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I. INTRODUCTION

Our understanding of fundamental aspects of atmospheric chemistry and

physics is continually undergoing advancement in many areas which are of basic

importance to the evaluation of potential effects of pollutants on the chemi-

cal structure of the atmosphere. As such, it is necessary to reevaluate the

magnitude of these potential effects whenever significant changes occur in our

data base or understanding of pertinent mechanisms.

In this light, we are writing this report to document our latest evalu-
ations of potential perturbations of the ozone layer due to NOx and H20

emissions from a projected fleet of subsonic and supersonic aircraft estimated

to be operational in the 1990 to 2000 year time frame. The model used in this

investigation is a time-dependent, two-dimensional photochemical model of the

atmosphere developed in part by funding from the Federal Aviation Administra-

tion's High Altitude Pollution Program. This model is undergoing continual

revision to include the aforementioned advances and improve the capabilities

and realism of the model.

This report is divided into two parts. Part I is an interim report,

which describes the basic model and comparisons of predicted distributions of

trace species with measurements in the natural atmosphere, as well as an

estimate of the effect of aircraft emissions on ozone using reaction rates

recommended by the NASA Panel for Oata Evaluation in 1979. Preliminary

results of the effect on ozone of NO produced by the August 1972 solar proton

event are also described.

Part II includes an update of the effect on the ozone layer of the same

level and distribution of aircraft emissions of NOx using an updated list of

chemical reactions. Thus, the combined report yields a description of the

model and a listing of transport parameters, as well as projections of the

effect of ozone emissions on ozone using chemical reaction rates evaluated to

be the best available at the time the calculation was performed.
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2. MOD EL

The model is a time-dependent, phenomenolcgical photochemical model of

the atmosphere in which the hydrodynamic variables (mean atmospheric density,

temperature, turbulent diffusion coefficients, and mean meridional winds)

either are specified, or are obtained indirectly, from observations as a func-

tion of time during the year and used to solve the system of species conserva-

tion equations for the meridional distribution of trace species throughout the

year. The formulation of the model, discussed in Widhopf and Taylor (1974),

Widhopf (1975), and Widhopf, et al. (1977) basically is designed to examine

relatively small changes in the ozone concentration as a function of the time

of year throughout the meridional plane, since any resultant changes in the

species concentration occurring as a result of the introduction of a pollutant

are not coupled back to the atmospheric dynamics or temperature distributions.

The governing species conservation equation is derived following the

general procedure outlined by Reed and German (1965) for representing the tur-

bulent transport flux due to largescale eddies. In the meridional plane, this

equation, written in terms of the mass mixing ratio, is of the form

Py i 6p4Y 1  1 pvYicoso 3 ~ Y Y.--- + --- - +  Io r --+ pk -

+ P +P
+ 2k - k tano) -T. +4 (2k~ - k tano)

+) Pkzz-+Pk - + W. + Si i=1,2...
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where Y is the mass mixing ratio, Pi/P of the ith chemical species; p

is the local mean atmospheric density; t is the temporal variable; r = z +

Res where Re is the mean radius of the earth and z is the altitude mea-

sured from and normal to the earth's surface; 0 is the latitude; wi is the

photochemical rate of production/depletion of the ith species; and Si is

the local source/sink effect. The components of the tensor k,6 represent the

diffusion coefficient in the respective directions arising from largescale

eddy motions, whereas v and w are the components of tne mean circulation in

the meridional and vertical directions, respectively. This equation is solved

for each of the trace species considered.
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3. CHEMICAL MODEL

The chemical system considered in this investigation includes the fol-

lowing species: O(1D), O(3P), 02, 03, N, NO, NO2 , NO3, N2, N20, N205,

NO2HO2 H, OH, HO2, H20, H202, HN03, CO, CO2, and CH4 . Also included are

the important Cl0 x species Cl, ClO, CIONO 2, and HCl which are produced in the

atmosphere as a result of the release at the earth's surface of CF2Cl2, CFC1 3,

CC14, and CH3C1, among others. Smog-type reactions initiated by the oxidation of

methane by OH, which have been shown to be potentially important in the lower

regions of the atmosphere, particularly for the evaluation of aircraft emis-

sions effects through the work of Hidalgo and Crutzen (1977), Widhopf, et al.

(1977), and Widhopf and Glatt (1978, 1979a,b) are also included. These reac-

tions involve the species CH3, CHO, CH20, CH30, CH302, and CH302H. The

specific reaction system and the associated reaction rate coefficients used in

this investigation are tabulated in Table I. These rates follow those recom-

mended by the NASA Panel for Data Evaluation (NASA, (1979)) and subsequent

modifications (Smith (1979)).

Computation of solar radiation absorption is an integral step in deter-

mining the chemical structure of the atmosphere, since many of the important

reactions in the atmosphere are photochemical processes. The diurnally

averaged local photolysis rates Ji are calculated at every location in the

atmosphere at every third time step by a technique developed by Kramer and

Widhopf (1978), using the solar flux data compiled by Ackerman (1971) and up-

dated by Simon (1975). The time variation of the solar zenith angle with

latitude and solar declination is included in determining the photolysis rates

Ji" The absorption cross sections utilized to compute Ji for the various

species are outlined in Widhopf (1975) and updated to those reported in the

NASA Data Evaluation (1979). Computation of the O(1D) photodissociation

rate is performed using an appropriately fine resolution (Moortgaat and

Kudszus (1978)).

3-1
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In order to properly model the chemistry of the species N205, NO3 , and

CIONO2 which have important nighttime chemistry, a diurnal averaging was

introduced similar to that of Turco and Whitten (1978). Here, the diurnal

variation of the concentration is modeled as a constant daytime level fol-

lowed by constant nighttime level. The ratio between these two states can be

calculated using a simplified chemical system and is used to average the

chemical production/depletion terms to account for the effect of daytime-

nighttime chemistry. This change allows for an appropriate modeling of the

nighttime chemistry for NO3, N205, and ClONO2 while improving the calcu-

lated relative concentrations of NO2 to NO, among others.

