic study of turbulent pressure covariances through LES (some of which
was attempted by Deardorff, 1974b) has the potential for improving their
current parameterizations in second-order models. These very important terms
are impossible to measure directly, and nearly impossible to parameterize
rationally by other technigues. Rogallo's (1981) simulations of homogeneous
turbulence provide an excellent example here. For a range of values of flow-
parameters, such as Reynolds number and mean strain rate, he has tabulated the
numerical values of terms in the Reynolds-stress equations, using his results
from simulations on a 128 x 128 x 128 grid. These results provide an
extensive data base for evaluating second-order-closure models. The
improvement of second-order models based on LES results would also permit one
to address more confidently some complex geophysical flows (e.g., flow in
complex terrain; long-range dispersion) with ensemble-average models.

Selection of subgrid-scale parameterizations for LES models has often
taken its guidance from techniques developed for ensemble-average closures;
thus, improvements to second-order-closure schemes would hold strong promise
for potential improvement in LES subgrid parameterizations. This, in turn,
could permit the LES modeler to relax the grid-volume restrictions, if he had
a more reliable subgrid-scale formulation. Generally the tradeoff of extra
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model complexity for reduced resolution requirements is a good one, since
doubling resolution in three dimensions can lead to a 2% increase in computing

requirements (assuming that the time step is also linked to the grid spacing).
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CHAPTER FOUR
. ) LARGE-EDDY SIMULATION: AN ENGINEERING VIEW

The origins of what became large-eddy simulation (LES) lie in the early
global weather prediction models. 1In developing these models, meteorologists
_I quickly realized that the computer resources would permit only extremely
coarse grids; in the early codesgs, the grid could hardly resolve the largest
structures of the atmosphere. The unresolved scales require modeling or
: parameterizations, and considerable effort has been put into the development
i C of these.

The first engineering application of LES was made by a meteorologist;
Deardorff's (1970) pioneering paper provided many of the foundations of the
subject and influenced much of the later work. Until now, application of LES
has been limited to a small number of groups with access to the required

resources. The increasing avajilability of large computers is allowing more
groups to participate in LES.

The first work after Deardorff's was U. Schumann's thesis of 1973;
following that, Schumann led a group at Karlsruhe that specialized in LES of
convective heat transfer. W.C. Reynolds and J.H. Ferziger of Stanford began
work in 1972 and have concentrated on developing the fundamental formulation
of the subject, systematic extension to more complex flows, and application of
the results of the investigations to turbulence parameterization. The NASA-
Ames group, which began work in 1975, has specialized in state-of-the-art
simulation of simple flows and on full turbulence simulation (see below).

D.E. Leslie and his group in london began in 1976 to look at a number of
issues, including the use of turbulence theories in developing subgrid-scale
models. In the last few years, several French groups have begqun to apply LES;
these include those at Electricite de France, ONERA-Chatillon, Lyon, and
Toulouse.

Full-turbulence simulation (FTS) simulates turbulent flows without any
modeling. The number of accessible flows is much more limited with this Ced

approach, and the Reynolds numbers must necessarily be very small. The ;5?4
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N pioneering work in this field was done by Orszag and his group at MIT in

1972. The method has since been applied by a number of other groups,
principally those which also employ LES.
Due to the cost of the mathod, applications of LES to practical

engineering flows have been almost entirely indirect until very recently.
Recent advances in Very large Scale Integration (VLSI) technology are
producing dramatic reductions in the cost of a given computation; large
computers should become available to a much wider group of users in the near
future. This will make it possible for new groups to begin to use LES. The
coming supercomputers will also open up new directions for research in this
field.

4.1 BEngineering Contributions of LES

As noted above, the cost of LES is very high. Consequently, runs have
had to be selected with care. The choices have generally reflected the goals
of the particular research group; to date, most simulations have been aimed at
demonstrating potential and at exploring capabilities and limitations rather
than at simulating flows of direct engineering interest.

This work has established that the conceptual basis of LES is sound. At
very low Reynolds numbers, it is possible to do FTS where no modeling is
needed. At somewhat higher, but still low, Reynolds numbers, LES captures
most of the turbulence energy; the results are not sensitive to the subgrid-
scale model used, and LES works well. Unfortunately, most applications
require much higher Reynolds numbers, and here even the largest LES programs -3
that can be run on present (or the anticipated next-generation) computers can -

capture only a small portion of the energy in some regions of the flow. 1In

be of use in the future.

"
these cases, one will be asking much more of the subgrid-scale model, and a {
premium will be placed on the quality of that model. },_

In the remainder of this section, we will review some of the - .k
accomplishments to date with an eye towards results which are most likely to = !:_:__

& Nethod Desmonstration

The first demonstration of the soundness of LES was Deardorff's 1970 ” i;".'-";‘.v'
paper. He showed that many features of turbulent channel flow could be - R
simulated on a relatively coarse grid. The small-scale turbulence in the < ‘-‘.;
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Pigure 8. A test of Smagorinsky's model (parameterization) of the subgria-

scale Reynolds stresses. At each point in a test field, the exact
value of the stress (obtained from a full simulation) is plotted
against the value predicted by the model. An accurate model would
produce a line at 45° line in this kind of plot. The correlation
coefficient in this case is only about 108, indicating that the
model is poor on this detailed level. Prom McMillan et al.

© (1980).
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A scatter plot similar to Pigure 8 for the scale similarity model
of Bardina et al. (1983). The correlation coefficient is now
about 758, a major improvement over the previous model. Source as
in Figure 8.
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center of the channel and the entire flow near the wall were treated by the
subgrid-scale model.

The concept of filtering as a means of defining the large and small
scales was introduced by Leonard (1973). Numerical approximations are
completely lmrcud' from the filtering process in this approach, which the
Stanford group has continued to use. Others prefer Deardorff and Schumann's
method, which combines filtering and numerical 'approxmuon in a single
step. The principal advantage of the two-step approach is that it simplifies
thinking about what is to be computed and permits insights into the nature of
subgrid-scale modeling that would be difficult to obtain otherwise.

The first flows considered by the Stanford group were the simplest, i.e.,
the various homogeneous turbulent flows. Fwak et al. (1975) and Shaanan
et al. (1975) showed that LES could simulate isotropic turbulence with a model
that {s independent of grid size and the number of points used; this provided
the faith that the subgrid-scale model was adble to perform as intended.

Use of FTS to test subgrid-scale models was proposed by Clark et al.
(1975) and was followed up by McMillan and Ferziger (1979, 1981). This work
showed that Smagorinsky's model (which uses the local, resolvable-scale
deformation rate and the grid size) represents the interaction between the
large and small eddies well on the average, but poorly in detail; moreover,
the model becomes worse when applied to sheared or strained flows. A scatter-
plot test of this model for strained turbulence is shown in Pigure 8. 1Its
shortcomings led to a search for new models, which resulted in the scale~
similarity approach proposed by Bardina et al. (1983) and the two-point
turbulence closures of several French groups (Bertoglio et al., 1983 and '
Aupoix et al., 1983). These models are relatively new and untested, but hold
promise for the future. A scatter-plot test of the scale-similarity model is
given in Figure 9; it shows considerable improvement over the Smagorinsky
nodel.

Next, it was decided to attack flows wvhich are homogeneous in two
directions~--the time-developing free shear flows and the channel flows. The
former were done by Mansour et al. (1978), Cain et al. (1981), and by Riley
and Metcalfe (1981). The latter have been done by Schumann and members of his
group, by Moin et al. (1978) and as descridbed in a series of later papers, by
Moin and Kim (e.g., 1981).
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It was thought that free ghear flows would be easier than wall-bounded
ones because their physics is simpler. However, they are the most energetic
turbulent flows, and their length scales grow rapidly; they eventually become
larger than the computational region, at which time the simulation must be
stopped. One would like to use a grid which grows with the flow, but
unfortunately no one has yet found a method which accomplighes this without
severe approximations. Some progress has been made; examples are Cain's
method for infinite domains, which allows him to simulate the transition of a
mixing layer almost to the point of full development, and the Riley-Metcalfe
work on fully developed free shear flows.

In the area of wall-bounded flows, there has been considerable
progress. Schumann and his co-workers, Grotzbach and Kleiser, have, in a long
series of papers, extended Deardorff's method and consequently computed forced
convection heat transfer and natural convection flows in both planar and
annular geometries. Comparisons with experimental data have been impressive.

The Deardorff-Schumann approach uses artificial boundary conditions to
represent the physics of the regions closest to the wall. 8ince much of the
interesting and important physics of wall-bounded flows occurs in these
regions, the Stanford group felt it important to simulate this region as
exactly as possible; no-slip boundary conditions were used. Moin et al.
(1978) demonstrated the feasibility of this approach and Moin and Kim (1981)
refined the method so that it can be used to study the physics of turbulent
flows in the vicinity of walls. They used 64 x 64 x 128 grid points and
examined the structure of the flow in considerable detail. Their calculations
agreed well with experimental data on the mean velocity profile and higher-
order statistical correlations. They showed, through a computer-generated
motion picture, that the computed flow field displays the streaks, bursts,
sweeps, and ejections observed in laboratory experiments. A major portion of
the LES effort in the engineering community is directed at the turbulence
structure in wall-bounded flows.

Recently, the group at Electricite de France has applied LES to flows in
geometries more complicated than any considered previously (Baron, 1983). The
grids used are coarse, relative to the size of the eddies in the flow, but
satisfactory results appear to have been achieved.
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b. Impact on Turbulence Modeling

LES is currently too expensive for engineering design use; simpler models
are used for this purpose. These include integral methods and, to an
increasing degree, two-equation models. The increasing sophistication of
these models requires a considerable body of quality data for the
establishment of their internal constants. Such data are expensive to
acquire; in some cases, experimental technigues either do not exist or are not
sufficiently accurate. This creates a gap which can be filled in part by LES;
this role has long been on the agenda of LES workers. Some success has been
achieved.

Using either FTS or LES it is possible to compute both the value of a
quantity that must be represented by first- or second-order closures, as well
as its model representation. By comparing these, it is possible to gauge the
validity of the model and to estimate the constants appearing in it. Por
homogeneous flows, considerable information relating to Reynolds stress models
has been obtained by Rogallo (1981), Feiereisen et al. (1981), and Shirani
et al. (1981). The fluctuating pressure is particularly difficult to measure,
and there are little accurate data about the terms that contain it--e.g., the
pressure-strain correlations. These terms are usually modeled in two parts,
one asgociated with the mesan velocity field (called the rapid terms) and a
sacond deriving strictly from the turbulence (the slow terms). Using FTS,
these authors showed that (at least for low Raynolds numbers) the Rotta model
for the slow terms is not very accurate. These models also assume that the
dissipation is isotropic (see Eq. 3.1); this is found not to be true in these
flows. However, when the anisotropic component of the dissipation and the
slow pressure-strain term are combined, the model actually works fairly
well. Tables 1 and 2 give the model constants for the different tensor
indices; if the model were correct, the values for each index would be the
same, and greater thau 2. Models for the rapid pressure-strain do not fare
well at all. Table 3 shows how unsatisfactory the results are; attempts to
find improvements were unsuccessful. Therefore, either different models for
these terms or a different approach to modeling is needed.

Shirani et al. included a passive scalar in their work and made the kinds
of tests described above with gimilar results. The unique aspect of this work
was the testing of several popular turbulent Prandtl number models. All were
found lacking in quality: Pigure 10 shows a typical test. They suggested a
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new model which their tests indicated to be much better than the others;
Figure 11 shows these results. This new model has not yet been tested in
simulations of flows.

1ass model testing has been done for inhomogeneous flows. Here one needs
to average LES results over homogeneous directions and, possibly, over time.
One can compute values of the model parameters as functions of the

inhomogeneous coordinate and the tensor indices. Models assume these
parameters to be constant; if they are found not to be constant, this is
: evidence of weakness of the model.
Schumann and his co-workers have done much of the model testing work for
F wall=-bounded flows; they considered mixing-length, two-equation, and Reynolds-
stress models. They found that these models are not as accurate as had been
' hoped. The current generation of such models is probably not accurate enough
E to be used in engineering design work without tuning to the particular flow or
region of the flow. Schumann's group tested heat transfer models in many of
their simulations; they concluded that they are no better than those for
momentun transfer.
Riley and Metcalfe have tested Reynolds stress models for free shear
flows. Again it was found that the quality of the models left something to be
desired.

4.2 Future Directions of large—eddy Simulation in Engineering

a. Mvances in computer technology
The preceding sections show that while much has been accomplished in LES,

> IR - A/
ot .'- '..-.. a2’ e & A . . . . ’ Lt

much remains to be done. 8Since LES requires considerable computer resources,
future directions will be largely determined by trends in the development of
large computers. The supercomputer projects sponsored by the governments of
the U.S. and Japan have been well publicized. Fluid dynamics computations

including engineering, meteorology, and oceanography will undoubtedly consume
a large fraction of the resources of these machines. We therefore anticipate

a large step forward in the use of LES in the next five years.
‘ VLSI technology is making it possible to build chips with ever-increasing h \x]‘
' numbers of circuits. This technology already dominates fast computer memory o~ ::;:'_f‘

applications and is becoming an important factor in secondary memories. In - [—-—1

- just over ten years since the introduction of the first four-bit micro-
processor, we have seen progress through eight- and sixteen-bit systems to




Table 1

Pitting function: £ = 4 (gk)‘ (1+hH2) (Rax)d

Indices Sy
1=1, §=1 1.114 ¢ 0.723
1=2,4=2 1.730 £ 0.899
1=3, 3J=23 0.680 £ 0.583
i=1, 3j=2 1.559 &£ 1.090

Table 1. The parameter c, obtained by fitting Rotta's model for the "slow”
part of the pressure-strain correlation to data obtained from full turbulent
simulation of homogeneous shear flow. A correct model would yield a parameter
which is greater than 2.0 and independent of the tensor index. From
Feiereigsen et al., 1981.

= mean shearing rate

= rmg turbulent velocity

integral scale

turbulence Mach number

Re, = Raynolds number based on Taylor microscale
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. Table 2
Rotta Term with Dissipation Anisotropy (Qij-Zedij)
Indices c4
i=1, 3=1 2.886 ¢ 0.722
i=2,3j=2 3.727 £ 0.824
i=3, j=3 1.719 £ 0.921
i=1, j=2 3.035 £ 1.122

included in the model tested in Table 1.
Source: as in Table 1.
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Table 2. The parameter c, obtained when the anisotropy of the dissipation is

Considerable improvement is noted.
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KO Fitting function: £ = 4 (%)‘ (1404%) (Re,)®

Equation A,

= 1 0.324 £ 0.061
-0.134 + 0.052
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- 2 0.198 & 0.029

rapid pressure-strain correlation to full simulation data. Source:

E Table 3. The parameter A, obtained by fitting a commonly used model
X . Table 1.
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Figure 10. Test of a turbulent Prandtl number model (parameterization); the
turbulent Prandtl number is the ratio of the turbulent
R diffusivities for a passive scalar and momentum. The exact value
i obtained from a full simulation is plotted against the model
S value; the line was obtained by least squares fitting. The model
does not appear to produce the correct trend. PFrom Shirani -
et al. (1981). .
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XS
;: ) thirty-two bit microcomputers. The current generation of chips makes it »3._-\-_

‘l feasible to build a desktop computer which matches the mainframe of ten years
N ago in both computation speed and memory. When these chips are used in clever
: -~ architectures, significant decreases in the cost of making a given computation ?'-:::
- Na ,".
j " can be expected. Again, there are important consequences for LES that we will

consider next.

o t ] et
o et
a

T b. LES on supercomputers

The present generation of large computers—--the CRAY X-MP and the CYBER
- 205-~are capable of approximately 106 million floating point operations per
h second and have 1-4 million words of fast memory. In the next few years,

machines with ten times the power in both speed and memory are expected to .\

become available. Machines with still another order of magnitude in speed

:;: (with as yet unspecified memory sizes) may become available not long after :
c that, say in five years. Because these machines will cost as much as the
. present large machines, access to them will remain restricted to a small
o nuaber of users. They will, therefore, be research machines and the tasks
. assigned to them will likely represent the natural extensions of current LES
- work.
- . Work on homogeneous turbulence will continue. The new machines will make
:3; it possible to use grids as large as 256 x 256 x 256 and, in a few cases, . :
- 512 x 512 x 512. One will finally be able to simulate flows at the Raynolds -
_‘ numbers of the experiments, including cases with a clearly defined inertial
subrange. Since most applications flows have high Reynolds numbers, this will
permit the study of subgrid-scale modeling under conditions close to those \
that one really wishes to simulate. Also, it may become possible to study

-~ sheared and strained turbulence for distortion times long enough to answer i
¥ questions that have perplexed turbulence theorists. Thus, the new machines \,;
should lead to exciting advances in the state of turbulence theory. --fp
iy The new machines should provide the capability of simulating free shear I:-f'.:
- flows and gsome wall-bounded flows from the inception of instability to the ::3
l::; fully developed turbulent state. This will permit the study of various
perturbations on the initial stages of free shear flows; many technological
e applications require the ability to do this. Sound generation by turbulent t
t flows, which can be dealt with crudely at the present state of the art, will {__
X be open for investigation. We will be able to simulate spatially developing :f;l :
: :' free shear flows and study the pressure~feedback effects that have been ":-.:':::
aifficult to look at in the laboratory. )
| _ &
“.‘:‘L:'f. ;'.1;.'.' MY ;.:;-;‘. A ) "A J\:‘
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Combustion is an area of great and obvious technological importance.
Application of LES to combusting flows has been slow in coming for several
reasons. Pirst, since chemical reaction requires mixing at the molecular
level, the small scales of reacting flows must be treated accurately. When
this is coupled with the necessity of carrying additional equations
repraesenting the conservation of each chemical species and the notoriously
stiff equations for the chemical kinetics, one sees that the task is
formidable. Nevertheless, the new generation of supercomputers should make it
possible to begin work on the simulation of turbulent combusting flows. The
potential in this area is enormous.

