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SINC METHOD OF SOLUTION OF
SINGULAR INTEGRAL EQUATIONS

Frank su.-nger‘
Departwcnt of Mathematics, University of Utah,
Salt Lake City, Uctah 84112, USA

David Elliott
Departacnt of Mathamatics, University of Tasmania,
NHobart, Tesmania, Australia.

Abstract

The use of the Whittsker cardinal (or sinc)
function for the spproximate solution of the complete,
om--dimensional, singular integral cquation with
srbitrary tndex $o discusscd. Mostly we shall de
conceened with the case when the equatjon is taken
over the arc («<1,1).  An indirect ecthod of spproximate
solution, based on the equivalent Fredholam integral
equation, §s described. Convrrgence of the approximate
solutions is discussed in som dctatl and 1t s shown
that the error decays exponentially.

1. Imtroduction

In this papcer we propose to investigate the use
of the Whittaker cordinal function (or sinc function)
for the approximate molution of the singular intcgral
equat ton

t

for » ¢+ T, whore U fs an open arc which sostly, in
this paper, wi take to be («1,!). The func tions g, b,
K and { of (1.1) are sssumcd to be given on T gud 1t fe

axivin) + 2L { wir)de 1 K(n.tdw(t)dt = f(x), (1.1)

" required to find v, or approxisations tuv w, The firnt

integral appearing In (1.1) fs 8 Cauchy principal value
integral defined hy

"{-‘L’-‘- lie I wit)dt, (1.2

f\ - v‘O‘r_rl-:

whete l" ts that part of [ cut out bv a circle of
tudius ¢ with centre at x, provided that the Jieft
extote.

The theory of rquation (1.1) {s to be found, for
exssple, 1n the book by Muskhelisinglf [8]) and,
following him, we shall look for solutions w of (1.1)
which sre absolutely integrable over [-1,1). Let us
definc

W =) f‘%‘-}—‘-: N IOE IK(I.()v(t)dt. a.»
i
then we 3 rewrite (1.1) as
av s bfiwsPuef, (1.4)

Supposc that (1.1) hes index « which wav be positive,
negat ive or zero. (For the calrulation of » given
and b, ser Dow and Flliote {3)). 1f we define

G(n) = (a(x) - tb(x))/(alx) + 1b(x)) (1.9)
then the fundamcntal function Z fs defined by
2(s) = exp{-(1/2)(B1og ) ()} , (1.6)

wvhere we choose appronriate branches of log C oo thet
it 1o continuous on (=1,1) snd furtheranre such that

® Resesrch supported by U.S. Army Research Contract
Ne. DAAG 8) k 0012,

A7

both Z and 1/Z are sbsolutely integrable over (-1,1),
sec Ellfott {4]. As discussed in [3], rather than
solve (1.1) for v, 1t 1s computstionslly more
convenient to solve for the function F say where

v e @/0)F, a.n
the function r being defined by

r(x) = (62(x) + b)) (1.8)

and assumed to be strictly positive for all x in T and
its end points. Ve replace (1.4) by the following
equation for F,

(aZ/x)F + b8 (ZF/r) + K (2¥/x) = £, (1.9)

1t 1s well known (see, for example [8) and [4]) that
this cquation can be “"regularized” so that gt is
equivalent to

P - DN ((I/rZML(ZF/2)) + (a/s2)KA2ZF/T)
= (af/r2) - DA /D4 BP, (1.10)

where P ..y 18 an arbitrary polynomial of degree x-1,
it being understood that r‘_l EO0Owhenx s 0. low

(1.10) ts s Fredholm integral equation of the second
kind end we shall use it ss the starting point for all
wcthods of this paper. Thus we shall be describing an
"tndirect” wethod for the approximate esolution of (1.1).

A review of the use of sinc functions for the
spproxisate solution of various functionsl equations
has beco given by Stenger [9], snd frequent reference
to the results of [9]) will be made throughout this
paper.  However, 4n §2, we derive s bew class of sinc
spproximations which is psrticularly sufited to the
solution of (1.1). For the interval (-1,1), 1f we
let & denote the eye-shaped region containing (-1,1),
oce (2.35), then we shal] assume that F {s analytic in
@ bdut of the class Lip_ in the closure of  ; we
write F ¢ 8 (D) (see o¥finition 2.16) and tn §2 we
derive interpolation and quadrature formulse for such
functions,

tn §3 ve first consider some of the properties

of the integral operators aristng in equstion (1.10)
and then we consider fts spprozimate solution. This
ia baned on the Galerkin sethod but, as we shall show
in §1.5, the sinc spproximeting basis that we use
teduces the Calerkin schewe to a Nystrom scheme so
that 1t (s also & collocstion method. The details
of thr appronimstion sre given in §3.2 and §3.3.
In §3.4 we consider the convergence of the approximste
solutfon to the exact solution. In our discretizstion
we obtain a (2M¢3) ters linesr spproximation r. say to
F vhich setisfies

oup 17(0) = Ty | = Qutempl-Grea ™ G111

ajeg <

ae Re=, 1t §s, of course, this exponential (rather
than algebrasc) decay of the error with N which uskes
the use of sinc function sethods in sumerical ssalyeis
00 sttractive. Although wve shall not do oo here, it
may be shown thet the rate of decay on the right head
oide of (1.11) 1o optimel (oee [2)) in the sense that
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there 1s no basts {w k » (=N-1) (1) (M41),

),
Ne1,2,3... such thbe

| "t |
sup P (n) - e, (Flw, . (x)
«)<nc] t--l-lk “un

o 0(pN N N yexp(-yNY)), (1.12)

as N+o, yhere p is a fixed polynosial in N and n".

and where vy > (ldrx)\‘.