The effect of multiple scattering was also found to have a significant

effect on distributions of NO and NO2 as well as other species. Therefore,

it is included in the model using the work of Luther, et al. (1978).
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4. BOUNDARY CONDITIONS

The computational domain considered in this investigation extends from

the north to the south pole, with a 100 meridional resolution, and from the

surface to 50 km, with a vertical resolution of Az = 2 km from the surface to

12 km, Lz = 1 km up to 35 km, and Az = 2.5 km up to the upper boundary. At

the polar regions, a zero latitudinal flux is assumed.

A fixed ozone concentration (6(10)11 mol/cm 3 ) was imposed at the

lower boundary, as interpreted from the meridional distributions compiled by

Dutsch (1971) and Hering and Borden (1964-67) (as sumnarized in the data com-

pilation of Wu (1973)). The concentration of N20 at the lower boundary is

prescribed as an average value (0.31 ppmv) interpreted from the tropospheric

measurements of Schutz, et al. (1970) and Goldman, et al. (1973). The latitu-

dinal variation of the mass mixing ratio of CO at the surface was interpreted

from the measurements of Seiler (1974). The mass mixing ratio of CH4 (1.61

ppmv) at the lower boundary was specified from the measurements of Fabian, et

al. (1979). Injection of NO and NO2 resulting from the anthropogenetic

activities was specified at the lower boundary as interpreted from the esti-

mates of Robinson and Robbins (1971). The species 0(3 P), O(1D), OH, N, and H

were takento be in photochemical equilibrium at the lower boundary because of

their relatively short lifetimes, whereas H20, HNO3, NO2, NO, HO2, H20 2,

N2059 NO3, HO2NO2 ' and ClOx were removed from the troposphere by simulating

atmospheric rainout/washout. The species H20, HNO3, H202, HO2, H205,

NO3 ' HO2NO2, and ClOx are removed at the average rates defined by Junge (1963),

whereas NO2 and NO were assumed to be removed at one-tenth this rate. The

rainout/washout model is discussed in more detail in Section 7.

The species O(3P), 0(10), 03, OH, H02 , H202, N, H, Cl, CIO, and

CIONO2 were assumed to be in photochemical equilibrium at the upper boundary,

whereas the mass mixing ratios of NO2, N20, H20, N205' NO3, HO2NO2 '

CH4, CO, and HNO 3 were continued analytically to the upper boundary by a

4-1



second-order extrapolation in space and time described by Widhopf (1975) and

Widhopf and Taylor (1974). This extrapolation allows the use of centered

spatial differencing at this boundary, while also eliminating the necessity of

specifying a boundary condition for these species at this location. It is an

accurate and stable method of evaluating conditions at computational bound-

aries (Widhopf and Victoria (1973)) when the physical mechanisms interior to

the computational domain govern the boundary value. This is the case for

N20, NO2 CH4, N205, NO3, HON H20, and HNO3, which are being trans-

ported up into the higher regions of the stratosphere.

4-2



5. TRANSPORT DATA

The meridional distributions of both mean density and temperature were

specified using the data obtained from 10 years of observations which were

analyzed and compiled by Louis (1973, 1974). These averaged data are speci-

fied from the surface to 68 km for the entire meridional plane and for each of

the four seasons. A tabulation of the temperature is included in the Appendix.

Luther (1973a,b) has analyzed the heat transfer, temperature, and wind

variance data of Oort and Rasmussen (1971), using the procedure outlined by

Reed and German (1965) for defining the components of the anisotropic turbu-

lent eddy diffusivity tensor. The three components k , k Oz and kzz

are specified for the northern hemisphere from the surface to 60 km. Values

for the components of the diffusivity tensor in regions where observational

data were not available were obtained by Luther by extrapolation, using the

results of Wofsy and McElroy (1973) and Newell, et al. (1966). These coeffi-

cients are specified for each month and initially were used to parameterize

the components of the turbulent diffusivity tensor. The values for the

southern hemisphere were obtained by reflecting the northern hemispheric

values, shifted by six months, and applying them appropriately in the southern

hemisphere. However, when these transport coefficients were tested against

the dispersion of inert tracers in the atmosphere, they were found to be not

totally adequate (Widhopf (1975)) and were improved by numerical experimenta-

tion described by Widhopf, et al. (1977). Additional tropospheric modifica-

tions which were necessary to model the water vapor distributions are dis-

cussed in Widhopf and Glatt (1978, 1979a,b). The most current values of the

turbulent diffusion coefficients used in the model for the months of October,

January, April, and July also are included in the Appendix.

5-1



The mean meridional circulation was obtained from the work of Louis, et

al. (1974), who calculated the circulation patterns by solving the continuity

and energy equations using compiled observations of the local meridional tem-

perature distributions and heat transfer rates. These same data sources were

used to define the thermal structure of the atmosphere, previously discussed.

The circulation patterns are specified for the entire meridional plane for

each season from the surface to 50 km. In order to insure that total mass

conservation was satisfied, the vertical wind component obtained by Louis was

specified and the meridional component calculated from the global continuity

equation. Both the vertical and meridional wind velocities are tabulated in

the Appendix.

In order that smooth variations of all these parameters exist through-

out the year, the temperature, density, and transport parameters (kzz,

k z, k , and w) were specified at each location by fitting the data pre-

viously described using a five-term Fourier series in time.

5-2



6. NUMERICAL SCHEME

In this model, an accurate (second-order in space and time) and effi-

cient time-implicit finite difference scheme has been employed to solve the

governing individual species conservation equation for those species with

chemical lifetimes less than two days (O(1D), O(3P), 03, N, NO, NO2, NO3,

NO2H02, N205, H, OH, HO 2, H202, Cl, ClO and ClONO2 ). Advective and

diffusive terms that are important in determining the time-dependent distri-

butions of the species are treated using a leap-frog and a Dufort-Frankel

finite difference scheme, respectively.

