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PREFACE

The continuing demand for and growth of statistical analyses in Army experimentation and applications of
all kinds has resulted in a large number of special analytical techniques that are now widely used. The theory of
many of the statistical techniques of special interest has been investigated systematically during the last 40 yr
or so. Some of the statistical analyses of original Army interest have found their way into the broad statistical
literature and, recently, into some of the university curricula. Naturally, courses in statistics taught in the
universities form a strong basis for direct applications to many Army research and development efforts. Asis
widely recognized, the field of general statistics is indeed now an interdisciplinary science, affecting even our
daily lives, and it devolves quite naturally that some special statistical procedures and experimentation
guidelines would play a central role in a number of Army analytical endeavors. The need, therefore, to record
and illustrate many of the well-developed statistical techniques has led to the desirability of publishing a
number of engineering type handbooks on the subject of experimental statistics.

In 1962 and 1963, the US Army published five Engineering Handbooks (AMCP 706-110, -111,-112, -113,
and -114) on experimental statistics, which have found extensive use and also are widely referenced in both
Government and industrial activities. Our Chapter 1 gives the titles of these five volumes, along with an
introductory description of the present handbook. In the intervening 20 yr or more since the publication of the
AMCP 706-110 through 114 series of handbooks, much additional research in mathematical statistics has
been accomplished, and some unique applications to Army problems have been found to be highly useful.
Accordingly, a considerable amount of upgrading of the original material, along with some rather extensive
efforts to round out and record most of the recent statistical attainments, was necessary. It is for such reasons
that the present handbook has been developed.

We have endeavored to cover in considerable detail some of the topics in such fields of interest as precision
and accuracy of measurement procedures, outlier detection, least squares and regression, order statistics,
sample size determination and sensitivity analysis, while also including more or less supplementary coverage
of techniques that have been thoroughly investigated in theory and practice or recorded in reputable current
references. Topics were selected for the handbook to address the various inquires received over the past 30 yr
relative to statistical problems. Hopefully, we have attained some balance in this undertaking and provided a
useful compendium of some specially selected analytical procedures. It is realized that many statistical
techniques not fully covered herein will no doubt find their way into future Army practice; a specific cutoff
date for a handbook dictates the particular selection of topics that can be included. Nevertheless, the
techniques we have included should be of general use for many years to come. In fact, it is visualized that some
of our selected subjects will come into prominence not only in Army applications but also in industrial,
engineering, and research pursuits as well. In any event, it is hoped that we have provided a sound basis for
future applications and have indicated some areas for further research. It is believed that the reader will find
many references in this volume which should prove of value in his Army statistical endeavors.

The development of this book is almost wholly the work of Dr. Frank E. Grubbs, formerly Chief
Operations Research Analyst of the US Army Ballistic Research Laboratories. Dr. Grubbs was in fact
engaged in much of the Army’s statistical programs during the years 1941 to 1981. Indeed much of his research
in mathematical statistics, which has been found extensively applicable in Army and industrial problems, is
recorded in this handbook. We are much indebted to the US Army Materiel Systems Analysis Activity
(AMSAA) and the US Army Ballistic Research Laboratory (BRL) for providing support during the
preparation of this handbook.

The US Army DARCOM policy is to release these Engineering Design Handbooks in accordance with
DOD Directive 7230.7, 18 September 1973. Procedures for acquiring Handbooks follow:

a. All Department of Army (DA) activities that have a need for Handbooks should submit their request
on an official requisition form (DA Form 17, 17 January 1970) directly to:
Commander
Letterkenny Army Depot
ATTN: SDSLE-SAAD
Chambersburg, PA 17201.
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“Need to know” justification must accompany requests for classified Handbooks. DA activities will not
requisition Handbooks for further free distribution.

b. DOD, Navy, Air Force, Marine Corps, nonmilitary Government agencies, contractors, private
industry, individuals, and others—who are registered with the Defense Technical Information Center (DTIC)
and have a National Technical Information Service (NTIS) deposit account- may obtain Handbooks from:

Defense Technical Information Center
Cameron Station
Alexandna, VA 22314,
¢. Requestors, not part of DA nor registered with the DTIC, may purchase unclassified Handbooks
from:
National Technical Information Service
Department of Commerce
Springfield, VA 22161.
Comments and suggestions on this Handbook are welcome and should be addressed to-
Commander
US Army Materiel Development and Readiness Command
Alexandria, VA 22333.
(DA Form 2028, Recommended Changes to Publications, which is available through normal publication
channels, may be used for comments/suggestions.)
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CHAPTER 1
INTRODUCTION TO CONTENTS OF THE HANDBOOK

A brief but somewhat comprehensive and explanatory vievy of the topics and general subject matter of the
handbook is highlighted in this chapter.

1-1 INTRODUCTION

During the 1960’s a series of Engineering Design Handb.ooks on the general subject of experimental sta-
tistics was published by the US Army. These Engineerinng Design Handbooks have the following pam-
phlet numbers and titles:

AMCP 706- Title
110 Experimental Statistics, Section 1, Basic Concept:s and Analysis of Measurement Data
111 Experimental Statistics, Section 2, Analysis of Enumerative and Classificatory Data
112 Experimental Statistics, Section 3, Planning’ and Analysis of Comparative Experiment s
113 Experimental Statistics, Section 4, Special Topics

114 Experimental Statistics, Section 5, Tables.

This valuable set of handbooks on experimental statistics and related subjects has served the Army
analysts quite well as an authoritative reference of useful methodology and examples. In the intervening
years, however, the field of experimental statistics hias moved forward at a very rapid pace, and in fact,
many new and useful techniques in experimental statistics have become available. Our primary objectives
in the preparation of this handbook, therefore, have been to select some of the more useful statistical
techniques we believed Army analysts would require and to assemble them in a single, comprehensive vol-
ume. As would no doubt be expected, we were not able to devote the space to cover the multitude of
many other desirable statistical methods—for examjple, extensive multivariate distribution theory (or even
bivariate or trivariate weapon delivery error distributions), the estimation of (residual) dispersion from
mean square successive or higher order differenc:es, or nonparametric statistics to the extent desired.
Moreover, it seemed too early to cover the use and applications of “‘robust” statistical estimation
methods, even though some special interest has bieen evident in this area. Neverthele:ss, we consider that
the topics we have covered in this handbook will represent a valuable addition to the Experimental Statis-
tics series of handbooks—AMCP 706-110 through -114-—and will either provide thz analyst with useful
reference material or perhaps help him with the current methodology of some of the more up-to-date ad-
vances.

1-2  OVERVIEW OF THE HANDBOOK

We have presented the topics in this handbook in a certain order to draw proper attention to applica-
tion areas that are now considered mandatory for the successful, practicing experimental statistician. Thus
we have not approached the general subject o'f Army experimental statistics in what some might regard as
a logical order of elementary statistical concepts in a college- or university-type curriculum. In fact, we
have long observed that the more usual colle:ge statistical courses do not even approach the need to han-
dle or deal effectively with the formidable problems in practice—another reason for preparing this hand-
book. As a case in point, consider the problem of errors in measurement, precision, and accuracy of
measurement. It is certainly of considerable interest to know in much detail just how well. errors of mea-
surement are controlled; otherwise the observations taken in an experiment could lead to entirely wrong
conclusions and inferences. Hence perhaps t:he prime objective in experimental work is the assurance that
the measurements taken will be of proper quality. It is for this reason that we devote attention first in
Chapter 2 to the statistical treatment of errors of measurement, precision, and accuracy problems. We at-
tempt to define, provide methods of estimation, and illustrate by actual example these very elusive con-
cepts in Chapter 2. Moreover, coverage in Chapter 2 includes the known, key statistical tests of signifi-
cance, which are useful in comparing population parameters of the precision and accuiracy measures. In
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dealing with these problems of precision an d accuracy of measurement, it is necessary to discuss the hier-
archy of calibration echelons to the top, or the National Bureau of Standards, and the probable accumu-
lation of error through such channels. Finzlly, the use of interlaboratory studies of measurement pro-
cedures and test methods, or “round-robin” itests must be considered. Thus we have given an introduction
to these practices and procedures in Chapter 2 also. With suitable knowledge of the precision and ac-
curacy of our measurement procedures, we are ready to discuss the next logical topic in statistical prac-
tice, namely, the analysis and treatment of o utliers.

Chapter 3 gives an account of the statistical tests that are rather widely used in current applications to
identify and to isolate outlying observations i1 samples. The so-called ““outliers” that often appear in ex-
perimental work could be due to errors of measurement, recording errors, or just plain mistakes, but they
also could reflect the true characteristics of the population one is actually sampling. Thus the basic prob-
lem is to develop the more useful statistical tests that will lead almost unerringly to the separation of true
outliers from the actual characteristics of the population sampled, i.e., the physical environment. For a
systematic and comprehensive treatment of the outlier detection problem in Chapter 3, we give the more
efficient statistical procedures for isolating either a single high or single low anomalous observation, or
either the two highest or the two lowest sample values, and also some rules for judgment of the lowest and
the highest observations simultaneously. For small samples these particular cases are met very frequently
in many practical situations. We then proceed to discuss in some detail the detection of many outliers
(more than two) or, that is, the likelihood of much unacceptable heterogeneity in the sample of observa-
tions. Several multiple outlier detection procedures are given, and pertinent practical examples are illus-
trated. Since our interest lies in the realm of making sound conclusions and inferences based on the statis-
tical analysis, the methods of Chapters 2 and 3 be:xcome of fundamental importance in helping to assign
the likely causes of questionable variations.

Hence Chapters 2 and 3 have been placed first to call close attention to and also to provide the Army
statistical analyst with a solid background for handl'ing and assessing errors of measurement and the pos-
sible effect of outliers in important practical appliciations. We believe that this approach to modern day
statistical analyses. leads us with much assurance to the proper handling of the many special or selected
techniques discussed herein, which currently are required in many applied Army investigations.

There is a variety of special statistical topics, that have come to light over the years, and, as a matter of
fact, have been fouind to be of much particular interest to the practicing statistician. Moreover, it seemed
very highly desirable to bring these topics together in .a single chapter, which we have done in Chapter 4.
Such topics include:, for example, some elementary account of basic estimation techniques—particularly
approximate unbiased estimation of the population standard deviation for samples from a normal popu-
lation, the concepts of efficiency and mean square error, some updating of the common statistical tests of
significance, and some points on the choice of significanice levels for multiple tests. In recent years there
have been some adv ances in the development of approximate statistical procedures for some of the signifi-
cance tests, and for many or most practical applications :such techniques may just as well be used. In the
Student type ¢ tests for comparing normal population means, the use of (n — 3) instead of (n — 1) degrees
of freedom (df) as a. divisor of the sum of squares leads 0 a ¢ statistic that is very nearly normally dis-
tributed. Hence the table of standardized normal deviates- —instead of the usual ¢ table—may be used in
practice, and in fact, only a normal percentage point must be remembered! Moreover, this development
extends rather well to both the two-sample ¢ test and the Behrens-Fisher problem for comparing two
normal population means for which the variances are not eqqual. Clearly, such suitable, approximate tech-
niques could well promote wider practical applications because the rigorous handling of only the exact
tests has been intractable. Along with the common statistical tests of significance et al., there seemed to be
some value in recording the principles of establishing confide:nce bounds on the unknown normal popula-
tion sigma or standard deviation, including a discussion of Neyman’s shortest unbiased confidence
bounds. These topics are covered in Chapter 4.

