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ABSTRACT
: ~oh A covariance analysis technique using the Cramer-Rao lower
F ) bound for assessing filtering and prediction performance for a
E class of nonlinear systems is presented. The class of systems
. considered is nonlinear, deterministic, with unknown parameters.
i The validity of this technique for the problems considered is

justified using local observability theory and vnbiased

ﬁ estimation for nonlinear systems,
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1. INTRODUCTION

A covariance analysis technique by means of the Cramer-Rao
lower bound for assessing filtering and prediction performance
for a class of nonlinear systems is presented. The class of
systems considered is nonlinear, deterministic, with unknown
parameters., The unknown parameters can be constants or are known
to follow nominal time functions (parametric or numerical). 1In
the latter case, the proportional constant to the true time
function is the unknown. 1In either cases, unknown parameters are
to be jointly estimated with the state variables.

The above system definition fits very well to the problem

of reentry trajectory estimation. The unknown parameter is the

ballistic coefficient. 1In the high endoatmospheric region, the
ballistic coefficient is a constant. 1In the lower altitude

region, the ballistic coefficient is a time (altitude and Mach

1
e g

number) function. 1In certain applications, a nominal ballistic

o S

coefficient profile is known to the estimator.

The assumption that the nonlinear system is deterministic

Dt .
PR LA

places certain restrictions on the generality of the ensueing

analysis. 1In using an extended Kalman filter for state

P

estimation in this case, a process noise variance is selected to

represent the variability of the unknown parameter. On the other
hand, if the maximum likelihood (batch) estimator is used with

the assumption that a nominal parameter profile is available,




then the underlying system can be modeled as deterministic. Por

this latter situation, we therefore feel that the assumption of a
deterministic system is valid for many applications.

| The Cramer-Rao bound for nonlinear deterministic systems
has been shown to be very tight for the trajectory estimation
problem with angle-only measurements [5]. This is the basis of
the analysis technique being introduced in this report. The
problem of trajectory estimation with ballistic coefficient being
the unknown parameter provided the motivation for the analysis
method described herein.

This report is organized as follows. The problem
considered in this report is defined using system and measurement
equations in Section 2. The Cramer-Rao bound theory for
deterministic nonlinear systems is reviewed in Section 3. The
validity of the Cramer-Rao bound for the problems considered is
justified using the local observibility theory and the unbiased
estimation. Covariance equations for filtering error and

prediction errors are summarized in the fourth section.




2. PROBLEM DEFINITION
Consider the following continuous-time system with discrete

measurement problem

x=£ (x, p) (2.1)

Y = h (x) + s X = x(ty) (2.2)

where x and y are state and measurement vectors, p is the unknown
parameter vector and nk is the measurement noise vector which
is a zero mean, white Gaussian sequence with covariance Rg.

Two cases for the parameter vector p are considered.

(1) p is an unknown constant vector.

(2) p follows a vector of profiles with known shape but ;i;

uncertain in absolute value. We therefore have E;ﬂ

- o

p; (t) = a; p(t) T

where p?(t) is a time function (parametric or numerical) known }

to the estimator and denotes the i-th element of p°(t). The

corresponding i-th component of the true profile is denoted by ;Z;

pj(t) and the proportional constant aj becomes the unknown ;%?
constant to be estimated. .
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In either cases above, we augment the unknown constants
with the state vector x, the estimator is therefore to jointly
estimate x and the unknown constants. Let y denote either the

constant vector p or the proportional constant vector a, we then

have

=0 (2.3)

'—<'

and the augmented state vector x, is

iT

T = xT, yT

(2.4)

[ YN




; 3. THE CRAMER-RAO BOUND FOR DETERMINISTIC NONLINEAR SYSTEMS
»
[

3.1 Review of the Cramer-Rao Bound Equations
The Cramer-~Rao bound (CRB) on the covariance of estimating

.I x(t,) based upon measurement vectors y.,, Yq,...,Y, for all

unbiased estimators is given below.

’ - -\ T T -1

P(x,) = I(x,)" (3.1a)

where

I(xx) = the Fisher's information matrix evaluated
at lko

P(x,) = the Cramer-Rao bound evaluated at x,.

1

G, = 0; Gi+1: i=k-1' k-2,...,1.

Gk = I (an identity matrix).

o, = the solution of

9 o(t
___%EL_IL = F, o(t, 1),

(v, r) = I, for v = ti' evaluated at t = ti+1'

Fy = the Jacobian matrix of f(x(t)).
Hy = the Jacobian matrix of h(x;).
Ri = The measurement error covariance at time ti.
5 N
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The derivation of the above results may be found in [1],
[2]. Notice that the P(xy) may be re-evaluated at any time
instance and this is accomplished via the appropriate choice of
the.composite transition matrix Gj.

