MEMORANDUM REPORT ARBRL-MR-03371

LIQUID PAYLOAD MOMENT EQUATIONS

James W. Bradley

August 1984

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.
Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.
UNCLASSIFIED

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
MEMORANDUM REPORT ARBRL-MR-03371

2. GOVT ACCESSION NO.

3. RECPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
LIQUID PAYLOAD MOMENT EQUATIONS

5. TYPE OF REPORT & PERIOD COVERED
Final

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S)
James W. Bradley

8. CONTRACT OR GRANT NUMBER(S)

9. PERFORMING ORGANIZATION NAME AND ADDRESS
US Army Ballistic Research Laboratory
ATTN: DRXBR-LFD
Aberdeen Proving Ground, Maryland 21005-5066

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
RDTE E 1L161102AH43

11. CONTROLLING OFFICE NAME AND ADDRESS
US Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST
Aberdeen Proving Ground, Maryland 21005-5066

12. REPORT DATE
August 1984

13. NUMBER OF PAGES
53

14. MONITORING AGENCY NAME & ADDRESS/IF different from Controlling Office

15. SECURITY CLASS. (of this report)
UNCLASSIFIED

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Eigenfrequency
Liquid Moment Coefficients
Liquid Payload
Spinning Projectile
Stability Analysis

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Murphy has developed linear-theory equations defining the moment exerted by a liquid payload on a spinning, coning projectile. This report re-writes Murphy's equations in a format more amenable to numerical calculations. The equations presented here are essentially those imbedded in our interactive computer program for generating liquid moment coefficients and eigenvalues.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>II. THE TRANSVERSE LIQUID MOMENT COEFFICIENTS</td>
<td>5</td>
</tr>
<tr>
<td>III. THE FUNCTIONS $X_k(x)$</td>
<td>8</td>
</tr>
<tr>
<td>IV. THE FUNCTIONS $R_k(r)$</td>
<td>11</td>
</tr>
<tr>
<td>V. THE TRANSVERSE LIQUID MOMENT COEFFICIENT EQUATIONS</td>
<td>13</td>
</tr>
<tr>
<td>VI. THE LIQUID ROLL MOMENT COEFFICIENT</td>
<td>16</td>
</tr>
<tr>
<td>VII. EIGENVALUES</td>
<td>17</td>
</tr>
<tr>
<td>Table 1. Eigenvalues τ_{kn} for $Re^{-1} = 0, b = 0$</td>
<td>18</td>
</tr>
<tr>
<td>VIII. EFFECT OF THE LIQUID MOMENT ON DAMPING</td>
<td>19</td>
</tr>
<tr>
<td>IX. THE PRESSURE COEFFICIENT</td>
<td>20</td>
</tr>
<tr>
<td>X. SUMMARY</td>
<td>21</td>
</tr>
<tr>
<td>APPENDIX A. The Inviscid Perturbation Variables</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX B. Viscous Perturbation Variables at the Lateral Wall, $r = a$</td>
<td>27</td>
</tr>
<tr>
<td>APPENDIX C. Viscous Perturbation Variables at the End Walls, $x = \pm c$</td>
<td>29</td>
</tr>
<tr>
<td>APPENDIX D. Derivation of the Transverse Liquid Moment Coefficient Equations</td>
<td>31</td>
</tr>
<tr>
<td>APPENDIX E. Nonzero Axial Offset</td>
<td>33</td>
</tr>
<tr>
<td>APPENDIX F. Central Rod</td>
<td>37</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>41</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>47</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The flight of a spinning projectile with a liquid payload is sometimes briefer than planned. The liquid develops an intricate pattern of oscillations; if the frequency of one of these oscillations is close to one of the yawing frequencies of the shell, the yaw can grow unsuitably large. The projectile becomes unstable, its flight performance deteriorates rapidly and it fails to achieve its intended range.

Much work has gone into attempts to understand and describe mathematically what goes on between liquid payload and projectile. One of the workers in this field, C. H. Murphy, recently derived\(^1\) a set of equations defining—the transverse moment exerted by the fully spun-up liquid on the projectile. I have used these equations as the basis of an interactive computer program for generating liquid moment coefficients.

Murphy presented his equations in a form that may be intellectually satisfying but is several steps short of programming suitability. In particular, certain obvious tasks (taking indicated partial derivatives, obtaining closed-form expressions for integrals, etc.) were never undertaken. Murphy was aware of these omissions, and it was his hope that I would present the missing equations in a report. This is the report.

Sections II - V deal with how the computer program obtains the liquid moment coefficients. The remaining four sections discuss four alternative tasks that the program will perform upon request.

II. THE TRANSVERSE LIQUID MOMENT COEFFICIENTS

In Reference 1, Murphy studies the response of the fully spun-up liquid to a projectile coning motion of constant frequency and exponentially changing magnitude:

\[
\ddot{z} = \hat{K} e^{s t}
\]

(2.1)

where

\[
s = (\varepsilon + i) \tau
\]

(2.2)

\[
\dot{\phi} = \dot{\phi}_0
\]

(2.3)

\[
\dot{\phi}_0 = \text{constant (positive) spin}
\]

\[
\hat{K} = \text{complex constant}
\]

and where ξ is the complex yaw in an aeroballistic non-rolling coordinate system.

The parameters in Murphy's complex variables have the following interpretation:

$$\tau = \frac{\text{coning rate}}{\phi}, \text{ the nondimensionalized coning frequency}^*$$

$$\varepsilon = \frac{\text{yaw damping rate}}{\text{coning rate}}, \text{ the nondimensionalized yaw damping } (\varepsilon < 0) \text{ or yaw growth } (\varepsilon > 0) \text{ rate. (Thus } \varepsilon = 0 \text{ is the important special case of constant-amplitude coning motion.)}$$

Murphy considers the liquid payload to be confined to a right circular cylinder of diameter $2a$ and height $2c$. The axis of this cylinder is collinear with the projectile's principal axis (the spin axis); the center of the cylinder is located a distance h forward of the projectile's center of mass. The offset h will be taken as zero in the body of this report; nonzero h is relegated to Appendix E.

The cylinder may be fully or only partially filled with liquid. In either case, the liquid is assumed to be fully spun-up. For the partially-filled cylinder, it is assumed that the liquid has formed a cylinder of diameter $2a$ with an air core of diameter $2b$. (Murphy also considers the case of a fully-filled cylinder with a central rod. That is, the free surface $r = b$ is replaced by an inner lateral surface $r = d$, where $2d$ is the rod diameter. This central rod case is discussed in Appendix F.)