Since the applied statistician often must compare the relative size of more than two normal population
sigmas, up-to-diate coverage of significance tests for the equality of several population variances must be
approached. Heince homoscedasticity tests, such as that of Bartlett, Cochran, Hartley, Cadwell, and Bart-
lett and Kendall, are highlighted in Chapter 4.
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The design and analysis of planned experiments using statistical experience now extend over such a
wide area that we cannot go into such developments and accomplishments in this handbook. Also many
excellent textbooks on the general subject are now widely available. Nevertheless, we considered it desir-
able to discuss a rather frequently appearing problem of comparing subjective type judgments in much
Army work. Our analysis of variance technique used here concerns the rating and ranking of research and
development proposals by a panel of “‘experts”; many similar applications could be made elsewhere. As
the final subject of Chapter 4, we discuss the choice of significance levels for multiple type tests. There are
often cases that involve a series of significance tests, and in the end one desires to guarantee a given or
prestated level of significance.

As would be expected, many Army statistical applications involve the comparison of two unknown bi-
nomial population parameters or some analyses of count or cross-classified categorical data. One of the
most frequent and classical problems concerns the analysis of 2 X 2 comparative trials, or two-way con-
tingency tables, especially the 2 X 2 table of count data. In Chapter 5 we have tried to give some of the
more relevant background concerning the analysis of 2 X 2 contingency tables by using the classical
normal approximations -and the chi-square analysis equivalent test. As has been recognized since the
1940’s, one has to consider both the possibilities of fixed and variable marginal totals with the classical
comparison of two binomial population parameters imbedded in such treatments. We follow the basic
work of Barnard and Pearson in this endeavor and attempt to give much assurance to the fact that the
normal approximation is normally quite satisfactory. Since there has been much confusion in the past
concerning both the interpretation and the statistical analysis of contingency tables, we have tried to de-
velop and present the material in an order and fashion the Army analyst can follow and remember. This
means that for the frequently used 2 X 2 table the comparison of two binomial population parameters or
proportions appears to be of some central importance. This case, therefore, is treated rather extensively,
and some Army type applications are given.

During the past 20 yr or so, there have been some developments toward “different”” approaches to the
analysis of contingency tables, including the information theory approach and the loglinear model.
Consequently, we have included some discussion of both of these approaches, even though somewhat
limited in scope, while adhering to the belief that analyses should treat the original, observed count data
without any transformation of scale. We must note, however, that the use of the loglinear model leads to
linearization of the data and hence likens this approach to the well-known analysis of variance (ANOVA)
of statistically designed experiments, such as two-way classifications or layouts of randomized blocks.

Due to the demand for statistical analyses arising from diverse applications, readers should be aware
that least squares, regression, and the fitting of functional relations represent some of the most important
topics to be covered in any handbook of this kind. Moreover, practical applications now require more
than just a “routine fit” as is sometimes presented in statistical textbooks. In fact, in line with the princi-
ples of Chapter 2, present-day analysts should have profound appreciation for the existence and size of er-
rors of measurement and whether or not the dependent variable is sufficiently “free of error” or otherwise
deserves some special treatment. Consequently, Chapter 6 has been'written with such problems in mind
for attacking least squares. Also for these reasons the very first problem or example illustrated is ap-
proached from the standpoint of whether the assumptions and the fitted linear model are valid. In this
way one can perform least squares in such a manner as to have great assurance and confidence for his
analytical judgments.

Although statisticians, using the fitted equation statistics, have long determined confidence intervals for
specific values, an important result of Henry Scheff¢ that covers multiple confidence statements about and
for the whole least squares line has too long been overlooked. Therefore, Scheffé's theory for the regres-
sion line and its practical benefits are stressed. Also the important result of Berkson, which points out
that when the experimenter presets and aims for ““controlled” values of the independent variable, the ordi-
nary least squares line involving 1 on x may be fitted in the normal manner as for v free of error. We go
to some effort in Chapter 6, therefore, to select and exhibit those regression topics that may be of most
importance in practice.

Although physical scientists have always faced the least squares case involving “‘errors’ in both vari-
ables, i.e., the dependent and the independent variables, it is only in recent years that the statistician has
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developed an appropriate treatment of this problem. Hence the “errors in both variables” case is dis-
cussed very thoroughly, and modern approaches for use are presented. Also we stress in Chapter 6 the
comparison between the fitting of an appropriate physical model on one hand and that of a polynomial on
the other. The value of the physical model is demonstrated by using a problem in penetration mechanics.

The fitting of a dependent variable on several independent variables is presented in a rather simple
computational manner. The use of orthogonal polynomials for equally spaced values of the abscissa is
stressed in connection with the analysis of variance (ANOVA) table, which uses a Snedecor-Fisher F test
for a stopping rule. A very unique example, applying Chapter 2 principles, is also given.

The need for analyses of the ordered observations in a sample, as contrasted to observations in the
order taken, has deserved much special attention in recent years. This is due to the fields of life testing

and reliability, where the lifetimes of articles occur naturally in increasing order and such tests may be

stopped before all articles fail; or the existence of outliers in samples; or some rounds fired at a target that
miss it, etc.; and for which unbiased estimation of population parameters is required. Indeed, the rather
incontrovertible results arising from estimation through the use of sample order statistics make their ap-
plications very attractive for their efficiency is surprisingly high. Thus Chapter 7 attempts to present an
introductory account of some of the principles involved in the analysis of sample order statistics for pur-
poses of inference. Our interest in order statistics concentrates on distributions of largest and smallest
values in the sample, the sample range or largest minus smallest values, the quasi-ranges, expected values
of the sample order statistics and their moments, efficient linear estimation of population parameters, the
statistics of extremes and Gumbel’s extreme value distribution, some relationships between order statistics
and outliers, the radial order statistics as applied to target analyses, the analysis of truncated samples
from firings at rectangular targets, and parameter estimation for truncated Poisson samples with missing
zero occurrences. The last-named application applies, for example, to the analysis of combat records
about tank engagements for which the number of misses is naturally never known but the number of
tanks having one hit, two hits, or more is identifiable.

In terms of order statistics, several distributions come into importance in applications. These include
the normal, the exponential, and the Weibull distributions. In Chapter 7 we illustrate the use of order sta-
tistic theory by a number of examples that illustrate the versatility of this analytical tool.

Perhaps the most ubiquitous requirement of a statistical character among physical scientists and others
concerns that of selecting the right sample size. In fact, the almost universal question is invariably, “What
sample size do I need?”. This question is certainly a very simple one but often like others requires some
qualification, to say the least! The determination of sample size is not only or strictly a statistical prob-
lem, but it may be a physical or engineering one as well or even an economical one since as so often one
“gets only what he pays for”. In some cases the sample size is limited by just what is actually available for
test, in which case the design of the test might well come into play. On the other hand, the statistical de-
termination of sample size represents an important activity because there must be some control of the
risks of erroneous judgments. That is to say, for example, that we would like to keep the “Type I” error
of rejecting a “good product” and the “Type II” error of accepting a ““bad product” both down to a mini-
mum. Perhaps it is easy to see then that the determination of sample size is very dependent on the vari-
ability of the population to be sampled, or, that is, the population standard deviation. If this sigma is
small, the sample size will ordinarily be smaller than if the sigma were large. Also the choice of sample
size will depend very much on just how close we desire to be near the population parameter—i.e., mean,
standard deviation, etc. Clearly, if we desire that the sample mean be the same as the population mean,
the sample size and the population size must be equal, or very nearly so. What we are also saying in effect
is that sample size determination will depend on the particular difference we would like to be able to de-
tect and the width of the confidence interval within which we would like the population parameter to lie.
Hence there are a number of ways of framing questions concerning sample size determination, and the ap-
proach must be selected with some care. Moreover, once the appropriate approach has been selected, the
sample size must not be so large as to be impracticable—a final requirement. )

It might be said that we more or less focus on two approaches having some practical value for the de-
termination of sample size. The first of these revolves around either establishing a difference of practical
importance or a deviation from the population parameter we would like to detect and then finding the
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sample size for the significance test that will show statistical significance for the probability level also
selected. This particular approach is often used because it is not difficult for the practicing engineer or
physical scientist to formulate and to apply. The second, and perhaps more difficult, approach for the
practitioner is to formulate the problem in terms of just what is acceptable or desirable and what level of
quality, etc., is not, then to determine the risks one might be willing to take in these two judgments, and
finally to obtain the sample size that guarantees these attainments. In this way we are controlling the risks
of erroneous judgments. In Chapter 8 we discuss both approaches in an appropriately detailed manner for
the 'more common statistical tests of significance, and we illustrate the principles by a number of practical
examples.

The determination of sample size(s) is recorded for sampling a single binomial population or comparing
two binomial populations (or Poisson distributions); the testing for high reliability; the estimation and
comparison of normal population variances; the estimation and comparison of normal population means,
and the normal populations; contingency tables and curve fitting; and a brief account of sample sizes for
analysis of variance type problems. Every effort is made to keep the sample size equations as simple as
possible, and particular attention is given to the use of the normal approximations by showing their ac-
curacy. Thus the practicing statistician should find much use for Chapter 8.

Long before statistical techniques were applied in depth to industrial- and engineering-type problems,
there existed a need to use probabilistic methodology in bioassay problems or ‘‘dosage response”
analyses. This perhaps was especially the case since the data were of a “quantal response” type nature or
an “all or nothing” response. Thus the analyst appeared to be face-to-face with an application involving a
continuous scale, or ‘“‘variables’, treatment, but the response data were simply of an “attribute’ nature,
or “yes” or “no”’ character. For the Army the pressing need for-quantal response analyses came to the
forefront in connection with analyses' of armor penetration studies and the mammoth effort directed
toward acceptance testing of armor plate from many producers during World War II. The analytical
problem is clearly seen for defeat of armor studies since, in firing projectiles at armor of a given thickness,
there exists some “lower” striking velocity for which no penetrations of the plate occur, but as the striking
velocity is increased, there are 10%, 20%, . . ., 50%, . . ., 90%, . . ., and finally perhaps even 100% penetra-
tions at some “higher” velocity. Hence basically one must estimate a cumulative distribution curve, which
is most often unknown, for the case where the firing of a single round results in either a nonperforation or
a perforation. Moreover, it is starkly clear that firings near the levels of 0% or 100% perforations give lit-
tle or no useful information! Therefore, one must also adopt an efficient strategy for conducting armor
penetration tests if he is to obtain the characteristics of the ““zone of mixed results’. For industrial and en-
gineering applications, this particular type of statistical problem was most often branded as a “sensitivity
analysis” as contrasted to the specific bioassay procedure. Chapter 9 discusses some of the more up-to-
date methods for sensitivity analyses of quantal response type data.