In evaluating the performance of a certain nonlinear
estimation problem, the Cramer-Rao bound provides several
desirable features. It is easy to compute when compared against
other bounds. When the maximum likelihood estimator (MLE) can be
realized, the CRB and MLE go hand in hand. It is well-known that
the MLE is consistent, asympotically efficient, and
asymptotically Gaussian, [3]. The existence of MLE therefore
guarantees that the CRB is at least asympotically achievable.

Clearly, the Cramer-Rao Bound (3.1a) does not exist if the
Fisher's information matrix (3.1) is singular. This implies that
there does not exist any unbiased estimator for x) with finite
estimation errors (variances). 1In the nonlinear systems theory,
I(xx) also ties with the nonlinear observability condition and
*he existence of a particular maximum likelihood estimation

algorithm as we shall demonstrate next.




..................
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3.2 Local Observability Condition and Maximum Likelihood
Estimation

In (4], the use of I(xyg) in examining the pointwise
observability at xx was presented.* It stated that if I(xg)
is positive definite, then the system is observable at xx. In
here, we extend the above condition to a local sphere about

Xk. We first present the following theorem.

Theorem 3.1

Given a positive definite symmetric matrix A with
eigenvalues \p > Ap-1 >...> A1>0, if B is symmetric and

||A-B||< A1, then B is positive definite.

Proof: *#* Using the definition
A, = min < Ax, X >
T

and A-B being symmetric, we have

| |»-8|| STH IR

Thus, for any unit vector X,

* The observability Grammian of [4] is the same as I(xy)
with Rj being set to an identity matrix,.
*h Proof of the theorem is due to Dr. R. B. Holmes.
7
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< (A-B)X, X > = < Ax, X > - < Bx, X >

< A

< < AX, X >,

Clearly, <Bx, x> > 0, then B is positive definite. QED.

We can apply the above theorem to define a sphere around a
point x where I(x) is positive definite such that all points
within this sphere will have observability Grammian being

positive definite.

Theorem 3.2

If I(y) is positive definite at y,, then one can
construct a sphere S = {y : 'lex°|| < r} such that for all y
in 8, I(y) is positive definite and the radius of S can be
choosen as

r = min {ry, ra}

where "X-Xol| <y, "I(x) - I(x°)|| < L '|X'Xo'|' and r,=),/L.
Proof Given

[lrso]| < =

i - stz ]| < flezal] <5 -

Consider two cases:

(a) Assuming r, < L,y OF L-r1 < A1, then




HNy)-de||<xv

this gives I(y) > 0.

(b) . Assuming r<rqy, or Ay<Lerj, then choose a new Yo ¥'

such that T

|12 = Lol | < rp/n
men [[1 -1 | < v |fxe|| = ]
this gives I(y') > 0. QED. ]

The above theorem presents the fact that when I(xk) is

positive definite, then the reconstruction of Xk at a local -
region can be made and the size of this region (the sphere S) can : 2
be estimated. We next illustrate a particular realization of the .%
Maximum Likelihood estimator where the existence of this fij
algorithm also depends on the invertibility of I(xk). fi

An iterative algorithm in implementing the Maximum ]
Likelihood estimator for estimating the state vector with angle ::f
only measurements was presented in [5]. Let 5ﬁ denote the s

nth iteration on estimating Xk, then the following algorithm,

.........
.............

derived in (5], gives the n+1st iterative solution, -

AL I R § ¢ 1 R-(y.-h (x" )) | (3.2) %i;

Xy Xy e TP B SR T SRR 11 .

N
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h where the covariance matrix P(xy) takes the same functional '
ﬁ form as the Cramer-Rao Bound defined in (3.1). Clearly, the ff
Cﬁ existence of P(xx") is dependent upon the invertibility of e
I(xx"). It was shown in [5] that the above algorithm 1
provides estimates which asymptotically approach the Cramer-Rao ‘ f%ﬁ
Bound. This was not surprising due to the theoretically ifﬁ
justified property of the Maximum Likelihood estimator. : :f:
The derivation of (3.2) was based upon minimizing a éff
quadratic error criterion, i.e., Vo
K e
. . - st
min J = 121 (yi-h(x;)) TRi lx‘i-h(ﬁi)) (3.3) ey

Xy

In the case of designing a nonlinear observer, the Eq. (3.2) can

be used simply be setting Rj to an identity matrix. The T
convergence of (3.2) is guaranteed if the J above is convex in a jiﬁ
local region about x)x and the initial guess x© is 'i;
contained in this region. TTT
3.3 Summary ;

In this section, we have presented the fundamental

equations on the Cramer~Rao bound for systems defined with (2.1)

and (2.2). We have also tied the relationship between the

invertibility of the Fisher's information matrix to the local

10 o

...................................

.......
...........................................................




........
........

Loy N T ——

b

observability of nonlinear systems and the existence of a
particular Maximum Likelihood algorithm. we summarize our
findinqs below.