Murphy introduces two real liquid moment coefficients, C_{LSM} and C_{LM}, defined by the moment equation

$$M_L \dot{\phi} + i M_Z \dot{\phi} = mL a^2 \phi^2 \tau C_{LM} \xi \quad (2.4)$$

where

$$M_L \dot{\phi} + i M_Z \dot{\phi} = \text{the transverse liquid moment in the aeroballistic system}$$

*Other notation appears occasionally in the literature. Some authors have used the symbol τ to denote the complex frequency that would be written here as ω.}
The $m_L = 2\pi a^2 c_L$ (2.5)

\[m_L = 2\pi a^2 c_L \]

is the mass of the liquid in a fully-filled cylinder.

\[\rho_L = \text{liquid density} \]

The $C_{L_{SM}}$ term in Eq. (2.4) is the liquid side moment, a moment causing rotation out of the transverse plane. The $C_{L_{IM}}$ term in Eq. (2.4) is the liquid in-plane moment, a moment causing rotation in the transverse plane.

The bulk of Reference 1 is devoted to deriving an expression for $C_{L_{IM}}$. This expression involves earth-fixed cylindrical coordinates x, r, θ and four complex perturbation variables defined in Eqs. (3.10-3.13) of Reference 1:

\[p_s = \text{nondimensional pressure perturbation} \]

\[u_s, v_s, w_s = \text{nondimensional velocity perturbation} \]

components in the x, r, θ directions, respectively.*

Each of these variables is a function of x and r and each - in Murphy's linear theory - is linear in ω.

Murphy makes the assumption that each of the four variables can be expressed as the sum of an inviscid and a viscous term:

\[p_s (r, x) = p_{sI} (r, x) + p_{sv} (r, x) \]

(2.7)

and similarly for the velocity perturbations.

*The association of (u, v, w) with the ordering (x, r, θ) seems logically sound and reflects Murphy's adherence to a standard reference on letter symbols and to the notation he has used in over 30 publications on symmetric missile dynamics. However, other writers on liquid-filled shell associate (u, v, w) with (r, θ, x); others associate (u, v, w) with rectangular coordinates. This nonuniformity is only mildly amusing.

Making a few additional assumptions and adhering rigidly to linear theory, Murphy derives the following relations:

\[C_{LM} = (C_{LM})_{pL} + (C_{LM})_{pe} + (C_{LM})_{vL} + (C_{LM})_{ve} \]

(2.8)

where

\[(C_{LM})_{pL} = \frac{1}{2\pi c_1} \int_{-c}^{c} \left[k^{-1} x p_s(a,x) - x^2/a \right] dx \]

(2.9)

\[(C_{LM})_{pe} = \frac{-1}{a^2 c_1} \int_{b}^{d} \left[k^{-1} r^2 p_s (r,c) - cr^3/a^2 \right] dr \]

(2.10)

\[(C_{LM})_{vL} = (2k \text{Re} c_1)^{-1} \int_{-c}^{c} \left[x \frac{\partial w_{sv}}{\partial r} + i a \frac{\partial u_{sv}}{\partial r} \right] dx \]

(2.11)

\[(C_{LM})_{ve} = (k \text{Re} a_1)^{-1} \int_{b}^{d} \left[\frac{\partial(w_{sv} - i v_{sv})}{\partial x} \right] rdr \]

(2.12)

and where \(\text{Re} = \frac{a^2}{v} \), the Reynolds number.

The subscripts on \(C_{LM} \) have the following meaning:

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Denotes liquid moment due to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pL)</td>
<td>pressure on the cylinder's lateral wall</td>
</tr>
<tr>
<td>(pe)</td>
<td>pressure on the end walls</td>
</tr>
<tr>
<td>(vL)</td>
<td>viscous shear on the lateral wall</td>
</tr>
<tr>
<td>(ve)</td>
<td>viscous shear on the end walls</td>
</tr>
</tbody>
</table>

The next three sections will be devoted to converting Eqs. (2.9 - 2.12) to programmable form.

III. THE FUNCTIONS \(X_k(x) \)

Murphy derives expressions and conditions for the perturbation variables that involve complex functions of \(r: R_k(r) \), and complex functions of \(x: X_k(x) \). In this section, we define and discuss \(X_k(x) \) and some related constants.
The subscript \(k \) is the so-called axial wave number, the number of nodes in the liquid's axial wave pattern. The liquid has three wave numbers, \((k, n, m) \): non-negative integers associated with the axial, radial, and azimuthal wave patterns, respectively. Since the functions in Eqs. (2.9-2.12) are evaluated for \(m = 1 \), only two wave numbers, \(k \) and \(n \), concern us here.

The axial wave number \(k \) is either zero or an odd, positive integer. A term from the \(k = 0 \) mode is always present in \(C_{LM} \) to satisfy the inviscid end-wall boundary condition. However, Murphy gives this term explicitly, circumventing the need for a \(k = 0 \) subscript in this context. An additional term for the zero mode is required when the center of the cylinder is offset axially a distance \(h \) from the center of mass of the projectile; this case has been banished to Appendix E. Hence, \(k \) will not assume the value 0 in this report:

\[
k = 1, 3, 5, ... \tag{3.1}
\]

Before we discuss \(X_k(x) \), we introduce the complex \(\lambda_k = \lambda_k (s, c/a, Re) \), which can be computed as the solution of the equation

\[
1 + \lambda_k \delta_c \tan \lambda_k = 0 \tag{3.2}
\]

where

\[
\delta_c = \frac{- (a/c) \delta_a}{2 \sqrt{1 + is}} \left[\frac{1 - is}{\sqrt{3 + is}} + i \left(\frac{3 + is}{\sqrt{1 - is}} \right) \right] \tag{3.3}
\]

\[
\delta_a = \frac{1 + i}{\sqrt{2(1 + is)}} Re \tag{3.4}
\]

We are not concerned here with the derivation of these and subsequent equations; we are merely trying to show what must be done by a computer program to obtain results. One of the first tasks for our program is the solving of Eq. (3.2) by an iterative process (the Newton method). A good first estimate (for small \(|\delta_c| \), that is, for large \(Re \)) is the approximation

\[
\lambda_k \approx \frac{\pi k}{2 (1 - \delta_c)}. \tag{3.5}
\]