Since the problem in experimental testing for sensitivity analyses is that of locating the zone of mixed
results and exploring it in a fashion to estimate parameters of the assumed or guessed-at distribution, the
strategy of conducting the test and the related statistical analysis must go hand-in-hand. Hence, if one has
to determine a low percentage point, say 1%, or a high percentage point, say 99%, then the strategy of
testing should be so aimed. On the other hand, if one is primarily interested in the median, or 50%,
probability level and some idea concerning the width or standard deviation of the zone of mixed results,
he should avoid the end points and simply assume that the distribution is normal. For the zone of mixed
results, the distributions covered in Chapter 10 include the normal, the logistic, and the Weibull models.
The discussion, therefore, involves a variety of distributional shapes. Testing strategies include the com-
plete rundown test, the “up and down” strategy of Dixon and Mood, the Langlie one-shot test strategy,
the Robbins-Monro stochastic approximation method, the one-shot transformed response test strategy
(OSTR), and more general transformed response strategies for extreme percentage points of the assumed
distributions. The primary technique for the estimation of population parameters is Fisher’s method of
maximum likelihood, and some discussion of the iterative procedures is given as required. Also a number

of very informative examples and computational aids add to the usefulness of Chapter 9 for Army appli-
cations.
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Chapter 10 has been selected and prepared with a special purpose in mind. Our objective is to outline a
rather difficult problem that can be used to indicate the contrast between the statistical approach to
model development as compared to that of the physical approach and just how they might support each
other. In fact, the statistician would often fare better by trying to fit the available physical models to the
data before attempting to improve their applicability statistically. As it turns out, the applied or consult-
ing statistician will be called upon to use his expertise in any number of diverse areas of emphasis, and it
is unlikely that he will have immediately at hand the detailed knowledge required in each and every field
or problem. Likewise, as so often happens, the physical scientist will not be sufficiently trained in statisti-
cal methodology; therefore, the best approach must be teamwork involving both viewpoints. Communica-
tion barriers have been disappearing in recent years, and proper coordination should no longer be a
stumbling block since the multidisciplinary approach represents a common practice in science, tech-
nology, and engineering. We believe that such practices will be a continuing necessity.

For purposes of a convincing illustration, we have chosen the so-called “limit velocity” or “critical
velocity” problem in penetration mechanics studies. The limit velocity of a target armor plate may be de-
fined as the greatest striking velocity for which the chance of penetration is zero in statistical terms, or in
physical terms it is the striking velocity for which the residual velocity is zero. Even though the reader
may be aware of some similarity between Chapter 10 and the statistical sensitivity analyses of Chapter 9,
there is a sharp and important difference that must be recognized. In fact, Chapter 9 is concerned with
only the statistical approach or analysis of quantile response data, whereas Chapter 10 involves measure-
ments on both a continuous and attributive scale along with the problem of determining a physical law
that will give the limit velocity in terms of the armor thickness and hardness, the projectile diameter, the
projectile mass, the striking velocity, the angle of striking obliquity, and other physical parameters. In
other words we take up the problem of describing the role of the statistician as a team member in the
activity of scientific model building or development. The requirement for coordinating the roles of the
statistician and the physical scientist is discussed and amplified.

The final chapter, Chapter 11, focuses on an introduction to some selected topics in multivariate statis-
tical analysis and theory since a number of key problems arise in connection with many Army applica-
tions of statistical methodology. For example, some weapons have circular patterns of shots, i.e., equal
sigmas in the different directions, and it becomes desirable to test for “circularity”. Statistical problems of
this nature may be handled by using Wilks’ likelihood ratio tests for determining the equality of
variances, the equality of covariances, and the equality of mean values also. Usually, one is dealing with a
single bivariate or multivariate sample for the problems of this type, and we give an illustration for the
M16 rifle in rapid fire to indicate the nature of the application.

Chapter 11 also includes bivariate and multivariate statistical theory for comparing the results of two
samples with each item of the sample having multiple characteristics. Here one often needs to compare
the true covariance matrices of two bivariate or multivariate normal populations and uses the Hotelling
generalized T2 statistic, or he needs to compare the corresponding true characteristic means of two hy-
pothesized multivariate normal populations, in which case the application of Hotelling’s multivariate Stu-
dentized ¢ statistic is required. Finally, a Hotelling generalized T'2 statistic can be used to test whether two
multivariate normal samples can be considered to originate from a single multivariate normal population.
These Hotelling T2 statistics are thoroughly illustrated with an example that compares a newly designed
and a standard artillery projectile.

Since many users of this handbook may have applications that will require the simultaneous use of sta-
tistical methods from several of the chapters, we have selected a comprehensive and rather extensive prob-
lem related to a study of the precision and accuracy of instrumentation for determining the stratospheric
ozone concentration in the atmosphere. This statistical analysis requires the application of the principles
of Chapter 2, which requires redundancy of instrumentation to estimate the imprecision of measurement
of each measuring device, and along with it the application of orthogonal least squares procedures
covered in Chapter 6 to model the trends in instrumental bias differences. As a result, one can develop
precision and accuracy statements for the capabilities of the instruments and hence settle any error of
measurement questions. This study is presented in the Appendix of Chapter 6.
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CHAPTER 2

ERRORS OF MEASUREMENT, PRECISION, ACCURACY AND THE STATISTICAL
COMPARISON OF MEASURING INSTRUMENTS

Precision and accuracy of measurement represent widely misunderstood terms or concepts with the
result that many controversies arise in science, technology, and industrial practice. We therefore attempt to
define and quantify errors of measurement, precision, and accuracy in accordance with the principles of
statistics that apply so aptly to these concepts. By means of a systematic approach to the problem, preci-
sion and accuracy (or imprecision and inaccuracy) are described in an analytical manner, and the statisti-
cal techniques of estimating these parameters are given. It is Sfound that at least two measuring instru-
ments, taking common or the same measurements, are required to provide the needed estimates and to
obtain some idea concerning the reliability of the estimates. Moreover, these principles are extended to any
number of measuring instruments or laboratories engaged in measurement operations.

Many pertinent statistical tests of significance concerning the precision and accuracy (large sample or
population) parameters are presented for the analyst, and procedures for establishing confidence bounds
on the unknown parameters of measurement are also covered in considerable detail. These results are
discussed especially for either two or three instruments, and indications of usage are given for any general
number of measuring instruments.

The practice of interlaboratory testing is covered in some analytical detail, and techniques for estimating
the components of variance (or the repeatability and reproducibility sigmas) are illustrated numerically.

Finally, we give an account of the hierarchy of calibration echelons or channels and present an analysis
of the accumulation of error in such procedures. Many practical examples are given to illustrate the
theory.

2-0 LIST OF SYMBOLS
A=ri — P
Ar=n g,lr? — (Zr)* = convenient notation for n times the sum of squares about the

sample mean. (Applies also to any other letter subscripts.)

a = optimum value determined by minimizing total costs of calibration laboratory
hierarchy

ao = constant or exponent (see Eq. 2-137)
a; = constant or exponent (see Eq. 2-138)
B= 2(riv — P) + (1 — P)Su/S]
bo= constant or coefficient (see Eq. 2-138)
by = constant or coefficient (see Eq. 2-138)
= riw — P+ (1 — P) [(S2/S?) + 28./SY
= ow1/0i = ox/0; = constant precision ratio at each and every calibration echelon i

D, = lower confidence limit (see Eq. 2-90)
Dy = upper confidence limit (see Eq. 2-91)
E= error committed at a laboratory
E( ) = expected value or large sample average of ( ), the quantity within parentheses
e = random error of measurement whose mean or expected value is zero
€= 3 e/n = sample average of the random e; for n items
e'= @{al error of measurement or instrumental error, including bias and random error
e’ = Z]e,’-/'n = sample average error of measurement for » items

i=
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e;= random error of measurement for ith item

e; = random error of measurement for the ith reading of the jth instrument, where j =1,
2, etc. ¢ is the ith random error of measurement for I, concerning the ith item. The
ey are assumed to be normally distributed with the zero mean and variance o).

F= 5 — S, for use in Shukla’s technique (see Eq. 2-86)
F,= observed value of F
F(n — 1, n — 1) = refers to Snedecor-Fisher F distribution with (n — 1) and (n — 1) degrees of freedom
G= S} — S, for use in Shukla’s technique (see Eq. 2-87)
gi= si + k’; for Shukla’s technique
H= 1] (587 — SL)/(n — 2) (see Eq. 2-88)
Ho= null hypothesis to be tested
H, = alternative hypothesis
hi= w + 6 + v,
;= jth measuring instrument: j = 1|, 2, . .
K= constant or factor for Thompson’s confidence bounds in Egs. 2-83 through 2-85 and
Table 2-6

K= [(S; — S5 — 4(S7 — 8) (S} — 84)]"* = convenient parameter in Eq. 2-32
k = constant or multiplier

il

= number of participating laboratories in an interlaboratory test
« = ratio of imprecisions Oc,/0c), €.g., in Eq. 2-68
4= factor or constant for a lower confidence bound of Hanumara and Thompson (see
Egs. 2-95 and 2-96)

= constant or factor for Thompson’s confidence bounds in Egs. 2-83 through 2-85 and
Table 2-6

m = number of calibration echelons

m;= number of laboratories at echelon i
N= total number of instruments, observations, runs

N(0,1)= denotes a random variable that is normally distributed with zero mean and unit
standard deviation or variance

n= number of measurements or sample size

n;= number of observations in jth column

P= ti./(fiw + n — 2)

pi= ritsi= B+ B+ 2x; + eii + e, = sum of readings of instruments I, and I, for ith
item

Qj= particular variance of residuals, defined in Eq. 2-141, which is equivalent to the
variance of errors of measurement of the jth instrument

q= u + (6 + v

= X = number of “runs” made with all instruments
RHS= Tight-hand side of

r=ut+te=u+pB+e

r= observed value of a measurement for the first instrument I,

ri= 0x/0. = precision ratio

ri= x; + B + e; = observed value (measurement) for the ith reading or measurement
with instrument [,

ri= ith measurement or reading of I,
r; = ith reading of the jth instrument
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U ~i =~ ~
aho S 2

2
Sxi-eA

2 J
Sx+e1

Sixe

S
See,

used to denote the element or cell value in the ith row and jth column of a two-way
classification in the analysis of variance table (see Eq. 2-140)

ax +Pixi + ex = observed value or readings on ith item for “run” k

= ith reading of the kth instrument
= number of “runs” made with instrument I,

¢© — 1 = total precision ratio
Sve/(SxSe) = sample correlation coefficient of the true values x and the errors of
measurement e (Applies also to any other different letter subscripts, e.g., ryy, Fu,
etc.)

= average of a row, i.e., averaged over the columns

f

grand average of the two-way analysis of variance table
sample mean of the readings of instrument j

average of a column, i.e., averaged over the rows
sample mean of the readings of instrument k

=[l/(n — D]Z (e — ¢) = sample variance of the errors of measurement
i=1

sample covariance of errors of measurement of I, and I,
sample variance of the differences in readings of instruments I, and I

special symbol (see Eq. 2-139) used to denote the residual variance when row and
column effects have been eliminated

= §3 = sample variance of the readings of instrument I

generally a sample covariance term for instrument readings of I; and I; (see Eq. 2-94)

= S,fﬂ?l = ’Z:), (ri —7)/(n — 1) = A, /[n(n — 1)] = sample variance for instrument I

based on (n — 1) degrees of freedom. (Applies also to any other letter subscripts,
e.g., Si, Si, S2 etc.)