(1) The computation of the Cramer-Rao bound is possible
only if the Fisher's information matrix is positive definite.

(2) When this is the case, the nonlinear system is locally
observable.

(3) A maximum likelihood estimation algorithm, which also
requires the Fisher's information matrix to be nonsingular, can
be constructed. 1In the noise free measurement case, this
algorithm becomes an observer and the convergence is guaranteed
if the quadratic error criterion is convex about xkx and the

initial guess gﬁ is contained in this region.

11
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4. ERROR COVARIANCE EQUATIONS
With the use of the Cramer-Rao Bound for estimation
performance evaluation justified, we now present computational

algorithms for filtering and prediction errors.

4.1 Filtering EBrrors

The computation of (3.1) involves matrix inversion. When -
sufficient number of measurements have been collected so that the
information matrix I(xx) becomes nonsingular, then Eq. (3.1) s
can be replaced by the familiar matrix Riccati equation. "y

Examining (3.1), one can write

k+1
T ,.T -1
T(Xyyy) = 121 Gj Hi Ry Hy G

1

T -1 -7 -
Hieet Reer Hyay + & I(Xp) 0 (4.1)
Let
~ T

One can obtain the following result with direct application of

the Matrix Inversion Lemma to Eq. (4.1).

'y (4.3)

e T I I - ~
P(Xppq) = Preyy (1= B (B0 Prs st Reyq) Heg Pyl

The computation of 3k+1, Eq. (4.2), can also be replaced by
solving for §k+1 using the following matrix differential

equation,




P=F,P+PFT

t ¢ ! t e[tk, t

k+1) (4.4)

with initial condition P(xx) at t = tg.
| Equations (4.3) and (4.4) give the filtering error. They

are applied as soon as I(xyx) becomes nonsingular.

4.2 Prediction Errors

The prediction error equation is (4.4) (or (4.2)), by
solving it at the time desired with the initial condition set at
the last point of measurements.

In the problem of trajectory estimation with the ballistic

coefficient as the unknown parameter, two situations may occur

for the problem of trajectory prediction. This is due to the

fact that the variations of ballistic coefficients (i.e.,

:; deviations from a nominal time profile) are usually known to e
. within a priori bounds. When the ballistic coefficient ;iﬁ
estimation (filtering) error is below those errors characterized
by a priori bounds, the trajectory prediction error is obtained €¥§

by solving Eq. (4.4) (or (4.2)). On the other hand when such is v

not the case, the trajectory prediction error should only be -:?

: limited to errors induced by the a priori bounds. In this E;i
- latter case, the error equation can be derived using the ;3?
following linear equation approximation. Let the linear system ‘;f

.'.:;.'i!

13 o
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(4.5)

Notice that the unknown parameter is treated as a driving force
term. The solution of (4.5) can be obtained via the transition
matrix ¢(t, t) as

t
x, = o(t, t ) x, + { #(t, t) G y(t) dr (4.6)

o

where x, is the initial condition. Let Xt denoted a

perturbed solution due to perturbation §y in the parameter vector

Y, one obtains

t
X =0 (t, t ) x, + [ o(t, 1) G(&+6y) dr (4.7)
to

Let ] denote the outer product of the trajectory perturbation

§x¢, it can be shown that

t
Glt = ] o(t, 1) G§y dr (4.8)
t
o
and
. T
y = 8x, 68X, (4.9)

The above analysis suggests the following two separate
procedures for trajectory prediction when a priori bounds on the

unknown parameter are available.

14
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(1) When the parameter estimation error is smaller than
the a priori bound, use the covariance differential equation
(Eq. (4.2) or (4.4)) to solve for trajectory prediction error.

{2) When the éarameter estimation error is large,
calculate estimation error assuming perfect knowledge on the
parameter value, then obtain trajectory prediction error using

trajectory perturbation Eqs. (4.8) - (4.9).

15
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i 5. SUMMARY
In this report, we have presented equations for calculating
filtering and prediction errors for systems with uncertain
. parameters. The results are based upon the Cramer-Rao bound on
‘ covariance in state estimation. This analysis is motivated by
the problem of trajectory estimation with uncertain parameters.
= The major findings of this report are summarized below.
(1) Unknown constant parameters are modeled as constant

state variables.

i (2) Unknown time-varying parameters with known time
;? profiles require the modeling of proportional constants as
constant state variables,
= (3) The use of the Cramer-Rao Bound as an analysis tool is
discussed and its relationship with the nonlinear observability
condition and the existence of a maximum likelihood algorithm is
i explored.
:f (4) Filtering errors are obtained by solving the
;' Cramer-Rao bound equation. :ii
(5) Prediction errors due to filtering error alone or with -a
the knowledge of parameter a priori bounds are also obtained. -i}
Application of the analysis discussed herein to the %f;
trajectory estimation problem will be published in a future _;1
report. iiia
e
. 16
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