Murphy's complex functions \(X_k(x) \) have the form:

\[
X_k(x) = \sin (\lambda_k x/c). \tag{3.6}
\]

Next, we introduce three sets of constants: \(b_k, b_{jk}, a_k \), all dependent on \(X_k(c) \). The first two are needed to compute \(a_k \) and \(a_k \) is needed to produce the functions \(R_k(r) \) of the next section. We have
\[
\begin{align*}
 b_k &= c^{-2} \int_{-c}^{c} x_k(x) \, dx \\
 &= 2 \bar{x}_k(c) \left[\bar{\lambda}_c + \bar{\lambda}_k^{-2} \right] \\
 b_{jk} &= c^{-1} \int_{-c}^{c} x_j(x) x_k(x) \, dx \\
 &= \frac{2 \bar{x}_j(c) \bar{x}_k(c)}{\lambda_k^2 - (\bar{\lambda}_j)^2} \left[\lambda_k^2 \delta_c - (\bar{\lambda}_j)^2 \delta_c \right].
\end{align*}
\]

where \(j \), like \(k \), takes on the values 1, 3, 5, ...

The complex constants \(a_k \) are obtained as the solution set of the system

\[
\begin{align*}
 \sum_{k=1}^{N} b_{jk} a_k &= b_j, \quad j = 1, 3, 5, ... N
\end{align*}
\]

where the value of \(N \) is somewhat arbitrary. In practice, \(N \) in our program is set at 29; this allows \(k \) to take on fifteen values. In general, solving system (3.9) involves inverting an \((N + 1)/2 \) by \((N + 1)/2 \) complex matrix.

It should be noted that the \(a_k \)'s determined in this manner are precisely the least squares coefficients when \(x/c \) is approximated by a truncated series in \(x_k(x) \):

\[
\frac{x}{c} \approx \sum_{k=1}^{N} a_k x_k(x)
\]

In particular

\[
\sum_{k=1}^{N} a_k x_k(c) \approx 1
\]

Of less use to us, but still interesting, is the fact that

\[
\sum_{k=1}^{N} a_k \delta_k \approx 2/3.
\]
For the special case of infinite Reynolds number, we have:

\[
\begin{align*}
\delta_a &= \delta_c = 0 \\
\lambda_k &= \pi k/2 \\
x_k(c) &= (-1)^{(k-1)/2} \\
b_{jk} &= \begin{cases}
0 & \text{if } j \neq k \\
1 & \text{if } j = k
\end{cases} \\
b_k &= a_k = \left[8/(\pi k)^2\right](-1)^{(k-1)/2}
\end{align*}
\]

\[\text{Re}^{-1} = 0 \quad (3.13)\]

IV. THE FUNCTIONS \(R_k(r)\)

Murphy's complex functions \(R_k(r)\) have the form

\[
R_k(r) = a_k \left[E_k J_1 (A_k) + F_k Y_1 (A_k) \right] \quad (4.1)
\]

where

\[
A_k = A_k(r) = \tilde{\lambda}_k \frac{r}{c} \quad (4.2)
\]

\[
\tilde{\lambda}_k = \frac{([3 + is](1 - is)]^{1/2} \lambda_k}{1 + is} \quad (4.3)
\]

\(J_1\) is the Bessel function of the first kind of order 1 (we will only be concerned with \(i = 0\) and 1)

\(Y_1\) is the Bessel function of the second kind of order 1

and where \(E_k(s)\) and \(F_k(s)\) are complex functions defined by Eq. (4.1). This definition sheds little light on how \(E_k\) and \(F_k\) can be evaluated. By determining conditions that \(R_k\) must satisfy at the boundaries \(r = a\) and \(r = b\), Murphy obtains two equations in the two unknowns \(E_k\) and \(F_k\):
\[
\begin{align*}
c_{11} E_k + c_{12} F_k &= c_1 \\
c_{21} E_k + c_{22} F_k &= c_2
\end{align*}
\] (4.4)

where, setting \(\delta_a = \delta_a (1 - \delta_a) \), we have *

\[
c_{11} = \left[(1 + 2 \delta_a) (1 - i s) + (1 + i s) A_{ka} \delta_a \delta_a \right] I_{1a} \\
+ [1 + i s - (1 - i s) \delta_a] A_{ka} J_{0a}
\] (4.5)

\[
c_{12} = \text{(form identical to } c_{11} \text{ with } J \text{ replaced by } Y) \]

\[
c_{21} = [2(1 + i s) + (3 + i s)s^2] J_{1b} - (1 + i s) A_{kb} J_{0b}
\] (4.6)

\[
c_{22} = \text{(form identical to } c_{21} \text{ with } J \text{ replaced by } Y) \]

\[
c_1 = 2 i s (1 + i s)(3 + i s)
\] (4.7)

\[
c_2 = (b/a)s^2 (1 + i s)(3 + i s)
\] (4.8)

and where

\[
\begin{align*}
A_{ka} &= A_k(a) = A_k a/c \\
J_{0a} &= J_0(A_{ka}) \\
J_{1a} &= J_1(A_{ka}) \\
Y_{0a} &= Y_0(A_{ka}) \\
Y_{1a} &= Y_1(A_{ka})
\end{align*}
\] (4.9)

and similarly for \(r = b \).

* In Reference 1, Murphy approximates \(\delta_a \) by \(\delta_0 \) in \(c_{11} \) and \(c_{12} \). This introduces an error that is negligible except at very low Reynolds numbers.
Solving the system (4.4), we have

\[E_k = \frac{c_1 - (c_{12}/c_{22}) c_2}{G_k} \] \hspace{1cm} (4.10)

\[F_k = \frac{(c_{11}/c_{22}) c_2 - (c_{21}/c_{22}) c_1}{G_k} \] \hspace{1cm} (4.11)

where

\[G_k = c_{11} - (c_{12}/c_{22}) c_{21} \] \hspace{1cm} (4.12)

The special situation \(G_k(s) = 0 \) will be discussed in Section VII on eigenvalues.

Note that for \(b = 0 \) (that is, for the usual case of a fully-filled cylinder), \(c_{22} \) is infinite, so that Eqs. (4.10-4.12) reduce to

\[E_k = c_1/c_{11} \]

\[F_k = 0 \] \hspace{1cm} \(b = 0 \) \hspace{1cm} (4.13)

\[G_k = c_{11} \]

Finally, we note that

\[r^2 R_k''(r) = (1 - A_k^2) R_k - r R_k' \] \hspace{1cm} (4.15)

where the primes denote differentiation with respect to \(r \).