Finally, in §4, we consider & particular erxample.
This paper i1s intended to provide the foundation for the
application of sinc methods to the approxisate solution
of singular integral cquations. Much resains to be
done and, in particuler, on¢ might meation the stody of
direct mcthods for spproximate sulut lons, extensicns te
other arcs (unly dbricfly mentfoned here) and closed
contours, and [inally the application of these mrthuds
to systems of singular integral equattons.

2. Integration Porwulas for Evaluating

Cauchy Principsl Valuw Intvgrals,

The definitions, notations and results of this
section are {mportant to the test of the paper. Ve
shall derive tvo fsmilies of formulae for s very
general contour T,  These two families reduce to &
single family in the case when I o R, The isportant
cose of [ = (=],1) {8 then given gpecial connideration,

2.1. The D_o-.ollb‘ and Approximating Functions on R.

Definition 2. fet R denote the real Yine,
[

1.

tCef{zex syt x. R,y R} and lct
*

. ®

R (=9 1o
2+ {k: ke0, 21, 22, ...}. Let d and b denote
positive numbers and let us define
£, {eec: ml<ql, @.n
. o 8in[n(x-kh)/h] .
S(k,h)e(x) ki /hj z, (2.2)
Tk (n) = Jogoslntkhon/h) oy 2.9

2.2 The more_General Domatn &> and the Conformsl Map ¢.

Definition 2.2, Letd be a simply connccted domain in
the complex plane C, and denote by 2&) the boundary of
d . Let a,b (b 7 g) be boundary points of & and let
9 be 8 conformrl] map of & onto i’d (sec (2.1)) such
thet 3(a) = ==, ¢(b) ==, Let § » ¢~} denote the
fnverse map and set

e fwix) : x ¢ &}, (2.0
(LR [ULINAN B (2.5)

.Let 8(0) denote the family of all functions F that sre
snalytic 1n & and such that

nr ) o [ir(n)dz] = tnr IF(2)dz] <=,  (2.8)
‘L cea.crd)
(4
Theorem 2.3, Let S(h,h) end T(h,h) be defined by (2.2)
ond (2.3) ruespectively and let F ¢ B(K).  Then, for
oll m ¢ [,
F(o)
F(x) [
=0Ty - =, S(k,h)ed(x)
¥ .?z ez

o 810I73(x)/N)
LL

F(2)d2
’Lmn-o(-)‘))an'u‘_FTa) e @D

% % % e y o™
\ N .vn l.a.o. "‘J". A i I W

S IR Iyt it Tl e S e Tt Sard T i & S It e

- '(ll)
Fix)dx - h ! —r—-y

N | F(z)exp{1(n¢(z)/n)agn(in¢(z))}ds ,
? oin[26(2)/h

2.8)
P(x)S(k,h)eq(x)dx - hP(z, )/0"(2,)

- theht l&z)e-glis'ﬁ!ﬂb)_'ﬂ‘_lﬂzmdz.

¢(z) - kh
2.9
and
r(z )
1 ] F(r)ee k 1
5 i HO<+m Jz Ve M) = gy =

F(z)fcosi=t(x)/h] = exp[s(n¢(z)/h)sgn(lwd(z))}dz.
{e(2)-0(x) Jsinive(2)/n) 2.10)

Moreover, 1f the left hand sides of equations (2.7),
(2.8), (2.9) and (2.10) are denoted by nl(x). Nye Ny,
n‘(:) respectively then

fny )| s N(F,&)/(2nd stnh (na/b)), = ¢ T,

lnzl < exp(-wd/h)N(F,B )/ (2 stoh (%d/h)) ,
21D
Ingl b explond/mIner. D)/ (289) ,
I-.‘c.)l < (1+exp(-nd/h))N(F. D)/ (2edsinh (nd/h)),
xe¢ T,

Proof. See Stenger [9).

Assuaptfon 2.4. 1In addition to F ¢ BED), let us
sssumc that for all x ¢ T,

[F(x)/0'(x}| ¢ € exp(-ale(x)]), 2.12)
vhere ¢, are positive pumbers.

Theorem 2.5. Let 6,  denote the left hand sides of

equations (2.641), 1 - 1,2 end 4, for the case vhen the
infinite sums Ihz are replaced ‘y finite sums

t:__'. Let F satisfy (2.12). 1If b 1 selected by
the forsula
h e (nd/o®)? (2.13)

then there exist constants c‘ which sre independent of
% such that

18, Wl * ¢ Menp(-(naaM¥), 1 = 1,26, (2.14)

1f b §o selected by the formuls

h e (2v8/0%)"% (2.15)
then there exists a constent cz. such that
18, wl % c o] -(2vdam) ¥}, (2.16)

1f h 18 sclected by the formula
TR (2.17)

wheee y 18 o positive comstent, then there exist
positive constants C* and & such that

18, wl * Cempt-any, 1 = 1,2,3,0. (2.18)
Proof. See Stemger (9).
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We observe that the bounds on |n (x)| and ln (x)] 1n
Theorem 2.5 apply uniforely for All xel. Moreover

the tntegral (1/v) { (P(e)/(¢(t)~9(x)))dt as well as
r

1t approxieation via (2.10) spproaches zero as x
spproaches an end-point of I'. This s not
aecessarily true for the nev approximation which we
shall derive next.

