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Labeling procedures for the basis graph of a generalized network
are 1introduced which build on procedures designed for pure networks.
The various cases which arise in updating the basis graph are present-

ed, and the efficiency of the related primal simplex implementation 1is

discussed.
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1. INTRODUCTION
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Generalized network problems form a special class of linear pro-
gramming (LP) problems. A wide variety of important planning problems
can be modeled as generalized networks in the areas of scheduling, cash
management, production, and distribution as well as many others,

Glover et al. [8] report that their generalized network code NETG
is fifty times more efficient than a general purpose LP code, and cost
savings of forty to one are reported in [5] when NETG is used instead
of a general purpose code. Although such special purpose generalized
network optimization codes are already extremely fast, the size and
importance of many generalized network problems indicates a need for
further improvements in efficiency. In this paper we present a method
for implementing the primal simplex algorithm for generalized networks
which builds on the labeling procedures used in one of the fastest pure
network codes [2]. Our approach has the advantage of being quite easy
to understand, and it should give rise to computer codes which are
highly efficient and easily maintained.

Any LP problem whose coefficient matrix, not including simple
bounding constraints, contains at most two nonzero entries per column
is a generalized network problem. Lower bounds on variables are trans-
lated out and the resulting upper bounds are known as capacities. By
scaling or by complementing a variable relative to its capacity, these
problems can be transformed so that each column has at least one entry
which 1s +1. A graphical representation of these problems as directed
networks is obtained as follows. Each row of the transformed matrix is
associated with a node. Each column of this matrix is associated with
an arc directed away from the node corresponding to the +1 column entry
(arcs corresponding to columns containing two +1 entries can be

directed either way). Columns with a single nonzero entry are
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associated with arcs incident on only one node, and such arcs are
called self-loops. Thus, a column with nonzero components of +| and -m
in rows 1 and j, respectively, corresponds to the generalized arc (i,j)
of Figure 1. The value m, which is shown in the triangle, is called

the multiplier of the arc.

O——A-0

Figure 1. A generalized arc.

The variable x associated with the arc of Figure 1 can be interpreted
as an amount of flow leaving node i. These x units of flow are trans-
formed along the arc to mx units of flow entering node Je.

An efficient impleméntation of the primal simplex algorithm for
generalized network problems was developed by Elam, Glover, Hultz,
Klingman, and Stutz [6], [8], (9], [10]. Their method for maintaining
the basis graph is known as the Extended Augmented Predecessor Index
method, and it 1is based on the triple label representation for trees
introduced by Johnson [12]. Glover, Klingman, and Stutz [11] utilized
a node function called the thread in their Augmented Threaded Index
method for pure networks, Bradley, Brown, and Graves [3] also make use
of the thread in the solution of pure network problems. Recently, the
thread was used in primal simplex implementations for generalized net-
works by Adolphson [l] and by Brown and McBride [4]. Our approach also

uses the thread but our methods differ from previous work in that we do
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not make use of the "rooted loop orientation" [6], ([10] in our

quasi-tree representation.

Our method of representing the basis should prove useful when
applied to processing networks [7], [13] in which generalized arcs are
present. It 1is also possible that our approach will lead to an
extension to generalized networks of some work reported in [l4].
There, a way of implementing tree operations in pure networks is given
for which a time bound of 0(log n) per tree operation results, where n

is the number of nodes.

2. BASIS STRUCTURE

It is well known that a basis for a generalized network problem
can be represented graphically as a collection of quasi-trees, where a
quasi-tree is a tree to which a single arc has been adjoined. Thus, a
quasi-tree contains a single closed path, and this closed path 1is
called a loop. It 1s possible for this loop to be a self-loop.