= Sxic, x+e, = covariance of the readings of the first and second instruments I, and I,
= S(r—s5)=8= Sﬁl_ez = sample variance of difference in readings of instruments I,

and Iz

= sample variance of the sum of readings of instruments 1, and 15

sample variance of the sum of the three instrument readings for each item measured

= sample variance of the average of the three instrument readings for each item mea-

sured

= sample variance of instrument I, based on (n — 1) degrees of freedom

covariance of the readings of instruments I, and I

sample variance of the difference in readings of instruments I, and I,
sample variance of the difference in readings of instruments I, and I,
sample variagce of the difference in readings of instruments I and I,

= [1/(n — 1)] gl(x,- =) = sample variance of the true unknown values of the

characteristic or item measured

sample variance of readings of the jth instrument I

St = sample variance of the readings of the Ist instrument, for example
él(xi —X)(ei—e)/(n—1)= A,/ [7(n — 1)] = sample covariance of the true values

x and the errors of measurement e. (Applies also to any other letter subscripts, e.g.,
wvs Sxy, €tC.)

= covariance of true values and errors of measurement of I,

covariance of true values and errors of measurement of I,
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Smj, xve, — sample covariance of the sum of readings of instruments I; and I,
Smj., xre, = Sxve), xve, = S = 0f j = 1, k = 2, for example

s; = ith measurement or reading of I,

t, = observed value of ¢

;. = upper « significance level of Student’s 7, with & = 0.01, 0.05, etc., but < 0.5
1(n — 2, A= B) = Student’s ¢ statistic with (n — 2) degrees of freedom for testing hypothesis that
A=B
t(n — 2, ox/o.,) = Student’s ¢ for (n — 2) degrees of freedom and a hypothesized value of Ox/ Oc,.
(Applies also to other degrees of freedom and parameters.)
1(n—2, 0x/o., = 5) = Student’s / test based on (n — 2) degrees of freedom of the hypothesis that Ox/0e) =5
t; =ith measurement or reading of I;
{, = upper a probability level of Student’s ¢

u =r — s = difference in readings of instruments I; and I,

u = factor or constant for the upper confidence bound of Hanumara and Thompson
(see Eqgs. 2-95 and 2-96)

= mean of the difference in readings between instruments I, and I,

<

up =ri—si= Bi— B+ en — e;n = difference in readings of instruments I, and I, for ith

item
Var ( ) = o ) = population (large sample) variance of the quantity within parentheses
v = s — t = difference in readings of instruments I, and I;
Vi = 8i — i = B2 — B3+ ei» — e = difference in readings of instruments I, and I; for the ith
item

w = t — r = difference in readings of instruments I; and I,

wi = ti —ri = B3 — Bi + es — e;; = difference in readings of instruments I; and I, for ith
item

x = true unknown value of a random variable measured with error
n

X = 2 xi/n = sample average of the x; for n items
i=1
x; = true value of the ith item or characteristic measured
x;j = element or observation in the ith row and jth column of an experimental design

z = mean of the readings of instrument I; minus the mean of the readings of instruments
I, plus I;
a = probability of rejecting the null hypothesis when it is true

ax = constant in Jaech’s model (see Eq. 2-118)

B = true unknown bias or systematic error of a measurement

B = constant bias or systematic error of measurement for the jth instrument I;
Br = constant in Jaech’s model (see Eq. 2-118)

& = 1/k’, where k = o,/

d: = lower (I — a) confidence bound on &

dy = upper (I — a) confidence bound on &

0 = (oﬁ2 + o§3)/(03] + 032) = particular ratio of population imprecisions of measurement
for three instruments (see Eqs. 2-72 and 2-73)

A = Wilks’ likelihood ratio

A = likelihood ratio statistic used to test Hy

A, = o probability level of the likelihood ratio A

p = true unknown (population) value of an item or characteristic measured with error
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v = [aﬁ3 + (oﬁ1 + oﬁz)/‘4]/(oﬁ1 alx oﬁz) = parameter in the ¢ test as in Eq. 2-78
Peie, = population correlation coefficient of the errors of 1) and I,. (Applies also to any
other pair of letters, e.g., rs, xe, uv, etc.)

o( ) = population standard deviation of quantity in parentheses
o. = imprecision standard deviation used when 0c,=0c,=0e
o = population standard deviation of the errors of measurement
oy = large sample or population variance of errors of measurement for instrument I, 031

being that for 1, etc.

Oce, = PO 0e,= large sample or population covariance of the errors of measurement of I,
and I, if it is nonzero

estaf,] = estimate of the population variance of the errors of measurement for instrument I,
estof,2 = estimate of the population variance of the errors of measurement for instrument I,
estoﬁ3 = estimate of the population variance of the errors of measurement for instrument I,

0., = standard deviation of error of calibration at the ith echelon in the hierarchy of
calibrations (used in par. 2-11)

o, = standard deviation among true laboratory means or levels, or external sigma

Om+1/Om = 0Ox/0m = precision or “accuracy” ratio in a calibration hierarchy at the last or mth
stage

or, = reproducibility sigma = Voi + o7/n for n observations at a laboratory
repeatability sigma or standard deviation within laboratories
population standard deviation of the true product variability

Il

ar

Ox

ox = large sample or population covariance of x and e. Indeed, o, is the population
covariance of the errors of measurement with the level of true values measured and
could be estimated by S, if isolable.

0x/0. = product-measurement precision ratio, often misnamed the “accuracy ratio”
estor = 6; = estimate of the unknown population variance o
xX( ) = chi-square statistic of ( ). the number of degrees of freedom

A

= estimate of quantity under the *

2-1 PRELIMINARY BACKGROUND STATEMENT

A very important and yet widely misunderstood concept or problem in science and technology is that of
the precision and accuracy of measurement. It therefore becomes necessary to define errors of measure-
ment and the terms precision and accuracy (or imprecision and inaccuracy) very clearly and then express
them in an analytical way. Also we need to present efficient methods of estimating precision and accuracy
numerically, and we need to establish or develop appropriate statistical tests of significance for the mea-
sures, especially since a relatively small number of measurements usually will be made or taken in most
experimental investigations.

In this chapter we will attempt to approach this important problem in a systematic manner and refer-
ence some of the key pertinent literature on the subject. In particular, we will (1) give an account of the
procedures for estimating the variances in errors of measurement, or the “imprecisions” of measurement,
showing that at least two instruments are needed to estimate instrumental imprecisions, and (2) proceed to
present techniques for comparing precision of measurement as well as making some useful statements
about accuracy and what might be done about it. We believe that most readers will acquire competence in
applying the needed techniques if we present illustrative examples as necessary; accordingly, this will be
our approach.

The subject matter of this chapter is covered first in the handbook because the statistician analyzes
observational data, and the capability of the measurement process should be assessed beforehand.
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2-2 INTRODUCTION AND CONCEPT FORMULATION

Each and every measurement or observation can be considered to consist of two “inseparable” compo-
nents: one is the true value of the item or characteristic being measured, and the other is an error of
measurement (instrumental error). The error of measurement of a quantity is widely known as the differ-
ence between the observed measurement and the true value of the magnitude of this quantity. The error of
measurement is taken to be positive or negative accordingly as the measurement is more or less than the
true value. We say “inseparable” because for a single measurement, or a series of measurements from a
single measuring instrument, it is not possible to distinguish exactly the size of the true value(s) of the
item(s) gaged and the associated error(s) of measurement that is (are) certain to be made. However, as
simply as we have stated this premise, we readily encounter some rather important problems or concepts
that require clearing up in our description of the two components of the (total) measurement as defined
here. First, there is the “true” value of the item or characteristic, which is part of the measurement taken;
the “true” value is of primary interest to the user. This “true” value is something that is rarely attained,
except perhaps accidentally, for it deals with the concept of “absolute accuracy”, so to speak, and may
involve many, many measurements or observations to average out the errors committed in the measuring
process.

Measurements are an essential part of our daily life, and it is through them that we communicate and
make progress in specifying just what is desired, needed, or will be accepted. Thus there must be some
basic agreements on just how “accurate” or “true” values will be obtained or sought out, whether they
relate to weight or mass, length, time, area, volume, or whatever characteristic is of interest. In any event,
the true or “absolute” values of measured items must be made relative to agreed upon standards and
methods of measurement. The method of measurement selected should consist of a set of instructions
specifying the apparatus and auxiliary equipment to be used to take the observations, the operations to be
performed, the sequence in which they are to be carried out, and the conditions under which they are to
be respectively taken (Ref. 1, pp. 21-165). Indeed, this is why we have a National Bureau of Standards,
which must establish approved methods for measuring and even rule authoritatively on measurements,
especially in the event of disagreements. Moreover, and as we shall see, the “perfectly acceptable” mea-
surements will also have to be “precise”. But this brings up another important term—accuracy. In this
very limited account we have immediately run into two, so far vague, terms that need clarification;
namely, “precision” and “accuracy”. Accordingly, we must define them, perhaps best in analytical terms,
as we proceed and indicate just how they may be quantified and estimated. We return briefly to the
concept of true value before proceeding further.

If there were no errors of measurement committed, we would determine the true value of the item being
measured each time a measurement is taken. However, in the presence of errors of measurement, which is
practically always the case, we have to hypothesize and deal with the more practical situation as described
previously. Therefore, it might be helpful if we now consider the concept of a “limiting value”. If repeated
measurements of a quantity or characteristic are taken and each time the mean of them is calculated, we
find that as the number of measurements increases without bound, our calculated means will approach a
limiting value. Hence if we were to continue taking such measurements indefinitely and calculating the
average of them, we would eventually arrive at a mean value, to some specified or preset number of
decimal places, which would not change. The “ultimate” mean value, attained as the number of measure-
ments increases beyond bounds, may be referred to as a limiting value. Unfortunately, this limiting value
may not equal exactly the true value of the item measured because on the average there may be some
“bias” in the instrument used for measuring or, put otherwise, our measuring instrument has a “systematic
error” since the mean of the readings does not approach the true (yet most often unknown) value. Some
further quantification of these statements is necessary.

Let us fix the ideas just expressed a little more concretely through the use of a simple, yet appropriate,
analytical model. Thus we might well express a single measurement taken with an instrument as

r=u+e (2:1)
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where
r = value of the measurement or the observation itself
4 = true but unknown value of the item measured
e’ = error of measurement or the instrumental error.

As an example, one might find that the observed or measured muzzle velocity (MV) of a round fired
from a gun or cannon is 659.5 m/s. However, he does not know the true MV u of the projectile nor does
he know the size of the error of measurement e’ because only the sum of the two components is observed.

As some further introduction, note that in Eq. 2-1 we have used the Greek letter u for the true unknown
or “population” value and the letter ¢’ as the random error of measurement. Had the true value been a
random variable, we would have specified it by using the letter x, for example, in the place of u. The
measurement then would have been given as

r=x+e’ (2-2)
where
x = true but unknown random value measured with error.