Let us define the functions

hostnl(/m{s0)-kRD (5 e

8,(x) = o(é.k,h,x) = T¢ ¥ -z,

hocos[(*/t){p(x)-kb}I-1 , (2.20)
x -z, *

t(x) I (P, hih,x) -

where we Intend to use the sbbreviated notation when
the roles of ¢ and h are understood. From vquations
(2.2), (2.3, (2.19) and (2.20) 1t follows that

0, it k=8,

CRORUIERILE et

(2.21)

G-¢-0""Ys k-0, 10 ket

Tk, W) ed(z,) '{o. ket

and

() o §0. ST 2L,
it .t het,
(2.22)
h(l-(~ l) )/(Y'(r 2,0, 1f 2,
'(’l)'{o, TR t

Theorem 2.6, Let Fo B(®). Then for all x ¢ T,
27 a,b
F(z )
- - k
n) T F(n J’:—.(, Y (0

sin(7¢(x)/h F(2)dz

® Zry _I rox)einl i(z)/n] ° (2.23)

€ H J r(:'sk(l)dx - h'(:h)

T
. 1_..5-1)" [ F(n)exp[s(rg(e) /M ugning(a)),
s - l
(z 24)
F(z )
=1 dt
o HHge g T
. L I (z)Jco.lwo(-m-)-upu(we(.)n.)..nxn(-)na.
2rt I (z=x) sin [ (2)7n]
(2.29%)
Mereover,
fe (! - S(F. D ,x)/(29s1nh(ra/h)), (2.26)
[t (/2% )exp(-nd/MINF.B,2.), (2.27)
[ gt - NED,x) [Leexp(=nd/h) )/ (Irainhird/h)),
(2.28)
where  N(F, 0 ,x) o IIr(z)/(:-)dzl. (2.29)

Proof. To prove (2.23) let us, in (2.7), replace x

by t and F(x) by (($(t)-0(x))/(t-x)|F(L) to give

r(z)
2(¢) (0(2) 0(n 5 (kh-o(x
_L,%.Q.(_TLD. - - --(—‘i‘-)-)- 8(k,h)*0(x)
o'()(tx xez ¢ (3) 8, %)
- -ln!ng(IZIhl l ¥(z) (¢(z)-¢(x) )dz
"4 ”Oz-oz t-x)sinve(z

this equation holding for any F ¢ B(D) and all
intersor pojnts x and t of T. Setting x = t 1in (2.30)
given (2.23).

(2.30)

Equation (2.24) follows directly from (2.8) 1f, in
(2.8), we replace F by s, F and use definftion (2.19)
for s , noting thet otnltnlh)('(u)-&h)] -

o (-1)¥stn{ne(x)/h].

To prove (2.25) we multiply both sides of (2.30)
by ¢'(t)/(#(t)-0(x)), integrate over [, and use the
identities

I 5—’-"-".'%)‘: = wexp{(1xz/h)egn Imz}, (2.31)
]

ge¢eC, 2¢ R and

} m%ﬂ')dt = wros(x/h), (2.32)
R

x « R, from vhich the result follows.

Finally, the error bounds (2.26), (2.27) and
(2.2R) follow dircctly by bounding the contour
fntegrals in {2.23), (2.24) and (2.25) respectively. §#

We resark thst voder our sssumptions on F the
right hand sides of (2.23) and (2.25) may become
unbounded as x spproaches an end point of I'. Hence
(2.23) to (2.25) must be interpreted to be sccurate in
the sense of 8 relstive error. An sbsolute bound ia
possibic 1.e. (2.23) and (2.25) hold for all x on [ if
N(E, D)  gup M(F, D ,x) <=, goe (2.29). In general

t )]
we sust exercise caution in the evaluation of the
sppronimating sums in (2.23) and (2.25). Tor example,
if x = z,, then ‘l('l) e 0 vhich poses no problem.

On the other hand If we define
1
1 F(z)de
WF(z) = 3 { s (2.33)
]

then (N F)(z,) 1s not necessarily zero end we have, by
(2.29) t ot
Flz ) [1-(-1)" ")
= h k
r) - =
WrGsy) 23 .Z. Y TRITRN)

. (2.34)

The cvaluation of this sum to within a reletive error
of & can be carried out by mesns of Algorithm 2.7 (see
below).  The spproximstion of F(x), x » g, by (2.23)
can be carried out by a similar algoritha.