Specialized implementations of the primal simplex algorithm for
generalized network problems rely on functions defined on the nodes of
the basis graph. The node functions we use are those of Barr, Glover,
and Klingman [2], and we adopt their notation whenever possible.
However, the node functions of [2] apply to rooted trees rather than
quasi-trees so we must set the stage properly, Suppose that a
quasi-tree Q is given. We select one of the arcs of the loop of Q and
designate it as the specilal arc of Q. When the special arc is removed
from Q, a tree T results. One of the end nodes of the special arc is
designated as the root of T. The root node is regarded pictorially as
the highest node of T with all other nodes hanging below it. If i
and j are end nodes of an arc of T such that i {s closer to the root

than j, then { is called the predecessor of j and node j is called an
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a}_: immediate successor of node i. The subtree of T which contains a
b
_<:\ node x and all of its successors will be denoted as T(x). The node
‘ functions we need are defined as follows.
\ For nodes x other than the root node, p(x) denotes the predecessor
AT
S of x. If x is the root node, then p(x) is the node at the opposite end
of the special arc.
'
l".;'-‘_ The preorder thread index (thread, for short) of node x is denoted ‘
‘.j: as s(x). A preorder of T 1s an order on 1its nodes in which node y
. precedes 1ts successors and these successors precede any other node
l::: which follows node y. Once a preorder 1is given, the thread is
::_:: determined as the function which traces the tree nodes in preorder.
_.-‘ The value of the thread for the last node in the preorder is defined to
el be the root.
!
:::f The function whose value at node x is the number of nodes in T(x)
._ is denoted by t(x).
o
::\'.' The last node of T(x) in the preorder defining s 1s denoted by
-
o
o f(x).
, The backpath of a node x in T consists of node x and all nodes
‘_‘_.: obtained from x by successively applying the predecessor until the root
:-',:: is reached. Let z denote the end node of the special arc which is
.\-,, opposite to the root. In order to carry out the primal simplex method,
-:%J
:.:: we require that the predecessor values be flagged negative on the
AN .
.~:' backpath of z. y
-
_!- An example of a quasi-tree with the structures we have defined is
:j:: shown 1in Figure 2. In this figure, we have used undirected arcs
.$:
,:: (links).
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Functions
Node | s f t
1 -4 2171 7
2 ] 3 2 1
3 -1 4 | 4| 2
4 -3 15| 4 1
5 1 6 713
6 5 716 1
7 5 1 7 1

Figure 2. Example quasi-tree (special arc dotted).

3. PRIMAL SIMPLEX SUMMARY

In this section we briefly outline the steps of the simplex method
specialized to minimum cost generalized network problems. We limit the
details of actual calculations since they are available elsewhere,
e.g. [4], [6), and we wish to highlight the use of the node functions
introduced in Section 2.

The node potential (dual variable) at node k is denoted as LI
The node potential of the root node is set first. For this purpose, we
take successive predecessors until a complete trace of the loop nodes
is made. Once the node potential of the root is obtained, a trace of
the entire tree is made by following the thread in order to set the
remaining T values. If j = p(k), then T, 1s determined from 5 by
means of a standard calculation.

The incoming arc is chosen either as a nonbasic arc with zero flow
and negative reduced cost or as a nonbasic arc with flow at capacity
and positive reduced cost. If an incoming arc cannot be found, the

problem is solved.
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ka The outgolng arc 1is determined by tracing predecessors back from
e