Por wall-bounded flows, the new generation of computers will allow full
simulation of turbulent channel flow and the flat-plate boundary layer. A by-
product will be the possibility of fully simulating laminar-turbulent
transition; this opens up many opportunities. It will also be possible to add
other phenomena (for example, unsteadiness and adverse pressure gradients) to
boundary-layer flow. This will lead to a new way of studying and developing
practical turbulence models.

€. 1LES in industry

Just as the coming generation of supercomputers will open up new areas of
LES research, new VLSI technology will make machines equivalent to the present
generation of supercomputers mich cheaper and therefore much more widely
available. There may be instances in which engineers will choose LES as a
tool for final checking and testing of designs. As with any other new method,
there will first be exploratory investigations to test whether the idea is
sound and to refine the method. If these work out, there ghould then be a
slowly increasing use of LES as an applications tool.

LES may find early application in flows that are inherently three-
dimensional and time-dependent. Traditional turbulence models for such flows
are based on ensemble averaging. On the other hand, a three-dimensional,
time~-dependent solution may be either an ensemble-average calculation or a
large-eddy simulation. Which should one choose? The answer depends on the
questions one is trying to answer. As an example, consider the in-cylinder
engine flow. BSome questions, such as the pressure history through a cycle
and, perhaps, the choice of optimum spark timing can be answered with an
ensenble-average model. Others, such as the prediction of misfire, probably
require analysis of individual cycles via LES. Operationally, the major

........
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;3 23 difference between the two approaches can be simply the length scale appearing ,_":'f
g in the turbulence model; othervise the same code can be used in both RN

approaches!

T

-
-

q . There are many free shear flows of technological interest, including ‘ts':s
) E_‘ combusting flows. In this area, the future of LES is not yet clear; many .,_:
"y research issues need to be resolved before we can contemplate using LES in 3
) F such applications. Development needs here include a method for producing e
9 £ inflow conditions appropriate to LES; accurate boundary conditions for the ,."]
b i computational outflow surface; and, finally, a method for dealing with the
B ;.:if rapid growth of length scales in free shear flow, i.e., a method which adapts C
ol the grid size to the local eddy size. These seem to be the primary issues re:
N needing attention in the next few years.
3 . Similar issues enter in wall-bounded flows. Spatially developing wall-
5 o

. 't.: bounded flows will require methods of dealing with the inflow and outflow C
boundaries. These flows are less turbulent and less rapidly developing than

. ;‘;: free shear flows, so the problem is not one of scale growth, but rather one of ;
considering a sufficiently large part of the flow while using a grid small
enough to capture the important eddies. To be able to 4o this at Reynolds

" ! numbers of technological interest, it will be necessary to eliminate the F

. layers closest to the wall from consideration. This requires artificial I
:- boundary conditions of the type used by Deardorff and Schumann. First, the

: accuracy of these models needs to be checked and new models developed. We t

& ,. believe that this can be done by using LES at relatively low Reynolds o

‘ - numbers. Many phenomena which occur in boundary layers in applications should

J ;: also be studied; these include heat transfer, blowing, suction, curvature, and "

: S rotation. All of these effects can be studied in geometrically simple flows. .
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3 CHAPTER FIVE
3 LARGE-EDOY SINULATION: AN ATMOSPHERIC VIEN
,_l
__ 7 large-eddy simulation has proven useful in a number of meteorological
33 applications, ranging from boundary layers to severe convective storms. The
” 4 spatial resolution of an LES model is very fine, by meteorological standards,
. ranging from perhaps 100-300 m in PBL applications to typically 1 km in cloud
simulations. As in engineering applications, the intention is that this
. cutoff scale should lie within the inertial subrange, so that the unresolved -
‘ f?—‘ eddies are primarily dissipative and relatively simple to parameterize. The
e large-scale turbulence, which does the bulk of the turbulent transport in the
: S PBL and is responsible for severe-storm evolution, for example, is resolved
% explicitly.
“ " : The major strength of the LES technique, clearly, is its ability to
. resolve the mean and the largest-scale turbulent fields, with minimal reliance
on closure models of unknown validity. As a result, the credibility of LES
results tends to be relatively high, which is very important in boundary-layer
meteorology where definitive observational data are scarce and expensive, as
" ' we saw earlier.
o 5.1 Boundary-layer Studies
. In Deardorff's first LES studies of the boundary layer (summarized in
", " Deardorff, 1973), he used a rigid 1id and simulated neutral and convective
2- g cases. He found that stable stratification eliminated the largest eddies and
;—E & foroed the turbulence to be subgrid scale, and so reported no results on the
. & stable PBL. While in principle a grid-adjusting scheme should allow
o simalation of the evolution of a stable PBL by changing the grid size with £
: f‘ time, we know of no published results. ._?._:
: - Deardorff later replaced the rigid 1id with a capping inversion layer, :'\\;.'E
. C and in two 1974 papers presented the results of an LES study of day 33 of the _‘-
! Wangara experiment in Australia. His mean-field results (paper 1) agreed well
R Ei with observations, but the more remarkable aspect of his study was the detail
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.E it revealed about the turbulence structure (paper 2). These turbulence
results far outstripped the observations. He presented mean profiles, second-
moment budgets, and even a comparison of calculated pressure covariance
profiles with current parameterizations.

Sommeria (1976), working with Deardorff, extended this LES model to
include most of the physical processes occurring in a moist boundary layer in
the abgence of precipitation. Refinements included a water cycle, with cloud

ot e e
[ l.' - a8

formation, and infrared radiative cooling in clear and cloudy conditions.
Sommeria and LeMone (1978) used a further improved version of this model to
simulate conditions in the fair-weather PBL over the typical ocean observed in
the 1972 Puerto Rico experiments. The comparisons of second-order turbulence

SRR

moments, the PBL roll-vortex structure and the cloud structure were generally
. satisfactory. Later, Nicholls et al. (1982) used this modsel to simulate a
' fair-weather marine boundary layer in GATE and found quite encouraging
agresement with the observations.

Deardorff (1980) presented results from an LES study of stratocumulus-
topped mixed layers. He was able to study the nature of the cloud-top
radiative cooling which helps to drive the mixed layer and to develop an
o expression for the entrainment rate in the presence of variable
stratocumulus. Again, he presented details on the turbulence field which are
" far beyond our experimental reach. Lamb and Durran (1978) used the velocity
fields from Deardorff's LES work, plus an innovative numerical scheme, to
., infer eddy Aiffusivities for continuous=-point-source diffusion in a convective
- PBL. While the Aiffusivity did scale with WeZ;, &8 expected, it also depended
strongly on the height of the pollution source; this contradicts the
assumptions underlying conventional Gaussian-plume models.

Wyngaard and Brost (1984) studied scalar transport in a convective PBL
with Brost's LES model, which was patterned closely after Deardorff's. They
studied what they called "top-down"™ and "bottom-up” diffusion, or the
transport of a scalar whose flux is gzero at the PFBL bottom, but nonzero at the
g top, and vice versa. They found that the bottom-up eddy diffusivity was more
',3 than twice as large as that in the top-down case, vhich indicates that current
K=closures are fundamentally wrong.

Moeng (1984) has produced a new LES code for PBL studies; it uses pseudo-
spectral techniques in the horiszontal, which are computationally more
efficient than finite differences. &he has recently verified and extended the
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E N Wyngaard-Brost results and has completed a study of the statistics and ﬁ";j
N dynamics of the top-~down and bottom—up scalar concentration fields in a C';:f-:ii
I convective PBL (Moeng and Wyngaard, 1984). k-
. | This productive LES work could be profitably extended in a number of E:_j
& ways. The influence of differential (i.e., height-dependent) mean advection f;.:_:j
and baroclinity on mean profiles, which can be important on the mesoscale, G
‘ could be studied and parameterized through LES. The influence of variable t:;
R surface properties and cloud cover on PBL structure could likewise be ‘_;‘
studied. A pressing need is the extension to stable stratification and the '-f.:;-j
nocturnal PBL, whose physics remain elusive. LES should also be used to study .-::Ex

the PBL during the morning and evening transition periods, which are also
poorly understood. Other extensions include the PBL in near-neutral

T,
L]

conditions, and over complex terrain. .,'3.-

5.2 Diffusion Studies

'-;'. LES velocity fields have served as the basis for some landmark diffusion
studies. 1In such applications one assumes that the pollutant concentration is

. not 80 large that it alters the radiation fluxes through the PBL and, hence,

’ affects the FEL dynamics. In most applications this assumption is valid.

Thus, Lamb’'s (1982) diffusion calculations for a convective PBL used the

B output of Deardorff's (1974) LES runs.

| In his 1982 revievw paper, Lamb described a mithod for using an LES

- velocity field to calculate dispersion. 1In his notation, x': (t) denotes the
vector position at time t of the particle (assumed neutrally buoyant) released

e at (x ., y,+ 2')) i.e., x:(t) =X (X 0 Ypo 2'0 t)e

By definition,

g

B s. X, -3 (X7(t),t) + u! (<T(e), ), (5.1)

- a i t Sl R 171

wd

- vwhere Q‘:l. is the velocity field resolved by the LES model and “:'L is the .
L. unresolvable (subgrid-scale) field. ' f:.‘:i.'j
-:'.' \:n-
’ Lamb'’s process for determining u"_ is described in detail in his 1981 ;::;‘
% paper. Briefly, his approach is to delineate a set of functions whose set- r‘-:
t mean statistics are identical with the known statistics of ni, and then to E____
. pick members from this set at random for each of the M release points. For :{::'::.'
o
& o)
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example, the subgrid-scale parameterization scheme of the LES model provides
an estimate of the local mean square of ui. We also know that ui is
approximately isotropic, that its wavenumber components lie within the
inertial subrangs, and we can make educated guesses of its temporal
autocorrelation and integral time scales. This information does not uniquely
specify u!, but does serve to constrain the range of choices.

Lamb generated his u! through the algorithm

i
[} = L3 - . - °
ui(xi,t) cui(t 25t) + B“i(t At) + ”1' (5.2)
vhere o i is a computer-generated, isotropic random vector with gero mean and
variance
p: - —%—!, i=x,y, or g, (5.3)

where B is the subgrid-gcale turbulent kinetic energy at xi.t, from the LES
model. Lamdb also showed that the parameters a, B8, and Y in (5.2) must satisfy
two constraints.

Lanb (1982) showed that his scheme gave good agreement with both
atmospheric and laboratory convection tank observations for neutrally buoyant
cases. He has also extended his calculation technique to buoyant sources and
found that source buoyancy has surprisingly large effects. Much moras work
remains to be done on source-buoyancy effects, however.

5.3 Computational Details

&« Integration techaiques

Integration technigques available to the LES modeler include finite-
difference schemes, spectral and pseudospectral methods, and finite-element
and interpolation schemes. Pielke (1984) has recently described these
techniques and considered their application to mesoscale problems. We will
briefly summarize them as they bear on LES models for transport and dispersion
in the PBL.

Pinite-difference schemes. This approach involves approximating the time
and space derivatives by one or more terms in a Taylor series expansion. In
meteorological applications, the expansions have generally been limited to
first or second order in time and second or fourth order in spatial
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derivatives. Care must be taken in the design and use of finite-difference
schemes such that they remain linearly, computationally stable. Also, casting
. of the spatial derivatives in the so-called flux-conservative forms (i.e.,

Arakawa, 1966) will prevent the development of nonlinear instability due to
the accumulation of energy at the grid truncation scale (A). Using terrain-
following coordinate transformations, the schemes can be applied to quite
complex terrain mappings, and they are adaptable to a variety of lateral
boundary conditions.

Spectral and pseudospectral mesthods. The spectral method involves the
transformation of the governing equations through the use of global basis
functions, such as a truncated Pourier series or spherical harmonics (the
) latter being useful in heaispheric or global atmospheric models). The
- pseudospectral method involves performing a part of the required operations--
.; say those involving the horizontal coordinates-~in spectral space, and then

transforning to finite~difference Cartesian space for vertical advection and
{-Z" other physical processes. PFor the sanme number of degrees of freedom, spectral
: methods are more accurate than finite-difference schemes, provided that the
25 flow field is sufficiently smooth (well-resolved) (Fox and Deardorff, 1972;
. Orszag, 1971; Machenhauver, 1979).
v Finite-element methods. The finite-element technique differs from
w, spectral or pseudospectral technigques in that a local rather than a global
basis function is employed. Examples of such basis functions are the Chapeau
or linear-basis function (Long and Pepper, 1976) and the quadratic function
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(Pinder and Gray, 1977). For the same number of degrees of freedom as a

\ finite-difference scheme, the finite-element method is more accurate and
eliminates the possibility of aliasing energy cascading onto the truncation
o ixy scale and then back into the larger resolvable scales. PFurthermore, it can be
readily adapted to arbitrary lateral boundary conditions and to relatively

\ o complex topography.

o i If the finite-slement and finite-difference techniques are matched in

',' terms of computational demands, no clear-cut advantage of one over the other
,. has been demonstrated. Longer time steps can be used than with finite

" ‘ differences, although for larger values of At, phase errors may de introduced
s ‘C in the solution. Some saving in computational demands can be made by using
L, one-dimensional basis functions in each coordinate direction, rather than

; K using a local multidimensional basis function.
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Ianterpolation schemes. Interpolation schemes or semi-Lagrangian schemes
basically estimate the time derivative due to advection by interpolating to
evaluate the advected quantity at a distance UiAt from a given grid point at
the time level T. The interpolation formulas range from the bilinear (or
trilinear) interpolation formula used by Murray (1970) to Mahrer and Pielke's
(1978) spline interpolation formula. Interpolation techniques completely
eliminate the 2Ax wave, thus preventing aliasing or nonlinear instability, and
are convenient for variables which remain conserved in a Lagrangian sense
(e.g., total water mixing ratio in a nonprecipitating cloud).

The above techniques have a common problem when simulating the dispersion
of sharp-edged plumes of a scale comparable to the trunaction scale of the
numerical operators. In such cases, positive-definite quantities (such as
concentration) can become negative. This problem is frequently met in cloud
modeling, where workers have resorted to various techniques to assure positive
definiteness (e.g., Clark, 1979; Tripoli and Cotton, 1982). Interpolation
schemes and spectral techniques are particularly troublesome in this regard,
as are finite-element technigues and some finite-difference methods such as
leapfrog/quadratic conservative space operators. There are finite-difference
techniques under development which can minimize this problem at additional
numerical cost (Smolarkiewicz, 1983, 1984).

b. Bvaluation of pressure

The pressure field in an LES model must be evaluated nonhydrostatically,
and there are currently two approaches. One, used by Deardorff (1972) and
cloud modelers such as Clark (1979), assumes the flow is incompressible.
Pressure is then evaluated by taking the divergence of the equations of motion
and forming an elliptic or Poisson-type diagnostic equation for pressure.
8ince sound waves are eliminated from the system, the time steps of explicit
integration schemes are limited by slower moving internal gravity waves and
advection time scales, rather than by fast moving sound waves.

The second approach, used by Klemp and Wilhelmson (1978a) and Cotton and
Tripoli (1978), is to retain compressibility and to evaluate pressure by a so-
called time-splitting procedure. 1In this procedurse the terms in the equations

of motion contributing to sound waves are separated from the long-time-scale .
terms. The sound wave generating terms and a simplified equation of —
continuity or pressure tendency are integrated on a small time scale which

resolves sound waves, while the terms and equations governed by internal waves

and advection are integrated on a time step some 10 to 30 times longer. "}
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Weither technique for evaluating pressure exhibits clear superiority in
terms of computation speed. Since the compressible part of the time-split
procedure is readily vectoriged, it is a fast procedure on modern super-
computers. On the other hand, inversion of a Poisson equation is not a
particularly efficient procedure on these computers. However, the procedure
need only be exercised at 1/10 to 1/30 the frequency of the compressible,
time-split calculation. Preliminary results of a comparative study among
time-split compressible and anelastic nonhydrostatic models, as well as
hydrostatic models by Tripoli and Tremback (Cotton, personal communication),
reveal that the anelastic approximation {or incompressible approximation} has
a consistent damping influence on vertical motions. 1In a deep convective
situation the anelastic model underpredicts peak vertical velocities by as
much as 30% relative to the elastic model. Thus, it appears that the greater
freedom of an elastic model allows the formation of higher amplitude
convective velocities. This may have significant bearing on LES model
simulations of boundary~layer transport processes.

c. Bouandary conditions

In any limited fine-mesh model, the prescription of boundary conditions
at the top, bottom and sides of the domain has a significant influence on the
solutions. In LES models the common approach is to employ periodic (cyclic)
lateral boundary conditions (see Deardorff, 1972; 1980). The advantage of
this technique is that eddies which propagate through an ocutflow boundary will
re-enter the model domain on the inflow boundary. This allows continuous
svolution of the statistics of the simulated turbulent elements, since the
velocity fluctuations of eddies entering the inflow houndary will be the same
as those created in the model interior and then propagated out the outflow
boundary. This is only true for eddies which are fully contained within the
limited domain of the model. Periodic boundary conditions can distort larger-
scale eddies such as boundary-layer roll vortices, which may be only partially
captured in the model domain (Sommeria and LeMone, 1978).