V. THE TRANSVERSE LIQUID MOMENT COEFFICIENT EQUATIONS

Expressions for the perturbation variables in terms of \(X_k(x) \) and \(R_k(r) \) are given in Appendices A, B, and C. These expressions are not themselves part of the computer program, but they are useful in the derivation of the programmed equations. The nature of this derivation is outlined in Appendix D.
In the body of this report, as we have indicated, we are interested mainly in presenting the programmed equations for C_{LSM} and C_{LIM}. We can now do so:

\[
(C_{\text{LM}})_{pl} = \frac{i}{\tau} \left(\frac{(c/a)^2}{3} \left[\frac{1}{2} T_1 + \frac{\delta T}{a} \right] - \frac{1}{3} \left(2 + i s \right) \right) (5.1)
\]

\[
(C_{\text{LM}})_{pe} = \frac{i}{\tau} \left\{ \frac{(c/a)^2}{a} \left[T_3 - \frac{b}{a} T_{3b} \right] - \frac{1}{4} \left(1 - \frac{b^4}{a^4} \right) \right\} (5.2)
\]

\[
(C_{\text{LM}})_{vl} = -\frac{i}{\tau} \left[T_4 + \frac{(c/a)^2}{2} \left(1 + i s \right) \right] (5.3)
\]

\[
(C_{\text{LM}})_{ve} = \frac{(c/a)^{1/2}}{\tau} \left(\frac{1 + i s}{1 - i s} \right)^{1/2} \left[T_4 - \frac{b}{a} T_{4b} - 2 i s (1 + i s) \left(1 - \frac{b^2}{a^2} \right) \right] (5.4)
\]

where

\[
T_1 = \sum R_k(a) \cdot b_k (5.5)
\]

\[
T_2 = \sum a R'_k(a) \cdot b_k (5.6)
\]

\[
T_3 = \sum \left[R_k(a) - a R'_k(a) \right] \cdot i_k^{-2} \cdot X_k(c) (5.7)
\]

\[
T_{3b} = \sum \left[R_k(b) - b R'_k(b) \right] \cdot i_k^{-2} \cdot X_k(c) (5.8)
\]

\[
T_4 = \sum R_k(a) \cdot X_k(c) (5.9)
\]

\[
T_{4b} = \sum R_k(b) \cdot X_k(c) (5.10)
\]

\[
T_5 = \frac{1}{1 - i s} \left[\frac{(1 + i s) T_1 + 2 T_2}{3 + i s} - \frac{4 i s (1 + i s)}{3} \right] (5.11)
\]

and where the summations are for $k = 1, 3, 5, \ldots N$.

14
To produce tabulated values and plots of C_{LSM} and C_{LIM} versus τ, the computer program carries out the following instructions:

1. Accept the required input:
 - Re, b/a, c/a, ϵ and the τ range of interest.

2. Divide the τ range into, say, several hundred equally-spaced points τ_1, τ_2, ..., τ_n.

3. Perform steps 4 – 10 below for each τ_i.

4. For the current s value, compute δ_a, δ_c [Eqs. (3.4, 3.3)] and c_1, c_2 [Eqs. (4.7, 4.8)].

5. Perform steps 5a – 5c below for $k = 1, 3, 5, ..., N (=29)$:
 5a. Iterate on Eq. (3.2) to obtain λ_k.
 5b. Compute $X_k(c)$ and b_k [Eqs. (3.6, 3.7)].
 5c. For $j = 1, 3, 5, ..., N$, compute b_{jk} [Eq. (3.8)].

6. Solve the system (3.9) for all the a_k's.

7. Perform steps 7a – 7g below for $k = 1, 3, 5, ..., N (=29)$:
 7a. Compute $\tilde{\lambda}_k$ [Eq. (4.3)].
 7b. Compute A_{ka}, A_{kb} [Eq. (4.9)].
 7c. Compute the complex Bessel functions at $r = a$ and b:
 J_0a, J_1a, Y_0a, Y_1a, J_0b, J_1b, Y_0b, Y_1b.
 7d. Compute c_{11}, c_{12}, c_{21}, c_{22} [Eqs. (4.5, 4.6)].
 7e. Compute G_k, E_k, and F_k [Eqs. (4.12, 4.10, 4.11)].
7f. Compute \(R_k(a) \) and \(R_k(b) \) [Eq. (4.1)].

7g. Compute \(aR_k'(a) \) and \(bR_k'(b) \) [Eq. (4.14)].

8. Form the sums \(T_1 \) [Eqs. (5.5 - 5.11)].

9. Compute \((C_{LM})_{p_z, p_e, v_z, v_e} \) [Eqs. (5.1 - 5.4)].

10. Compute, print, and store \(C_{LSM} = R \{C_{LM}\} \) and \(C_{LIM} = I \{C_{LM}\} \).

11. Plot \(C_{LSM} \) and \(C_{LIM} \) versus \(\tau \).

I am occasionally bemused by the fact that the entire process above takes only a fraction of a second per point on our computer (a Digital Equipment Corporation VAX-11/780) while it simultaneously keeps a dozen or so other terminal users happy.

VI. THE LIQUID ROLL MOMENT COEFFICIENT

As mentioned, our program has the ability to perform tasks in addition to, or instead of, computing \(C_{LSM} \) and \(C_{LIM} \) versus \(\tau \). The simplest of these optional chores is the computation of the liquid roll moment coefficient, \(C_{LRM} \), versus \(\tau \). \(C_{LRM} \) is defined by the moment equation

\[
M_{LX} = m_L a^2 \phi^2 \tau \ddot{z}^2 |C_{LRM}|
\]

where \(M_{LX} \) is the axial liquid moment (compare Eq. (2.4)).

In Reference 3, Murphy shows that for his linear fluid mechanics assumptions \(C_{LRM} \) is very nearly (or exactly, when \(c = 0 \)) the negative of \(C_{LSM} \):

\[
C_{LRM} = -C_{LSM} + (\tau c/2) [1 - (4/3) (c/a)^2] .
\]

Thus, the computation of \(C_{LRM} \) from \(C_{LSM} \) is trivial and we move on at once to more interesting options.

VII. EIGENVALUES

For a given Re, a, b, c, and k, the complex variable G_k of Eq. (4.12) is a function of s. For some set of values $s = s_{kn}$, G_k will be zero:

$$G_k (s_{kn}) = 0 \quad (7.1)$$

These values of s are by definition the eigenvalues of the system.