et the end nodes u and v of the incoming arc until a node k with p{k) < O
A

is reached or until a point of intersection of these predecessor paths

.EHE 1s reached. The latter situation is detected by moving back along the
T
ifgs predecessor path from u to X, and along the predecessor path from v to
k) Xy until the condition t(xu)=t(xv) holds. At this point either X =X,
or x, aad X, are replaced by taking further predecessors. If a point |
of 1intersection (called the join) is reached, the predecessor paths
L 4 coincide past this point. Ultimately, one or two nodes k with p(k) < 0
' are reached. Such nodes are on one or possibly two quasi-tree loops.
S Next, the loop or loops must be traced by again following the predeces~
?&; sor. As the predecessor paths of u and v are traced, the basis repre-~
.;js sentation of the entering arc is computed and the ratio test is carried
‘Sis out to determine the outgoing arc (p,q). The predecessor paths of u
g ,‘ and v must be retraced to accomplish the flow change.
iig In the basis exchange step the incoming arc (u,v) becomes basic,
?i; the outgoing arc (p,q) becomes nonbasic, and the node functions and
.:{;_ other structures defined in Section 2 are updated. To facilitate the
ahat
i;i; discussion in Section 4, we shall replace the directed arc (u,v) by the
&S&i undirected arc or link [u,v]. Likewise, (p,q) is replaced by [p,q].
T
4. BASIS EXCHANGE
E:E; For a quasi-tree Q, the link corresponding to the special arc is
?L; denoted as [x,y]. As usual, T will denote the tree obtained from Q
?Séj when [x,y] 1is removed. The tree T is assumed to be rooted at x and to
fff; be equipped with the node functions p, s, t, and f. For the outgoing
A s.
‘:t;. link [p,q], 1t will be assumed that node p is the predecessor of
::$ node q. The updating procedures for the node functions will be given

&;ag;,?
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as five mutually exclusive cases based on coanditions involving (u,v]
and [p,q]. These conditions can be checked and the appropriate case
determined during the ratio test.

Before proceeding with the cases, we introduce some operations.

setsp([x,y]): the special arc of Q is set by letting p(x) equal y.

remsp([x,y]): the special arc 1s removed from Q by setting p(x)=0.
This predecessor setting for the root node conforms to the defini-

tion given in [2].

negpath([x,y]): the predecessor values of nodes on the backpath of y

in T are negated.

split({p,ql): the link [p,q] is removed from T leaving two trees, T(q)
rooted at q and T-T(q) with the original root. The node functions
are updated. The details of this update are found in Section 3.2,

Step I of [2].

In the next operation, it is assumed that S is some rooted tree which

contains node z.

- reroot(S,z): the predecessor orientation on the backpath of z in S 1is
reversed making 2z the root and the other node functions are
updated appropriately. The details of this updating operation are

found in Section 3.2, Step III of [2].

For the last operation, it is assumed that S and W are two rooted trees
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and that a or b is some node of S while the remaining node is the root

of W.

attach({a,b]): a new rooted tree is created by connecting W to S via
[a,b]. The root of S serves as the root of the new tree, and the
node functions are updated. The details for the update are found

in Section 3.2, Step 1V of [2].

Next, we consider the cases which come up in updating the basis
graph, In the first three cases, we assume that both {u,v’ nd {p,q]
have their end nodes in the same quasi-tree Q. To avoid t ial cases,

we assume that [u,v] # [p,ql.

Case 1: Link [p,q] 1s on the original loop of Q.

Apply remsp((x,y]) and negpath([x,y]). If ({p,q] =(x,y], perform
reroot(T,u), setsp([u,v]), negpath({u,v]), and stop. Otherwise, apply
split([p,q]). Let Tl contain u where T, is either T(q) or T-T(q), and
define T2 as the subtree remaining. Let w be the end node of [x,y] in
T2’ Next, reroot(Tl,u), reroot(TZ,w) and attach([x,y]). Finally,

apply setsp([u,v]), negpath([u,v]}) and stop.

Case 2: Link [p,q] 1s on the loop determined by [u,v] but not on the
original loop of Q.
First, apply split({p,q]). Let w be the end node of [u,v] in T(q).

Then apply reroot(T(q),w), attach([u,v]) and stop.

Case 3: Link [p,q] 1s neither on the loop determined by [u,v] nor on

the original loop of Q.
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Apply split([p,ql)- Then perform crteroot(T(q),u), setsp([u,v]),

negpath([u,v]), and stop.

In the next two cases, we assume that [u,v] connects quasi-trees

Q, and Qg with u in Q and v in Qg. Also it is assumed that p and q

are in QL'

Case 4: Link [p,q] is not on the loop of Q-

Apply split([p,q]). Then reroot(TL(q),u), attach([u,v]), and stop.