The time-implicit method makes use of a second-order accurate method

developed by Widhopf and Victoria (1973). In this method, the chemical pro-

duction/loss term wi, at a specific mesh point and at the new time level

n+1, is approximated by the expansion

0nf+1ln (ypnj ~n) ( 6)(P n+1 -n 1

i--1

\- n/ - T n ) (2)

where the index i denotes the species i, Yi the corresponding mass fraction,

T the temperature, p the density, n the current time level of the computa-

tion, and N the number of species considered. All partial derivatives

6-1



of £Oi are analytically computed and evaluated at the current time level n.

In addition, is approximated by the following:
foi;wing

on+1 1n-1
on i 1i

l 2

The use of these relations in the governing species conservation equa-
tions results in a linear set of coupled equations for yn+l (For this

problem, the time variations of p and T are specified.) These equations are

coupled only in time and not in space, and thus the technique results in a

solution of a set of Ns linear equations at each mesh point. The stability

and accuracy of the scheme is discussed by Widhopf and Victoria (1973).

This time-implicit algorithm overcomes the "stiff" nature of the

governing equations, which results from the wide range of chemical time scales

of the problem. For the current numerical system, the allowable time step is

determined by the convective time-step limitation, which yields a maximum time

step of a few days. In order to simplify the calculation and reduce the Ns
matrix size (with analogous reduction in computation time), only those species

whose shortest chemical time scales are less than two days throughout the com-

putational domain need to be solved using the time-implicit algorithm. All

other long-lived species (N20, H20, HNO3, CO, CH 4, and HCl) are solved

in a straightforward explicit manner. This combination of numerical algo-

rithms has proven to be computationally stable and accurate with a significant

reduction in computation time. The simulation of one complete yearly cycle

requires approximately 25 min on a CDC 7600 and includes all detailed radia-

tive flux calculations.

6-2



7. WASHOUT/RAINOUT

A very simple empirical approach, somewhat consistent with this type of

empirical photochemical model of the atmosphere, has been used to model

rainout/washout because of the limited knowledge of the dominant mechanisms

controlling the distribution of water vapor in the stratosphere and tropo-

sphere. Other more complicated approaches were attempted; however, each, at

some point, required fu,;damental empirical or assumed information. For

example, rainout occurs when warm, moist air ascends and saturates; however,

in the present model, the vertical velocities are prescribed in the mean and

have no meaning when applied to the determination of a condition when rainout

can occur. As a result, we have used the following approach due to its sim-

plicity and ease in interpreting the consequences of specifying empirical

information.

Specifically, rainout is treated as a first-order removal mechanism
proportional to the local water vapor concentration and removed throughout the

troposphere using the average precipitation time-constant interpreted from

available data. The latit,,dinal variation of the local resident time, a(O)

(1/sec), as interpreted from Junge (1963), is used. The time-dependent sur-

face boundary condition for water vapor is a relative humidity specification

using the work of Manabe and Wetherald (1967), while a flux-type boundary con-

dition is used at the upper boundary. A more detailed description of the

model is included in Widhopf and Glatt (1979a). Typical model results for

various northern latitudes are compared to available data in Section 8 which

describes the model results for the natural atmosphere.

7-1



8. NATURAL ATMOSPHERE

Using the chemical system and reaction rates listed in Table I, the

variation of the chemical structure of the atmosphere was calculated for the

entire yearly solar cycle. This simulation was carried out until the ozone

column calculated at each latitude differed by no more than 0.1 percent from

one year to the next throughout an entire year. Since there is no quan-

tative agreement on how much ClO x is presently in the atmosphere, and we can

only estimate on how much will be present in the future, combined with the

fact that the cost of a 20- to 40-year simulation is prohibitive, ClO x was

handled in a parametric manner in this study. Specifically, two calculations

were performed in an attempt to somewhat bound the problem: one with 2 ppbv

ClO x in the stratosphere and a calculation with no ClO x present.

ClOx (Cl, ClO, ClON0 2, and HCI) was held fixed in the stratosphere

at altitudes where NOy (N, NO NO2, NO3, HNO 3, N205, N02HO2) is essen-

tially at a constant mixing ratio. Initially, the concentrations of Cl, CIO,

CION02, and HCI were computed in equilibrium with 2 ppbv in the stratos-

phere. Subsequently, at each time step the total ClOx at the described

altitudes was maintained at 2 ppbv by the addition of a source of HCI. Re-

sultant distributions obtained in this manner, properly nondimensionalized,

agree with other two-dimensional model simulations reported by Borucki (1979).

Model results for the monthly variation of the total ozone column as a

function of latitude are shown in Fig. 1 for the two cases described, together

with the data compilation of observed ozone columns (Dutsch (1971)). Since

the transport has been developed independent of ozone observations, the

ability to predict the spatial and temporal variation of the concentration of

ozone is considered a test of the model transport as well as the chemistry.

The variation of the ozone column in the northern hemisphere computed with
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ClO x absent is in good agreement with the observations, whereas that ob-

tained with 2 ppbv CIO x (probably indicative of the ClO x present in the

atmosphere some time in the future) is lower than observations, as would be

expected.

Shown in Figs. 2a through 2d is a comparison of the computed ozone pro-

files for these two cases at various latitudes during the mid-months of the

four seasons. Earlier model results (Widhopf, et al. (1977)) obtained using

the 1976 chemical system are included for comparison purposes. The transport

specifications are the same in all the calculations shown except for some dif-

ferences in the troposphere. The ozone profiles for the case in which 2 ppbv

CIO x is present in the stratosphere are in agreement with the data except

for the peak concentrations, which are low. This accounts for the lower ozone

columns shown in Fig. lb. The calculated tropospheric ozone levels generally

are lower than observed levels. For the case in which ClOx was not con-

sidered, the peak values increased, and the ozone profiles are in better

agreement with data, except at altitudes higher than approximately 27 km where

the ozone concentration is higher than observed. This points to the fact that

there is, in fact, some ClO x presently in the stratosphere and must be con-

sidered in order to be able to calculate the correct level of ozone above

approximately 30 km. This is more vividly demonstrated in Fig. 3, where the

ozone profiles calculated with 2 ppbv ClO x and without ClO x present are

com- pared with rocket measurements.