In LES simulations with inhomogeneities in roughness, terrain, or heating
functions across the domain, it would be incorrect, for example, to advect
into the upstream boundary eddies which have formed over terrain with
different features. In this case it may be desirable to use open, "radiative-
type” boundary conditions such as used by Klemp and Wilhelmson (1978a) or
Orlanski (1981). The boundary conditions allow gravity waves generated in the
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model domain to propagate freely out of the downstream boundary. The inflow
boundaries are prescribed, however. Thus, the turbulence field must evolve
from a nonturbulent inflow state; this means that the inflow boundary must be
well removed from the region of LES analyses. This is a familiar problea in -
meteorological modeling and could represent a serious limitation to LES in o2
some applications.

The bottom boundary conditions must treat near the earth'’s surface the
energetics and fluxes generated by eddies smaller than the resolvable scales
of the model. The conventional approach is to use surface-layer similarity
(Deardorff, 1972). The major difficulty is formulating the similarity laws
and the subgrid-scale closure schemes such that they are compatible at the
interface between the surface layer and the model domain (Manton and Cotton,
1977). o

The rigid 1id used in early LES models (e.g., Deardorff, 1972) is &
appropriate as long as the boundary-layer eddies do not advect near the upper
boundary and 4o not trigger internal gravity waves in the overlying stably
stratified free atmosphers. However, since vigorous boundary-layer eddies
perturdb the overlying stably stratified free atmosphere, they are likely to E
excite internal waves which can reflect their energy back into the model
domain causing perturbations in z; and, as a result, in the boundary layer Ty
statistics. Thus, the optimum upper boundary condition is a "radiative-type"
upper boundary condition, such as described by Klemp and Durran (1983). Such
a boundary condition allows gravity-wave energy to pass through the model top : ;',-Z:i-.
without reflecting enerqgy into the model interior; this can contaminate i
boundary-layer statistics.

Radiative top and lateral boundary conditions are most desirable when the
terrain is irregular and/or the overlying free atmosphere is quite stable anAd
the winds are strong.

4. Closure schemss
LES models are intended to resolve the energy- and flux-carrying
turbulent eddies explicitly, and therefore allow the use of a simple subgria-
scale closure model. Most of the subgrid schemes now in use have their roots
in the second-moment conservation equations for the subgrid-scale
turbulence. Deardorff (1973) has given a lucid description of this topic.
Some insight can be gained from theory here if the gridscale is
sufficiently far into the inertial range that one can assume local isotropy.
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Lilly's (1967) early calculations of this type provided much of the closure
foundations for Deardorff's LES models.

Attempts have been made to carry a "full® set of subgrid-scals moment
equations (Deardorff, 1974a), but this is computationally demanding. Later
engineering LES experience, dased on comparisons of LES and full turbulence
simulations, suggested that these more sophisticated subgrid-gcale closures
414 not actually represent the unresolved dynamics appreciably better. Thus,
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; - ocurrent atmospheric LES models usually carry only a subgrid-scale turbulent EE‘-‘;
a {-_Z: kinetic energy equation to provide a subgrid velocity scale. The subgrid f:t-
2 length scale is the grid spacing A (which need not be unifors throughout the ’:

: ;w’ domain), and these two parameters together with standard turbulence scaling I}g‘
':3 he arguments (Tennekes and Lumley, 1972) provide the subgrid-scale closures. i-.’
. e. Domain, resolution, and computer time 4
IR The Colorado State University Regional Atmospheric Modeling System (RAMS) ™
4«, . is useful as a guide for obtaining estimates of LES model timing on modern i &
: “_‘: class-6 computers, such as the CRAY-1A. For a model having resolution ';& :
gl of Ax = Ay = 150 m and Az = 50 m and a domain of 28 x 59 x 59 points B
) . (1.4 x 8.8 x 8.8 km), the ratio of simulated time to computer processing units

N (CPU) is =1/3.5. Thus, a two-hour simulation plus one-hour start-up time will }
’_" £y require 10.5 hours CPU-CRAY. However, this represents only one independent ?‘é
:. & realization. To obtain statistically significant ensemble-averaged data, E;,:
several realizations are required. This may increase by a factor of 10 the C )

g w CPU time needed for a "representative” LES ensemble-averaged result. t:f-*
o Unfortunately, a horisontal domain length of 8.8 km is not large enough to o
'—‘ 1-_3 accommodate 10 km mesoscale eddies, which (at least in some circumstances) are E\'
B dominant contributors to the horizontal wind variance. i
N To increase the horisontal domain to 15 km and maintain a practical P
; - computational level, one is forced to increase the grid truncation scale. For &,

&,

el 3
oy LA A A
AR

exanple, a 28 x 59 x 59 point domain covering 15 km in the horiszontal and
having resolution of Ax = Ay = 250 m and 4z = 100 m will have a

ratio = 3—"'“"::;——-—”—"—"— = 1/2. Thus, a single two~hour simulation plus one-
hour start-up time will require six hours CPU-CRAY.
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£f. Computer Expectations

The future growth of LES studies of the PBL depends heavily on two major
developments. The first is improvements in subgrid-scale closure theory which
will permit coarser-resolution simulations. The other is expanded computer
pover.

The speed-domain estimates we gave above were based on the CRAY-1A
computer system. This system has 10 words of central menory and is capable
of speeds in the range of 10 to 140 million floating point operations per
second (mflops). Rormally, Fortran-coded problems operate over the speed
range of 30 to 85 mflops. The CYBER 205 has a slightly broader range of
compdtational speeds with most Fortran-coded problems running on the low end
of the CRAY range. The central memory available on the CYBER 205 ranges from
24 words full 64-bit memory to 4 half precision words. CRAY laboratory is
currently marketing the CRAY X-MP, a multiprocessor, vector-based computer;
however, software for linking the multiprocessors is not available. By the
end of 1984 we may expect this system to be operating on PFortran codes in the
range 120 to 400 mflops.

By 1986 several major advances in supercomputers can be expected. These
could come from one of several U.S. vendors or Japanese supsrcomputers looming
on the horiszon.

It is likely that computers operating on Fortran-coded problems will
operate in the range of 700 to 1000 mflops, or slightly greater than a factor
of 10 faster than class-6 computers. The greatest advances are expected to be
in the area of high-speed memory; if its cost goes down and the speed of the
computers goes up, while input/output (I/0) speeds remain the same or show
modest improvements, we can expect vendors offering computers with as much as
256 M 64~bit~-word memories.

Thus, by 1986 it should be possible to operate LES models well into the
meso~Y domain (i.e., 10=25 km) with resolution 4 = 50 m and at speed equal to
or faster than real time.

Pigure 12 is a plot of past and projected computer speed and memory. The
historical data are adapted from Chapman (1979), while the projected data are
mid-range values of the estimates in this report.
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Figure 12. Past and projected computer speed and memory. Historical data
from Chapman (1979); projected data are mid-range values from
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$.4 Some Limitatiocms of IRS

The various applications of LES to problems in small~scale meteorology
over the past 15 years have also revealed some limitations of the technique.

The PBL, by its nature, tends to be confined from above by an inversion
whose stable stratification reduces eddy sirzes in the turbulence at the PBL
top. The lower surface also acts to reduce eddy sizes in its vicinity. As a
result, LES resolution is worst near PBL bottom and top, where important
transfer processes can take place. Transfer at the bottom is well understood
from surface-layer experiments and, can probably be adequately parameterized
for most problems, but the same is not true at the top. The interfacial layer
which buffers the convective PBL from the free atmosphere is still largely a
mystery in its dynamics, and it is not clear that it can easily be studied
with LES. Increasing the vertical resolution might not solve the problem,
because one would expect the three-dimensional nature of turbulence to dictate
& reduction in horizontal grid size as well.

There is also evidence that eddies of scale larger than typical LES
domains can be quite important in small-scale meteoroclogy--i.e., that the
domain size does not often fall in a "spectral gap.” For example, Sommeria
and LeMone (1978) and Nicholls et al. (1982) found that their LES results
underestimated the variances of specific humidity and horizontal wind, because
the horizontal scales contributing the most to thase variances was of the
order of 10 xm, larger than the LES domain size.

The exclusion of eddies larger than the domain size is a fundamental
limitation of the LES technique, because the atmosphere contains energy in the
horizontal component of turbulence at all scales, limited only by the
circumference of the earth. This lateral “turbulence” is known as long waves
to global forecasters, as traveling high and low pressure systems to synoptic
meteorologists, as frontal zones and squall lines to regional meteorologists,
as cloud complexes to cloud physicists, as convective eddies and longitudinal
roll vortices to planetary-boundary-layer researchers, and as small-scale

isotropic turbulence to surface-boundary-layer specialists. Lilly (1983)

points out that muich more mesoscale energy exists than can be predicted by the
decay of geostrophic turbulence, and reasons that some of this larger-scale
turbulence is produced by up-scale transfer from generation by gravity waves
and stratified turbulence. Pigure 13 is an example of a horigontal energy
spectrum which confirms that no spectral gap exists.
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Because of this exclusion of eddies larger than the LES domain size (4),
the standard deviation of the lateral distribution of pollutants, ay,
calculated using the LES model output, will grow in proportion to the square
root of time at larger travel times. HOowever, atmospheric measurements show
that °y is proportional to travel time, for travel times out to several days
(Gifford, 1982b), as shown in Figure 14. One must recognize this limitation

- and interpret diffusion results in terms of the time and space scales imposed H b_“
L by the domain of the LES model. A
(.. The LES approach is also inherently expensive, particularly in dispersion j-;j T_-L-:j::
i applications, because it yields tremendous detail which can only be made R
[ statistically meaningful by averaging over time and over several runs. For "1
5 example, a single LES run and its associated diffusion calculation might
’ correspond to a one~hour experiment in the atmosphere. We know from '
experience that stable statistics approaching the true ensemble average ones et r—J
are likely only if this exercise is repeated 10 to 100 times. At current h:‘

computer rates, therefore, it might cost on the order of $100,000 to produce a
reasonably stable average with LES technigues. This is very expensive v
compared to other modeling techniques, but should properly be compared to the
costs of field measurements.

Boundary conditions can also be troublesome. Periodic lateral boundary
conditions are often used, as we discussed earlier, but are not appropriate

for many problems, including some in dispersion. Sommeria and LeMone (1978)

found some evidence that their use of periodic lateral boundary conditions
influenced the evolution of clouds in their model. Open boundary conditions
are an alternative, but are difficult to implement properly when one does not 7
know the behavior outside the domain. XA
Numerical techniques need to be developed for the explicit simulation of
the dispersal of sharp-edged plumes while maintaining positive definiteness of

concentration and preserving the gharp gradients. - _

Diverse and important PBL phenomena are triggered by local structure at -t
the lower boundary. Spatially varying albedo, surface roughness, surface r—'—
elevation, and other properties can all influence the PBL flow above. Proper ';" ;_‘-.
representation of these influences in LES, in a region where much of the . 5:::
structure is subgrid scale, remains a challenge for future workers. Perhaps F’ g

some of the innovative nested-grid techniques of small-scale meteorology
(e.g., Clark and PFarley, 1984) could be used.
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Vinnichenko spectra were originally produced from time records,
while the Nastrom-Gage and Lilly-Petersen data were obtained from

jet aircraft records. From Nastrom and Gage (1984).
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Summary of data on horizontal atmospheric diffusion, from Gifford
(1982a). The solid curve is empirically fit.
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1.

2.

3.

Some major points regarding the current status of PBL research emerge

from our previous chapters.

In assessing possible roles of LES in future PBL research, our committee
considered carefully the recent history of LES in small-scale meteorology
{Chapter Five), but also weighed heavily its role in engineering fluia
mechanics (Chapter PFour).
research applications, and our committee feels that LES can become as

CHAPTER SIX
ROLES FOR LES IR PBL RESEARCH

Briefly summarized, these are

Inherent uncertainty is a major complication in PBL research,
strongly influencing both experiment and modeling. There have been
few attempts to generalize models to include prediction of inherent
uncertainty; in general this remains a challenge for the future.
Developing a new generation of models which predict inherent
uncertainty along with the means requires a broader, more reliable
PBL data base than now exists.

Because of their cost, difficulty, and limitations, field
experiments cannot be relied on to provide the improved PBL data
However, this

data base would benefit greatly from measurements in carefully

base necessary for the next generation of models.

designed laboratory experiments which simulate certain aspects of
the PBL.

LES experiments also have the potential of contributing
substantially to this data base through "field programs" on the

computer. Although LES has some limitations in PBL applications :
(e.g., loss of eddies larger than the domain size, poor resolution ﬁff
near bottom and top, difficulties with boundary conditions), the ?:j
advances which we expect in supercomputers over the next several :;Ei
years should ease these somewhat. LES experiments also have some :?;}
unique advantages, such as allowing the experimenter to control ;ﬁ:
individual variables in order to study their effect on the flow. ;?:
R

LES has been very productive in these engineering
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é important an influence in PBL research. This chapter discusses some of the & i:
i i.":-.
roles that we feel LES can play in the PRL research of the future. E i
o 6.1 LIES and Inherent Uncertainty
}f Inherent uncertainty--the inevitable difference between the beshavior of a
i PEL field in a given realization and its most likely (i.e., ensemble-average)
.} behavior-~is particularly important in dispersion applications. Today, the
\
Y dispersion modeling community tends to agree that a prediction of inherent “‘-
P uncertainty can be just as important as a prediction of mean values.
‘In dispersion problems, inherent uncertainty involves the statistics of ‘
N concentration fluctuations. As we discussed in earlier chapters, these are n E:::
s rarely measured in the atmosphere; most existing data come from laboratory 2 '.:5:
b S
. experiments. LES modsls have the potential of contributing substantially ] ?:;_
7 here, because an ensemble of LES-predicted realizations of a given dispersion E m
2 problem would yield both the mean behavior and the inherent uncertainty. e E«.“*"
g Thus, it should be possible, for example, to use LES to generate many of the HOLE
probability distribution functions needed in dispersion applications. - "‘-

-+ X

i

& 6.2 1ES and Data Bases
-". e e
;:. Large-eddy simulation can, in principle, yield detailed data on PBL ff' E’:

structure and processes, and as we have discussed in earlier chapters, these ’?::*"

data have a wide variety of potential uses. WUWe will briefly summarize vhat we o
g judge to be the more important ones. < F':_i
) As we discussed in Chapter Three, integral models have applications -
ranging from turbulent dispersion to heat, mass, and momentum transfer. "f
Whatever their intended application, they are based on specified forms for B “:1:
:i' certain mean profiles. Gaussian-plume dispersion models, for example, are f.q ;“5
L based on the assumption that a plume from a continuous point source has a - m
_3 Gaussian mean profile; mixed-layer models for the PEL assume that the mean s ’L::j
X wind, temperature, and scalar mixing ratio profiles are "well-mixed,” or g ::Z::
3 flat. While these profile forms are traditionally based on direct . ;:."Ei:
: measurements, LES ocould, in principle, be a better source of data in some » !:

cases. Lamd (1962) has discussed this approach in dispersion problems and ra
,‘:' shows how the Gaussian model can be improved with LES profiles. As another \ ;S,

P I WA &




example, Wyngaard (1984) has used LES profiles of scalar mixing ratio im the
convective FBL to devslop an integral modsl for scalar transport.

be Studies in §uamics

The studies of severe storms by J. Klemp, R. Wilhelmson and colleagues
provide excellent examples of the use of LES results to study the basic
dynamics of atmospheric processes. They studied storm splitting (Klemp and
Wilhelmson, 1978a,d), long-lived storms (Wilhelmson and Klesp, 1978), mature
supercell storms (Klemp et al., 1981), and the early stages of tornadogenesis
(Klemp and Rotunno, 1983). This illustrates that LES results, like direct
measurements, can be analyzed in the context of the governing eguations to
yield insight into the underlying dynamics.

c. Juramsterisations for higher-order-closure models

As we discussed in Chapter Three, higher-ordexr-closure wmodels rely on
parameterizations which, for PBL applications, are not yet fully tested and
verified because of the lack of suitable data on PAL structure. LES results
have the potential of providing data suitable for this testing process. PFor
example, the fluctuating pressure field in the enexgy-containing range is
resolved explicitly in LES, so that the various pressure covariances in the
second-moment conservation equations can be calculated directly; in fact, they
can be separated into contributions from mean strain, buoyancy, rotation, and
turbulence, as they sometimes are in second~order modeling. 1In this way,
parameterizations for these terms could be tested, and new ones developed as
needed. Turbulent transport (third-moment divergence) parameterisations could
be assessed in the same way.