Case 5: Link [p,q] is on the loop of QL‘

Apply remsp([x;,y;]) and negpath({x;,y;1). If [p,ql=[xp,yy], perform
reroot(T; ,u), attach([u,v]), and stop. Otherwise, split({p,q]). Let
T1 contain u, where T, is either Ty (q) or TL-TL(q), and define T, as
the subtree remaining. Apply reroot(Tl,u) and attach([u,v]}). Let w be
the end node of [xL,yL] in T,. Apply reroot(Tz,w), attach([xL,yL], and

stop.

As an example we let u=5, v=2, p=1, and q=3 in Figure 2, so that
Case 1 applies. Node w is 4 and Figure 3 shows the trees which result
when all steps of Case l up to and including reroot(Tl,S) and
reroot(TZ,A) are applied. Finally, the quasi-tree obtained when the

remaining steps of Case 1 are applied is shown in Figure 4.

5. COMPUTATIONAL CONSIDERATIONS

In the case of pure networks, node potentials can be updated on
either of the two subtrees produced when the leaving arc is removed
from the basis tree. 1In [2], the subtree with the smaller number of
nodes is 1identified using t(x) values, and the node potentials are

updated on this subtree., For generalized networks, however, the node
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': potentials are uniquely determined and consequently their update does

: not play a prominent role in the organization of the updating proce-
(*- dures. Nevertheless, wheuever a loop involved in the basis exchange

""- remains intact, as 1in Cases 2, 4 and 5 of Section 4, node potentials

-*' - are updated only on the subtrees which are attached to the quasi-tree

t‘ containing the loop. This can be carried out by tracing these subtrees

using the thread.
Careful attention to the lengths of backpaths involved in reroot-

‘_ ing subtrees should pay off in reduced updating times in Cases 1 and 3.

,,-“ In Case 1, when u and v are contained in different subtrees after

T

:-:'_E {p,q] 1s removed, we may assume, without loss of generality, that u is

.‘. in T-T(q). When this situation applies, and the length of the backpath

}: of v in T(q) is less than the combined backpath lengths of y in T(q)

‘,, and u in T-T(q), then the alternative reroot(T(q),v) should replace the

. rerooting operations previously given with v becoming the root of T.

..: Suppose now that u and v are in a single subtree after [p,q] is

removed in Case 1 or in Case 3 and let this subtree be S. If the

f~ backpath of v in § 1is shorter than the backpath of u in S, then

.: reroot(S,v) should replace reroot(S,u).

-,

j;::: Another approach which may prove to be effective in streamlining

. Cases 1 and 3 involves the iantroduction of a new node function b. When

§ b is used, the special arc no longer needs to have one of its end nodes

. as the root. For nodes y on the path from a selected end node of the

..,. special arc to the root, b(y) is set to x in case y=p(x). On the |
.i remainder of the loop, b is set to a large integer value M, and it is 3
_E set to zero elsewhere. In determining the leaving arc, one traces a

!, path using predecessors from an end node of the incoming arc until a

E' node x satisfying b(x)#0 is reached. Then b is used to trace one side

:‘, of the loop and p 1s used to trace the other side. The use of b allows

.4

(] a rerooting operation in Cases 1 and 3 to be eliminated; however, in ‘
N
o
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Case 5, when the root of TL is in T,, one of the rerooting operations
will involve more work when b is used. In general, the values of b
must be updated, and tracing the loop is somewhat more difficult when b
is used. An experimental FORTRAN code for solving generalized networks
has been written which incorporates the b function, but the limited {
testing to date has not allowed any conclusions to be drawn concerning
the efficacy of this function.

Introduction of the reverse thread function, which is the inverse
of the thread function s, allows a simplified basis update. However,
in the testing done in [2], inclusion of the reverse thread resulted in
only a 5 percent reduction in solution times. It seems likely that
this conclusion will carry over to generalized networks as well.

Much computational testing remains to be done in order to verify
the efficiency of our approach. Such work is complicated by the
considerable effects that starting procedures and pricing strategies
have on total solution times. It is clear, however, that careful
integration of node function updates and primal simplex steps 1is
required to produce an efficient computer code using the methods which

we have outlined.
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