As stated, the level of 2 ppbv of CIO x was chosen in order to provide

an initial estimate of the effect of ClO x. A comparison of the calculated

profiles of Cl, CIO, and HCI with corresponding available measurements is

shown in Figs. 4a and 4b. Because ClO was introduced uniformly throughoutx
the year, the variation of the calculated Cl and CIO concentrations does not

vary much ( 10 percent) with time of year. Also, because we have introduced

ClOx in a parametric manner, at a level estimated to be reasonable, any

direct comparisons with ClO x measurements are not strictly valid, but pro-

vide only relative comparisons. However, the profiles at 30°N during
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July are in agreement with measurements made during July at 320N. The cal-

culated HCI distribution during May is shown in Fig. 4b and is in comparative

agreement with available measurements. Further study will determine the rela-

tive significance of these ClO x comparisons.

Other comparisons with data are useful in elucidating areas where model

predictions using the presently recommended chemical set are in agreement with

observations and where'more research is needed. Some tropospheric results are

discussed first. All these results are plotted for the case which includes

ClOx, since the introduction of ClO x does not substantially effect the

distribution of these trace species, at least within the accuracy limits of

the data.

Shown in Figs. 5a through 5d are some typical H20 profiles calculated

during the mid-months of the four seasons compared to available data. The

agreement is good below 10 km, and the calculated level is higher in the stra-

tosphere than the data compiled by Harries (1976). However, more recent

measurements in the stratosphere (Schemeltekopf (1979)) show levels of water

vapor approximating those calculated; in some cases there are measurements of

even higher levels.

Tropospheric NOx profiles are shown in Fig. 6 and compared to tropo-

spheric estimates made by Fishman and Crutzen (1978) in their attempt to

balance the CO budget. The rapid increase in the concentration of NOx in

the lower few kilometers is due to the inclusion of anthropogenetic sources of

NOx at the surface. Above 2 km the calculated NOx profile approximates

the levels that were estimated by Fishman and Crutzen. The dramatic reduction

in the NOx level from that calculated using the 1976 chemical system is ob-

tained with the introduction of the larger NO + HO2 chemical rate used in

the present calculations. These comparisons are useful, but measurements of

NOx concentration are needed in order to validate any of the model predic-

tions/estimates.
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Tropospheric HNO 3 profiles at 30°N latitude are compared in Fig. 7,

with the corresponding measurements reported by Heubert and Lazarus (1978).

Here, the data very near the surface have been used to evaluate the surface

deposition velocity. This deposition velocity controls the shape of the pro-

file below 2 km, while rainout controls the profile in the rest of the tropo-

sphere. This further indicates that this very simple rainout model provides

an approximate means to simulate the average rainout process in the tropo-

sphere. It should be emphasized here that, at best, the rainout/washout is

only simulated in some average sense.

While the calculated tropospheric level of HNO 3 seems to be in rela-

tive agreement with the limited available data, the concentration of HNO 3 is

overpredicted in the stratosphere. This is shown in Fig. 8, where the com-

puted HNO 3 columns above 12 km are compared to measurements. The predicted

levels are a factor of approximately three to four higher than these obser-

vations. This is also demonstrated in Fig. 9, where a comparison is made of

the computed profiles of NO, NO2, and HNO 3 with the corresponding simul-

taneous measurements of these species in the stratosphere (Evans, et al.

(1976)). The NO level is in good agreement with observations; however, the

HNO 3 level is seen to be too high, and the NO2 level is low.

The species HO2NO2 is a potential reservoir for some NOx and

HO and therefore may provide part of the solution to the partitioning of

NOy as described above. However, the inclusion of HO2NO2 in these simu-

lations has not decreased the level of HNO 3 to values in much better agree-

ment with data from that obtained in our previous calculations (Widhopf and

Glatt (1979a)). Just recently, measurements of the photolysis rate which are

lower than the recommended JPL NASA review rates used in these calculations

have just been made available (Molina (1980)) and, thus, subsequent calcula-

tions using these lower photolysis rates may have a positive effect on the

reduction of the HNO 3 level. The overprediction of HNO 3 above current

observed levels needs extensive investigation. In particular, the chemistry
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of OH needs additional attention, since this species also controls the cal-

culated level of HNO3 . An important reaction which could also be a con-

trolling mechanism is the reaction OH + HO2NO2. A definitive measurement

is needed of the rate at which this reaction proceeds.

Since OH is a species which controls many of the important atmospheric

chemical processes, the calculated distribution at 30°N during January is

shown in Fig. 10 compared to some measurements in January 1976 (Anderson

(1976)). The agreement in the high stratosphere is good, and the calculated

profile is also within the broad regime of the tropospheric measurements.

More data are needed in the troposphere and lower stratosphere in order to

determine the adequacy of Lhe OH calculations in this regime. This is the

regime where the concentration of species which react readily with OH do not

agree with measured levels (e.g., HNO 3, NO2, CH4, and CO).

Comparisons of the N20 profiles calculated at different times of the

year and locations are compared with data in Fig. 11. Below approximately 35

km, the model calculations are in relative agreement with data. Above 35 km,

the calculated levels seem to be too high as compared to these limited mea-

surements. A similar comparison for CH4 is shown in Fig. 12. The general

agreement is good except between 20 and 30 km. This, of course, is the region

where OH data is lacking and a region where the reaction between OH and CH4
is important.