4. Parameterisations for mstecorologiosl models

Any three-dimensional meteorological model needs parameteriszations for
subgrid-scale process within and above the PBL. Like any turbulence
parameterization, these are difficult to generate rationally. Thus, these
subgrid parameterizations tend to be crude, although they might represent very
important effects--such as the turbulent chemistry in long range transport,
the turbulent dispersion on the masoscale, or the transfer processes within
individual cumulus clouds. LES can be an excellent way to generate these
parameterizations.
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e. Experiment simulation and design ‘
Some PBL problems~--perhaps ones with particularly complex physics, or

ones which are site-specific--require direct measurements, in spite of the E

difficulties they entail. 1In such cases, in order to make best use of

resources, one needs to design the experiment carefully. We feel that LES

modeling of proposed experiments could be of considerable benefit in this

ey

. > e

design phase. H

LES could also provide meteorological test fields for the evaluation of
new remote sensing techniques, such as the method proposed by Lilly and Moeng ;.j:
(1984). It uses the three-dimensional, time-dependent field of a single o

(radial) component measured by a Doppler radar, plus the constraints provided
by the continuity and vorticity equations, to extract the full wvelocity field.
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CHAPYER SEVEN

Our previous chapters make it clear that LES has been used to study a
wide range of FBL probleams, including turbulent dispersion. However, it is
also clear that associated theorstical, computational, and experimental work
needs to be done before our confidence in its performance in general PFAL
applications reaches the level it now enjoys in engineering shear flow
applications, for example. Thus, ocur committee feels it is important to
establish some general guidelines for long-term development of LES models for
the planstary boundary layer, in order that investments in LES research can
provide optimm returns.

7.1 ¥Prograa Compomnents

Our committee feels that an optimum program to develop LES techniques for
application to planetary boundary layer problems, with an eventual focus (on a
several-year time scale) on turbulent dispersion, should have theoretical,
computational, experimental, and technology-~transfer components. The progress
of the NASA Mmes-Stanford University coalition in developing LES models for
shear flows, using this broadly based approach, has been very rewarding.
Although a specific strategy for LES dsvelopment is beyond the scope of our
study, we will offer general guidance on a number of research issues.

&+ Theozy

As we discussed in Chapter Five, LES has been applied to a number of
ssall-gscale problems in meteorology over the past 15 years, including studies
of PAL structure, diffusion, and severe storms. Some of these applications
have been strikingly successful. MNonetheless, our committee has identified a
number of important but unresolved theoretical issuss associated with LES, and
consequently feels that it is not yet a completely reliable, general-purpose
tool for solving PBL problems.
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Some of these issues relate to the parameterization of the subgrid-scale f: ,
eddies; Berring (1979) has given a theoretician's view of some of the :;_7_;
principal problems here. Some progress has recently been made for shear-flow E; .4
applications, as we summarized in Chapter Pour, but the optimum approach to B E‘-x
subgrid buoyancy effects, for example, is still not clear. Possibly spectral R ‘ff-;
closure theory could provide useful insights, judging from recent work - E’E:-‘
(Larcheveque et al., 1980; Chollet and Lesieur, 1981). R
Subgrid-scale parameterization is particularly important in dispersion = ':,{,;
applications, as we discussed in Chapter Five, since it must represent the *.;"_-‘ ;&“'
early stages of two-particle diffusion in their entirety if the initial Frosd
separation is less than the grid spacing. Lamb (1981) has made some f
theorstical progress here, but much remains to be done, particularly for _ E
buoyant sources. 3 ;
Kraichnan (personal communication) is currently studying nonlinear =' 2

systems with many modes; his intent is to develop a rational technique for -
calculating the system evolution by carrying only a few of the modes but using . A p
the moment constraints given by the full set. His results to date are ' i;‘l'
preliminary, but give some encouraging indications that a few well-chosen Ly

modes plus a moment constraint can accurately represent the full, nonlinear E

system. One implication for turbulence modeling could be that a finite number by H'
o« ‘3'.'5‘ y
of wavenumbers, distributed through the turbulence spectrum (including the = :3;-,:;

inertial and dissipative ranges) might ultimately allow better predictions
than the current LES approach (which concentrates the modes in the energy-
containing range and does not resolve structure at larger and smaller
wavenumbers) .

There are also unresolved theoretical problems in the specification of RS

lateral boundary conditions, particularly in dispersion applications. A -
related problem is the proper accounting for eddies larger than the LES domain " .‘_5;'-?:
size, wvhich we showed in Chapter Five can also be very important for * Ej’:
dispersion. Finally, there are also numerical problems in the simulation of ey '-
the dispersal of sharp-edged plumes of material. '
b. Computation "
We showed in Chapter Four how the engineering LES community is continuing - ‘
to use full turbulence simulation (FTS) as a tool for developing LES. It has E i ;
been extremely valuable, for example, in testing and refining subgrid-scale ::Z::;
parameterizations. BExtending FTS8 to turbulent dispersion, and to stably and E:’ \:,E
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unstably stratified flows, is an important and necessary step toward the
optimm development of LES for FAL applications, in our view. 3ZEven though the
F?8 techingque is limited to low Meynolds numbers, it can give data bases all
but impossible to obtain in any other way.

¢. Experimeat

By its nature, an LES model predicts a large array of flow properties.
We feel that as many of these properties as possible should be tested against
measurements from both the laboratory and the atmosphere. In Chapter Two we
described a number of specific laboratory experiments which should be dome in
stably and unstably stratified flows. Testing against such data bases has
proven to be a very powerful technique in the development of engineering LES
models.

Although there are indications that the days of large-scale, intensive
PBL experiments yielding vast, research-gquality data bases may be past, there
is a possibility that PBL experiments will be carried out during the proposed
STORM program of the late 1980s. If so, we would recommend that the data be
used for testing LES predictions, to the extent possible.

Ideally, atmospheric measurements for the testing of LES predictions
would include not only the usual properties (mean profiles, surface fluxes,
cloud cover and type) but also some not often measured (e.g., flux profiles,
mesoscale variability, structure of the inversion). Not all of these
properties are easily measured, however, and vhen coupled with the general
difficulties of direct measurements in the PBL (summarized in Chapter Two)
this makes a definitive comparison of LES predictions with PBL oh“rvatl.m a
formidable challenge. Perhaps the innovative use of modern Doppler radars and
other new instrumentation will be needed to attain the detailed PBL data
necessary for assessing LES predictions.

Due to the difficulty and expense of making measurements in the PBL, the
design of PBL experiments has its own formidable challenges. We feel that LES
can be useful in this design, particularly in the case of flows (such as those
over complex terrain) rich in "large-eddy” phenomena that are difficult to
understand or even anticipate & priori. 7This illustrates vhat we see as the
potentially strong interactive coupling between LES and PBL observations.

Since dispersion experiments in the atmosphere are very difficult and
expensive, that aspect of LES performance should be first tested against
laboratory measuremsnts, in our opinion. As discussed in Chapter Two, the
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Willis-Deardorff measurements of dispersion in a convection tank already stand -
as a suitable data base for both neutrally and positively buoyant releases. G
4. Technology transfer
Because LES models are intricate, computationally demanding, and 5,
expensive to use, we 4o not forsee their availability for routine PBL &
applications in the near future. MNonetheless, we have identified in Chapter o
8ix several areas where LES studies could almost immediately stimulate
- technology transfer from PBL research to applications. Thus, we would
: recomnmend that an LES development program have an applied component in which
- LES would be used in
® studying the sources and physics of inherent uncertainty, and ,
quantifying it in dispersion applications; )
: ® developing parameterizations for higher-order-closure models of the ﬂ
PBL;

® developing subgrid-scale parameterizations for larger-scale
meteorological models.

7.2 The Management Challenge E
This LES program would ideally be carried out, in our opinion, by a group

with a "critical mass"

in contact with the small-scale meteorology community

in contact with the engineering LES community ol

with a supercomputer :

with sustained funding

free to work to high standards.

It is not clear to us that an institution capable of fostering this LES

program now exists in this country. While we feel that an Institute for

Environmental PFluid Mechanics, perhaps patterned after RCAR, could provide a

suitable environment, the realities of today's funding picture make such

substantial new starts seem unlikely.

Large sums have been spent on atmospheric dispersion research in this N .
country over the past 20 years, and yet in the perception of some observers B8
the applications of the resulting basic science to practical problems remain oo <
disappointing. Some would give high priority to funding realignments which E:

could expeditiously rectify this situation. While our committee does not feel
that a "crash" LES program is such an expedient, it does believe that a

..............
......................................
---------------------
-------------
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carefully designed, well-balanced program having the components we listed
could make the next 20 years much more productive. |

Our comnittes feels, therefore, that choosing appropriate roles for LES
in the boundary—-laysr problems of the future, fostering its development for
thess roles, maintaining an appropriate balance among basic research,
development, and applications, all within an austere funding climate, is a
formidable management challenge. We will next offer some guidelines, drawn
from the experience of the engineering LES and the meteorological communities,
on how this challenge could de met.

7.3 Management Guidelines
Our committee feels that certain management strategies could stimslate
the LES development we recommend, even with the initial absence of a ready,
coherent community. Specifically, we feel that
1« Periodic conferences on turbulent geophysical flows, patterned after
the 1980-81 APOSR-HTTH-Stanford Conference on Complex Turbulent
Flows {(Xline et al., 1981) could greatly stimulate the growth of an
environpental fluid mechanics comsunity. . v
Post~doctoral programs in supercomputer environments, designed
specifically for environmental fluid mechanics, oould bring talented
new workers into the field.
Modularization and dissemination of FTS and LES codes and the
development of efficient software for managing out-of-core
calculations could greatly simplify the task of building LES mdels
for PBL applications.
Enhancement of laboratory facilities for the simulation of
geophysical turbulence could provide some of the data bases needed
for the optimum development of LES codes.
Our national consciousness about supercomputing is being raised.
There is a growing realization that computers can greatly snhance
our understanding of the mathematics of nonlinear dynamical
processes such as turbulence. Novements are under way at the
federal level to facilitate access to supercomputers. 7This seems a
particularly good time for lobbying efforts on the bshalf of LES
development for environmental fluid mechanics.
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6. Substantially enhanced computer graphics software could provide

supercomputer versions of the flow visualization techniques which -

have traditionally been used in laboratory fluid mechanics. These

- techniques are dramatically displayed in Van Dyke's (1982) An Album

of Fluid Motion, a collection of photographs of fluid flow which is ‘
L attracting wide attention. Flow visualization is recognized as

!l vitally important to fluid mechanics research, and we believe that B

L Jaar et ondi
RSN

computer graphics will be just as important in the computational
approach.

7.4 A View of the Future

.'ani A

Supercomputers are not only revolutionizing turbulence research; they are
impacting the entire field of nonlinear dynamics. Describing this impact in

ﬂi his article, "Computational Synergetics,” Zabusky (1984) stresses their use in -
o what he calls the heuristic mode, in which, he says, computers can “"ghine the
-
light of inepiration into areas which had been thought devoid of new concepts
or fundamental truths.”
Through a number of striking examples, many from fluid mechanics, Zabusky ::
convincingly demonstrates the power of computers in mathematics and physics.
Near the end of this article, he looks ahead:
I believe that computational studies will be as useful in the
future development of nonlinear science as the accelerators of -
the past were for nuclear and particle science. It is only a -
historical accident that supercomputers became available later
than the superaccelerators. An important asset of the
computational physicist or mathematician is the will to use
the computer resources to the limit when the algorithmg are
working and the physics is puzzling.
The most direct and powerful application of supercomputers to small-scale -
meteorology is, in our opinion, large-eddy simulation. 1Its impacts to date,
while substantial, could be dwarfed by those over the next decade. In order
for that to happen, however, we feel that techniques for manipulating and ~

displaying LES results will have to be substantially improved. Zabusky
perceives the same need and in his article lucidly describes what he sees as
the necessary attributes of a new generation of facile, interactive graphics
software.

Furthermore, we must expect that many of the exciting advances yet to S
come in LES will be made by young researchers, perhaps some not yet out of - o

school. Zabusky asks: fﬂ;}




Are we providing the kind of training in our universities that
our students will need to undertake this style of work at the
nonlinear frontier? I believe not. We will need to find new
methods for teaching students to experiment with ocomputers the
way we now teach them to experiment with lasers or cyclotrons.

Clearly, then, the challenges and opportunities for LES in mmall-scale
meteorology are, to & large extent, those of supercomputing in physics. An
optimum response will require the participation of a broad group of
individuals and institutions, but will, we believe, bring great rewards.
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_‘ NUMERICAL SIMULATION OF
- TURBULENT FLOWS'

.. Robert S. Rogallo and Parviz Moin

Computational Fluid Dynamics Branch, NASA Ames Research Center,
Moffett Field, California 94035

phc il

1. INTRODUCTION

A century has passed since O. Reynolds demonstrated that fluid flow
= changes from an orderly and predictable state to a chaotic and un-

AP R AT B
o
A

. predictable one when a certain nondimensional parameter exceeds a
4 critical value. The chaotic state, turbulence, is the more common one in
4 E: most flows at engineering and geophysical scales, and its practical
§ 7 significance, as well as the purely intellectual challenge of the problem, has

atiracted the attention of some of the best minds in the fields of physics,
. F engineering, and mathematics. Progress toward a rigorous analytic theory
SRS has been prevented by the fact that turbulence dynamics is stochastic (often s
% o having underlying organized structures) and strongly nonlinear. There are, =
2 %-r; however, rigorous kinematic results that stem from tensor analysis and the o
> linear constraint of continuity, and these allow a reduction of variables in K
N the statistical description of the velocity field in certain cases, especially for
',' 4 isotropic turbulence. Rigorous dynamical results are available only for i
S limiting cases where the governing equations can be linearized, and ;'.;
h although the required iimits are seldom approached in practice, the linear r3
N analysis provides guidance for model development. In spite of the dearth of [
| rigorous nonlinear resuits, we have accumulated over the years a surpris-
f,a A ingly good qualitative understanding of turbulence and its effects. Indeed, -,
A the gems of turbulence lore are the scaling laws for particular domains &
1 (either in physical or wave space), which result from the recognition of the ?
[ | q

! The US Government has the right 1o retain a nonexclusive royalty-free license in and to
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essential variables and the constraint of dimensional invariance. In

particular, the Kolmogorov law, and the law of the wall, are so well
established that compatability with them is required of any theory or
simulation.

All attempts at a statistical theory of turbulence have ultimately been
faced with the problem of closure, that is, the specification at some order of
a statistical quantity for which no governing equation exists. The success of
the closure model depends not only on the flow configuration, but also on
the statistical order at which results are desired. When the closure model is
inadequate for accurate determination of the desired statistics, the model
must be improved, or closure postponed to yet higher order. Most of the
closures attempted to date may be classified as either one-point or two-
point, depending on the number of spatial points appearing in the desired
statistical results. Reviews of the many one-point closures are given by
Reynolds (1976) and Lumley (1980). The much more complicated two-point
closures [the Direct Interaction Approximation (DIA) and the related Test
Field Model (TFM) of Kraichnan (see Leslie 1973), and the Eddy Damped
Quasi-Normal Markovian (EDQNM) mode! of Orszag (1970), Lesieur &
Schertzer (1978), and Cambon et al. (1981)] have been limited to
homogeneous (usually isotropic) flows, where symmetry allows a reduction
of variables.

Progress in the experimental study of turbulence has not been as difficult
as that of analysis, but it has required great ingenuity in the collection of
data and often in setting up the flows themselves. The results are usually of
two kinds: statistical and visual. The velocity statistics are collected by use
of hot-wire probes and, more recently, also by use of the laser Doppler
velocimeter. Flow visualization has been particularly useful in aiding the
interpretation of statistical data and identifying persistent flow structures.
The primary difficulty with experimental turbulence data is the lack of it;
the theoretician needs a number of statistical quantities, some of which (for
example, those involving the pressure) are difficult to measure. A secondary
problem is the isolation of the effect of a single parameter ; for example, the
effect of rotation on the decay of turbulence generated by a screen in a wind
tunnel must be separated from the effect of rotation on the turbulence-
generation process itself. Modern electronic recording and computing
equipment has increased the quantity and quality of available data and has
led to more-sophisticated analysis techniques (for example, conditional
averages and pattern recognition).

The turbulence problem is so challenging that any research tool found
successful in even remotely similar problems is quickly brought to bear. The
two-point closures are such examples, as are the concepts of “critical
phenomena,” “strange attractor,” and *“renormalization.” Thc high-speed
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digital computer is another recently developed tool with obvious appli-
cation to the problem. The computer is used in other ways in fluid dynamics
(see Van Dyke's article in this volume), but its most straightforward use is
for “brute force™ numerical simulation.

The numerical simulation of turbulence as we know it today rests largely
on foundations laid down by the meteorologists at the National Center for
Atmospheric Research (NCAR); their early work is reviewed by Fox &
Lilly (1972). Since that time, computer capacity has increased by over an
order of magnitude as has the number of workers in the field. Although
some progress has been made in the efficiency and accuracy of compu-
tational algorithms, particularly in the adaptation of spectral methods, the
primary pacing item determining our ability to simulate turbulence is the
speed and memory size of the computing hardware (Chapman 1979, 1981).