There is no evidence of any bias or systematic error in either Eq. 2-1 or 2-2 unless the average of a series
of measurements is such that the average error of measurement e

n
e = 3 eiln, (2-3)
i=1
where
n = number of measurements or sample size,
does not approach zero as the number of measurements increases without limit. (The limiting value of the
average error would not approach zero.) Thus the large sample average of the errors, or the limiting value,
must approach some quantity 8 # 0 for there to be a bias or systematic error of size 8. In this case, we
may as well hypothesize that generally the observed measurement should be described as

r=p+B+e (2-4)

where
B = instrumental bias or systematic error
e = random error of measurement whose mean or expected value is zero

and the true mean u (or x) has not changed. We now perceive that for an appropriate general formulation
of the measurement problem, we need to hypothesize that any measured value or observation may consist
of three inseparable components—first, the true value desired; second, an instrumental bias; and third, a
random error of measurement. The total error of measurement consists of the bias error plus the random
measurement error, i.e., the sum (B8 + ¢).

Perhaps the bias 8 may not normally vary during a series of measurements although by definition we
do expect the accidental errors e to be randomly distributed and average out to zero. It is the variation in
e that will be used to define and describe the precision—or the imprecision—of measurement, and the
total error (B + ¢) committed will be used to define and describe the accuracy of measurement.

With even this brief formulation of principles, it may be easy for the reader to understand why there is
so much confusion about the terms precision and accuracy. The problem becomes very involved because
the three components—u, B8, and e—are confounded or inseparable. Indeed, this alone is enough to
substantiate that even very intelligent discussions on precision and accuracy may be difficult or somewhat
incomprehensible; therefore, we need to proceed cautiously. We will accomplish this by discussing, in
appropriate detail, the case of measurements with a single instrument so that our concepts and ideas will
be further illuminated. Also we urge the interested reader to study the compendium of papers in Ref. 1 for
further background and to read the references and bibliography for further enlightenment.
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2-3 MEASUREMENTS WITH A SINGLE INSTRUMENT*

As discussed in par. 2-2, if we were to measure repeatedly the same item or characteristic, the average of
a large number of instrumental readings would, according to the model of Eq. 2-4, approach the true
value u plus the inseparable bias B of the measuring instrument if it exists since, under the assumptions
used, the average of the errors e would be zero. Hence if this were the applicable model, then for a
perfectly calibrated measuring instrument we would not have any great problem with imprecision of
measurement for a large number of instrument readings—for example, the determination of the single
value of a fundamental physical constant, such as the velocity of light. On the other hand, we must
perceive also of the prevalent case, or hypothesize, that the true values may vary from one measurement
to another in either a systematic or a random manner. Therefore, a somewhat more appropriate model is
of the form x + B + e, where both x and e are variables, and only the quantity 8 may be constant over
some series of measurements. As an example, consider the series of powder train fuze burning times listed
in Table 2-1. These 30 individual burning times are fairly random and illustrate the points we bring out.

TABLE 2-1
BURNING TIMES OF 30 POWDER TRAIN FUZES, s

10.10 9.62 9.50
9.98 10.24 9.56
9.89 9.84 9.54
9.79 9.62 9.89
9.67 9.60 9.53
9.89 9.74 9.52
9.82 10.32 9.44
9.59 9.86 9.67
9.76 10.01 9.77
9.93 9.65 9.86

The average 7 of these n = 30 sample values or observations is

n
= _er,-/n (2-5)
=
30
= 2;, 1ri/'30 =9,7733s
where
r; = ith reading or measurement.
Under the hypothesis that
rn=xi+B8+e (2-6)
where
x; = true value of ith fuze burning time
B = constant instrumental bias if it exists
e; = random error of measurement for the ith reading
we see that
r= (l/n),Elx,- + B+ (1/n) _Zlei =x+B8+e=09.7733s (2-7)
1= i=

*For our purposes, the terms instrument and measurement process may be used interchangeably here.
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X = Xx;/n = sample average of the x; for n measurenaents
e = e;/n = sample average of the ¢; for n measuremient error.s.

However, there is absolutely no way to break down the average oi” 9.7733 s into the three inseparable
components of true average fuze burning time X, the instrumental bi.as B8, and the average error of mea-
surement e. Thus we are “stuck”, as it were, with measurements froim a single instrument although we
could and should have had our measuring instrument, in this case an ¢ lectrical clock, calibrated properly
before the burning times were taken.

Let us next calculate the sample variance of the 30 fuze times based or1 (n — 1) = 29 degrees of freedom
(df). In this connection we define

&2 2
Ay = ng ri—(Zry) (2-8)
and see that the sample variance S; for the data of Table 2-1 is

= 3 (=7 (1 — 1) = Ay/ln(n — D] = 0.04714 (2-9)

and the sample standard deviation is S, = 0.2171 s.
If Eq. 2-6 is substituted into Eq. 2-9, we have symbo lically

S?= 82+ 2S,, + S? (2-10)

where

2 _ 1 & =2
Sy = 2oyl —152)) (2-11)
73 < [0 =
= sample variance of the truie fuze times
1

= ___ _Z:l(e,- —%)? (2-12)
= sample variance of the err ors of measurement
| n
Sye = Z (Xf - }) (ei _E) (2'13)
n— 1/=!

= . sample covariance of the triuie values and the errors of measureme nt.

Nevertheless, there is no way to decompose properly the variance SZ = 0.04714 into the product true
Varlablllty or sample variance S of true fuze times, the variance in errors of measurement or “limpreci-
sion” SZ and the covariance between fuze times and err ors of measurement Sx. since they are: confounded.
The reader may observe, however, that S2, or its square root Sy, is a measure of the true vari ability in fuze
times; S2, or S, is a measure of the dispersion in errors of measurement for the electric clock and the

person who operated it, and S, is a measurement of the “dependence” between the true fuze times and the
errors of measurement.

The sample correlation coefficient r,, between true fuze times and errors of measurernent would be

given by
= Sxe/ (SxSe) (2-14)
if it could be calculated!

Summarizing, we find that the average x of the true values, the bias or systematic error B, and the
average e of the random errors of measurement are confouinded as are the individual values as shown in
Eq. 2-6. Also we see that, with proper calibration of the instrument against an authoritative (standard, we
might be able to reduce the bias of the instrument to near zero or even to zero. Moreover, it can be. seen
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from Eq. 2-7 that once the bias is elimina ted, and' for a large number of measurements and the assumption
that the errors of measurement e; are rasndomly distributed with zero mean, it is clearly possible to obtain
accurately the average X of the true va'lues. In acldition, if we are concerned with the determination of a
single true value u, for example, the ve:locity of light, then from Eq. 2-4 we may approach that value quite
closely for an ever increasing number- of measure:ments with a properly calibrated instrument that would
not have a systematic error or bias. {30 much for average values, we must now turn to descriptions of the
dispersion or variation in errors of mrieasurement ard of the true values themselves.

Taking a close look at the variarice S7 of the obsservations or the measurements as in Eq. 2-10, we see
that it also consists of three confou.nded components. The first or S5 is an efficient measure of the product
variability or the variation in the true values of the: items measured. Hence Siis the “product variance”,
and the square root of it S, is the standard deviation of the product variability—obviously, a very impor-
tant component of interest to estimate. Further, the quantity S?is the sample variance of the errors of
measurement and is an excellent representation of the “precision” or the “imprecision” of measurement.
Thus if S?is small, the measuremients are considered to be precise; if it is large, the measurements are
imprecise. Therefore, we will usse this variance S? of the errors of measurement, or the square root of it S,
which is the standard error o measurement, to describe the imprecision of measurement. Moreover, the
reader may see rather easily that the size of S. relative: to that of S, would be of considerable importance in
the efficiency of most measurement analyses. One notes, incidentally, that if S. were near zero, or perhaps
actually equal to zero, the measurements would be very precise indeed, and, to assure accuracy, he would
only have to be concerned with the bias of the instrument—generally, a rather desirable situation. (The
reader should note that f.he constant bias or systematic error 8 does not appear at all in the calculation of
any of the variances, ie., Egs. 2-9 through 2-12, since it “cancels out” in the differences of the
calculations.)

Finally, the samp'le covariance term or Sy gives a measure of the “dependence” or “correlation”
between the sizes of. the true values x; and the errors of measurement e; if they happen to be so related. In
spite of the well-k.nown fact that large measuremenits often tend to have large errors of measurement,
there exist a larg,e number of situations for which no such correlation or dependence is present, and we
may indeed hyp othesize that S, tends to zero—a very plausible assumption for many applications.

The large sa.mple or “expected” value of S. will ap'proach the true unknown or population value of the
standard erro,r of measurement, and we will refer to this limiting value as o.. Similarly, the large sample or
expected va'iue of S, will tend toward the true product variability, which we will designate as ox—another
“populatio’a” value, so to speak. We see, therefore, that in approaching the problem of precision and
acturacy properly we will need to separate out the. sample quantity S. as the measure of precision (or
imprecision), which in turn is an estimator of o.. In @ like manner, we will need to determine and use Sx as
the estimate of true product variability o,. We observe that the concept of precision of measurement is not
so difficult to vinderstand because an estimate of the: standard error of measurement o. gives a quantified
value that can be used to describe precision or im precision. On the other hand, the proper concept of
accuracy is much more difficult to grasp with profound appreciation because it involves both the instru-
mental bias 8 a nd the random error of measurement e. An accurate measurement is obtained only when
the sum (B + ¢) is small, and this is complicated by the fact that the random error of measurement e as
described may ‘vary “too much” and perhaps “hide” the bias B. Indeed, to determine the size of the
instrumental bias 8 or to calibrate an instrument properly, the precision of measurement should be
“good”, i.e., g,, should be suitably small, or the average of a large number of measurements must be
obtained so thiat oe/\/;is small. We also see that (1) precise measurements may not be accurate because
_of the possibl: existence of too large a bias and (2) an unbiased measurement may not be very accurate,
except accideratally, if the precision of measurement is poor, i.e., o. is large. The best approach to guaran-
tee the accur:acy of measurement, therefore, se:ems to be that of attaining sufficiently good precision and
then determi ning the bias and correcting for it, or eliminating the bias through proper calibration. Unfor-
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tunately, the bias may vary from one occasion to another, so an additional component of variance or
instrumental error may have to be considered and assessed. It may be found that different instruments will
have different systematic errors or biases; the same may be true of the different laboratories performing
measurements. Different systematic errors or biases between instruments or laboratories will introduce
some additional components of variability, which need quantification in many applications.

We see from the discussion that the separation of product variability and the standard error of mea-
surement, or imprecision, cannot be accomplished with a single measuring instrument. It is for this reason
that we must examine the cases in which two or more measuring instruments are used to take the same
(series of) measurements or to measure simultaneously the same series of characteristics or items of
interest.

2-4 THE SEPARATION OF PRODUCT VARIABILITY AND IMPRECISION OF
MEASUREMENT WITH TWO INSTRUMENTS

2-4.1 BASIC OUTLINE AND APPROACH

We will now consider the case for which two instruments, I; and I,, are used to take simultaneous or the
same measurements on a series of n items or characteristics that exhibit product variability. Our aim is to
find a means of separating the product variability Sy from the imprecision of measurement S, i.e., the
standard error of measurement. Thus in this case the observed values or the measurements may be repre-
sented symbolically as follows:

Measurements by I, Measurements by I,

Vi
r, — X1+,81+€11
r, = x2+,81+e21

ri= Xi+ﬂ1‘|‘€i1

rm= x,+ B1+en

Si
ST — x1+Bz+€12

S) = X2+,32+€22

si= xit Biten

Sn= Xnt B2t en

where
r; = ith measurement of the first instrument I,
si = ith measurement of the second instrument I,
x; = true (unknown) value of ith item
B: = bias or systematic error committed by I,
B2 = bias or systematic error committed by I,
ei1 = random error of measurement of I, on the ith item
ei; = random error of measurement of I, on the ith item.
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Note that the difference in readings of I; and I for the ith item is
ri—si=pi— Bates—en (2-16)

and does not include the true value x; at all.
With reference to these definitive formulations, the sample mean or average value for the measurements
of instrument I; is from Table 2-1 (the first column in Table 2-2 is a repeat of Table 2-1).