Algorithm 2.7. Evaluation of the sum in (2.34) to
within § Fclative error.
l. et ]

S, = W(z)/1¢'(2))(z 2 ))]
Wevel); Weis|

kek-26€ l
1= Wl () (o)
$, 5 4

Uev, v-u.u-ltl
(l'&vov)llsll : 8
(2)
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(et
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5, IF(I.)IIO ERICH 't”
Us1, v-l.u-lsl
koko2 €
Te 2F(:k)/l¢ (2 )(zh-z!)l S
§,°85,+71
Ue v, Veu, e lr|
(Us v +u)/|szl : 8

)
() S = (hm)(s +5,)

In order to replace the infinite gums in Theorem
2.6 by finite sums, we consider three special casen of
the transformation ¢.

£x.2.8. T = (-1,1). 1In this case choose
kh
o) - lo.{:-:—:) N e TLEE
el (2.3%)
D efzec: Inr;[l”]I <d), 0<dcm,
Ex.2.9, T = (0,2). Choose
¢(z) » log 2z , zk-ekh, ke 2,
(2.3%)

B e{zeC:largsr] <df0cden,

Although the mapping (2.36) suffices for many probloms
over (U,~), 1t {8 unsultable for those for which the
corresponding functions to be approximatvd are
unbounded in the reglond) of (2.35). The following
transforeation is suitable in the case when thes:
functions ere analytic snd bounded fn g strip
containing the i(nterval (0,~),

£2.2.10. T = (0,m).

Here we cloose
1
o logletMs(1ec?kM Y (2
(2.37)

|arg(sinh 2)] < a}, 0 < 4 < »,

¢(2) = log(sinhz) oz,
D o

Craphical fllustrations of the regions & of (2.35) to
(2.37) are given in [9],

Lemma 2.11. Under sny of the tranaformations (2.35) to
1(2.37) ve have

h

sup |'k(!)/°'(’k)l se , (2.38)
sl
osup [t (/00 (2) | < e . (2.39)
} 4
Proof . To prove (2.38) we constder fiest x to be In
the interval "k-l"holl and then x teo he in the
remainder of I'. For 'u-l LN I LTI have
Istn{(n/nrtotn)khl}| < (a/h) {$(x)kh] - (2.40)
Hence, on this interval, for any k ¢ 2
W | 0(x) -kh
') MERIC=)
L]
< max : (4 ))I se, (2.41)
“"u-)"ur]

for each of the trannformations (2.35) te (2.37).

PO SR S s s ek e iy ik Sd

On the dnterval Mz, .2, ., 1, ve uoe the imequality
{stn{(n/h) [o(x)kn]}| < 1, then for say k ¢ 2

s {x) . e ) Wx
?'(zh) 7L -1 Tal |0=(zk)(x-t.k)|

1/n

- —1—_'7-
C,'lu Dh, (ke)h) [#(2I¥ ()]

sec Definition (2.2).
s, (x)

;T(—z;) (2.62)

1| [ M({9] Lh
L max S e
¢'( )I

Gl poryy) 70 T

from (2.41), for each of the transformations (2.35) to
(2.37).

Consider now (2.39).
It l"k#l' we have

't k) | I..u-co- (v/h) {o(x)-kh I
k)('-zt

oz, (lk
. o'mun{(-/mlo(z)-u-lldzl
k

Tr(:i)(n-z ) |

On the {nterval

< Bax

-'—— I o for k ¢ Z.
CIENPLN (! ’

Hence af in (2.41) we have
|lk(l)/"('l)| < eh. (2.43)
Finally on r\(:H.zml we have
1 - cosftn/n) {o(x)-kh]}| s 2 o that, for k ¢ 2,
(x)
(2n/m) 2.h
|0'(z) R

l"k#l 1 (l Hx-zp)| = ¥
vhere the last inequality follows by proceeding as in
the dertvation of (2.42).

Assumption 2.12. Let ua assume, in addition to
| S l&;). that for some positive constantg a and C

(2.44)

<
l':

Py s ceolo®l & (2.45)
We notc that (2.45) 1s equivalent to

IF s c 2%, 2 . (2.46)
for the case of (2.35); to

7@l s clz/(1eed)|®, 2 ¢ O, (2.47)
for the case (2.36); end to

IF sclze®|®, 28, (2.48)

for the case of (2.37).

Theores 2.13. If Assumption 2.12 1s satiafied and if
¢ 19 any one of the transformstions dgﬂm in (2.3%)
to (2.37), then by taking h = [nd/aN)?, there exist
constants c’ and cz. independent of N, such that for

allzeT

Ire - I CUNTUMINCIRY (Wlenp(-(vaamh),
(249
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and

N OF(r)
1qhoa, 1 e )] s € u".-xp(-(mm").
" [T koen * (zk) [ 2
(2.50)

Proof. If Assuaption (2.12) fe satisficd then 4t
follows for each of the transformations ¢ of (2.35) to
(2.37) chat N(F.P) = sup_ , W(F.B),x) < =, see (2.29).
Then for €, (x). § » 1,) defined by (2.26) and (2.28)
1t lollon’ that

|r’(|)| < Aexnp (=wd/h), (2.51)

vhere A ts independent of h.  MHence, for (2.49), we
have on using (2.38) that

L
IF(x) -k.).N F(z,) (s, (2)/0°(z, )]
s AP Y rapl
{&]>N

-
: AeP e 1 e, trom (2.46)
keN+1

'-wd/h h.-o(ml)h/“_'-oh)

+ X

Rl LI rhe"'“/(ah).