The choice between simulation and experiment for a specific flow reduces
to two questions : can the desired data be obtained at the required accuracy,
and if so, how much will it cost? At the present time, simulation can provide
detailed information only about the large scales of flows in simple
geometries, and is advantageous when many flow quantities at a single
instant are needed (especially quantities involving pressure) or where the
experimental conditions are hard to control or are expensive or hazardous.
Simulation cannot provide statistics that require a very large sample or that
remain sensitive to Reynolds number even at high Reynolds number. It is
particularly advantageous to use both simulation and experiment for
delicate questions involving stability or sensitivity to external influences.

Turbulence consists of chaotic motion, and often persistent organized
motions as well, at a range of scales that increases rapidly with Reynolds
number. This restricts complete numerical resolution to low Reynolds
number. When the scale range exceeds that allowed by computer capacity,
some scales must be discarded, and the influence of these discarded scales
upon the retained scales must be modeled. We shall distinguish between
completely resolved and partly resolved simulations by referring to them as
“direct” and “large-eddy” (LES), respectively, although these terms are

‘often used interchangeably in the literature to indicate both without

distinction. The descriptor “large-eddy™ is misleading when the important
flow structures 1o be resolved are extremely small as are those near solid
boundarics, and at the dissipation scale at high Reynolds number. The
attraction of direct simulation is that it eliminates the need for ad hoc
models. and the justification often advanced is that the statistics of the large
scales vary little with Reynolds number and can be found at the low
Reynolds numbers required for complete numerical resolution. This
approach has been successful for unbounded flows where viscosity serves
mainly to set the scale of the dissipative eddies, but it has not been successful
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for wall-bounded flows, such as the channel flow, where computational
capacity has so far not allowed a Reynolds number at which turbulence can
be maintained. This is typical of many flows of engineering interest and
forces the development of the LES approach.

The basic philosophy of LES is to explicitly compute only the large-scale
motions that are directly affected by the boundary conditions and are
therefore peculiar t0 the problem at hand. The small-scale motion is
assumed to be more nearly universal, that is, its statistics and their effect
upon the large scales can be specified by a small number of parameters. We
hope that convergence of the method with increasing resolution will be
rapid, because our ability to parameterize the sub-grid scale (SGS) effects
should improve as the SGS length and time scales become disparate from
those at energetic scales, and also simply because the SGS effects are
proportional to the reduced SGS energy. The LES approach lies between
the extremes of direct simulation, in which all fluctuations are resolved and
no model is required, and the classical approach of O. Reynolds, in which
only mean values are calculated and all fluctuations are modeled.

The numerical simulation of turbulence requires judgments with respect
to the governing equations, initial and boundary conditions, and numerical
resolution and methods. In the following sections we discuss some of the
available choices and the results that follow from them.

2. GOVERNING EQUATIONS

We limit our discussion of simulation technique to flows of incompressible
Newtonian fluids governed by the Navier-Stokes equations. Effects of
buoyancy, compressibility, density stratification, magnetic forces, and
passive scalar transport introduce new physical phenomena but increase
the simulation difficulty in degree rather than kind. The convective terms of
the equations produce a range of scales limited by molecular diffusion, so
that with sufficiently low Reynolds number the entire range can be
numerically resolved and no modification of the governing equations is
required. When computer capacity does not allow complete resolution and
the equations are not modified to take this into account, the computed
values may have no relation to fluid physics. The numerical algorithm may
become unstable as the smallest computed scales accumulate energy or,
when energy-conserving numerical approximations are uscd, the encrgy
may reach a nonphysical equilibrium distribution among the finite degrees
of freedom. Orszag (see Fox & Lilly 1972) has demonstrated that energy-
conserving numerics in inviscid isotropic flow lead to energy equipartition
among the degrees of freedom, and this is ofien used as a check of
algorithms and programming in simulation codes. When the viscosity is not
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| zero but is too small to allow accurate resolution of the dissipation scales,
W an encrgy-conserving algorithm collects energy at the smallest computed
scales until the dissipation and cascade rates reach equilibrium. Kwak et al.

-

=
b (1975) show that this excess energy, trapped at the mesh scale rather than
b cascading to the Kolmogorov scale, produces too rapid an energy transfer
rm from large scales. This would be expected if the small scales act on the Jarge
3o scales as an eddy viscosity with a value, proportional to the length and
velocity scales of the trapped energy, that is increased by the entrapment.
SIINE One of the most important modifications of the Navier-Stokes equations is
TR a mechanism for removal of energy from the computed scales that mimics
. as closely as possible the physical cascade process. The first step in an LES
CE is then to define the variables that can be resolved and their governing
NI equations.
B P The values at discrete mesh points of a simulation represent flow
- l':' variables only in some average sense, and one way to define this sense is to
" find the diflerential equations that are exactly equivalent to the discrete
Y approximation of the Navier-Stokes equations (Warming & Hyett 1974).
B The popular second-order central difference formula for the derivative of a
f: continuous variable, for example, gives exactly the derivative of a second
o . continuous variable that is an average of the first one:
: u(x+h)—u(x—h) d (1 [***
: - - {2,. I . u(t)dt}. 1)
- This shows how a discrete operator filters out scales less than the mesh size
h. The direct use of such operators on the terms of the Navier-Stokes
o ‘ equations then introduces a different averaged variable for each term,
ao depending on the derivative and discrete operator involved. This direct
5 approach is therefore limited to completely resolved flows where the
averages cause no information loss and all such averages give the same
value. When the Reynolds number is too high for the direct approach, the
e range of scales can be limited to a resolvable size by explicitly filtering the
N Navier-Stokes equations. This formally defines the averaging process that
3 separates resolvable from subgrid scales and the SGS stresses that must be
:.'; :.‘:"- modeled. When the smallest scale, O(A), allowed by the filter and the SGS
4 (o model is sufficiently greater than the smallest scale, O(h), resolved by the
.- A mesh, the results of the computation are independent of the choice of
b numerical algorithm and depend only on the filter and SGS model.
A Complete separation of physics from numerics is very costly in an LES,
YE where mesh doubling in three directions increases the cost by an order of
. C magnitude or more and in practice A = O(h) in each direction. Thus,
e resolution of the smallest computed scales is often marginal, and care is
" .. required to insure that the truncation error is less than the physical SGS
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to the Navier-Stokes equations to obtain the “resolvable-scale™ equations " )
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- Here, and throughout the paper, an overbar denotes a resolvable scale . ,-_"?‘;'

5 quantity and a prime denotes an SGS quantity. The convective fluxes are EON

;‘;‘: = E“?;"’Qu' Qi = Tuj +ujd; + uuj. “) S
The equations must be closed by specifying these fluxes as functionals of the &

resolved variables. The terms containing u’ must be modeled, but only the R

deviation from isotropy has dynamic effect. The &4, term may be computed ‘ N

directly from resolved variables. When the average is uniform over an ;;.l:fi-ff

unbounded homogeneous dimension (space or time) or ls a slanstlcal FR0S
: (ensemble) average, the postulates of O. Reynolds lead to u,u, = u,u,+u‘u s E ‘
but the postulates do not apply to averages over bounded domains (Monin N ‘;‘}-

: & Yaglom 1971, Leonard 1974). The convolution (2) simplifies to k) j: gf:l'

: = G(k)f(k)in wave space, from which it follows that f* = G(1 —G)f is zero ST
' only when G is piecewise constant at values of 0 or 1. Reynolds’ average is
. equivalent to G(k) = 0 for |k| > 0, and Fourier spectral methods implicitly : F .'\,.
: filter with G(k) = 0 for [k| > k,,,,. In the latter case &,d; = i, for resolved . NN
: k, but @u) ¥ O there. NN
An alternative derivation of the resolvable scale equations by Schumann RN
(1975) averages the equations over the cell volumes of a fixed mesh. This

leads directly to the integral form of the Navier-Stokes equations in which GRS
time derivatives of cell-volume velocity averages are related to differences of I

cell-surface average stress and momentum flux. The various surface .

averages of momentum flux are decomposed as in (4) assuming Reynolds * N

postulates, and the required surface averages of velocity and its gradient arc
related to volume averages of velocity by Taylor-serics expansion. There is
an inconsistency between the assumption of piecewise constant velocity
required for validity of the Reynolds postulates and the usc of Taylor-series
expansions, but the resulting equations, except for the SGS model, arc
precisely those obtained by Deardorfl (1970) using the continuous aver-
aging process (1) and second-order nume-ics on a staggered uniform
mesh.
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The cell-volume averaging used by Deardorfl and Schumann does not
satisfy Reynolds postulates, and the difference u,u; — &4, is modeled. The
part of this, 4,6, &, that can be computed directly from resolved
variables is known as the Leonard term. Leonard (1974) shows that this
term removes significant energy from the computed scales and should
probably not be lumped with the SGS terms. If direct calculation of the
term is difficult he proposes a simple model, based on its Taylor-series
expansion:

‘o

au; ~ du; + ‘;vz(fiﬁj)'i' Tty Y= J' iB12G(o ds. &)
At low Reynolds number Clark et al. (1979) find this form to be quite
accurate when compared with values from a direct simulation. Shaanan et al.
(1975) used a numerical operator for the divergence of the flux tensor in the
Navier-Stokes equations that has lowest-order truncation error of nearly
the form (5), thereby implicitly capturing the Leonard term. Most
subsequent authors who explicitly filter the equations simply compute &4,
(Mansour et al. 1979). Clark et al. (1977) also find that the measured “cross™

terms C;; = ruj-t-fi, drain significant energy from the resolved scales.
Again, part of the effects can be captured by a Taylor-series expansion of the
resolved scale velocity :

— —_. Ao éa
u,u,~ll,ll}+ﬁ5;:‘-é;f+"', (6)

where ;, = §;,—%, and we have used a Gaussian filter, G(¢{)

= _/(6/nA) e %4, Clark et al. (1977) propose a different model for the
cross terms, but its derivation involves the Taylor-series expansion of the
SGS velocity field. The dependence of the modeled terms in (4) upon the
filter (for example, the vanishing Leonard term for sharp filters in wave
space) suggests that simulation accuracy might be improved by a particular
choice. Deardorfl (1970) and Schumann (1975) use cell-volume averages
related as in (1) to their finite-difference operators, and Chollet & Lesieur
(1981) use the sharp filter implied by their Fourier spectral methods. When
the choice of filter is divorced from the numerical algorithm, and this can
only occur for A » h, the Gaussian filter (Kwak ct al. 1975, Shaanan et al.
1975, Mansour et al. 1978, Moin & Kim 1982) is usually used for
homogeneous dimensions because it provides a smooth transition between
resolved and subgrid scales and is positive definite (in fact Gaussian)in both
physical and wave space. The optimum choice is of course the combination
of filter and model that minimizes the total simulation error. The ratio of
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filter to mesh resolution, A/h, serves primarily to control numerical error,
while the form of the filter and the form of the closure model determine the
modeling error. The dependence of the model on the filter is studied, in
isotropic flow within the TFM framework, by Leslie & Quarini (1979) and,
for solutions of the Burgers equation, by Love (1980). -

The averaged Navier-Stokes equations (3,4) provide a conceptual b
framework for the discussion of modeling. The practical value of explicitly
filtering the convective terms is a matter of current debate. The Leonard
term is O(A?), so it seems pointless to compute it separately in simulations
using second-order numerics with error of O(h?) unless A/h » 1 and the
filtered field is well resolved. When the Leonard term is not swamped by
numerical error, the filter, SGS stresses, and velocity field are related by (4),
and the filter and model, M(u), should in principle be selected together to
minimize in | some sense the modeling error u,u; — &,a; — M, ,(i7); the filtered b‘
convection &4, is then computed directly. Kwak et al. (1975), for example,
assume a Gaussian filter and a Smagorinsky (1963) SGS model and
optimize the filter width and model constant by matching decay rate and NS
spectral shape from the LES with experimental data for isotropic turbu-
lence. A general study of filter and model forms has not yet been attempted.
But the true filter is always uncertain because of the inherent inability of E
SGS models to exactly satisfy (4), so that the Leonard term cannot be found
without error. An argument against separate treatment of the Leonard term
is advanced by Antonopoulos-Domis (1981), who finds that in his LES
calculations it moved energy from the small resolved scales to the large
ones, rather than to the subgrid scales as predicted by Leonard. Leonard & c
Patterson (unpublished) point out that in isotropic turbulence the transfer U]
spectrum T(k) associated with the flux 7,4, is negative at small k, positive at
large k, and is conservative. The transfer spectrum associated with the

filtered flux ;7‘_:7; is simply G(k)T(k) and can reasonably be expected to
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.
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remove energy from the resolved scales. The proper way to determine the - 1
effect of the Leonard term is to measure (he energy transfer associated with S "'.-,._;Q.-
the filtered convective term in an accurately resolved field. Studies of this .Q_ X
kind by Leonard & Patterson, Clark et al. (1979), and Leslic & Quarini :';: o
(1979) have verified the energy drain but at a lower magnitude than .
Leonard’s original estimate. Antonopoulos-Domis draws his conclusions

from simulations with no viscous or modeled turbulent terms. His results
do indicate that the approximate form (5) alonc is not sufficient to stabilize
the calculation, but they do not indicate the effect of the Leonard termin a
well-resolved calculation. A more general problem with explicit filters is
the difficulty of extending them to inhomogeneous dimensions, where
differentiation and filtering do not in gencral commute, but this does not
seem insurmountable.
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The equations of LES are then essentially the original Navier-Stokes

< equations written for averaged variables, with a filtered convection term G,
B iE and additional terms to model the effects of the unresolved scales. The only S
£ = change from the original analysis of O. Reynolds is the use of averages over (3%
bounded domains, which requires the convective term to be filtered. The -
X E crux of the problem remains the closure model. s
N 3. MODELS
B Statistical homogeneity in space or time reduces the dimensions of the
Reynolds-averaged problem, and all of the effects of fluctuations in the i
A missing dimensions must be accounted for by the model. The variation of o
L correlations in the remaining inhomogeneous dimensions is peculiar to the sy
s 'u specific problem and cannot be modeled in a universal way. In an LES the
) equations are averaged over only small scales and retain all space-time b
S dimensions. The averaging process is chosen to resolve numerically the ,‘_}}f '
N physical features of interest, and the desired statistics are measured directly N
- from the computed scales. The role of the model is not to provide these N
R, statistics directly, but to prevent the omission of the unwanted scales from hos
I spoiling the calculation of scales from which statistics are taken. .
- It is apparent from the LES work to date that the most important s
3~ contribution of the model is to provide, or at least allow, energy transfer i
- -2 between the resolved and subgrid scales at roughly the correct magnitude. .‘“:
. This transfer is usually from resolved to subgrid scales but may be reversed e
B near solid boundaries, where the small productive eddies are not resolved .
;; and the SGS model must account for the lost production. Models can be b
- tested cither by directly comparing the modeled quantity with the model SN
- itself, using data from a reliable source (theory, experiment, or direct T
o simulation), or by using the model in an LES and comparing results with s
- - those from a reliable source. The detailed information required for the .
oo former test can be supplied only by theory or simulation, and in practice the o
¥ latter procedure is the more common. This is consistent with the LES LR
S philosophy ; the model is not required to supply detailed information about nRE
CAS the subgrid scales. But there is frequently a need to improve the model's -
. description of physical detail and thus allow increased reliance on the
v model and lower computation cost. The sequence of model complexity .~:L;~1
5o could follow the same path as for the Reynolds-averaged equations, with ::2-;1
: . the introduction of separate equations for the SGS stress or encrgy :\:

Py E (Deardorfl 1973). Butin an LES the SGS length scales are given by the filter
width, and velocity scales can be estimated from the smallest resolved

i

, scales. Bardina et al. (1980) suggest that the SGS stresses themselves be Z::;\
SR modeled by an extrapolation of the computed stresses at the smallest }_.-q
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resolved scales. The simplest model, uju; ~ Cu;u; = C(a;—a;) (d;—;), has
been tested by McMillan et al. (1980) using data from direct simulations.
The model correlates much better with the data than does a typical eddy-
viscosity model, but Bardina et al. find that it is not sufficiently dissipative
to stabilize an LES.

The effects of discarded scales on computed ones consist of “local”
contributions, which diminish rapidly as the interacting scales are sep-
& arated, and “nonlocal” contributions, which are significant even for widely
= separated scales. The interaction between scales of similar size retains the
[

full complexity of the original turbulence problem, so there is little hope of
modeling the local effects well. On the other hand, interaction of disparate
scales is easier to analyze, so that nonlocal effects can be modeled with
: greater confidence.