T=x+ ,31 +?1
= 90.7733 s (2-17)
and that of instrument 1, is
s=Xx ‘|‘ Bz +Ez
=9.7414 s (2-18)

using the 29 observations—since one was lost—of the second column of Table 2-2. The difference between
the mean measurements of I, and I, is therefore

r—=s=B1— Bte —e (2-19)

and, under the assumption that the random errors have zero means or expected values, Eq. 2-19 gives a
more precise estimate of the difference in biases 8, and 8, than Eq. 2-16.

Continuing, we see from the definitions of variances and covariances and from Eq. 2-15 that we may
calculate three variances and one covariance for the two instruments 1, and I, and have symbolically that

Si= Si+ 28k, + 57, (2-20)
Si= Si+ 28k, + 52, (2-21)
Srs = 87+ Seey T Seey T+ See, (2-22)
SEmE= ISEN—— ISt~ IS (2-23)

where
Sxe, = covariance of true values and errors of measurement of I,
Sxe, covariance of true values and errors of measurement of [,
S.,e, = sample covariance of errors of measurement of I, and I,
S? = sample variance of instrument I, based on (n — 1) df
Sys = covariance of the readings of the first and second instruments 1, and I,
S?_, = sample variance of the difference in readings of instruments I, and I..

However, concerning the four equations or calculations, Eqs. 2-20 through 2-23, we may add Egs. 2-20
and 2-21 and then subtract Eq. 2-22 twice; the result is identically equal to Eq. 2-23. Hence the four
equations are linearly dependent. Consequently, for the two-instrument case we really have only three
useful equations but six unknown “inseparable” components to estimate. Qur primary interest centers
around the estimation of product variability and the imprecisions of measurement of the two instruments
—i.e., 8%, S%,, and S2,. Hence by assuming that the true values measured and the instrumental errors are
mutually or statistically independent of each other, the expected values of the three covariances will
vanish, or approach zero, thereby rendering a feasible solution. In fact, as pointed out by Grubbs (Ref. 2),
the covariance S, between the two instrument readings will then approach the product variance, so that
for purposes of estimation we have
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= (Shs— 575)/4 (Ref. 2).

Furthermore, from Ref. 2

estos, = S7— Sis (2-25)
= (87— Si+ 819)/2
= estol, = S; — Sis (2-26)
= (S:— 87+ 8%9)/2
where

S, = sample variance of the sum of readings of instruments I; and I,
estol = estimate of unknown population variance o;
esta?l = estimate of population variance of the errors of measurement for instrument I,
esta,f2 = estimate of population variance of the errors of measurement for instrument L.

The sample or estimated product variance and the variances in errors of measurement of the two
instruments are expected to be positive although we see from Eqgs. 2-25 and 2-26 that this requires S, to
be smaller than S?and SZ. Often this is not the case as we will see even for respectable sample sizes.

It is also of some interest to note that if the product variance is zero, i.e., SZand of = 0, or the same
item is measured » times by I, and I,, one might expect that Sk and Sx., would vanish. Thus he would
have to contend only with the estimation of o, oc,, and o.c,, the covariance of errors of I and I, if it
exists. In this connection, moreover, a solution using Eqs. 2-20, 2-21, and either 2-22 or 2-23 is clearly
obtainable to estimate Oe,s Oc,, aNd Oc e,.

If there were no errors of measurement, then it is seen that S7, SZ, and Sy all give the correct estimate
of product variance o7,

Example 2-1:

We will illustrate the estimation of product variability and imprecision of measurement for the case of
two instruments by referring to the data of Table 2-2. The data given there refer to an old, widely analyzed
example that appeared in 1948. Nevertheless, it is very useful for our exposition of the applications and
problems encountered in the area of estimation of precision of measurement. In Table 2-2 the individual
burning times of powder train fuzes are listed as measured by each of three observers on 30 rounds of
artillery ammunition fired from a gun. The fuzes were all set for a burning time of 10 s. The “burning
time” was defined as the elapsed interval of time from the instant the projectile departed the gun muzzle to
the instant of fuze functioning as noted by the flash of the detonating high explosive (at night). The times
listed were measured by three electric clocks, each of which was started by a gun muzzle switch, and each
clock was stopped independently by an observer as he noticed the flash. We have chosen this particular
example because it represents a respectable sample size; nevertheless, it presents some problems relative to
the often discouraging occurrence of negative estimates of variance or dispersion, at least for two instru-
ments. For a two-instrument example we will use the measured values r and s of instruments I, and I, the
first two columns, and the differences (4th column). We calculate

S?=0.04714023 based on all 30 readings of I,
S? = 0.04675448 based on 29 readings of I,, excluding 10.01, for which I, lost the round

S:=10.045112315 for n = 29 by Eq. 2-12, S,s = 0.045581897 for n = 29 by Eq. 2-13.
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TABLE 2-2

FUZE BURNING TIMES AND DIFFERENCES IN SECONDS

Observer I, Observer I, Observer I3 Differences

r s t r—s s—1 r—1
10.10 10.07 10.07 0.03 0.00 0.03
9.98 9.90 9.90 0.08 0.00 0.08
9.89 9.85 9.86 0.04 —0.01 0.03
9.79 9.71 9.70 0.08 0.01 0.09
9.67 9.65 9.65 0.02 0.00 0.02
9.89 9.83 9.83 0.06 0.00 0.06
9.82 9.75 9.79 0.07 —0.04 0.03
9.59 9.56 9.59 0.03 —0.03 0.00
9.76 9.68 9.72 0.08 —0.04 0.04
9.93 9.89 9.92 0.04 —0.03 0.01
9.62 9.61 9.64 0.01 —0.03 —0.02
10.24 10.23 10.24 0.01 —0.01 0.00
9.84 9.83 9.86 0.01 —0.03 —0.02
9.62 9.58 9.63 0.04 —0.05 —0.01
9.60 9.60 9.65 0.00 —0.05 —0.05
9.74 9.73 9.74 0.01 —0.01 0.00
10.32 10.32 10.34 0.00 —0.02 —0.02
9.86 9.86 9.86 0.00 0.00 0.00
10.01 lost 10.03 - = —0.02
9.65 9.64 9.65 0.01 —0.01 0.00
9.50 9.49 9.50 0.01 —0.01 0.00
9.56 9.56 9.55 0.00 0.01 0.01
9.54 9.53 9.54 0.01 —0.01 0.00
9.89 9.89 9.88 0.00 0.01 0.01
9.53 9.52 9.51 0.01 0.01 0.02
9.52 9.52 9.53 0.00 —0.01 —0.01
9.44 9.43 9.45 0.01 —0.02 —0.01
9.67 9.67 9.67 0.00 0.00 0.00
9.77 9.76 9.78 0.01 —0.02 —0.01
9.86 9.84 9.86 0.02 —0.02 0.00

Consequently, we estimate

Thus even for this large a sample for the two-instrument case, we get a negative variance; therefore, we
must take o., = 0. Negative variances may occur because of random sampling fluctuations (or small
sample size, which hardly seems plausible here) or because of a violation of the assumptions, such as the
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estoz = S, = 0.04558

estox = 0.2135s

2
estogl = Sr . Srs

= 0.001558

estoe, = 0.03947 (n = 30)

esto., = 0.03424 (n = 29)

2 __ o2
eStOez - Ss . Srs

= —0.0004696 < 0, a slightly negative variance.
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existence of correlations, or perhaps one or more “outliers”. (We cover the analysis of outliers in Chapter
3.) Referring to the data of Table 2-2 and especially the columns of differences, we see that I, generally
lags I, (4th column) except toward the latter rounds and that I, is somewhat “ragged”. In fact, the mean
value of the differences in the fourth column is 0.02379, and the standard error of these differences is
0.02651, as we will see later. Approximate 95% confidence limits on an individual difference may be
estimated from 0.02379 £ 1.96 (0.02651), which gives an interval from about —0.03 to 0.08, so that there
are three values (of 0.08) on the upper limit that give the suspicion of poor or ragged times or a lack of
good control for ;.

2-4.2 TREATMENT OF NEGATIVE OBSERVED VARIANCES

There has been much study of the problem of negative estimates of components of variance. This work
is beyond the scope of this handbook, and it seems unnecessary to delve into the subject extensively here.
However, it is of some interest to point out that Thompson (Ref. 3), working with a method of modified
maximum likelihood estimation, has suggested treating negative variance estimates in accordance with the
rules given in Table 2-3.

TABLE 2-3

NONNEGATIVE VARIANCE ESTIMATES
THE TWO-INSTRUMENT CASE (Ref. 3)*

If Take esto? = Take e:sta,f1 = Take estoﬁ2 =
87> S S8 S5 = 54 S o
$1>8,>0

$7> 8> 8! 3 ST+ 8:—28, 0

$I> 85> 8] S; 0 Si+ 82— 28,
5, <0 0 s; 5%

Reprinted with permission. Copyright © by American Statistical Association.

For our application, therefore, we would, according to Thompson (Ref. 3), take
estor = St=0.04511 (the smallest variance)
esto;, = S7+ Si— 28, =0.001089  (n = 30)
esto,f2 = 0.

This decreases estoe, from 0.03947 to 0.03299, whereas esto, changes from 0.2135 to 0.2124, and estoe, has
to be taken as zero anyway.

In addition to Thompson’s modified ML method of treatment and the possibility that small sample size
or the existence of outliers might cause negative estimates of variance, we should also consider the possi-
bility that some of the covariances are real—i.e., that perhaps the errors of measurement are correlated

*In Ref. 4, Hanumara proposes some nonnegative estimates of imprecisions of measurement for the three-instrument case. In
par. 2-5 we give in some detail the maximum likelihood (ML) estimates which are ordinarily recommended for use in
applications.
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with each other or are possibly correlated with the level of true values measured. Of course, there is “quite
a game” concerning just what the best or true hypothesis might be in the absence of appropriate informa-
tion, and one might well have to examine his particular set of data closely to make a valid judgment. If
the variation of true values is not over a wide interval, it could be hypothesized that the errors of mea-
surement are correlated. This particular problem has recently been studied by Yang (Ref. 5). Yang’s
treatment assumes that S? is the largest variance and estimates o7 + 031 and that S? estimates of + 032 as
before, but that due to correlated errors, S, would estimate the population values given by

E(Srs) = 0')3 + Oc e,y = 0,3 + POe O, (2-27)

where
p = true unknown population correlation coefficient of 1, and I, errors
0., = large sample or population covariance of the errors of 1, and I, if it is nonzero.