A
< A

Inequality (2.51) now follows on choosing
h = (nd/(aN))3. The proof for I(’(I)I follows
sisilarly, using (2.39). ¢

2.) The Spectal Case of T o i-l.l). In this case the
transformatfon ¢, the region and the point z,.
s

k ¢ 2 are defined as 1n (2.35). The scglon
bounded by two circular arce intersecting at the end
points ¢l at an angle d say (mec Figure &.2 of [9)).
If F ¢ Cl-1,1] we define LF by
(LF)(2) = (1-2)F(-1)/2 « (l+2)F(1)/2. (2.52)
Then, see (2.11),
WLR)(x) = (M/MIF-D+F(D] - (1/Me () (LF) (x).
(2.53)
Definttion 2.14. Lee ® be defincd as tn (2.35), let
0371, and lct B_(®) donote the family of 8l

fun-tions thit sre analytic in ' and of class Lip_ tn
ﬁ . the (Jowre of &°, o

Lemma 2.15. Let F ¢ B (&), then the function C
wvhere ¢

CeF -LF (2.54)
ts snalytic in c® and satisfies (2.46) for all z «oP.

Proof. We have

17y =P | < R[1-2]®, e o P, }

I£¢2) - FC-D)[ < xh1+2l® , 2 o
wvhere X in the Lipechirs constant of F. Nowv {f ted
and l1-2| - 1, 5"'"' j1ez] 2 1 so that for all such g,
Kj1-x{® s k{1-2%]|" siotlarly 1f |142]| - 1, then
J1-2] 2 1 and the lemms followa. #

(2.%9%)

Theorem 2.16. Let ¢, £, and® be dclincd as 10 (2,39,
Let ¢ 8 (), let h br chosen o that
h e (nd/(0)Y, (2.5%)

and let M (LF) be defined by (2.97).  Then there
enfints 8 constant L, independent of N, auch that for
all ¢ [=),0],

K*ne - . j
bR ERSL Y DN RN ol Fig ] ,l",A ¥ 2e 1KY _v")'\l.. LA f (M 0 L RA W

- e ek s el arae dirae sk
wr e TR T T e e M e e

—— i - S I Ve IS Gy . S,

F-an - [7(2,) -0 (3,)15(k,b)op(x) |
ke

s cWexp(-(vda)’),  (2.57)

[P0 - (x) - kj“ (F(z,)-(LF) (2, ) ) oy (x)/0° (2, )) |

< Ci%exp(-(ndam)¥),  (2.38)
1
4 HYE _wanm -

N
J 1P G =R () IT(k, ) o) |5 CW%xp(~(vdat) ™),

keN .59
and (2.99)

1
114 K yanm -
1

N
FIF(2,)-(LF) (2) 1€, (0)/€°(2,)) | 5 EN%exp( - (ndam),
keew (2.60)

Proof. This {s a consequence of Lowma 2.15 and
Theorems 2.5 ond 2,13,

Remark 2.17.  If h 19 selected by

XL 2.61)
vhere Y 10 8 positive constent, then there extst
positive constants C, and &, independent of N, such
that the right hand $4des of (2.57) to (2.60) may be
veplaced by cl"’('“ ).

3. Ihe Intepral Equation
3.1 The Operator T.

Following the discussion of §! (eee (1.10)),
let T be an operstor defined by

we-{ARE - R ES T H a.n
Let us define k(x,t) by
k(x,t) ® K(x,t)Z{t)/r(t). 3.2
Assveption 3.1. Let §O and B (D) be defined as in
WTin{rion 7.76 end let us asBume that:

(2) for some fixed x, ¢ (-1,01),
[ I-llll(xl,tﬂdt <o 3.3)
(b) k(°,t) 1s snalytic 12 ® for asch fined
t o (=1,1);
(c) k(*,t) satislfes a l.lp. conditfon, {.e.
In(x.t) = k(y,t)] 5 CCe) |=-y|® 3.4)

for all t ¢ (~1,1), for all x,y ¢« ® and where
C(t) 1o such thet

1
vi L C(t)de <= 3.5
1

3.2.  Let Q be defined by

1

Q) (x) = [ k(x,t)P(t)dt. (3.6)
1

hen Q s 8 compact operator mapping L.l-l.ll into

uO ).

LA ]

W




PP P
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Proof. Let F ¢ I..l-l.ll be given, and Jet us set
el = sup IF(0). a.n
=lene)
Then the fnequality
Ix(x,e)| « Iu(:l.nl + k@, 0) - k(x),0)] .8
combined with (3.3), (3.4) and (3.5) ytelds
e | < B lirl, (3.9
vhere
2, 10 <d - /2,
ne uT‘:’l‘ ' f-yl '{Z/und. 12 d <G00
yeo 3
from which we have that
ol - 8+ n™y. (3.11)

Moreover, we clearly have that QF s analytic in D
and furtherwore, for all x,y ¢Pwe have, by (3.4) and
(3.5) that

1
1(aF) (x)=(aF) ()] L |k(x,t)=k(y,t) | |F(e)]dt
1 . .
s |x-y} -|rl_L C(t)dt
1
o ylx-y|%yrh..