5 The modern statistical theories of isotropic turbulence (DIA, TFM,
E EDQNM) provide models in which the roles of the various scales can be
determined. Kraichnan (1976) and Leslie & Quarini (1979) evaluate the
transfer spectrum within the TFM model, showing explicitly the local and
nonlocal (in wave space) effects of the truncated scales on the energy flow
within the resolved scales. The transfer spectrum is of the form T(k) =
- Zwk)m k2E(k)+ U(k), where k is the wave-number magnitude, k,,
is the limit of wave-number resolution, wk) is a nondimensional eddy
viscosity, and E is the three-dimensional energy spectrum. The first term

arises from stresses like 4;u], while the “backscatter™ term U(k) arises from
the uju; stresses. The forms w(k) and U(k) depend upon both the filter and the
energy spectrum; Kraichnan considers a sharp k filter in an infinite inertial
subrange, and Leslie & Quarini extend these results to a Gaussian filter and
more-realistic spectra. Kraichnan finds that the local effects are confined to
scales within an octave of k,, and are characterized by a rapid rise in transfer
as k approaches k... The net energy flow across k,, is dominated by this local
transfer as described by Tennekes & Lumley (1972). Below this local range,
k < k,./2, the viscosity is independent of k [but depends on time through
E(k,)], and the backscatter decays like k* (Lesieur & Schertzer 1978). This
backscatter might be important in unbounded flows, where length scales R
grow indefinitely and, as Leslie & Quarini note, its form is not well - &
represented by an eddy-diffusion model because neither its magnitude nor -
anisotropy level are set by the large scales. Their results indicate that a
Gaussian filter damps the SGS contribution to the local cascade too
severely and broadens its range ; this suggests that a sharper filter might be
found in which the Leonard term carries the entire local transfer and leaves
only the nonlocal effects to be modeled. Chollet & Lesieur (1981) achieve -
- the same end using Kraichnan's cffective eddy viscosity to successfully close R

-, both EDQNM and LES calculations. Chollet (1982) closes an LES by T
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! coupling it to an EDQNM calculation for the effective eddy viscosity, thus
avoiding an assumed SGS energy spectrum. This is a rather elaborate “one- 23
v equation” model. The extension of EDQNM to homogeneous anisotropic i
N flows by Cambon et al. (1981) allows application of this approach to less- f‘ :
restricted SGS stresses, but at a great increase in complexity. Yoshizawa P
(1979, 1982) relates these statistical closures in wave space to the gradient- ;
diffusion closures in physical space by a formal multiscale expansion. The N
assumption that the SGS time scale, as well as space scales, is disparate from _.
those of the resolved scales leads to SGS stresses that are locally isotropic at RS
- lowest order and of gradient-diffusion form (scalar eddy viscosity) at next i
order. The more interesting limit of commensurate time scales, leading to "
homogeneous but anisotropic SGS turbulence at lowest order, is prevented <
¥ by the resulting complexity of the required DIA closure.
Lo The gradient-diffusion model for SGS stresses is usually postulated with T
B appeal to the similar stresses produced by molecular motion. But it is well
5 known (Tennekes & Lumley 1972, Corrsin 1974) that the required scale
L separation, present in the case of molecular diffusion, does not occur
. between all of the scales of turbulence. In the Reynolds-averaged equations
s for flows having a single length and time scale, the gradient-diffusion form is
I required by dimensional analysis but the model cannot handle multiple
’ scales (Tennekes & Lumley 1972). The eddy-viscosity model of the SGS
stress tensor is
& L= Q-‘j-iQu 8ij ~ —2v¢ Sy, )]
where v, is the eddy viscosity, and S;; = $(é,/0x,+ 8ii,/0x,) is the strain-
rate tensor of the resolved scales; the SGS energy 4Q,, can be combined P
with the pressure and has no dynamic effect. o
he Smagorinsky (1963) proposes an eddy-viscosity coefficient proportional e
E- to the local large-scale velocity gradient: T
- vy = (CsA)IS|. ®)
iy NS
- Here, C, is a constant, the filter width A is the characteristic length scale of ';.-;\_
-3 the smallest resolved eddies, and |S| = ./S,;S,;. This model and its variants RN
= have been used in numerical simulations with considerable success. N
Assuming that scales of O(A) are within an inertial subrange so that |S| can ¢
S be found from Kolmogorov's spectrum, the analysis of Lilly (1966), with rZ;:;:
N a Kolmogorov constant of 1.5, gives values of Cg from 0.17 to 0.21, N
.. depending on the numcrical approximation for S;;. Subsequent investi- "’-
E gators determinc C; in an empirical manner. In large-eddy simulations of s
decaying isotropic turbulence, Kwak et al. (1975), Shaanan et al. (1975), [:__
. Ferziger et al. (1977), and Antonopoulos-Domis (1981) obtain Cs by TN
:: matching the computed energy-decay rate to the experimental data of ',.;-‘52:
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Comte-Bellot & Corrsin (1971). For several computational grid volumes
and different filters they find Cs to be in the range 0.19-0.24. None of these
calculations extends to an inertial subrange, and different treatments of the
Leonard stresses and numerical methods are used ; thus, the small variation
of Cs indicates its insensitivity to the details of the energy-transfer
mechanism in isotropic turbulence.

In a simulation of high-Reynolds-number turbulent channel flow,
Deardorff (1970) finds that the use of the value of Cs estimated by Lilly
causes excessive damping of SGS intensities, but that a value of 0.1 gives :
energy levels close to those measured by Laufer (1951). Deardorff (1971) e
attributes this difference in C to the presence of mean shear, which is not '
accounted for in Lilly's analysis. In the calculation of inhomogeneous flows
without mean shear, where buoyancy is the primary driving mechanism,
Deardorfl (1971) finds Cs = 0.21 appropriate. Lower values lead to
excessive accumulation of energy in one-dimensional energy spectra near . 4
the cutoff wave number.

Using flow fields generated by direct numerical simulation of decaying
isotropic turbulence at low Reynolds number, Clark et al. (1977, 1979) and
McMillan & Ferziger (1979) tested the accuracy of Smagorinsky’s model
and calculated Cs. They give values of Cg comparable to those obtained
empirically in the large-eddy simulations. McMillan et al. (1980), using data
from direct simulations of strained homogeneous turbulence, find that Cs
decreases with increasing strain rate, which confirms the conclusions of
Deardorfl(1971). With the mean strain rate removed from the computation sl
of the model, C; is nearly independent of the mean strain, a highly desirable - g
property for the model. Fox & Lilly (1972) point out that the removal of the R
mean shear might have allowed Deardorff (1970) to use the higher Cg value \ T
of Lilly. Lo

In addition to calculating model parameters, direct simulations are also RS
used to determine how well the forms of the SGS models represent “exact™ -
SGS stresses. For isotropic turbulence, the results show that the stresses '
predicted by Smagorinsky’s model (and other eddy-viscosity models) are :
poorly correlated with the exact stresses. The model performance is worse Lo
stillin homogeneous flows with mean strain or shear. The notable success of R
calculations using the Smagorinsky model seems to reflect the ability of this - 1
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model to stabilize the calculations, and also shows that low-order statistics
of the large scales are rather insensitive, in the flows considered. to the
details of the SGS motions.

Several alterations and extensions to Smagorinsky's model have been )
proposed. A modification consistent with the classical two-point closures -
replaces the local inagnitude of the strain-rate tensor, [S], in (8) with its
ensemble average (S) (Leslic & Quarini 1979). Although in numerical NSO
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o, solutions of the Burgers equation (Love & Leslie 1979) this modification

improves the results, direct testing in isotropic flow by McMillan &

.Ferziger (1979) shows only a slight improvement. For free-shear flows,

| N Kwak et al. (1975) suggest that it is appropriate to use the magnitude of

vorticity |w], rather than {S], in (8), because the former vanishes in an

) irrotational flow. For isotropic turbulence this modification does not cause

o significant differences in large-scale statistics, but a substantial disparity is

reported in small-scale statistics such as the velocity derivative flatness

(Ferziger et al. 1977), which indicates the sensitivity of the smallest resolved

scales to the SGS model. To account for mean shear in an LES of turbulent

channel flow, Schumann (1975) introduces a two-part eddy-viscosity

model. One part models the SGS stress fluctuations, and the other part,

B which reduces to Prandtl’s mixing-length model for very coarse grids,
accounts explicitly for the contribution of the mean shear.

When the grid resolution near a solid boundary is inadequate, the SGS

flow field includes highly dynamic anisotropic eddies that contribute a

significant portion of the total turbulence production and do not take a

passive and dissipative role. Moin & Kim (1982), like Schumann, use a two-

. part eddy-viscosity model to account fully for the contributions to energy

production by the finely spaced high- and low-speed streaks near the wall

(see Section 4 and Kline et al. 1967) that are not adequately resolved in the

spanwise direction:

in 1y = —velSy—=<Su)) —VEO)(S,D. o)

g Here ¢ ) indicates an average over planes parallel to the walls. The first
i term in (9), the Smagorinsky model with mean_ shear removed, has
essentially dissipative and diffusive effects on the resolvable scale turbulence

i intensities, ./ {(7;— {&7;))*). The second term accounts for the SGS energy
== production corresponding to SGS dissipation of mean kinetic energy <ii)?
K but, in contrast to the first term, does not contribute to the dissipation of
5 ] resolvable-scale turbulent kinetic energy. It does, however, indirectly
n enhance resolvable-scale encrgy production by representing the effect of the
" = SGS stresses on the mean-velocity profile. Indeed, when Moin & Kim
(1982) excluded the second term of (9) the computed flow did not transfer

sufficient mean energy to the turbulence to sustain it against molecular
dissipation. The characteristic length scale associated with v§ is A, the filter
. width in the spanwise direction (normal to the mean flow and parallel to the
wall), multiplied by an appropriate wall-damping factor 1o account for the
expected y° or y* behavior of the Reynolds shear stress near the wall (v = Q).
The influence of v} diminishes as the resolution of the spanwisc direction is e
~ increased and the wall-layer streaks are better resolved.
Eddy-viscosity models of the type described above implicitly assume that ;.;-:;Z::
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the SGS turbulence is in equilibrium with the large eddies and adjusts itself
instantaneously to changes of the large-scale velocity gradients. It may be
desirable (certainly in transitional flows) to allow a response time for the
SGS eddies to adjust to the changes in the resolvable flow field. Following
Prandtl, Lilly (1966) assumes an eddy viscosity proportional to the SGS
kinetic energy g3, i.e. vy = cAq. The equation for g%, derived formally from
the Navier-Stokes equations, contains several terms that must be modeled.
Schumann (1975) successfully uses this model for the fluctuating SGS
stresses in his calculation of turbulent flows in channels and annuli.
Grotzbach & Schumann (1979) extend the model to lower Reynolds
numbers. In addition to dividing the SGS stresses into mean and
fluctuating parts, a noteworthy feature of Schumann’s formulation is its
explicit allowance for anisotropic grids. Different characteristic length
scales and dimensionless coefficients determined by grid geometry appear
in the representation of the various surface-averaged SGS stresses. The —
utility of the model is demonstrated by its ability to simulate turbulent flow
in an annulus, with relatively high grid anisotropy, by changing only the
mesh-geometry parameters. Parameters of a physical nature retained the
values used in the channel flow calculations (Schumann 1975).

Deardorff (see Fox & Deardorff 1972) finds that the Smagorinsky model
smears out the mean temperature gradient that occurs when buoyant
convection is terminated by a stably stratified overlayer. For a more
realistic model, Deardorff (1973) resorts to transport equations for the SGS
stresses. This involves 10 additional partial differential equations. The
closure models in these equations are essentially analogous to the .
corresponding models in the Reynolds-averaged equations. These models
may not be appropriate because the behavior and relative importance of the
various correlations involving only small scales are different than those
involving the total turbulence (Ferziger 1982). Although the transport
mode! does lead to improved results, the prospect of such a complex
treatment of the SGS stresses is less attractive to us than a judicious
distribution of mesh points and the possibility of extracting more-accurate
models directly from information carried at the resolved scales.

In the discussion of the equations and models for LES we have »
considered flows in which the statistics of interest are determined by the -
large scales. This is appropriate for engineering purposes, but there are also
very fundamental and interesting questions about the small scales to be
answered. These are concerned with intermittency and structure at small
scale, and the implications for Kolmogorov's universal equilibrium hy-
pothesis and its later modifications. Siggia (1981) outlines a conceptual
procedure analogous to LES in which the large scales are modeled and the
small scales are computed. The model for the missing large scales appears as
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a forcing term in the equations for the small scales. Siggia argues that if the
large-scale effects depend on a small number of parameters (the dissipation
rate is an obvious one) and the model is accurate enough, the limited scale
range of the simulation might represent the intermittency achieved by the
larger range of scales occurring at high Reynolds numbers. Unfortunately
this is not possible in a calculation based on a periodic field in a fixed mesh,
because the small-scale spatial intermittency that can be represented is
directly limited by the number of mesh points and this geometric constraint
cannot be modeled away. The vortex method of Leonard (1980) is not grid
limited and is a more natural way to describe the intermittent vorticity
fields occurring at high Reynolds numbers.

4. RESOLUTION REQUIREMENTS

Over two decades ago Corrsin (1961) demonstrated that the direct
numerical simulation of high-Reynolds-number flows places an over-
whelming demand on computer memory and speed. [See Chapman (1979)
for a comprehensive study of the grid requirements for computational
aerodynamics.] In direct simulations the number of spatial grid points is
determined by two constraints: first, the size of the computational domain
must be large enough to accommodate the largest turbulence scales (or the
scale of the apparatus), and second, the grid spacing must be sufficiently fine
to resolve the dissipation length scale, which is on the order of the
Kolmogorov scale, n = (v3/¢)''*. The ratio of these two scales (cubed)
provides an estimate for the total number, N, of mesh points. In turbulent
channel flow, for example, macroscales in the directions paraliel to the walls
determined from the two-point correlation measurements of Comte-Bellot
(1963) and the average dissipation rate ¢ = u2U,/é give N = (6Re,)*"*
(Moin 1982). here Re,, is the Reynolds number based on the channel half-
width, 8, and the average flow speed, U,,; and u, = . /1,/p is the wall shear
velocity determined by the shear stress at the wall, 7., and the fluid density
p. 1t is assumed that four grid points in each dircction are required to
resolve an eddy, and that U, /u, = 20. Temporal resolution of the smallest
computed eddies requires the time step At to be on the order of (v/e)''?
= (6/u,) Re,; "2, At the moderate Reynolds number Re,, = 10*, roughly
5 x 10'° grid points and 2 x 10* time steps are necessary for the flow to
rcach a statistically steady state (a total flow time of 1006/U,). Such a
computation is beyond the capabilities of presently available computers.
However, if the bulk of the dissipation occurs at scales larger than 10y
rather than n, direct simulation of channel or pipe flow may be possible in
the ncar future at the lowest Reynolds numbers studied experimentally
(Re,, ~ 2500 see Eckelmann 1974).
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In contrast to wall-bounded turbulent shear flows, which cannot be
sustained below a critical Reynolds number, homogeneous and free-shear
flows remain turbulent at Reynolds numbers for which all scales of motion
can be resolved. The large-scale features of these flows are nearly
independent of Reynolds number, and statistics determined from them are
relevant at higher Reynolds numbers. However, in the simulation of
unbounded shear flows such as turbulent jets and mixing layers (especially
at low Reynolds numbers), the computational domain must be large
enough to allow development of the long wavelength instability typical of
these flows.

In LES the resolution requirements are determined directly by the range
of scales contributing to the desired statistics and indirectly by the accuracy
of the model. The less accurate the model, the further the modeled scales
must be separated from the scales of interest. In engineering calculations the
important scales contain the dynamic physical events responsible for
turbulent transport of heat and matter and the production of turbulent
energy. Near walls the principal flow structures are high- and low-speed
streaks, which are finely spaced in the spanwise direction (Kline et al. 1967)
and provide most of the turbulence energy production. The mean spanwise
spacing of the streaks is about 100 wall units (100v/u,), but streaks as narrow
as 20 wall units probably occur and would require hy ~ 5 for complete
spanwise resolution (Moin 1982). Similar considerations in the streamwise
direction lead to h; = 20 to 30. Using 64 grid points norma! to the wall
(with nonuniform spacing to resolve the viscous sublayer and outer layers)
and with computational periods in directions parallel to the walls chosen in
accordance with two-point correlation measurements, the total number of
grid points is estimated to be N ~ 0.06 Re2. Although at high Reynolds
numbers this is prohibitively large, detailed simulation of the important
large eddies can be performed at low Reynolds numbers (Re,, ~ 5000) with
presently available computers. The Reynolds number of resolvable flows
can be significantly increased when a fine mesh in the lateral directions is
embedded near the walls (Chapman 1979), but for practical applications
much computer power is still needed to calculate the flow in this extremely
thin layer. If the wall-layer dynamics can be replaced by reliable outer-flow
boundary conditions (see Section 5.2), the number of grid points becomes
low enough to use LES for engineering computations on current computers
(Chapman 1981).

Another practical difficulty in both direct and large-eddy simulations is
the cost of obtaining an adequate sample for the flow statistics. The various
scales of motion are not equally sampled; the scale sample is inversely
proportional to the scale volumec. With appeal to the ergodic hypothesis,
ensemble averages can be replaced by averages over homogeneous space-
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time dimensions. For low-order velocity statistics a sample of 10® nodes
appears adequate, but much larger samples are required for statistics of
intermittent velocity derivatives and this problem increases with Reynolds
number (Fox & Lilly 1972, Ferziger et al. 1977, Siggia 1981). When the
homogeneous dimensions (there is usually at least one) do not provide an
adequate sample, the statistics can be collected from an ensemble of flows
evolving from independent initial conditions, but this is very costly and
poses a serious problem for simulation of inhomogeneous flows.

5. NUMERICAL METHODS

Numerical implementation of the governing equations consists of four
main issues: numerical approximation of spatial derivatives, initial and
boundary conditions, time-advancement algorithm, and computer im-
plementation and organization. In each category there are options
available, and the choice of the overall algorithm depends on the problem
under consideration, the cost, and the computer architecture.