A comparison with the limited data available for CO shows relative

agreement with Seiler (1974) measurements in the troposphere; however, the

calculated stratospheric level is low. The distribution of CO in the strato-

sphere also is controlled somewhat by its reaction with OH. Therefore, from

all these comparisons of calculated and measured distributions of species

directly affected by OH (HNO 3 , CO, CH4, etc.), it seems that more investi-

gation is needed regarding the measurement of the levels of OH present in the

atmosphere, especially within the altitude regimes of 15 to 30 km. Also,
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more measurements of the rates at which OH reacts with many important species

are needed. This information should help to clear up some of the differ-

ences modelers are presently obtaining between calculated and measured dis-

tributions of CH4, CO, and the various components of NOy.
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9. AIRCRAFT EMISSIONS EFFECTS

The model has also been used to estimate the effect of aircraft emis-

sions on the ozone layer. Emissions (see Table II) from a fleet of subsonic

and supersonic aircraft projected to be operational in 1990 (Little (1976);

Oliver (1976)) were introduced into a simulated 1990 natural atmosphere as-

sumed to contain 2 ppbv ClO x in the stratosphere. The effect of these emis-

sions on the ozone layer is summarized in Fig. 13 which shows the ozone column

change at various latitudes over a five-year period of continuous aircraft

fleet operation starting in February. An increase in ozone column occurs at

all latitudes depicted and also at all other latitudes not shown. A slow in-

crease over the five-year interval is apparent with the fifth year closely

approximating the fourth year. From previous experience using this model, a

"steady state" would be achieved in about seven years, with minor changes from

the results of the fifth year. Thus, the simulation was only carried out for

five years to reduce computational costs. The ozone column change above 17 km

is also depicted using a highly expanded scale showing the slow increase oc-

curring at higher altitudes, due to transport.

The latitudinal distribution of these resultant changes in total ozone

column during October, July, April, and January of the fifth year of simula-

tion is shown in Fig. 14. Shown in the insert is the total amount of NO2

injected at each latitude. Note that the peak ozone change ( 3.8 percent)

occurs at 30 to 400N in October (corresponding to the latitudes for peak

injection) and moves slightly southward, peaking about 20 to 30°N during

April. This transport effect has been observed in previous calculations by

Widhopf, et al. (1977). Thus, the present simulations also show a definite

corridor effect as was present in previous estimates of NOx pollution ef-

fects (Widhopf, et al. (1977); Widhopf and Glatt (1978), 1979a,b)). The ef-

fect in the southern hemisphere is much smaller than the perturbation in the

northern hemisphere as a result of the injection scenario used in these calcu-

lations. However, interhemispheric transport has resulted in an average
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level of change, approximately 0.5 to 0.75 percent in the ozone column in the

southern hemisphere where the primary change in the southern hemisphere occurs

at low latitudes.

Figure 15 shows the percent change in ozone column with altitude at

200, 300, 400, and 50°N latitude during the months of October,

January, April, and July of the fifth year of aircraft operations. Above

approximately 15 km, the change in ozone column is less than 0.75 percent,

with the major fraction of the change occurring in the troposphere throughout

the year. Above 25 km the ozone column change occasionally went negative.

However, the magnitude never exceeded 0.1 percent.

Using a yearly averaged height of the tropopause, the latitudinal

variation of the tropospheric and stratospheric contributions to the ozone

column change was calculated; the distributions are depicted in Fig. 16. In

the northern hemisphere, the major effect occurs in the troposphere south of

400 N. At the higher latitudes, the tropospheric and stratospheric effects

are comparable, a result of the lower tropopause height in relation to the

aircraft cruising altitudes and the effect of meridional transport.

Altitude profiles are shown in Fig. 17 of the resultant perturbation of

ozone and NOx concentration at 400N during April, July, October, and

January. Below 25 km the change in ozone resulting from the NO x aircraft

emissions is positive at all altitudes. The major changes are in the tropo-

sphere at the altitudes where the largest injection of NO x occurs. The pro-

files of the changes in 03 and NOx are quite similar with some effect of

transport on the 03 profiles.

The monthly variation of the northern and southern hemispheric total

ozone column changes are depicted during the fifth year of operations in Fig.

18, together with the corresponding globally averaged variation. Also shown

are the yearly average of these quantities. The yearly average in the

southern hemisphere is about one-third of the change which occurs in the
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northern hemisphere (2.2 percent), where the predominant contribution in the

southern hemisphere occurs between 00 and 300S. Averaged over the entire

year, the global average is approximately 1.5 percent. The monthly variations

above these yearly averages are quite large for all of these quantities.

In previous calculations using the same rates of NOx emissions

(Widhopf, et al. (1977)), ozone was found to be produced as a result of the

NOx emissions emitted from subsonic aircraft flying below approximately 13

km. This ozone was produced through the "smog" chemical cycle initiated by

the oxidation of methane by OH. The NOx emissions from higher flying air-

craft were found in that study to slightly deplete ozone through the NOx
catalytic cycle. The overall results for the combined fleet of subsonic and

supersonic aircraft was a slight increase (maximum local increase of 1.5 per-

cent) in ozone column. These more recent model results predict that not only

do low-flying aircraft emissions produce ozone in the troposphere, but even

the emissions from high-flying supersonic aircraft produce small amounts of

ozone. This is in agreement with some of our more recent calculations (Widhopf

and Glatt (1978), (1979a,b)) and is primarily a result of the recent increase

in the rate at which the reaction NO + H02 -- NO2 + OH, which is now

approximately a factor of 40 larger than previous estimates. A discussion of

the pertinent chdmical mechanisms is included in the cited references and not

repeated here, since there have not been any changes with these results.

The simultaneous introduction of water vapor was also performed in this

present study and found to decrease the magnitude of the ozone increase

resulting from the NOx emissions above. However, for this particular fleet,

the magnitude of the effect of the H20 emissions is small (less than 0.1

percent in local ozone column) because, for these flight altitudes and this

fleet size, the perturbation to the natural atmospheric H20 distribution is

minor. In the stratosphere, the effect of H20 emissions results from the

increased conversion of NO to NO2 through the reaction NO + H02 ---NO2 +

OH, which in turn resulted from the increased level of H02 which was chemi-

cally produced from the H20 emissions. In the troposphere, the excess H20

increases the level of OH which reacts with NO2 forming HN03 , which

9-10



eventually is rained/washed out. Both processes result in the removal of some

of the NOx aircraft emissions, decreasing the level of 03 increase which

results from aircraft NOx emissions alone. This general result was also

found to be the case in previous studies (Glatt and Widhopf (1978); Widhopf

and Glatt (1979a,b)), and the reader is referred to those discussions for fur-

ther details.