That ia, QF maps a bounded sct {F ¢ l.”l-l.ll:IFL Yy
into a femily of functions that are analytic__and
uniforely bounded in ® and of class Lip 1ndD.
proves Lesma 1.2, [ ¢

(3.12)

This

Lesms 3.3. lLet a and b be in Buw) and suppose that

jr] = 1l ~ 6 010D . (319

Then the oprrator T, nee (3.1),1s & compac t operator
mapping L {-1,1] fnto la(a).
Proof. Setting f = QF, 1t suffices in vicw of Lewms
3.2 to show thiat the operator R defincd by
af )

L R {ﬁl
18 a compact opcrator mapping B (&) 1nto I“a)).
Now, see (4], the solution to tge equat fon

(3.14)

aZp/v + bfl(2g/1) = € (3.1%
having index v s given by
g =Rl +BP (3.16)

where '--l i« an arbitrary polynomial of duegrec x-)

(P‘ 1 2040y 2 0). Aleo under the given conditions

'y '-“Fo [=1,1] whencver f Llr“ {=1,1], see [5]).

In order to ahow that Rf l.‘(D). let R be an
arbitrary constant in the renge =d - P < d, and let
A(B) denote the circular arc

AR) o {2 o : arglisn)/(1-0) = 8). (3.17)

Let us fix 2 ¢ ) and @ such that R < arg(147)/(l-2)
and consider the function

w(e) « 22} I
A(B)

YIS Y LI
D ihe L. e

o,
0N

On leteing 2 * § ¢ A(B) we get
we) = slin «+ 3 § dLdy,
A®)

(3.19)

Taking R = =d 1n (3.18) we see thet w(z) s snalytic in

. Next, with ¢ an srbitrary point of &, we oee
from (3.19) that since both w(l) end b(L)h(L) are
snalytic In D oo 10

viey = 2482 } Mopde, (3.20)
A(B)

¥e next show thet Rf ¢ Lip. GB). To this end, it
suffices to show that the Bolution g to

a(x)Z(x)g(x) . b(x) Z(e)glt)de
r(x) *3 O ~[®.xe A(R)
AB) Q.21

is of class LtpclA(B)l wvhenever f ¢ I.!p.lA(B)l.
Let us set

1 1 -0 1-10
O° vk "TanB* *"T-oT * * ° Tofov ° (3.2
Under this transformation (3.21) becomes
8,(02,(01g(8) b (&) o1 T,(7)g,(1)d1
£,(0) *5 , T, MGD - £,(),
(3.23)

«1 < { < 1, vhere aI(C).bl(i). Zl(l).rl(t) are related

to s(x),b(x),2(x),r(x) respectively by a relation of
the form

ul(g) e 9 %:—‘u;-T + vhereas
{ -10 1] ~$C . 1
e - o lﬁz]rm + 5O = '[%_t-w} T=1¢

Note thst a, and b, sre snalytic contimuations into
& of a and b respectively so that they are in the
closs Lip (-1,1]) end sstisfy |ad o b}l 2 6§>00n
{=1,1]. Aleo, since f ¢ Llp" ) it follows from
(3.24) thet f| ] I.tpal-l.l]. Consequently, in view
of (3.15) and (3.16), the solution g, to (3.23) 10 of
clase Lip [-1.1].

3.24)

This proves that Rf fs snalytic in D and of
class leu(a ). Finally, let us eset

l(ng) (=)} (3.25)

Il =  oup
® 8B (D)
max|g(e)| s 1

(ze )

Clearly we must have [IR]lg< =, for 1f Jri|_ e @, then
a8 o consequence of the fact that the supremum on the
right hand stde of (3.25) 1s teken over s compact
fomilv, there would -exist a g ¢ B (D) vith lg(a)l s 1
1n B such thet ag { B,(d), contradicting Rg ¢ B (D)

(]
for all g ¢ Ia(D). ’

Remark 3.4. We have 2130 shown in the above proof
that 11 F ¢ L™{=1,1) then since TF = -RQF, wve have
sup {(TF)(2)] = oup [(RQF)(2)| € Ill,“ll IrL. a.29
0P 7 3

oo that
'Tl. < ll'.lol <e, .20

vhere IF]l. 18 defined 1n (3.7) and Q] 18 bounded a»
in (3.11).




Also, 1f K fs the smellest constant such that
frn ) - (! s xlxy|® (.20

for all F with [[F|| < 1, 1t follows that we must have
0 <Kk <® and that for arbitrary F ¢ L™(-1,1},

larmy ) - by | s kfrl In-y1". 3.29)

3.2 Approxtmation on [-§,1].
With D end ¢ defined as in (2.39) let ur aleo
write, for & glven positive integer N,

g, = (@ nseetten, ke nnw,

SNt Snel

v, (2) = g (2)/¢'(2.), k = =N(I)N,
& k k (3.30)

N
Vg (2) = (1-0)/2 -ll"u-ck)wu(zm.

N
Vot (2) = (142)/2 -__§,,<'*‘u’*.‘="2-

Given F ¢ L™({-1,1] we slso set
P Nel
Fe )} FG v . (3.31)
LS

Remark 3.5. We have, with LF defined by (2.52)
N

F-®Fe«F-LF- 1T (3.32)
K htgﬂq Kk
so that 1f F ¢ |°®) then

4 ]
) - o § 0texp(=557)), 2 h = y/N7,

Ir - @Fl, {O(N\“(_"“N).,”. 3.3y
1f h = (ﬂd/:N).’. where vy and § = &(y) arc positive
constants.