5.1 Spatial Representation

Second- and fourth-order finite differences and spectral methods are used to
approximate spatial derivatives. Since turbulent flows involve strong
interaction among various scales of motion, special care should be taken
that numerical representation of derivatives be faithful to the governing
equations and the underlying physical mechanisms. For example, ap-
proximations with appreciable artificial viscosity, such as upwind difference
schemes, significantly lower the effective Reynolds number of the calcu-
lation, and their dissipative mechanism distorts the physical representation
and dynamics of large as well as small eddies. The formal order of accuracy
associated with a difference method, which defines the asymptotic error for
infinite resolution, may be less important than the accuracy of the method
at the coarse resolution applied at the smallest computed scales. The
accuracy of a method at various scales is illustrated by its ability to
approximate the derivative of a single Fourier mode ¢** (Mansour et al.
1979). For a given number of grid points, all difference schemes arc
inaccurate for values of wave number k near n/h, the highest wave number
that can be represented on the grid. However, for intermediatc values of &
some schemes are significantly more accurate than others having the same
formal order of accuracy.

The spectral method (Gottlieb & Orszag 1977) is a very accurate
numerical differentiator at high k values. In this method the flow variables
are represented by a weighted sum of eigenfunctions, with weights
determined using the orthogonality properties of the cigenfunctions. The
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derivatives arc obtained from term-by-term differentiation of the series or
by using the appropriate recursion relationships (Fox & Parker 1968). The
choice of eigenfunctions depends on the problem and the boundary
geometry and conditions. For problems with periodic boundary conditions
Fourier series are the natural choice, but for arbitrary boundary conditions
orthogonal polynomials that are related to the eigenfunctions of singular
Sturm-Liouville problems should be used (Gottliecb & Orszag 1977).
Expansions based on these polynomials do not impose parasitic boundary
conditions on higher derivatives, and for smooth functions they provide
rapid convergence independent of the boundary conditions.

The difference between spectral and “pseudo-spectral” approximations is
in the way products are computed (Orszag 1972). The advantage of the
more expensive spectral method is the exact removal of aliasing errcrs
(Orszag 1972); Patterson & Orszag (1971) give efficient techniques for
handling aliasing errors arising in bilinear products. These errors are not
peculiar to pseudo-spectral methods; finite-difference approximations of
products also contain aliasing errors, but the errors are less severe owing to
the damping at high k of the difference approximations. Aliasing errors
usually increase with the order of accuracy of difference schemes (Orszag
1971).

One serious consequence of aliasing errors is the violation of the
invariance properties of the Navier-Stokes equations. It is easily shown that
in the absence of viscous terms and time-differencing errors, the governing
equations conserve mass, momentum, energy, and circulation. Aliasing
errors can violate these invariance properties and lead to nonlinear
numerical instabilities (Phillips 1959). Lilly (1964) demonstrates that the
staggered-mesh difference scheme (see Harlow & Welch 1965) preserves
these invariance properties. When the nonlinear terms in the momentum
equations are cast in the rotational form, @ x u+V(u?/2), properly
invariant numerical solutions are obtained with pseudo-spectral and most
finite-difference methods (Mansour et al. 1979).

For sufficiently smooth functions, spectral methods are more accurate
than difference schemes having the same number of nodes. In contrast to
higher-order diflference methods, which require special treatment near the
boundaries, spectral methods allow proper imposition of the boundary
conditions. However, for the flow field to be sufficiently smooth. the
smallest scale of motion present should be well resolved on the compu-
tational grid ; othcrwise, the rapid convergence of spectral methods is badly
degraded. Cost constraints usually prohibit thorough resolution of the
small scales ; in direct simulations this means a mesh too coarse to capture
the dissipation scales and in LES calculations means a filter or SGS model
that does not remove sufficient energy from the small scales. In simulations
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y of “two-dimensional turbulence™ in a periodic box, Herring et al. (1974) find
O that the accuracy of spectral calculations is comparable to that of second-
order (conservative but aliased) difference calculations having approxi-
mately twice the number of grid points in each direction. The advantage of
the spectral method as an accurate differentiator is limited by the error that
arises from truncation of small scales produced by the nonlinear terms.

A very important attribute of spectral methods is their self-diagnosis
property. Inadequate grid resolution is reflected in excessive values of high-
order expansion coefficients (Herring et al. 1974, Moin 1982). Fourier
- analysis of finite-difference solutions can also reveal poor resolution
(Grotzbach 1981), but damping at high wave numbers masks its detection
until the computational grid is insufficient to represent even the larger
scales of motion.

$ T
P

5.2 Boundary and Initial Conditions

o In turbulence simulations, the major difficulty with specification of
o boundary conditions occurs at open boundaries where the flow is turbulent.
The flow variables at these boundaries depend on the unknown flow
l outside the domain. The unavoidably ad hoc conditions specified at these
boundaries should be designed to minimize the propagation of boundary
errors. Periodic boundary conditions are generally used for directions in
which the flow is statistically homogeneous, but this implies that quantities
at opposite faces of the computational box are perfectly correlated. If the
periodic solution obtained is to represent turbulence, the period must be
" significantly greater than the separation at which two-point correlations
vanish. The computed two-point correlation functions then serve as a good
o check of the adequacy of the size of the period.
- Periodic boundary conditions for homogeneous turbulence subjccted to
uniform deformation may be applied only in a coordinate system moving
- with the (linear) mean flow. In this system the mean convection relative to
" the mesh vanishes, and the equations do not refer explicitly to the space
variables. However, the computational grid is being continuously de-
s formed, and the calculations must be stopped when the domain becomes so
= distorted that the flow cannot be resolved in all directions (Roy 1982). In the
case of uniform shear, a convenient remeshing procedure (Rogallo 1981,
Shirani et al. 1981) allows the computations to continuc until the scale of the
largest resolved eddics becomes bounded by the period. A clever implemen-
tation of the procedure for a finite-difference calculation by Baron (1982)

t uses shifting boundary values on a fixed mesh. The problem of length-scale
growth is common to both experiments and computations. In homo- -
| geneous flows or unbounded inhomogeneous lows, the macroscales of I
> turbulence grow until they reach the dimensions of the wind tunnel or the 7
)
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~ size of the computational box. When this occurs, meaningful statistics B
% cannot be obtained from the large scales. To study the evolution of the flow oL
V| for longer times it is tempting to use a coordinate transformation that e g;:
! continuously expands the computational box in time, but such a transforma- h: ".:2: ‘

_ tion reintroduces explicit spatial dependence in the governing equations. ‘-
-, On the other hand, the calculation can be interrupted and the mesh rescaled I
3 to cover a new range of larger scales. The interpolation of the existing field o
P to the new mesh causes some information loss ; to minimize the damage the 1
N process should be carried ut while the two-point correlations still show a IR
significant uncorrelated range. F

. One of the more challenging, and virtually untouched, problems is that of RO
X turbulent inflow and outflow boundary conditions in nonhomogeneous g g
%) directions. The inflow problem appears to be more troublesome, since in b
< most cases the influence of the upstream conditions persists for large VX
distances downstream. Of course, one way to avoid the problem is to I

: prescribe a small orderly perturbation on an incoming laminar flow and e
B follow the flow through transition to turbulence. However, in addition to ¥ ::f.
tj} more stringent requirements on the treatment of the small-scale motions in & L:f
¥ transitional flows, the required length of the computational box for the LN,
entire process is prohibitively large in some cases. The use of turbulent H |

inflow and outflow conditions appears to be a practical necessity for flows

P
such as boundary layers, where linear-stability theory predicts a long v EnE

transitional zone. A
The implementation of inflow and outflow conditions in simulations of )
free turbulent shear flows has so far been avoided by use of the “frozen '+
turbulence” approximation. The physical problem, which is homogeneous A
in time but not in the mean-flow direction, is replaced by a computational G
problem that is homogeneous in the flow direction but not in time. The L
inflow condition is replaced by an initial condition, and periodic boundary SR
conditions in the mean-flow direction are applied. Although the time- -

. developing approximation of the “real flow™ has most of its features. -
o important differences remain. In a spatially developing turbulent mixing SN
a layer, for example, the mean streamlines within the layer are inclined to the o ;::"-
- direction of the flow outside the layer, but those in the time-developing flow :.: ‘-.i'.;
are not. P
Two approaches have been taken for implementing irrotational frec-
stream conditions in frec-shear flows. Orszag & Pao (1974), Mansour ct al. ARG
(1978), and Riley & Metcalfe (1980a) use a finite computational domain ) L
with stress-frec boundary conditions in which the normal velocity and the S DN

normal derivative of the tangential velocitics are zcro. The turbulence field %
is confined 10 the central region of the domain and is surrounded by v
irrotational flow that extends 1o the boundarics. The subsequent use of A :;‘
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X
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Fourier series implies the existence of image flows above and below the
computational box that influence the dynamics of the flow inside. A better
approach (Cain et al. 1981) maps the infinite domain into a finite
computational box and applies the frce-stream (or no-stress) boundary
conditions at the boundaries of the transformed domain. The coordinate
transformation used by Cain et al. allows a fairly simple use of Fourier
spectral methods.

The specification of boundary conditions at smooth solid boundaries
does not pose any difficulty ; the velocity at the wall is the wall velocity. In
the vicinity of the wall, the flow field is composed of small, energetic eddies
associated with large mean-velocity gradients (sce Section 4). For practical
applications it is desirable to avoid the high cost of resolving this wall
region by replacing flow near the wall with boundary conditions applied
somewhat away from the wall. In simulations of high-Reynolds-number
turbulent channel flow, Deardorfl (1970) and later Schumann (1975)
modeled the flow near the wall by applying such boundary conditions in the
logarithmic layer. Once again it is not clear how to specify boundary
conditions within a turbulent flow. For example, Schumann (1975) assumes
that the fluctuations of wall shear stress, t,, are perfectly correlated with
those of the streamwise velocity one mesh cell from the wall. Space-time
correlation and joint probability density measurements of t, and v by
Rajagopalan & Antonia (1979) support this assumption very close to the
wall provided that a (sizable) time delay between these two quantities is
introduced (see also Eckelmann 1974). The accuracy of this assumption
degrades as the point of application of boundary conditions moves away
from the wall; the normalized correlation is unity at the wall but is only
about 0.5 in the logarithmic layer at y* = 40()/6 = 0.031) (Rajagopalan &
Antonia 1979). However, Robinson (1982) reports a correlation as high as
0.7aty* = 300()/6 = 0.03)in experiments at an order of magnitude higher
Reynolds number (Re, = 32,800). These experimental results indicate that
the u-t,, correlation at a fixed y* improves with increasing Reynolds
number, but at least part of this apparcnt improvement results from
inadequate probe resolution at high Reynolds numbers. Robinson’s wire
length extends 200 wall units in the spanwise direction. Nevertheless.
Schumann’s assumption of u-t, correlation is reasonable and can be
improved by including a space-time shift. Chapman & Kuhn (1981)
propose a two-dimensional wall-layer structure retaining only the trans-
verse spatial variation. They use detailed experimental data to set the length
scales and phasc relations of the velocity at the outer edge of the layer and
obtain good agreement with experiment for the internal layer structure.
Their wall-layer edge conditions have not yet been used as boundary
conditions for the outer flow. The detailed pressure-velocity data provided
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N by simulation (Moin & Kim 1982, Kim 1983) should be useful for the acs
< formulation of wall-layer edge conditions of the kind proposed by oo
‘ Chapman & Kuhn. R
. A three-dimensional velocity field satisfying the continuity equation and Wb
boundary conditions must be specified to initialize the calculation. Within '
» these constraints, a random fluctuating velocity field is superimposed on a H G
~ prescribed mean-velocity profile. Although the initial turbulence field can N
= be defined with the desired intensity profiles and energy spectra, its higher- D
., order statistics become physically realistic only after an adjustment period ST
(see Orszag & Patterson 1972, Riley & Metcalfe 1980a). For example, the -
= velocity derivative skewness is initially zero but quickly rises to a realistic R
= value. The evolution of time-developing flows (those that never reach a O
statistically steady state) is often quite sensitive to the initial conditions for T
the large scales. -
1 . [ -] '
5.3 Time Advancement
Starting from initial conditions, the governing equations are advanced in RN
time subject to the incompressibility constraint. We discuss time-advancing R
algorithms as they are applied to the incompressible Navier-Stokes ;‘_;Z'i
] equations. The additional SGS terms in the LES equations pose little g
- additional numerical difficulty, and virtually identical numerical methods
% are used. o O]
- Time advancement may be done either explicitly or implicitly ; explicit ;.3 3.
. schemes are much easier to implement and have a much lower cost per step. R
The popular second-order explicit Adams Bashforth and Leapfrog schemes o O
require only one evaluation of the time derivatives per step, but they do AN
I require retention of variables at step n— 1 in order to advance from stepn to
o n+ 1. The self-starting Runge-Kutta schemes (second, third, and fourth , £oan
- order) cost more per step but have better stability properties and therefore Ry ’
b allow larger steps. The multiple evaluations of nonlinear terms required by o
- Runge-Kutta methods can be used to reduce the cost of controlling aliasing ol o
= errors in Fourier spectral calculations (Rogallo 1981). S
X When using explicit methods, the incompressibility constraint at each
> time step is usually enforced by solving a Poisson equation for pressure <'7
rather than by direct use of the continuity equation. To satisfy the discrete = g7
. continuity constraint, the discrete Poisson problem must be derived using o i
! the same differencing operators used in the discrete momentum and ;Z; ‘-
o continuity equations (Kwak et al. 1975). The staggered-grid difference
. scheme (see Harlow & Welch 1965) leads to a particularly simple Laplacian 2
operator, whereas with standard centered-difference methods the operator 4]

- is less compact and causes spatial pressure oscillations duc to the
- uncoupling of even and odd points. R
i R
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The choice of proper boundary conditions for the pressure equation is
ambiguous (Moin & Kim 1980). Usually the Neumann boundary condition
obtained from the normal momentum equation is used, but a Dirichlet
" boundary condition can also be derived from the tangential momentum
i equations. When spectral methods are used with explicit time advance-

ment, the fact that both conditions cannot be simultaneously enforced
o implies the inability to impose complete velocity boundary conditions
(Moin & Kim 1980). With the second-order staggered finite-difference
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' . scheme, the need for pressure boundary conditions does not arise. The L]
Lo continuity equation at the interior cells, together with the momentum L*‘:
cR equations (at the interior grid points) and the velocity boundary conditions, s f..-: i

leads to a closed system of algebraic equations for pressure.

The root of this difficulty with spectral methods is that explicit methods
treat the governing equations as an initial-value problem rather than as a
boundary-value problem. Implicit methods require the solution of a
boundz-y-value problem at each time step, thus allowing the natural
imposition of velocity boundary conditions. Moreover, in simulations of e
wall-bounded flows, implicit treatment of the viscous terms overcomes the _Z:If;i -
severe restriction on time step that arises from the small grid spacing -
normal to the wall. For these reasons all the calculations that extend to the

RN wall use semi-implicit time-advancement algorithms (Orszag & Kells 1980,
oo Moin & Kim 1980, 1982, Kleiser & Schumann 1979). In these calculations
- the nonlinear terms are advanced by the Adams Bashforth method. Fourier
. K expansions are used in homogeneous dimensions, and either Chebyshev
no polynomial expansions or second-order difference methods are used in the

direction normal to the wall. Recently, Leonard & Wray (1982) have
developed a semi-implicit spectral method based on expansion in
N divergence-free vector functions. In this representation of the velocity, each
| I term satisfics the continuity equation as well as the boundary conditions.
: Since the continuity constraint is satisfied by the expansion functions,
pressure does not appear and only two velocity components are required to
- define the velocity field; this significantly reduces computer memory
requirements. In wall-bounded flows the time step required for accurate
resolution (see Section 4) is much larger than that required for convective
stability, which suggests that advancement of the convective terms by A
implicit methods may be advantageous. Deardorfl (1970) and Schumann el
(1975) translate the coordinate system at constant speed, reducing the mean -
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e convection velocity relative to the mesh to allow increased time steps. PR
! Alternatively, convection by the mean velocity can be handied implicitly ; P
Y. this is much simpler than a complete implicit treatment. EARA
A For problems in general geometries the computational complexity of TN
: ) spectral algorithms is not appreciably greater than that of difference o]
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algorithms when the boundary conditions allow use of explicit time
advancement and the physical domain can be analytically mapped to a
simple computational domain. But the linear convective stability criterion
for the explicit advancement is more severe (by a factor of n for second-
order central differences). With fully or partially implicit time advancement
the computational complexity of spectral algorithms is much greater than
that of difference algorithms. The nonconstant coefficients that arise when a
complicated physical domain is mapped to a simple computational domain
lead to dense matrix equations for the spectral coefficients. It is impractical
to solve these equations by direct techniques; only iterative procedures
appear to be feasible (Orszag 1980), and the accuracy and efficiency of the
method depend on the number of iterations required to obtain the
converged solution at the next step.

6. RESULTS

The flows simulated to date fall into one of three classes: homogeneous
(unbounded), unbounded inhomogeneous, and wall bounded. The em-
phasis of the work can be classified as fundamental physics, development of
simulation technique, and application to real problems. In the preceding
sections we have discussed some of the work on technique. In this section
we present typical fundamental results for three simple shear flows:
homogeneous turbulence in uniform shear, the evolution of a turbulent
mixing layer, and turbulent channel flow. These flows exhibit many of the
complications found in real engineering problems. The homogeneous shear
flow introduces anisotropy and production at large scales, the mixing layer
adds turbulent difflusion and intermittence at the large scales, and the
channel introduces solid boundaries near which all of these complications
occur at small scales as well. These three flows are well documented by high-
quality experimental data and have been simulated using a variety of
numerical methods and a range of resolution.