It should be emphasized that for different aircraft fleets, depending

on the fleet size and the specific cruising altitudes, the relative magnitude

of the effects of NOx and H20 emissions can be different than found for

this fleet. It should also be emphasized that these estimates are dependent

upon our present capability to model all the important mechanisms controlling

this phenomenon, which are being modeled rather than computed from first prin-

ciples. Our present state of knowledge in some of these areas is deficient,

and future improvements may change these results. The most important areas

needing improvement are the transport prescription in the upper troposphere-

lower stratosphere, the modeling of rainout/washout phenomena and the

specification of the tropospheric chemistry.

A basic step in the development of a model for describing rainout/-

washout phenomena has recently been taken by Isaksen and Rodhe (1978) which

will allow for improved modeling of these complex phenomena. An approach of

this type will be used in subsequent model studies.
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10. SOLAR PROTON EVENT

It has been recognized that solar proton events can produce significant

amounts of NO at high geomagnetic latitudes (>60°N), and that definite

ozone changes have been observed during and after these events. As pointed

out by Crutzen, et al. (1975), the increase in NO is due to the dissociation

of nitrogen by electrons with energies in the range of tens to hundreds of

electron volts. The primary reactions that lead to the production of NO are

+N2 + e-- NN+ + 2e (1a)

N2 + e PN + N + 2e (1b)

N2 + e-.2N + e (1c)

These reactions lead to ionization and dissociation of nitrogen, while tihe

following reactions produce NO:

N+ + 0- N + 02+ (2a)

N+ + 02 NO+ + 0 (2b)

N + 02 -,NO + 0 (2c)

N + 03 -NO + 02 (2d)

1 0 -1 
R V O U S A C E

IS BLANK



Reaction 2c is temperature-dependent and is slow for nitrogen in the ground
4state (N( S)). However, this is not the case for the electronically excited

state atom (N(2D or 2P)); thus, the amount of NO produced during the solar

proton event depends on the electronic state of the nitrogen atom.

Crutzen, et al. (1975) examined three solar proton events which oc-

curred in November 1960, September 1966, and August 1972 and computed the

total production of NO during these events. Figure 19 shows the results of

their calculations which were performed assuming that (a) all the nitrogen

atoms were in ground state and (b) all nitrogen atoms were in excited states
(2P, 20). In addition, they included the NO destruction reaction

N + NO - N2 + 0 (3)

These results show that the August 1972 event was the strongest of the three

events. The number density profiles shown are an average distribution for the

region north of about 600 latitude. In their calculations, it was assumed

that the production rate of NO was about 1.5 times the ionization rate. How-

ever, in a recent paper by Fabian, et al. (1979), they have inferred from

rocket measurements of mesospheric and thermospheric nitric oxide concentra-

tions during auroral particle precipitation events (Arnold (1978)) that the

molecule/ion pair ratio is 2-2.5. In addition, Jackman, et al. (1979) have

determined upper bounds on the NO production rate below 80 km and found the

ratio to be 1.2-1.3, which is closer to that used by Crutzen, et al. (1975).

Due to the large controversy involving the NO production rate and the

recent numerous chemical reaction rate changes since both Heath, et al. (1977)

and Fabian, et al. (1979) performed their investigations, it was felt that

application of the present model to the August 1972 solar proton event (the

strongest recorded in 25 years) would be a good test of the present model

chemistry and transport.
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NOx DENSITY (molecules cm-3)

70 x 1
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,, 1966 NOV NO
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I-
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NO PRODUCTION (molecules cm l I

Total production of NO during the solar proton events of November 1960,
September 1966, and August 1972 (lower scale) is given for heights between 70
and 20 km. The curves labeled PN = 0 and PN = 1 give the production ob-
tained by assuming that all nitrogen atoms are in excited (2P2D) states
and in the ground 4S) state, respectively. The total maximum (GCRmax) and
minimum (GCRmin) annual production of NO from galactic cosmic rays are in-
cluded. The adopted background distribution of NOx (NO + NO2 ) is also
given (upper scale).

Fig. 19. Production of NO During Various Solar Proton Events
(After Crutzen, et al. (1975)).
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Since the chemical reaction system in this model does not include all

the appropriate reactions to simulate the solar proton event, it was decided

to use the NO production calculations of Crutzen, et al. (1975) and introduce

these NO perturbations at the onset of the solar proton event. To study the

sensitivity of the results to the molecule/ion pair ratio, we also increased

the NO production by the factor 1.7 (ratio 2.5/1.5). In addition, the

reported calculations of Crutzen, et al. (1975) were an average over the lati-

tudes north of 600, and thus no latitudinal distribution of the NO produc-

tion was available. Therefore, for the initial calculations, NO was uniformly

inserted at all latitudes north of 600 using the results (Fig. 19) for the

exited nitrogen state. The natural atmosphere was simulated over a number of

years in order that a periodic solution existed. On 4 August, the NO profiles

were added to those calculated for the undisturbed atmosphere with 2 ppbv

ClOx, and the model was run for one day using an initial time step of 0.1

sec. At the end of one day, the calculation was restarted using a one-day

time step, and the calculation was carried out until 4 September 1972.

Figure 20 shows the change in a zonally averaged ozone column above

37.5 km (=4 mbar) at 75 to 80 °N. The data were obtained from the BUV

experiment on the Nimbus 4 Satellite (Heath, et al. (1977)). Also shown are

the results of the simulation fc both 1.5 molecules/ion pair and 2.5

molecules/ion pair at 800 N. For the case which considers 1.5 molecules/ion

pair, the initial drop in 03 column is about 3.5 units. Here the zero value

was chosen to be the level of the natural atmosphere ozone column just prior

to the event. The recovery period is about two weeks for this case. For the

higher value of NO production rate, an initial drop of about 5.2 units is ob-

served; by the end of the simulation, the ozone column has still not com-

pletely recovered.