J.) Approximation of the Integral Equatfon.

We shall obtain an spproximate sclution of the
integral equation

F-F- anien - shiram sbr__ s (3.3

where ¥, is a polynomial of degree v-1. Let us
ceplace (5 34) by the equation

F-1F - (3.3%)

wvherc E “fl
- [ % T
[ 3
keoN-] (3.36)
i c"g and 1" - CNT.
l.e-a 6. Lee T, T be considrrcd as operators on

TTi-17. 1hen
ERM e () (x) - (7 FYOO]
(11 N
{0 (exp(-tN"), 1T b = y/NY,
0 (Nlexp(-(rdat) ),

it he Ild/(un)l". where v and & are positive numberg
such that given y > 0, there exiate & = 8(y) > 0.

(3.3

Proof. let ue write
velw, v, eP Terr. (3.39)

mnyu..a:.n n(z) and, by Remark 3.4,
T|D<-oo thet

Ivie)| s fTL NPl < =. (3.%)
oy (L QLS
ence, setting

uevy -Llv, (3.40)

where L 1o defined 1n (2.52), we have
oup lu(z)]| s “’& iv(a)l » wp lLed(e)| s ‘TL'?L

(77 ] ¢ (3.41)
Nence, by Lemma 2.15,
Juie)] s cl1-e31% 2D, (3.42)

wvhere C is a positive constant. Indeed, in view of

(3.29), ve may toke C » KJFl.. Combining with (2.23)

we have for all n ¢ (-1,1)

fu) = T wize (x)/0(x)| s Qr 3/ (2natah(vd/h))
he2 (2.43)

2,a
Je oup L“" gl (o, (3.44)

=i<g<] 'l-l

vhere

Furthermore, by Lemma 2.1)1 and (3.42) with C = III'L.
we have

u(:
| I .ﬂTz—) l(l)l H zebIlFL i (l-z e
Il>N
l#luu . e“kh
- 2 F ————
L k-m (sethH®
By H] ok
keNel
1422 h
si e oy (3.45)

Combining ().45) and (3.43) we get, for all x ¢ (-1,1)

"
lu(n) « § utz)dw, (x)}
L%

e .-(uﬂ-l)h} .

* {iwunnud/ﬂ + ah
(3.46)

That 1s, froe (3.32), (3.40) snd (3.38),

Jv- e“vl, = jTF- "TFL

zuaa.-(cn-nh] .

3
‘ {Fu__f'un(u Y ah
(3.47)

Equation (3.37) now follows from (3.47) sccording to
the sviection of h, #

3.4, _Convergence of spproximstions when (1-T)~} extste.

The following result is due to Banach (eee, for
exsaple, (7)).

Lemns 3.7. Let X be o Bansch space. vith T and (1-1)"}
continuous limear operetors on X. lat Ty be & compect




[y

5% 5

2la’a
e,

TN s i M 08N AT AN SO -

- -

1inear operator on X such that
lan e« (3.48)
Then (l-‘t')" exists and

-1
- -n- 1
faaytps —Lun . (3.49)
RN TR TTEN

Let X7 and T, be defined as in Lemms 3.2,

Leams 3.8,
Then

ant . g

- (1-1)"(1-1“)“‘(;-1)‘ (T-TNH-'(I-T)-l.(?.W)

so that for a given g« X, §f (3.48) 15 s<ati<fird then
ba-nle - a-1psh
=142
U=t i a-n = Feliell
<

o~ (3.51)
tefvr fla-nTH

Proof. See lkebe [6].
Wc can now prove the folloving theorem.

Theores 3.9. If g ¢ B,() and 4f -1 existn as o
bounded operator on L™ [-1,1] then

ba-nly - aap” O el
0 Sexp=(raa®), b @ (rafam)¥,
. (3.52)
Otexp(-65%)), h = y/NY,

vhere y and * are positive numhers.

Proof. Sin-e g ¢ B(®) ve have g « L [-1,11;
furthermore G’N“ ¢ L°(~1,1). Stmce

-1 -
a-nTg - (1-107 Oy
e fu-nlg - a-1plel ¢ 110N B,
(3.52) follous from (1.51), (3.49) and (3.31). ¢

3.5. Galerkin-Nystrom Quadrature Approximation.

In addicion to (a), (b) and (c) of Assumption 3.}
let us also assume that

(d) for vach fixed x ¢ (=1,1), k(x,*) s in B(®)
(sce definftjon 2.2), and morcover for =) < ¢t ¢ )
and = ¢ [-1,1]

Ik(z ) ¢ Czh-l (3.5
vhere C, 18 2 posftive constant and where a3 fa the

same a8 1n Assumption 3.4,

2‘0-1

Lerma 3.00. 10 F ¢ B(D) and 1f |F(1)] - czu-:z)“"

on (-1.1) then
U P b,
- ————— r - m——

lL! 3-}6-1 TSt LN |

L

). 4 h = (nd/tan))Y,

Otexp(-(rdan)
- (3.5)

Otenp(-8n"), 1f b = y/n%,
vhere y 18 o positive constant and § = &(y) > O.