Index n (the radial wave number mentioned in Section III) is a positive integer and k, as before, takes on the values 1, 3, 5, ... In theory, there are an infinite number of eigenvalues, but their practical importance (that is, their effect on a projectile's performance) usually decreases as k and n increase.

One of the options in the program developed from Murphy's equations is the determination of the more important of these eigenvalues. This is done by solving Eq. (7.1) by the Newton-iterative method, in which

$$s_{kn+1} = s_{kn} - \left[\frac{G_k(s)}{G_k'(s)} \right]_{s = s_{kn}} \quad (7.2)$$

where the prime denotes differentiation with respect to the complex variable s.

The value of k must be specified; the value of n is implicit in the required initial estimate $(s_{kn})_0$. For a given c/a and k, the program determines six initial estimates ($n=1,2, \ldots, 6$) by interpolating in a stored table. This table contains a set of real eigenvalues τ_{kn} ($Re^{-1} = 0, b = 0$) versus $c/(ak)$ for each of the six n values. The stored range of τ_{kn} is -1 to 1; a portion of this table, 0 to 0.6, is given here as Table 1. From these six initial estimates (the value "six" is arbitrary), the program attempts to find the first six eigenvalues:

$s_{k1}, s_{k2}, \ldots, s_{k6}$

by iterating on Eq. (7.2). Success here depends on the adequacy of the estimates from the stored table. These estimates necessarily become poorer as the given Re decreases and/or b increases. Hence, it is possible (but rare, in our experience) for the iterative process to converge to a "wrong" eigenvalue; that is, to an eigenvalue associated with some other n than the one indicated by the program. (This problem could be avoided - or at least passed on to the user - by a program change that would require the user to input the six eigenvalue estimates. So far, this has not been necessary.)

17
Table 1. Eigenvalues τ_{kn} for $Re^{-1} = 0$, $b = 0$.

<table>
<thead>
<tr>
<th>τ_{kn}</th>
<th>c/(ak)</th>
<th>Re^{-1} = 0</th>
<th>b = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.9949</td>
<td>.4780</td>
<td>.3103</td>
</tr>
<tr>
<td>.01</td>
<td>1.0065</td>
<td>.4882</td>
<td>.3144</td>
</tr>
<tr>
<td>.02</td>
<td>1.0180</td>
<td>.4904</td>
<td>.3186</td>
</tr>
<tr>
<td>.03</td>
<td>1.0297</td>
<td>.4968</td>
<td>.3228</td>
</tr>
<tr>
<td>.04</td>
<td>1.0417</td>
<td>.5032</td>
<td>.3271</td>
</tr>
<tr>
<td>.05</td>
<td>1.0538</td>
<td>.5098</td>
<td>.3315</td>
</tr>
<tr>
<td>.06</td>
<td>1.0661</td>
<td>.5165</td>
<td>.3366</td>
</tr>
<tr>
<td>.07</td>
<td>1.0786</td>
<td>.5233</td>
<td>.3405</td>
</tr>
<tr>
<td>.08</td>
<td>1.0913</td>
<td>.5302</td>
<td>.3451</td>
</tr>
<tr>
<td>.09</td>
<td>1.1042</td>
<td>.5372</td>
<td>.3498</td>
</tr>
<tr>
<td>.10</td>
<td>1.1173</td>
<td>.5443</td>
<td>.3546</td>
</tr>
<tr>
<td>.11</td>
<td>1.1306</td>
<td>.5516</td>
<td>.3595</td>
</tr>
<tr>
<td>.12</td>
<td>1.1442</td>
<td>.5591</td>
<td>.3645</td>
</tr>
<tr>
<td>.13</td>
<td>1.1579</td>
<td>.5666</td>
<td>.3695</td>
</tr>
<tr>
<td>.14</td>
<td>1.1720</td>
<td>.5743</td>
<td>.3747</td>
</tr>
<tr>
<td>.15</td>
<td>1.1862</td>
<td>.5822</td>
<td>.3800</td>
</tr>
<tr>
<td>.16</td>
<td>1.2008</td>
<td>.5902</td>
<td>.3854</td>
</tr>
<tr>
<td>.17</td>
<td>1.2156</td>
<td>.5983</td>
<td>.3908</td>
</tr>
<tr>
<td>.18</td>
<td>1.2307</td>
<td>.6067</td>
<td>.3965</td>
</tr>
<tr>
<td>.19</td>
<td>1.2460</td>
<td>.6152</td>
<td>.4022</td>
</tr>
<tr>
<td>.20</td>
<td>1.2617</td>
<td>.6239</td>
<td>.4080</td>
</tr>
<tr>
<td>.21</td>
<td>1.2777</td>
<td>.6327</td>
<td>.4140</td>
</tr>
<tr>
<td>.22</td>
<td>1.2940</td>
<td>.6418</td>
<td>.4201</td>
</tr>
<tr>
<td>.23</td>
<td>1.3107</td>
<td>.6511</td>
<td>.4264</td>
</tr>
<tr>
<td>.24</td>
<td>1.3277</td>
<td>.6605</td>
<td>.4328</td>
</tr>
<tr>
<td>.25</td>
<td>1.3450</td>
<td>.6702</td>
<td>.4394</td>
</tr>
<tr>
<td>.26</td>
<td>1.3628</td>
<td>.6801</td>
<td>.4461</td>
</tr>
<tr>
<td>.27</td>
<td>1.3809</td>
<td>.6903</td>
<td>.4529</td>
</tr>
<tr>
<td>.28</td>
<td>1.3995</td>
<td>.7007</td>
<td>.4600</td>
</tr>
<tr>
<td>.29</td>
<td>1.4185</td>
<td>.7113</td>
<td>.4672</td>
</tr>
<tr>
<td>.30</td>
<td>1.4379</td>
<td>.7222</td>
<td>.4746</td>
</tr>
<tr>
<td>.31</td>
<td>1.4783</td>
<td>.7449</td>
<td>.4900</td>
</tr>
<tr>
<td>.32</td>
<td>1.5206</td>
<td>.7687</td>
<td>.5062</td>
</tr>
<tr>
<td>.33</td>
<td>1.5652</td>
<td>.7939</td>
<td>.5234</td>
</tr>
<tr>
<td>.34</td>
<td>1.6123</td>
<td>.8204</td>
<td>.5416</td>
</tr>
<tr>
<td>.35</td>
<td>1.6621</td>
<td>.8486</td>
<td>.5608</td>
</tr>
<tr>
<td>.36</td>
<td>1.7149</td>
<td>.8784</td>
<td>.5813</td>
</tr>
<tr>
<td>.37</td>
<td>1.7710</td>
<td>.9102</td>
<td>.6031</td>
</tr>
<tr>
<td>.38</td>
<td>1.8308</td>
<td>.9441</td>
<td>.6264</td>
</tr>
<tr>
<td>.39</td>
<td>1.8947</td>
<td>.9803</td>
<td>.6514</td>
</tr>
<tr>
<td>.40</td>
<td>1.9632</td>
<td>1.0192</td>
<td>.6782</td>
</tr>
<tr>
<td>.41</td>
<td>2.0369</td>
<td>1.0610</td>
<td>.7070</td>
</tr>
<tr>
<td>.42</td>
<td>2.1164</td>
<td>1.1061</td>
<td>.7382</td>
</tr>
<tr>
<td>.43</td>
<td>2.2027</td>
<td>1.1549</td>
<td>.7721</td>
</tr>
<tr>
<td>.44</td>
<td>2.2965</td>
<td>1.2081</td>
<td>.8090</td>
</tr>
<tr>
<td>.45</td>
<td>2.3991</td>
<td>1.2661</td>
<td>.8493</td>
</tr>
</tbody>
</table>
The computation of $G_k'(s)$ deserves a comment or two. It is barely possible to derive an exact expression for G_k'; in an atypical fit of zeal, I have done so. The difficulty lies in the fact that everything but the temperature in Newark depends on s. It was necessary to derive expressions for δ_a', δ_c', λ_k', $\hat{\lambda}_k'$, J_{0a}', etc., etc., in a tortuous chain culminating in G_k' as a function of the C_{ij}'s and their derivatives. I won't inflict these equations on the reader for two reasons: (1) they would take up a lot of space and time; (2) they aren't really necessary. The approximation