Figure 21 shows tA resultant distribution of 03 reduction at 80°N

for the case 1.5 molecules/ion pair. At t=O+ the event had just occurred, and

a peak reduction in 03 of about 27 percent is calculated at 45 km. Below 25

km there is essentially no effect on 03. Results also are presented for

t=8, 19, and 29 days after the event. Note that after 29 days the ozone has
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recovered somewhat, and the peak reduction is about 11 percent at about 42.5

km. Figure 22 shows the resultant ozone reduction for the case of 2.5

molecules/ion pair case. Here it is seen that at t=O+ about a 38 percent

reduction occurs at 45 km, whereas after 29 days the ozone reduction has

decreased to about 18 percent. Shown in Fig. 23 is the zonally averaged 03

column change between 550 and 65 N latitude taken from Nimbus 4 data

(Heath, et al. (1977)). Also shown are the results of the model simulation at

600N. These results are qualitatively in agreement with those at 800N;

however, the levels of 03 reduction are slightly higher with the calculation

using 1.5 molecules/ion pair case showing about 4.2 units and the higher case

showing about 6 units. Although not shown, there is essentially no effect on

03 south of 50 N.

Figure 24 shows the results obtained by Heath, et al. (1977) in which

they used a two-dimensional, zonally averaged model with 1977 chemical rates

to simulate the 1972 solar proton event. After 28 days the reIlts show about

a 15 percent peak reduction in 03 about 45 km. For this calculation the

molecule/ion pair ratio was taken to be 1.5.

In a recent paper by Fabian, et al. (1979), their two-dimensional,

zonally averaged model was used to simulate the 1972 solar proton event. The

calculations were performed first using the NO production rate described by

Crutzen, et al. (1975) and then a modification of these rates to account for a

2.5 molecule/ion pair factor as determined by the measurements of Arnold

(1978). Figure 25a shows their results at 700 to 800N and Fig. 25b at

500 to 600N. With the chemistry used in their model, the results indicate

that the data can be matched much closer if the molecule/ion pair ratio is 2.5

as inferred using Arnold's (1978) data. Qualitatively, their results are

similar to the present results; however, even with the 2.5 factor, the initial

reduction in the 03 column is about 50 percent lower. These differences are

most probably due to the differences in the chemical reaction rates, since a

large number of reaction rates updates are included in the present simula-

tion. In addition, the latitudinal input of NO was not described in their

paper; thus, it is possible that it was not uniformly inserted as in the

present model simulation.
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Percentage decrease of the 03 partial pressure versus air pressure
derived from the average of the 7 days before 4 August 1972 and 7-day periods
centered on 8 and 19 days after the solar proton event (solid lines). (Data
for 7 days before the event are used as the base line for the two solid-line
curves.) The dashed line is a calculation of the 03 reduction for 1 Sep-
tember 1972, due to the catalytic effect of solar proton-produced NO.

Fig. 24. 03 Reduction as Calculated by Heath, et al. (1977)
for August 1972 Solar Proton Event
(After Heath, et al. (1977))
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In a recent paper by Jackman, et al. (1979), an upper bound on the NO

molecule/ion pair ratio was estimated to be about 1.2-1.3, which more closely

corresponds to the NO production determined by Crutzen. However, they indi-

cated the value 2.5 may be appropriate above 80 km. Since the peak ozone

reduction occurs below 60 km, the factor 1.5 is considered more appropriate

for estimating the production of NO produced by this solar proton event.

As an additional calculation, it was decided to investigate the sensi-

tivity of the ozone loss to the presence of ClO x . Since the original calcu-

lations of the natural atmosphere included 2 ppbv ClOx, we removed all the

ClO x in the natural atmosphere and ran the calculation until the non-ClO x

natural atmosphere became essentially periodic. Then, using the NO input as

obtained by Crutzen (1.5 factor), the solar proton event was simulated.

Figure 26 shows the resultant distribution of 03 reduction at 80N. By

comparing Figs. 21 and 26, we can see that the removal of ClO x only in-

creases the peak ozone reduction by about 2 percent after 29 days.

Before any quantitative conclusions can be drawn in regard to the

validity of the model results, it must be pointed out that these calculations

are preliminary, and a more accurate test of the model requires the proper

latitudinal distribution of the production of NO north of 600. Finally, in

a recent communication with Stolarski (1980), it was pointed out that the

Nimbus 4 data was not properly reduced and is presently being reworked. How-

ever, some of the preliminary results indicate that the ozone recovery is

qualitatively similar to the present model results. More extensive model

tests will be performed once these data are available.
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PART II

MODEL RESULTS USING REACTION RATES
RECOMMENDED IN 1982
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11. NATURAL ATMOSPHERE

The model described in Part I of this report was used to calculate the

distribution of trace species in the natural atmosphere using a more recent

recommendation of pertinent atmospheric reaction rates by the NASA Panel for

Data Evaluation (NASA 1982). The specific chemical system and reaction rates

used in this part of the study are listed in Table III.

As in previous simulations the variation of the chemical structure of

the atmosphere was calculated for the entire yearly solar cycle until the

ozone calculated at each latitude differed by no more than 0.1 percent from

one year to the next throughout an entire year. The calculation was performed

assuming that the level of ClO x in the stratosphere was 2 ppbv using the

same reasoning and procedure outlined in Section 8. Pertinent comparisons

with measurements of trace species are presented in this section.

Model results for the monthly variation of the total ozone column as a

function of latitude are shown in Figure 27 together with the data compilation

of observed ozone columns (Dutsch (1971)). The agreement is reasonable,

especially at the low and mid latitudes. At the higher latitudes the

calculated ozone columns are higher than observed during Autumn in the

northern hemisphere and during Winter and Spring in the southern hemisphere.

It should be noted that these ozone column levels are much higher than

computed (for the same 2 ppbv CIO x case) using the rates recommended in 1979

(see Figure lb).

The variation of ozone concentration with altitude was compared to

available measurements. The agreement between the calculated and observed

distributions of ozone with altitude at various latitudes throughout the year

is good; in general similar to that computed in earlier studies (see Figure

2a-d (the Widhopf, et al (1977) curves)) and, thus, have not been repeated

here. A comparison of a calculated and measured ozone profile during June at

30*N is shown in Figure 28.