Turbulence in uniform shear exhibits growing length scales, O(L). and
velocity scales, O(q), which appear to approach fixed ratios as the flow
evolves (Harris et al. 1977), and the characteristic time of the turbulence,
O(L/q),locks on to the characteristic time of the shear, O(S ™ !). It is plausible
that the turbulence ultimately attains a self-similar structure with exponen-
tial growth of length and velocity scales (Rogallo 1981). The early evolution
of isotropic turbulence subjected to uniform shear is predicted well by the
linear theory of rapid distortion (Deissler 1961, 1972). Although this theory
incorrectly predicts ultimate turbulence decay, its prediction of the
Reynolds-stress anisotropy and two-point correlations is surprisingly
accurate (Townsend 1976). The first simulation of homogeneous shear was
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the 16 x 16 x 16 finite-difference LES by Shaanan et al. (1975). Their S L
results agree qualitatively with the experimental data, even though periodic o
boundary conditions were applied on a fixed mesh (see Section 5). More
details of the flow are obtained in the 64 x 64 x 64 direct spectral Lo
simulations of Feiereisen et al. (1981) and Shirani et al. (1981) in which —
compressibility effects and passive scalar transport, respectively, are i
studied. The results of Rogallo’s (1981) 128 x 128 x 128 direct spectral
simulation indicate that even at a macroscale Reynolds number an order of
i magnitude below that of Tavoularis & Corrsin (1981), the large-scale i
h statistics of the experiment can be reproduced. A major difficulty is the = -
' definition of a characteristic length for the energy-containing scales. The R
integral scale depends strongly on the largest computed scales for which the
statistical sample is poor. In Figure 1 the computed correlations for two
simulations are compared with the data of Tavoularis & Corrsin. The -
; correlations are normalized by the turbulent shear stress rather than -
‘ normal stresses, and the separation is made nondimensional by reference to
the longitudinal integral scale in the mean-flow direction. This scaling
should collapse the correlations of the large scales; the correlations of
streamwise velocity collapse well for the different Reynolds numbers and
characteristic times ratios, SL/q, but collapse for the transverse velocity
components is less satisfying.

The calculated flow fields can be used as detailed data for the )
development and testing of closure models. As an example, the tensor sum -
of the pressure-strain correlation (the “slow” term) and the deviator of i
dissipation,

I

1

Ou; Ou;
—Vg;;a—x*, E=E; (10)

is usually modeled in a Reynolds-stress closure (Lumley 1980) by a scalar CooaT
multiple of the Reynolds-stress anisotropy tensor, ¢;; ~ fb;;, where b,; 2
= wu; fuu, —190,;.

Lumley proposes that the scalar coefficient depends on Reynolds
number, the invariants of the stress tensor, and other relevant scalars of the
flow. The two tensors (Figure 2qd) are indeed correlated in the calculated
fields, and the collapse obtained by the linear model (Figure 2b) supports its
use (but its performance in other anisotropic homogeneous flows does not

8¢U = —ZPTU+2(€U—§86U)’ 8,-1-

Figure 2 Lumiey’s (1980) linear model of pressure-strain correlation and dissipation
anisotropy. (¢) Dependence of modeled tensor on Reynolds-stress anisotropy tensor ; (h) com-
parison of modcled and measured values; (¢) variation of model coeflicient with Reynolds
number. The data points represent independent flow fields at a wide range of parameters (fron,
Rogallo 1981).
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see Rogallo 1981). The orderly nature of the small remaining error suggests br ke
the possibility of higher-order model terms. The increase of the model m -
coefficient, B, with Reynolds number (Figure 2¢) has been predicted by wONEr
Lumley, but it should be noted that other scalar attributes of the flow, N
particularly the ratio of shear and turbulence time scales, are important and -t

they are also varying among the data shown.
The mixing layer separating two uniform streams of differing speed has R
been studied analytically, experimentally, and recently by simulation. LA
Much of the recent work is concerned with the observed organized vortical R
structures that result from Kelvin-Helmholtz instability in turbulent layers T
and their downstream growth by pairing (Roshko 1976). It is found
experimentally that the evolution of the layer is strongly influenced by
imposed perturbations, and the simulations indicate an analogous sensi-
& tivity to initial conditions. Simulations of the LES type have been
i performed at low resolution by Mansour et al. (1978) and Cain et al. (1981).
B In the calculations of Mansour et al., the roll-up stage of the flow is inhibited
B by a mesh domain too short to support unstable waves. When vortex cores
B are included in the initial field the eddy-viscosity model, in the presence of

1§

the mean shear, prevents the proper growth of energy and length scales. The S
problem appears to be simply one of inadequate resolution. The mesh of P' s
Cain et al, on the other hand, is scaled to include the fundamental =
instability wave and its subharmonic. Roll up of the layer occurs, with the
resulting vortices meandering in the spanwise direction and pairing locally
to form a network of vortex tubes. Riley & Metcalfe (1980b), using a
32 x 32 x 32 direct spectral simulation, show (as do Cain et al.) that the o
presence of an energetic two-dimensional instability wave modulates the ;
layer growth; the early growth is more rapid, but once roll up has occurred B DN
growth is delayed until the vortices approach each other (by turbulent Coe
diffusion, convection by a subharmonic, spanwise variations in proximity,

Tt T e
L P .
. P T
S T e N e

P AR
L S

etc.) closely enough for pairing to occur. The spanwise vorticity field of a -
turbulent mixing layer (Figure 3a) clearly shows coherent structures, even -
though the layer growth is statistically self-similar. The structures are not SO
simple two-dimensional vortices however, as the vorticity at another A
spanwise plane (Figure 3b) indicates. Metcalfe & Riley (1981) increase the R
computational domain to capture the subharmonic of the instability wave. -
These 64 x 64 x 64 mesh results confirm their earlier results, and the larger '—'

domain eliminates a spurious growth of turbulence intensity found there.
This flow illustrates the importance of not constraining potentially
important scales, in this case the instability scale.

The most extensive application of LES has been the calculation of fully
developed turbulent channel flow. In the first realistic numerical simulation RN

-~
v
n.

’o
.

Ve s e
et
el

- ettt

v (e L A Al e aan 4




3 P "Ll Sl Sl R AR TR YL L SOt Gl oral Sras Beus Mtve auany " - -
A L e s R T R T T T T T T R N T T T T T T T T T Y e

TV rTryrrrrrrrryrryrrrrryriyrvrrrrrrvreayeorrreyryyraeorg

£ 121110

AT T

74!11llle_leillllLllllJleJlllJ_lLlllj_lJ_‘lLLll‘L

TV r Iy 7rT1rryrvyryryryrrryryryryryvyrrvyrTvyvrrryyvyvuoeayoryd

..

AT

®

|/

[ 4 4 4 4 A 4 b2 b i d a4 4 A A A A 4 A L g S s A A 4 4 A b b b b b bd bbb A A b

Figure 3 Distribution of the spanwise vorticity component in a turbulent mixing layer as
. viewed in the spanwise direction. The distribution is shown in two planes separated by half the
o computational period (from Riley & Metcalfe 1980b).
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of turbulence, Deardorff (1970) calculated this flow at a very high Reynolds h v \
number using only 6720 grid points. Schumann (1975) and Grotzbach & e
Schumann (1979) used up to 65,536 grid points, included temperature » -«‘
fluctuations and heat transfer, and considered a range of moderate g
Reynolds numbers (Re > 10*), but like Deardorfl, they modeled the wall- - ki

3 layer dynamics. In these calculations the mean-velocity profile, turbulent

i intensities, and pressure statistics are in good agreement with the ex-

o perimental data. Moin & Kim (1982) calculated the channel flow at

. Re = 13,800 (based on channel half-width & and centerline velocity), and =
extended the calculations to the wall using a nonuniform mesh with total of

516,096 grid points. The computed velocity and pressure field was used to

study the time-dependent structure of the flow and its relationship to

[ ¢ SN

)

T s
Y

Fiyure 4 Turbulert channel flow visualized by fluid markers (simulated hydrogen bubbles).
{a) Markers introduced on a line in the spanwise direction at y* = 6:(h) markers introduced
on a line normal 1o the wall; view extends 10 * = 240 (from data of Moin & Kim 1982).
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various flow statistics (including those appearing in the time-averaged
Reynolds-stress equations). The detailed flow field was analyzed with
contour plots of the instantaneous velocity, pressure, and vorticity
fluctuations; with higher-order statistical correlations; and with tracking
of passive particles in the flow. In particular, a motion picture was made
simulating hydrogen-bubble flow-visualization experiments (see Kim et al.
1971; Kline et al. 1967). In Figure 4 two typical frames from this film show
the paths of bubbles generated near the wall (y* = 6) along a line in the
spanwise direction and of bubbles generated along a line normal to the
channel wall. Various distinct flow features, including the wall-layer streaks
(Figure 4a), and the formation of profiles with multiple inflection points and
ejection of fluid from the wall region (Figure 4b), zre in accordance with
laboratory observations. :

The contours of wall-pressure fluctuations from the turbulent channel
flow simulations of Grotzbach & Schumann (1979) are shown in Figure S.
In agreement with experimental measurements (Bull 1967, Willmarth
1975), the large-scale pressure fluctuations are correlated at considerably
greater distances in the lateral direction than they are in the mean-flow
direction. This feature is reproduced in the calculations of Moin & Kim
(1982), where localized regions of high pressure intensity are also observed.
The two-point pressure correlations of Moin & Kim (1982) indicate that the
spanwise elongation of pressure eddies persists across the entire channel.
Figure 6 shows the two-point velocity and pressure correlations in the
vicinity of the wall (y/é6 = 0.06, y* = 38). The pressure correlation is
negative for large streamwise separations but is always positive for

*

Figure 5 Pressure distribution at the wall in turbulent channel flow (from Grotzbach &
Schumann 1979).
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Figure6 Two-point correlations of pressure and velocity near the wall (y* = 38}in turbulent
channel flow. (a) Points separated in streamwise direction ; (b) points separated in spanwise
direction (from data of Moin & Kim 1982).

- N Wt et - - . PEL . .
PP VUL, W TP G, U UL U Gl W, P YUy GG WP N G Sy e PP LI G LY W WG G VA P S WP S Y S

b

-




e e e Al T0 We Al T Tt N N i L AL T L L AT I T T Y N T e A A A e L A Y T e A N TR RS TN TR Y W WWWWW‘
’ : 4

. -“d

: e it

f< e

F 103 AN

spanwise separations. The same characteristics are exhibited by experi-
mentally measured wall pressure correlations (Bull 1967). Thus, the
fluctuating pressure gradients driving the flow are stronger in the

M

“.‘-,-

- -
ra

streamwise direction than in the spanwise direction. In the vicinity of the “
I wall the pressure fluctuations are correlated over larger lateral distances (.
f-. than are the velocity components, but in the streamwise direction it is the T
.. velocity fluctuations (particularly the streamwise component) that are S
s correlated over larger distances. -
Recently, Kim (1983) has further studied the spatial structure of the wall o

layer by applying a conditional sampling technique to the “data™ generated -

by Moin & Kim (1982). Figure 7 shows the signatures of the pressure and
streamwise velocity component, during a “bursting event,” obtained using a
variant of the VITA conditional sampling technique of Blackwelder &

i r Kaplan (1976). The velocity signatures are remarkably similar to the

experimental results. The pressure signatures (which can be obtained k
- - experimentally only at the walls) indicate localized peaks during the
- detected bursting event, with adverse pressure gradient associated with :

flow deceleration. The pressure signature persists at significantly larger

2180 —%——"Q'ga“'—“ t:
166.0 é—%&dw : :

1
124.0 —_—%ﬁ—q .
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91.0 =R -
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Figure 7 Pressure and veloaity signatures of the “bursting event™ near the wall in turbulent

pressure (from Kim 1983).

channel flow. ---- - streamwise velocity ;
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distances normal to the wall than does the velocity signature ; this suggests
that the fluctuating pressure gradient driving the wall layer is imposed by
the outer flow. The conditionally averaged transverse velocity components
and streamwise vorticity component, displayed in planes normal to the
flow direction, show a distinct pair of counter-rotating vortical structures
associated with the bursting process.

In addition to the fundamental studies outlined above, LES has also been
used in practical engineering applications, where it can be more cost
effective than the multiple transport equation statistical models (Schumann
et al. 1980). For example, in a problem related to nuclear-reactor safety,
- Grotzbach (1979) used a very-coarse-grid (16 x 16 x 8) LES to investigate
the effect of buoyancy on flow mixing in the downcomer of a reactor. He
found that buoyancy enhances mixing of the entering hot and cold fluid
streams and prevents a “hot chimney” from developing along the length of
downcomer adjacent to the reactor core. These results were later confirmed
by experimental measurements. LES appears to be the only viable
predictive computational tool in applications that involve acrodynamic
noise, reduction of turbulent skin friction (for example, flow over compliant
boundaries), and other applications in which the details of turbulence
dynamics play a dominant role.
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7. SUMMARY

Numerical simulation has become a viable complement to experiment in
both fundamental and applied turbulence research. Its growing popularity
reflects both its promise of realistic answers to a difficult problem and the
continuing rapid decline in computing costs. We expect this trend to
continue. In addition to the advances in computer capacity of the last
decade, less easily measured progress has been made in simulation
technique and in the utilization of simulation results. A notable develop-
ment in numerical algorithms has been the use of spectral methods for
direct simulations in simple geometries. This method is not very attractive
at present for complex LES calculations involving mesh mapping and
implicit time advancement. The premise of LES, that turbulence calcu-
lations can be closed more easily by truncating scales of motion rather than
statistical moments, is supported by results, especially those in wall-
bounded flows. But the hope that very simple eddy-viscosity models would
be sufficient has not proved correct for the anisotropic SGS stresses caused
by high mean field gradients, at least with a reasonable number of mesh
points. Anisotropic meshes, which cause ambiguity in the definition of SGS
length scales, and moderate Reynolds numbers, at which the roles of the
various scales overlap, introduce additional modeling difficulties. The
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decomposition of SGS stress into mean and fluctuations, which essentially
models separately the SGS energy transfer from the mean flow and that O
from the remainder of the resolved scales, provides a workable closure for '.ji,;'.;f‘:
the wall-bounded cases reported. Despite the ad hoc nature of the model, it r“-‘
A |

demonstrates the ability of an LES to base the SGS model on subsets of the
resolved set of scales. The explicit calculation of the Leonard and “cross™
terms, and the related modeling ideas of Bardina et al. (1980), also directly
utilize more information from the resolved scales to reduce model error.

The nature of the flow near walls requires the expensive resolution of very N
small scales. The cost of resolution can be reduced by embedding a fine e
mesh only near the wall. However, the scale disparity between “wall” and Y
“wake” layers, the presence of the overlap “log” layer, and the known form
of the organized eddies near the wall strongly suggest that in some practical
applications the wall layer can be replaced by a boundary condition for the L
wake layer that is imposed in the log layer. This situation is analogous to )
the separation at high Reynolds number of the energy-containing scales g
and the dissipative scales by an inertial range, and we certainly believe
closure is possible in the inertial range in that case.

Inflow and outflow boundary conditions present a major obstacle in the -
calculation of complex engineering flows. In self-similar cases (wakes, jets, R
mixing layers, etc) the use of periodic boundary conditions in the :-::3:3.1
appropriate similarity coordinates seems natural, but in the more general T
case it will be necessary to measure the sensitivity of computed values to the - 7
inflow and outflow conditions used. =

The future of turbulence simulation appears bright indeed. While there
remains much work to be done on simulation technique, modeling, and
numerical methods, we have already reached the point of being able to
generate more information than we are able to digest. One can imagine in 1
the near future a researcher at a graphics terminal with access to computed !
turbulent flow fields of high resolution. He will be able to display any -
desired quantity computed from the field (for example, statistical averages
or three-dimensional visualizations of fluid motion and eddy structure).
The computer can answer any question about the fields it holds, and the
researcher can devote his time to the really difficult effort of finding the right
S question to ask. The experimentalist must arrange his experiment and
T; gather the specific data needed to answer his questions; if these answers
: suggest other questions, the experiment must frequently be rerun to collect
new data. The use of stored simulation results places fewer constraints on
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. L the questions that can be answered, and allows rapid interactive display of
:-j results. An experimcntalist with access to such a data base would be able to
;; = evaluate the choices of data to be taken from the experiment ; for example.

he could tune a conditional sampling strategy to capture more preciscly the

.........................
...........................
......................................................




e e LT N
. RO .
P e e

... -/"I -

Y SRR ENIINS.) DA

events of interest. A person developing turbulence models could use the
data base to evaluate proposed models. Furthermore, the flow-field data
base can be shared by other researchers who do not have the computer
power required to generate the fields, but do have enough power to probe
them. The development of hardware and software tools for interactive
probing of simulation results, the availability of the computed flow fields (in
computer-readable form), and the advancement in computer capacity will
ultimately determine the degree to which simulation enhances our
understanding and ability to control turbulence.
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