$$G_k'(s) = \frac{G_k(s + \Delta s/2) - G_k(s - \Delta s/2)}{\Delta s}$$ \hfill (7.3)

should be more than adequate if the increment Δs is chosen with a little care. This approximation eliminates the myriad opportunities to err that arise in deriving and coding the exact expression.

VIII. THE EFFECT OF THE LIQUID MOMENT ON THE DAMPING

In Section V, we showed how our program determines $\text{CLSM}(\epsilon)$ and $\text{CLIM}(\epsilon)$ for a fixed ϵ. But ϵ and τ are not really independent; they are related by the yaw equation. In Reference 1, Murphy derives the following relationship (in slightly different notation):

$$\epsilon(\tau) = \frac{B_1 \text{CLSM}(\epsilon, \tau)}{2 B_2 [1 + B_1 \text{CLIM}(\epsilon, \tau)] - 1} + \epsilon_A$$ \hfill (8.1)

where

$$B_1 = m_L a^2/I_x$$

$$B_2 = 1 - (4s_g)^{-1}$$

I_x = axial moment of inertia of the projectile

s_g = gyroscopic stability factor

and where the aerodynamic damping term ϵ_A is - for the purposes of our program - a specified constant.
One of the program options, then, is the determination of \(\varepsilon(\tau) \) from Eq. (8.1) for a specified \(B_1, B_2, \varepsilon_A \), and range of \(\tau \). Note that \(\varepsilon \) appears implicitly on the right-hand side of Eq. (8.1); thus an indirect, iterative method of solving (8.1) for \(\varepsilon \) is needed. For a fixed \(\tau \), an \(\varepsilon \) value is assumed; \(C_{LIM}(\varepsilon,\tau) \) and \(C_{LIM}(\varepsilon,\tau) \) are then computed as in Section V and a new \(\varepsilon \) obtained from (8.1). The new \(\varepsilon \) value replaces the old one and the process is repeated until (in a well-ordered universe) it converges on the proper \(\varepsilon(\tau) \). This approach is carried out for a set of \(\tau \) values over the specified range.

For most of the cases we have considered so far, \((s_g)^{-1}\) has been taken as zero; that is, \(B_2 = 1 \). The parameter \(B_1 \), however, is not necessarily a constant. The user has a choice: constant \(I_x \) (and hence constant \(B_1 \)) or constant transverse moment of inertia, \(I_y \). In the latter case, the program computes the variable \(I_x \) from the relation

\[
I_x(\varepsilon,\tau) = \frac{\tau I_y}{B_2} - m_a^2 C_{LIM}(\varepsilon,\tau). \quad (8.2)
\]

To specify \(B_1 \), then, the user inputs:

1. \(\rho_L \), \(a \) and \(c \) (to allow the program to compute the constant mass \(m_L \) from Eq. (2.5));
2. either \(I_x \) or \(I_y \) (whichever is constant).

IX. THE PRESSURE COEFFICIENT

Murphy's complex pressure coefficient, \(C_p \exp(i\phi) \), is a measure of the fluctuating part of the inviscid pressure. In Reference 1, he derives the following expression:

\[
C_p \exp(i\phi) = \left(\frac{c}{a} \right) \left[i s (2 + i s) \left(\frac{r}{a} \right) \left(\frac{x}{c} \right) - S_1(r,x) \right] \quad (9.1)
\]

where \(S_1(r,x) \) is a summation defined in Eq. (A1) of Appendix A. The final optional task our program can perform is to compute the absolute value \(C_p \) and the argument \(\phi \) from Eq. (9.1).

There are various ways in which this could be done. For example:

1. Fix \(\varepsilon \), \(r \) and \(x \); compute \(C_p \) and \(\phi \) as functions of \(\tau \).
2. Fix ε, τ and r; compute C_p and ϕ_p as functions of x.

3. Fix ε, τ and x; compute C_p and ϕ_p as functions of r.

So far we have had a need to encode only a special case of 1 above. Namely, for $x = c$, $\varepsilon = 0$ and any specified r/a, the program will compute

\[C_p(\tau) e^{i\phi_p(\tau)} = \left(-\left(\frac{C}{a}\right)\right) \left[(2 - \tau) \left(\frac{r}{a}\right) + S_1(r,c) \right] \]

(9.2)

X. SUMMARY

The program based on Murphy's equations has so far been used mainly to compute the liquid side moment coefficient C_{LSM} and/or the eigenvalues s_{kn}.