Proof. See Stenger (9, Exsmple 4.8). ¢

Similorly we con une (2.25) to approxfmate (.”l‘)(:')
on (-1,1) this sppronimation taking the form

A N ol Al U AR et AR SELMENE SN I LSO T SR E L R R B A |

1 frma; shaee®™ [ _Sla-enih (et
SR PRV v -
v Lty T et (o IPe™) [

(3.55)

vhere the sum may be evalusted to within a relative
error of the same order of magnitude as that oo the
right hand side of (3.54) by using Algorithe 2.7.

We shall next show that under our assusptions on
k(x,t), our Galerkin spproximation schese (3.30) and
(3.35) for solving (3.34) msy be resdily reduced to the
Nystrom acheme (see, for exssple, [1] and [6]).

To illuntrate, we observe that vhile P"}' interpolates
F at L% k ® <N(1)N, as well as ot t]1, the sbsolute
value of the error introduced on replacing (f"')(z.“l)
oy (P (D) 1o

[ (2,0 = (B o ey ey (12 )72

< leyy = poylezpl-(elIn],  (3.56)

this being of smaller order than the error of
interpolation given by (3.33), which we have chosen
to ignorc. Similarly l(fu")(z.'_‘) - (f.")(-l)l
1s also bounded by the right hand side of (3.56).

Simtlarly, the quadrature formuls in (3.54)
ylelds

w41
TIPP 5b 1 2eMmape r(1ee?™? - ¢

)e
ot 3¢
where
R Tt TR N IR T ) I
* ey ey 1 (e 03, (3.57)

so that - te of such smslier order than the order of
quadrature error In (3.54). Hence we can eafely set
¢ » 0 to get » much aimpler spproximstion, which ts
the Nystros approxisation.

Similerly 1f £ ¢ By(D) then both u = af/(rZ) and
v o bN{E/(r2)) are tn §_(D), and the evaluation of
M {f/(r2)}(x) via Algorithe 2.7 is straightforvard for
X2 ) but mey be impossible for x « t1. Hence
it i.",so convenjent here to replace x = 2] by
L 3] '!(Nﬂ « respectively. The modulus of the error

in making these replacements 1s given by

fvt vz, ) s Kl1-zy,, |® s 2% exp (<a(M+1)1h),

80 that f¢t $s of smaller order than the interpolation
error in (3.33).

The exact linesr systes corresponding to (3.35) s
(1-Tee=g (3.58)
where
c e e 3 )T s { )T
€5 oo Ciuel) o BT (R yrecnayyy)

1 here denotes the vnit matrix of order (28+3) and T

10 s square matrix (t. n)' a0 e (=N=1)(1)(Ne]) of
order (2843). Ve havé

ez (L) t
N ° RO bW 51 + 7, GD)  (3.39)

for m = (=N-1)(1)(M+1), and
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l(l..)k(:.. t)

W - b('-\“ [k('-l)l('-.)}#n(l)dt

1
!I.h . - [l {
(3.60)
for m,n ® (=N=1)(1)(N+1), and ¢ is defined by (3.30).
In view of the above discuss{on, we replace the
systes (3.58) - (1.60) by a perturbed lincar syatem
of the same order, given by

1-Te=g (3.61)
vhere ! is an before, c - (c .....f ) lnd the
entries . e (-N- l)(l)(ml) of the vruor ‘ and

t. o of the matrix !. vhere m,n = (=N-1)(1)(N+1), are

given by
n(z Mz)

i. ® I’(l )Z(l ) b(z )w I—)(t )+ Pl-l(: )'0 (3 62)

e >

2h e"h {n(z-)l(z..z")
»,0

nh 7 r(z)2(z)

- b(:.ﬂ LICFE ) (z.)} .
(3.6))

(lee

The singular IntegralsM¥| ) in (3.62) and (3.63) are
approzisated via the substitution of the formuls on
the right hand side of (3.55) into Algoritha 2.7.

Bounds on the difference Ilgd:ll of the solutions
of (3.58) aud (3.6)) con be obtained by the well
known results of linear algebra see, for cxample,
Vilkinson llOJ vhere we note that In this case when
h e (rd/(aN))? che perturbations on the coeflicients
of the matrin and the right hand sidv are

O(N eap(=-(ndiN)

4. An Example

The algoriths described by (3.61) - (3.63) has
been applicd to the equation

1 1
2 x wit)de _ 1 w(t)de
-(1-x )‘\'(x) 0;}.' x ‘;I|H1NJ-

1}
e s itlasnam, 6.1y
For this equailon we lwe r(x) = 1, the I’m\dammnl
function Z(x) « 2(1-n") Y and the tndex s = 2,
If we choose the particular solution so that F = 0,5
st any two potnts of (~1,1) then we find that
P(x) = 0.5 for all x ¢ (-1,1). By choosting
he H/(?N)s and varfous valucs of N we have obtained
1 signiftcant figure {n the approximate molution
when N = &, two significant figures when N = B, three
when N = 16 and five when N = 32, In fact we find
that

nax Ir(z 1-Fy(z,)] = 3.022exp{-2.2556K%) , (4.2)
ke-N(1)

approximately.
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