This approach therefore brings forth the need to treat and estimate another unknown p, if it exists, for the
data under study. In this connection, one also notes that the large sample or expected values of Egs. 2-25
and 2-26 then become

E(S?— Sw) = 0z, — po.,0e, (2-28)
and

— 2
E(S: — Sy) = 02, — poe,0e, (2-29)

E(S? — S.s) = expected value of the estimate of the population variance of errors of measure-
ment for instrument I, if the covariance of errors is zero

E(S?— S,) = expected value of the estimate of the population variance of errors of measure-
ment for instrument I if the covariance of errors is zero.

Yang (Ref. 5) suggests that the lower bound of the unknown p may be estimated from
=, 0H= S = ISHISI IS I(S: —'S9) (2-30)
where we have also indicated that the upper bound of p® has to be unity, of course. Ref. 5 also suggests
the use of the lower bound given by Eq. 2-30 if |S7 — SZ|/(S? — Sy is “close to unity”; if not, the midpoint
of the extreme values of Eq. 2-30 should be used, i.e., take
p® =~ (1/2) (1 + RHS of Eq. 2-30) (2-31)
where o HS = “right-hand side of™
This means that putting
K =[(S7— S — 487 — 5w) (S: — Si)]2. (2-32)
Then o2, and o¢, are to be estimated from
esto?, = (S7— S2) (387 — 28 — Si £ K)/[2(S7 — 28 + SD)] (2-33)
estos, = (82— S7) (387 — 285 — ST F K)/[2S7 — 285 + SD)]. (2-34)

The upper signs before K—i.e., + in Eq. 2-33 and — in Eq. 2-34—are to be used if |SF— S21/(S7— Sis)
is very close to unity (Ref. 5), and the lower signs before K, i.e., — and +, otherwise.
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The estimate of product variance o} is then found to be
estof = S7 — estoez1 =Si— estaezz. (2-35)

where estcrg1 and estcx§2 are calculated, using Egs. 2-33 and 2-34, respectively.
Using the data of Example 2-1, we find from Eq. 2-30 that Yang’s estimated lower bound for p’is

p>=0.7118
and

182 — Sis] /(S? — Sys) = 0.3013 (assumes n = 30 for S7)

is not close to unity; accordingly, the lower signs before K in Eqs. 2-33 and 2-34 should be used. By doing
so, we obtain

estoe, ~ 0.04817
estoe, =~ 0.01710%

and from Eq. 2-35
estax = (0.04714 — 0.002320)"* = 0.2117

as contrasted to 0.2135 determined before.

In summary, we see that Yang’s estimators have the desirable property of being both nonnegative and
nonzero; however, we will see that his imprecision estimates are high as judged by the more precise case
where all three instruments are used (par. 2-5). Moreover, we accomplish an additional advantage by
simultaneously using three measuring instruments as in par. 2-5—as indicated by I, I, and I; in Table
2-2—this case being formulated to use only the differences in instrumental errors of measurement, com-
pletely free of product true values.

With these attempts, and even for the respectable sample size of 29 or 30, we see that the two-
instrument case may lead to somewhat disappointing results although the negative estimates of variance
need not bother us too much. Indeed, for any very important experiment of measurement, it may be well
to employ three or more instruments, or laboratories, or alternatively we can always use a very satisfying
statistical test of significance for the two-instrument case; this test is discussed next.

2-43 A SIGNIFICANCE TEST ON IMPRECISION BASED ON TWO INSTRUMENTS

Fortunately, we need not be too concerned by occasional, or even frequent, negative estimates of vari-
ance for instrument imprecision. This is because a significance test is available concerning a hypothesized
ratio of the product standard deviation to the standard error of measurement. This statistical test of
significance was developed by Thompson (Ref. 3), who based it on a result of Roy and Bose’s (Ref. 6).
The procedure consists of specifying the ratio o./ 0. ** (or o/ o)) as a measure of relative precision in
which one might be primarily interested and then making a Student’s ¢ test to see whether the test would
reject the null hypothesis concerning that ratio. In other words, if ox/ 0.; = 5 1s acceptable, which indicates
that the standard error of measurement is only one-fifth that of product variability or true value standard
deviation, the precision of measurement is quite satisfactory. On the other hand, if for example the ratio
were as small as ox/ o., = 1 or even 2, the relative precision of measurement would be so poor that a more
precise measuring instrument would be required. The Student’s ¢ test suggested by Thompson (Ref. 3) is,
using (n — 2) df,

tn — 2, 0x/0.) =/n — 2[S/(S783 — SN [(Ss/S7) — 03/ (05 + 0z )], (2-36)

*Some recent results have been obtained. See Ref. 5.

**This ratio is often referred to as the “accuracy ratio” although the term product/ precision of measurement ratio or simply
precision ratio would be much better.
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By taking 1. equal to the upper a probability level or percentage point of the Student’s ¢ distribution, Eq.
2-36 is less than 7., if and only if

Srs —l-a SfS.? - S%s —2 12 *
2 > o[ =21 e

87— Si + 11 [(S252 — S2)/(n — 2)]>

A very similar test for ox/ o., relative to the second instrument is readily obtained by replacing the first S?
in the denominator of Eq. 2-37 with S, or similarly S} by S¥, and Sys/ ST by Sis/Stin Eq. 2-36.

Example 2-2:

Referring to Example 2-1, we are not concerned about the imprecision of measurement for I, because of
the near zero standard error of measurement, but let us test the hypothesis that o,/ 0., =5 at the upper 5%
level.

By using Eq. 2-36, we calculate for n = 29 readings for I,

2 1/2
127, ol 00 = 5) = /2T [ (0.04675) 2] 2(0.04558 _ 25\ — 1,583
(0.04675) (0.04511) — (0.04558)) \0.04675 26

whereas 7095(27) = 1.703. Hence we accept the null hypothesis that o,/ o, = 5 for our measurement
process. We note in passing that if we stated ox/ g., = 3.82, this hypothesis would be just barely rejectable
at Pr =0.95.

Actually, an estimate of g. = 0.03 or 0.04 for either measuring instrument may not be very good for
estimating the true value of burning time for a single round although for the average of 30 rounds, the
value of ¢./1/30 = 0.04/+/30 = 0.007 may not be considered too poor. Finally, concerning true product
variability, we see that

V82 =4/0.04714=0.2171s  (n = 30)

VS = esto, = 0.2135s  (n = 29)

and

which perhaps shows a small or negligible difference for the effect of o, on the true variability of the
product.

2-4.4 VARIANCES OF ESTIMATORS OF IMPRECISION OF I; AND I,

For many applications it is often proper to assume that the product values x; and the errors of measure-
ment e are normally distributed or approximately so. For this case and the use of two instruments,
Grubbs (Ref. 2) derived variances of the estimators—Eqs. 2-24, 2-25, and 2-26—in 1948 to obtain some
idea of the reliability or precision and stability of results. As given in Ref. 2, the population variance of
the estimate of 031 is

Var(estoﬁl) = E(est(ogl) - 031)2

r2 1
= ( — 1> ot +< - l>(0303, + oiol, + ot o2). (2-38)

Likewise, the population variance of the estimate of 032 is given by

*For an upper bound, the signs of the #,-4’s are reversed.
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Var(estor,) = E(estor, — o¢,)’

2 1
- <——> ot + <———)(o§o§l + alol, + o0l (2-39)
n—1 n—1

and the population variance of the estimate of product variability is given by

Var(estof = E(esto,% — ¢d)?

2 1
1 <n—_—_l> Oi - <_—n_—__l>(030‘2’1 + or’3032 + 031052)' (2-40)

It is noted that the Var(estoﬁl) depends on (1) o2, the variance in the characteristic measured; (2) o?l, the
variance of the errors of measurement of instrument Iy; (3) 032, the variance of the errors of measurement
of instrument I; and (4) n, the number of observations or the sample size. Therefore, to obtain a precise
estimate of o?l when using only two instruments, the variation in the characteristic measured, i.e., o,
should be held to a reasonable minimum to study imprecision, or the sample size n should be sufficiently
large for two instruments.

If the variation in the characteristic measured is zero (or if we measure the same item repeatedly), i.e., if
o2 =0, one could compute

/ 1 n
estos, = (n — 1>i:x(€” —e)’ (2-41)

directly with the variance of the oﬁl equal to

2
Var(esto?,) = ( Yot (242)

n— 1

Apparently, when employing two instruments, there are only two straightforward computational proce-
dures of interest for separating the variability in the product from the variance in the errors of measure-
ment, and both methods give the same estimate. In using either method, however, it is possible to estimate
aﬁl, o%z, and o2 and thus determine from the relative order of magnitude of these quantities whether the
instruments are sufficiently precise for use in taking the required measurements.

For the two-instrument case the experimentalist may employ very similar or the same kind of instru-
ments. Let us suppose that this is the case, so that

2 2 2
051—032_0(3.

Then Eq. 2-38 becomes

2
Var(estof,l) or Var(estaﬁz) = < > o} +<

— ) (6% + 20307 (2-43)

=5 |l

which also involves product variability os

Although it seems not entirely satisfactory to calculate the reduced Eq. 2-38 or Eq. 2-43 when our
estimate of o, is zero, we may get some rough idea of the variance of the estimate of af,l in Example 2-1. It
is
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Var(estoz,) = (2/29) (0.001558)> + (1/29) [(0.001558)’

+ 2(0.04558) (0.001558)] = 0.000005148. (2-44)
Thus the standard error of the estof,1 =0.002269, which is larger than the estimate itself!

One is bound to feel somewhat uncomfortable about obtaining the estimate of imprecision of the first
instrument I; as estae = 0.001558 and then finding that the expected standard error of that estimate 1s
even larger. This may be due partly to the fact that the estimated o7 of 0.04558 is 29 times the estimated cre1
= 0.001558. Expressed another way, the second term of Eq. 2-44 is about 30 times the first, which is free of
the product variability o,. Hence using three instruments may definitely be of considerable interest and
value.

2-5 THE SEPARATION OF PRODUCT VARIABILITY AND INSTRUMENT
IMPRECISION WITH THREE INSTRUMENTS

By using three instruments to measure either simultaneously or the same series of items or characteris-
tics and by working with the three sets of differences in readings, the product values cancel out and only
the differences in instrument biases and random errors remain. Thus if the errors of measurement are
relatively small or if the biases are constant and the variance of random errors is a rather low fraction of
product variance, then it would be expected that more precise estimates of the imprecision of measurement
would be obtained from three instruments as compared to two.

Let us represent the ith reading of the third instrument I3 symbolically by

ti=xi+ B+ €. (2-45)

We then have the three differences in instrument readings given by

ui=ri—si=p— Bz+€i1 € (2-46)
vi=si—ti=B— Bite,— e (2-47)
wi=ti—ri=pBs— B te,—e (2-48)

where
u; = difference in readings of instruments I, and I, for the ith item
v; = difference in readings of instruments I, and I; for the ith item
w; = difference in readings of instruments I3 and I; for the ith item.

Eqgs. 2-46, 2-47, and 2-48 are completely free of any product or true values and involve only differences
in the constant biases and differences in random errors of measurement of the three pairs of instruments.
Hence it is easily seen that if the instrumental errors are uncorrelated or are statistically independent, the
three instrumental imprecisions may be easily and efficiently estimated. In fact, as shown by Grubbs (Ref.
2), the appropriate estimates of imprecision are

estos, = (Si — So + Si)/2 (2-49)
= S%" Sis — 157 =i Sir

estoz, = (Si + S5 — S7)/2 (2-50)
= 85— S+ Su— S

est oz, = (—Si + Sv + S)/2 (2-51)
= S%+ Srs — S — Su
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where
S = sample variance of the difference in readings of instruments [, and I,
S2'= sample variance of the difference in readings of instruments [, and I,
S2 = sample variance of the difference in readings of instruments 15 and I,
S, = covariance of the readings of instruments I, and I;
Ss: = covariance of the readings of instruments I; and I3
Srs = covariance of the readings of instruments; and I.