The level of 2 ppbv of ClO x was chosen in order to provide an initial

estimate of the effect of CIO x on the chemical structure of the atmosphere
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in the same manner as was done in Part I. A comparison of the calculated

profiles of CI, CIO and HCI with corresponding avilable measurements are shown

in Figs 29 and 30. Because ClO x was introduced uniformly throughout the

year, the variation of the calculated Cl and ClO concentrations does not vary

much (,lO percent) with time of year. Also, because ClO x was introduced

in a parametric manner, at a level estimated to be reasonable, any direct

comparisons with CIO x measurements are not strictly valid, but provide only

relative comparisons. However, the profiles at 30N, during July, are in

relative agreement with measurements during July at 320N. The calculated HCl

distribution during May is shown in Fig. 30 and is in relative agreement with

the measurements shown. The difference between the present distributions of

these ClO x constituents and that obtained in Part I are noticeable, but not

major.

Various other comparisons between calculated and measured distributions

of trace species in the atmosphere were made in a manner similar to those

presented in Part I. Distributions for H20, tropospheric NOx and HNO3, N20 and

CH4 are either very close to the distributions shown in Figs 5a-d, 6, 7, 11

and 12, respectively, or were not sufficiently different to be worth

mentioning.

In Part I it was shown that the distribution of HNO3 was overpredicted

using the reaction rates included in Table I (see Figs 8 and 9). However,

calculations using the updated rates in Table III are in much better agreement

with distributions of NO, NO2 and HNO 3, as well as the HNO 3 column above

12 km, than were the previous results. These comparisons are shown in Figs.

31 and 32. This is an important change in the correct direction.

In summary, the use of the updated reaction rate data recommendation

yields results which are in much better agreement with observations than was

the case for the 1979 chemical set given in Table I. This is especially true

for the 03 and HNO3 columns as well as the distributions of NO, NO2 and

HNO 3•
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12. AIRCRAFT EMISSIONS EFFECTS

Emissions from a fleet of subsonic and supersonic aircraft (see Table

II) projected to be operational in 1990 (Little (1976); Oliver (1976)) were

introduced into the simulated 1990 natural atmosphere described in the

previous Section. The emission levels are the same as used in previous

investigations using this atmospheric model. Only NOx emissions were

introduced since results described in Part I demonstrated that H20 emissions

have a negligible effect on ozone. This is because the level of injected
H20 is very low compared to the natural atmospheric background at

corresponding altitudes. The simulation was carried out for a four year

period after the yearly variation in total ozone column in the natural

atmosphere changed by less than 0.1% from year to year. For the present

simulation the emissions were introduced continuously starting in October.

The effect of these emissions on the ozone layer is summarized in Fig.

33 which shows the total ozone column change at various latitudes over a

four-year period of continuous aircraft fleet operation. A small increase in

ozone column occurs at all latitudes depicted and also at all other latitudes

not shown. Based on previous experience with the model and a desire to reduce

computational costs, it was determined that a four-year simulation was

sufficient.

The latitudinal distributions of these resultant changes in

total ozone column during October, July, April, and January of the fifth year

of simulation are shown in Fig. 34. Shown in the insert is the total amount

of NO2 injected at each latitude. Note that the peak ozone change (^J3.1

percent) occurs at 30 to 40ON in October (corresponding to the latitudes for

peak injection) and moves slightly southward, peaking about 30ON during

April. This transport effect is similar to that observed in previous

calculations reported in Part I. Thus, the present simulations also show a
definite corridor effect as was present in previous estimates of NOx
pollution effects (see Section 9). The effect in the southern hemisphere is
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much smaller than the perturbation in the northern hemisphere as a result of

the injection scenario used in these calculations. However, interhemispheric

transport has resulted in an average level of change, approximatedly 0.5 to

0.75 percent in the ozone column in the southern hemisphere where the primary

change in the southern hemisphere occurs at low latitudes.

The overall change in ozone column in the southern hemisphere is

generally the same level as obtained in the previous simulation described in

Section 9. In the northern hemisphere the magnitude is, on the average,

approximately 75 percent of the previous simulation.

Shown in Fig 35 are the variation in ozone column change with altitude

at 20, 30, 40* and 50ON latitude during the months of October, January,

April and July of the fourth year of aircraft operations. The distributions

are quite similar to that obtained in Part I, with the aforementioned

reduction in magnitude. The more recent calculations show a higher level

above 20 km, however, because of the small magnitude of the ozone change, this

is not believed to be very significant.

The monthly variation of the northern and southern hemispheric total

ozone column changes are depicted during the fourth year of operations in Fig.

36, together with the corresponding globally average variation. The yearly

averaged change in the southern hemisphere is one-third of the change which

occurs in the northern hemisphere (1.75 percent), where the predominant

contribution occurs between 00 and 30*S. Averaged over the entire year the

global average is approximately 1.15 percent.

Previous calculations performed using this model with the same NOx

emissions distribution [Widhopf, et al (1977)], predicted that ozone was

produced as a result of NO emissions emitted from subsonic aircraft flyingx
below approximately 13 km. In Part I small amounts of ozone were also found

to be produced by the emissions from higher flying aircraft. The same type of

result reported in Part I is found in this most recent study. A discussion

of the pertinent chemical mechanisms is included in the cited references and

not repeated here, since there have not been any significant changes with

these results.
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It should again be emphasized that for different aircraft fleets,

depending on the fleet size and the specific cruising altitudes, the relative

magnitude of the effects of NOX emissions can be different than found for

this fleet. It should also be emphasized that these estimates are dependent

upon our present capability to model all the important mechanisms controlling

this phenomenon, which are modelled rather than computed from first

principles. Our present state of knowledge is some of these areas is

deficient and future improvements may change these results.
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APPENDIX

HYDRODYNAIIC AND TRANSPORT PARAMETERS

Listed in this Appendix are the meridional distributions of T, kzz,

k k , v, and w for 15 October, 15 January, 15 April, and 15 July as used

in the calculations described in this report.
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