For a specified Re, b/a, c/a, ε and a range of τ values, C_{LSM} is computed from Eqs. (5.1-5.4) and Definition (2.6). (The same equations yield C_{LIM} but interest in this in-plane moment coefficient is low.)

For a specified Re, b/a, c/a and k, the eigenfrequencies s_{kn} are computed for $n = 1 - 6$ from Eq. (7.1) and Definition (4.12).
APPENDIX A. THE INVISCID PERTURBATION VARIABLES

In Reference 1, Murphy derives an expression for \(p_s (r, x) \). We repeat that expression here and also give expressions for \(u_s, v_s, w_s \) and their first partial derivatives.

For convenience, we first define five sums:

\[
S_1(r,x) = \sum R_k(r) X_k(x) \tag{A1}
\]

\[
S_2(r,x) = a \frac{S_1}{\partial r} = a \sum R_k'(r) X_k(x) \tag{A2}
\]

\[
S_3(r,x) = c \frac{S_1}{\partial x} = c \sum R_k(r) X_k'(x) \tag{A3}
\]

\[
S_4(r,x) = a \frac{S_3}{\partial r} = ac \sum R_k'(r) X_k'(r) = c \frac{S_2}{\partial x} \tag{A4}
\]

\[
S_5(r,x) = -c \frac{S_3}{\partial x} = \sum R_k(r) X_k(x) \lambda_k^2 \tag{A5}
\]

where \(X_k'(x) \) follows from Eq. (3.6), \(R_k'(r) \) is given in Eq. (4.14) and where the summations are for \(k = 1, 3, 5, \ldots \).

Then we have:

\[
p_s (r,x) = -(c/a) \hat{K} \left[S_1 - (1 + is)^2 \frac{x}{c} \right] \tag{A6}
\]

\[
u_s (r,x) = i \hat{K} \left[\frac{S_3}{1 + is} - (1 + is) \frac{x}{c} \right] \tag{A7}
\]

\[
v_s (r,x) = \frac{1}{1 - is} \left[\frac{(2 a/r) \ S_1 + (1 + is) \ S_2}{3 + is} - (1 + is)^2 \frac{x}{c} \right] \tag{A8}
\]

\[
w_s (r,x) = \frac{1}{1 - is} \left[\frac{(1 + is) (a/r) \ S_1 + 2 \ S_2}{3 + is} - (1 + is)^2 \frac{x}{c} \right] \tag{A9}
\]
\[w_{s1} + i v_{s1} = \frac{(c/a) \hat{k}}{3 + is} \left[(a/r) S_1 - S_2 \right] \quad (A10) \]

\[w_{s1} - i v_{s1} = -\frac{(c/a) \hat{k}}{1 - is} \left[(a/r) S_1 + S_2 - 2 (1 + is)^2 (x/c) \right] . \quad (A11) \]

For the first partials with respect to \(r \), we have:

\[a \frac{\partial p_{s1}}{\partial r} = -(c/a) \hat{k} \left[S_2 - (1 + is)^2 (x/c) \right] \quad (A12) \]

\[a \frac{\partial u_{s1}}{\partial r} = i \hat{k} \left[\frac{S_4}{1 + is} - (1 + is) \right] \quad (A13) \]

\[a \frac{\partial v_{s1}}{\partial r} = i \left(\frac{c}{a} \right) \hat{k} \left[\frac{(a/r)^2 S_1 - (a/r) S_2}{3 + is} + \frac{(a/c)^2 S_5}{1 + is} \right] \quad (A14) \]

\[a \frac{\partial w_{s1}}{\partial r} = \left(\frac{c}{a} \right) \hat{k} \left[-\frac{(a/r)^2 S_1 + (a/r) S_2}{3 + is} + \frac{2 (a/c)^2 S_5}{(1 + is)^2} \right] \quad (A15) \]

\[a \frac{\partial (w_{s1} + i v_{s1})}{\partial r} = \left(\frac{c}{a} \right) \hat{k} \left[\frac{-2 (a/r)^2 S_1 + 2 (a/r) S_2}{3 + is} + \frac{(a/c)^2 (1 - is) S_5}{(1 + is)^2} \right] \quad (A16) \]

\[a \frac{\partial (w_{s1} - i v_{s1})}{\partial r} = \frac{\partial (a/c) \hat{k} S_5}{(1 + is)^2} . \quad (A17) \]

For the first partials with respect to \(x \), we have:

\[c \frac{\partial p_{s1}}{\partial x} = \left(\frac{c}{a} \right) \hat{k} \left[(1 + is)^2 \left(\frac{r}{a} \right) - S_3 \right] \quad (A18) \]

\[c \frac{\partial u_{s1}}{\partial x} = \frac{1}{1 + is} \hat{k} S_5 \quad (A19) \]
\[\frac{\partial \psi_{st}}{\partial x} = \frac{i (c/a) K}{1 - is} \left[(1 + is)^2 - \frac{2 a/r}{3 + is} \right] S_3 + (1 + is) S_4 \]

(A20)

\[\frac{\partial \psi_{st}}{\partial x} = \frac{(c/a) K}{1 - is} \left[(1 + is)^2 - \frac{(1 + is) (a/r) S_3 + 2 S_4}{3 + is} \right] \]

(A21)

\[\frac{\partial (\psi_{st} + i \psi_{st})}{\partial x} = \frac{(c/a) \dot{K}}{3 + is} \left[(a/r) S_3 - S_4 \right] \]

(A22)

\[\frac{\partial (\psi_{st} - i \psi_{st})}{\partial x} = \frac{(c/a) \dot{K}}{1 - is} \left[2 (1 + is)^2 - (a/r) S_3 - S_4 \right] \]

(A23)
APPENDIX B. VISCOUS PERTURBATION VARIABLES AT THE LATERAL WALL, \(r = a \)

In Reference 1, Murphy gives the following lateral wall boundary conditions:

\[
\begin{align*}
 p_{sv}(a,x) &= 2 \delta_a w_{sv}(a,x) \\
 u_{sv}(a,x) &= -u_{si}(a,x) - i (1 + i\sigma) \hat{k} \\
 v_{sv}(a,x) &= \delta_a \left\{ -v_{si}(a,x) - \left[a \frac{3 v_{si}}{\partial r} \right]_{r = a} + i (1 + i\sigma) (x/a) \hat{k} \right\} \\
 w_{sv}(a,x) &= -w_{si}(a,x) + (1 + i\sigma) (x/a) \hat{k}.
\end{align*}
\]