Even though the variance and covariance terms of each second-listed RHS involve product true values,
the estimates of imprecision for the three-instrument case are entirely free of product level. For example,
the second-listed RHS of Eq. 2-49 is symbolically

esta?l = Sgl - Selez ol Se1e3 + Seze3- (2'52)
It contains no x’s.

For independent and normally distributed errors of measurement, the variances of the three estimates
of instrument imprecision are (Ref. 2)

1
2
Var(esto?) = —— (orﬁl)-i-( >(0§10i2 + o%,0%, + 032033) (2-53)
n—1 n—1
2 |
Var(estoiz) — I GJ:,)":‘L‘ (azelorﬁ2 + oﬁlo§3 + ‘73’2‘73’3) (2-54)
= : — 1
2 1
Var(estos,) = —— (oz3>+< (00,00, + 0%,0%, + 02,00,). (2-55)
n—1 n—1

Note also that the variances of the estimated variances of errors of measurement are free of product
variance o2 and, correspondingly, should be smaller.

The estimate of product variability or the variance of true values is simply the average of all three
covariances of the readings of the three instruments. Thus

eStU)z( = (Srs + Sr + SSI)/3
= é[sfm, - % (St + 87+ )] (2-56)

= Sl —1—18 (SI+ S2+ S2)

where
S?.s+: = sample variance of the sum of the three instrument readings for each item measured
SZsa = sample variance of the average of the three instrument readings for each item
measured.

The variance of Eq. 2-56 is
2

Var(esto?) = (” )oi+[g (07 0, + 0% 0¢, + 03 0¢,) (2-57)

1, > 5 5 b 2 2
+ 9 (0¢, 0e, + Oc, O, + Oc, Oc,)].
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Example 2-3.
Given: The data of Table 2-2 for three simultaneous instrument readings on fuze burning times for the
30 time fuzes.
Find: The best estimates of instrument imprecisions, the round-to-round true dispersion, and determine
the variances and standard errors of the estimates.
. Using the last three columns or differences in readings of pairs of instruments on each fuze time, we
calculate

S =S2.,= 0.0007030 s°
SZ= 8%, = 0.0008878 s>

S:=S%, = 0.0003108 s>

Then from Eqgs. 2-49, 2-50, 2-51, and 2-56 we obtain

estaz, = (0.0007030 — 0.0008878 + 0.0003108),2
= 0.0000630*
esto,, = 0.00794s

estaz, = (0.0007030 + 0.0008878 — 0.0003108),2
= 0.000640*
esto., = 0.0253 s

estoﬁ3 = (—0.0007030 + 0.0008878 + 0.0003108)/2
= (0.0002478*
esto., = 0.015s

estoz = 0.046087 — (1/18) (0.0007030 + 0.0008878 + 0.0003108)
= (0.04598*
esto, = 0.2144s.

We note that all three estimates of instrumental imprecision are always positive; that they are straight-
forwardly estimated from the difference in errors of measurement without questionable boundary condi-
tions; that instrument I, is the more precise one, and that I is the worst of the three. Thus the addition of
the third instrument to the case of only the first two, where negative variance estimates were obtained,
certainly seems quite worthwhile, or even sorely needed. We do not actually know whether these instru-
- mental errors are correlated or whether the covariance terms otherwise really have nonzero expectation
although the estimates of imprecision based on the Yang (Ref. 5) approach for I, and I, are rather high as
we now see.

Using Egs. 2-53, 2-54, and 2-55 next and the previously determined estimates, we calculate the variances
and standard errors of the estimators:

Var(esto?,) = 0.00000000767
a(esto?,) = 0.0000876

*Forreaders interested in a Bayesian approach to the estimation of precision of measurement, see Draperand Guttman (Ref. 7). They
obtain est(oz,; 07) = 0.010675, est(o‘:’.,, 01) =0.001060, and est(af,;, 0x) =0.004109, whereas our equivalent estimates of these ratios are
0.00137,0.0139. and 0.00539, respectively. '
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Var(estos,) = 0.00000003565
o(estoz,) = 0.000189

Var(estoz,) = 0.0000000116
o(estoz,) = 0.000108

where
o ) = population standard deviation of quantity in parentheses.

These values are much smaller than corresponding values for the two-instrument case as would be
expected since they are free of product variation. Therefore, the three-instrument estimates are quite
worthy of adoption since they are entirely satisfactory and conclusive in nature.

For the product variability we have from Eq. 2-57

Var(estoz) = 0.000165
oesta?) = 0.0128

which is 0.0128/0.0000876 — 146 times o(estoil)!

With this example and the informative numerical values or estimates obtained, we begin to see the
advantage of employing three or more instruments to study precision and accuracy of measurement.
Indeed, the use of three measuring instruments should be considered neither an extravagance nor a lux-
ury, especially since it may take three or more instruments to reduce the variances of the estimates of
imprecision to suitable values for precise understanding of instrument capability. In fact, the use of several
instruments in any important measurement study leads to the idea of “interlaboratory testing”, which has
long been practiced by the chemical and other industries for the purpose of quantifying precision and
accuracy. Moreover, it has been wide practice to measure standard material at even ten or more laborato-
ries in a “round-robin” procedure—as such studies indicate which laboratories are imprecise and inaccu-
rate as well—so that the offenders may be “brought into line”. The standard error of measurement at a
single laboratory is often referred to as the “repeatability” sigma, whereas that among the laboratories
—which includes the standard error of an average value for a single laboratory—is called the “reproduci-
bility” sigma.

Having given a somewhat extensive account of the estimation problem for two and three instruments,
we will now give several important statistical tests of significance concerning precision and accuracy,
which supply the most desirable type of information. '

2-6 SIGNIFICANCE TESTS FOR PRECISION AND ACCURACY OF TWO
INSTRUMENTS

2-6.1 PRELIMINARY COMMENTS ON SIGNIFICANCE TESTS FOR TWO
INSTRUMENTS

While the estimation of precision and accuracy of measurement parameters is important, comparisons
of the relative values of the unknown parameters are also very essential and may be used as a basis for
action. For example, consider the two-instrument case for measurements. Here we would like to compare
the unknown precision or imprecision of instrument 1 with that of instrument 2 on the basis of, “Does I,
have a larger or smaller standard error of measurement than 1,?”. If the instruments are of the same type,
it would be expected that they would have equal standard errors of measurement although one might be
poorer than the other if it is not used properly, has been damaged, etc. Once the question of relative
precision of measurement has been answered, it becomes quite important to determine whether there is a
difference in constant bias of the two instruments. If a test of significance indicates there is a significant
difference in biases or systematic errors, the instruments should be calibrated to read properly.
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The test of precision is a test of whether o, is equal to, greater than, or less than o.,. Should it be true
that one or both of the instruments has too large a standard error of measurement, there may be quite a
fundamental problem in correcting the difficulty. On the other hand, it could be satisfactory that an
increase in the number of measurements will lead to suitable precision, perhaps especially for the average
measured value. Fortunately, from this test one also may settle the problem concerning whether the
standard error of measurement of one of the instruments is some specified multiple of that of the other.
This will be illustrated in the sequel.

Regardless of whether or not it is possible or economical to reduce standard errors of measurement of
the two instruments to suitable values if they are much too large, it is nevertheless of great importance to
determine whether calibration is called for or at least to make a correction in the readings of one or even
both instruments. The statistical test of significance used in this connection determines whether we can say
that the bias B of the first instrument equals the bias 8, of the second instrument or whether one is
larger than the other.

2-6.2 TEST OF WHETHER 0., = 0., (PRECISION COMPARISON)

The test on relative precision of measurement involves taking the sum p; and the differences u; of the
readings of the two instruments, i.e., Iy and I, for example, which are

p,-=r,~+s,-=Bl+Bz+2x,-+e,-1+e,-2 (2-58)
ui=ri—si= p1— B2+ e1 — en. (2-59)
On the assumption of statistically uncorrelated errors of measurement and true values, it is easy to see that
the population or expected correlation coefficient ppu of p and u is
2 2
Oel 0e2

s (2-60)
[(40} + o, + o) (0F, + 021"

and hence that the test of whether o. = o, is precisely a test of whether the population correlation

ppu = 0. This is easily accomplished on the basis of the Pitman-Morgan test (Refs. 8 and 9) as developed
for the purpose by Maloney and Rastogi (Ref. 10). In this connection, one simply calculates the sample
correlation coefficient r,, and refers it to a table of percentage points of the correlation coefficient of the

bivariate normal distribution or uses the ordinary Student’s ¢ test given by Eq. 2-62. First, the sample
correlation coefficient is given by

P = (82— SY/[(S2+ S2+ 28,) (S + 2 — 281"

also
o= Sf; . (2-61)
Then the Student’s ¢ test based on (n — 2) df is
tn—2, 00, = 0e)) = rpu (n — 2)? /(1 = r5)"”
_IsysH—1m—2" (262

[4(1 — rk) 7/ 83"
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We will illustrate this test with an example (Example 2-4) of O’Bryon (Ref. 11) concerning the precision
and accuracy of velocity chronographs. Also we thought it desirable to illustrate calculations for a smaller
sample size, and hence less stable results, than for the data of Table 2-2. This problem arose from a NATOQO
study on velocity chronographs submitted for acceptance or standardization. It was apparently dzsirable
to use two reference or “standard” chronographs, since two are better than one reference instrument, to
judge a third chronograph submitted for acceptance. Perhaps it was considered that such a procedure
would result in more confidence and provide some checks on the test results. The choice of the two
standards for initial tests is somewhat arbitrary indeed although pair wise comparisons of the three
instruments can be made simply by permuting the instrument designations—i.e., the r, si, and 1,—as
desired. We examine I; and [, only at this point.

Example 2-4.

Three velocity-measuring chronographs, the “Fotobalk”, the “Counter”, and the “Terma™ instruments,
were used simultaneously to determine velocities of each of twelve successive rounds fired from a 155-mm
howitzer*. The velocities were recorded in meters per second (m/s), and the individual velocity measure-
ments are given in Table 2-4. Also recorded in Table 2-4 are the sample variances, the estimated impreci-
sions of measurement, the estimated differences in biases or systematic errors, and estimated true product
variability. We assume here that no past data are available on precision of measurement for the “stan-
dard” instruments, the Fotobalk and the Counter, and our purpose ultimately is to check out the precision
and accuracy of measurement for the Terma, or “test”, instrument. Eqs. 2-49 through 2-51 are used to
estimate the standard deviations in errors of measurement for each of the three instruments; the computa-
tions are shown in Table 2-4. The estimated standard error of measurement (0.468 m/s) for the Terma
chronograph seems larger than that for the other two chronographs. We will check this value later after
checking out the two “standards™, the Fotobalk and Counter—designated 1, and 1,—for relative precision
and agreement in level of measurement or for bias.
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