At \(r = a \) and for \(\delta_a \neq 0 \), differentiation of these variables with respect to \(r \) is equivalent to division by \(\delta_a \):

\[
\begin{align*}
 \left[a \frac{\partial p_{sv}}{\partial r} \right]_{r = a} &= 2 w_{sv}(a,x) \quad \text{(B5)} \\
 \left[a \frac{\partial u_{sv}}{\partial r} \right]_{r = a} &= \frac{u_{sv}(a,x)}{\delta_a} \quad \text{(B6)} \\
 \left[a \frac{\partial v_{sv}}{\partial r} \right]_{r = a} &= \frac{v_{sv}(a,x)}{\delta_a} \quad \text{(B7)} \\
 \left[a \frac{\partial w_{sv}}{\partial r} \right]_{r = a} &= \frac{w_{sv}(a,x)}{\delta_a} \quad \text{(B8)}.
\end{align*}
\]
APPENDIX C. VISCOUS PERTURBATION VARIABLES AT THE END WALLS, x = ±c

For h = 0, Murphy\(^1\) gives or implies the following end-wall boundary conditions:

\[p_{SV}(r,c) = 0 \] \hfill (C1)

\[u_{SV}(r,c) = -\delta \left[c \frac{3 u_{SI}}{3x} \right] x = c \] \hfill (C2)

\[v_{SV}(r,c) = -v_{SI}(r,c) + i (1 + is) (c/a) \hat{k} \] \hfill (C3)

\[w_{SV}(r,c) = -w_{SI}(r,c) + (1 + is) (c/a) \hat{k} \] \hfill (C4)

and for the other end wall:

\[p_{SV}(r,-c) = 0 \]
\[u_{SV}(r,-c) = u_{SV}(r,c) \]
\[v_{SV}(r,-c) = -v_{SV}(r,c) \]
\[w_{SV}(r,-c) = -w_{SV}(r,c) \]

The following partial derivatives are given or implied in Reference 1:

\[\left[c \frac{3 p_{SV}}{3x} \right] x = c = 0 \] \hfill (C6)
\[\begin{bmatrix} \frac{\partial u_{sv}}{\partial x} \\ \frac{\partial v_{sv}}{\partial x} \end{bmatrix}_{x = c} = - \begin{bmatrix} \frac{\partial u_{st}}{\partial x} \\ \frac{\partial v_{st}}{\partial x} \end{bmatrix}_{x = c} \quad (C7) \]

\[\begin{bmatrix} \frac{\partial w_{sv}}{\partial x} \end{bmatrix}_{x = c} = -(1/2) (a - \beta) w_{s1}(r,c) \\
- (1/2) (a + \beta) v_{s1}(r,c) \\
+ t (1 + is) \frac{c}{a} \hat{K} \beta \quad (C8) \]

\[\begin{bmatrix} \frac{\partial (w_{sv} - i v_{sv})}{\partial x} \end{bmatrix}_{x = c} = - \beta [w_{s1}(r,c) - i v_{s1}(r,c)] \\
+ 2 (1 + is) \frac{c}{a} \hat{K} \beta \quad (C9) \]

where

\[\alpha = \frac{c}{a} \left[-1 (3 + is) \text{Re} \right]^{1/2} \quad (C11) \]

\[\beta = \frac{c}{a} \left[1 (1 - is) \text{Re} \right]^{1/2} \quad (C12) \]

and where the square roots are such that the real parts of \(\alpha \) and \(\beta \) are positive.

30
APPENDIX D. DERIVATION OF THE TRANSVERSE LIQUID MOMENT COEFFICIENT EQUATIONS

Our final expression for \((C_{LM})_p\), Eq. (5.1), is obtained by substituting in Eq. (2.9):

- for \(p_{S_1}(a,x)\), using Eq. (A6);
- for \(p_{S_2}(a,x)\), using Eqs. (B1), (B4), and (A9).

The resulting integrand involves \(x_{S_1}(a,x)\) and \(x_{S_2}(a,x)\). Integration follows from the definition of \(b_k\):

\[
\begin{align*}
\frac{1}{c^2} \int_{-c}^{c} x_{S_1}(a,x) \, dx &= T_1 \\
\frac{1}{c^2} \int_{-c}^{c} x_{S_2}(a,x) \, dx &= T_2
\end{align*}
\]

(D1)

(D2)

Our final expression for \((C_{LM})_v\), Eq. (5.2), is obtained by substituting for \(p_{S_1}(r,c)\) in Eq. (2.10), using Eq. (A6). The resulting integrand involves \(r^2S_1(r,c)\). Integration follows from the properties of Bessel functions:

\[
\frac{1}{a^3} \int_{b}^{a} r^2 S_1(r,c) \, dr = (c/a)^2 \left[T_3 - (b/a) T_{3b} \right]
\]

(D3)

Our final expression for \((C_{LM})_v\), Eq. (5.3), is obtained by substituting in Eq. (2.11):

- for \(a \frac{3 \omega_{SV}}{ar}\), using Eqs. (B8), (B4), and (A9);
- for \(a \frac{3 \omega_{SV}}{2r}\), using Eqs. (B6), (B2), and (A7).

The resulting integrand involves \(S_3(a,x)\). Integration follows at once from the definition of \(S_3\):
Our final expression for \((C_{LM})\), Eq. (5.4), is obtained by substituting
for the partial derivative term in Eq. (2,12), using Eqs. (C10) and (A11).
The resulting integrand involves the combination

\[a S_1(r,c) + r S_2(r,c) = a \sum [r R_k(r)]' X_k(c) \] \hspace{1cm} (D5)

Integration follows at once:

\[a^{-2} \int_{c}^{c} \left[a S_1(r,c) + r S_2(r,c) \right] dr = T_4 - (b/a) T_{4b} \] \hspace{1cm} (D6)
APPENDIX E. NONZERO AXIAL OFFSET

Here we consider the case where the center of mass of the liquid-filled cylinder is located a distance \(h \) forward of the projectile's center of mass.

The functions \(R_k(r) \) were defined for \(k = 1, 3, 5, \ldots \) by Eq. (4.1). For nonzero \(h \), an \(R_0 \) must also be considered:

\[
R_0(r) = \left(\frac{h}{c} \right) \left[\frac{E_0}{a} + \frac{F_0}{r} \right] \tag{E1}
\]

where \(E_0 \), \(F_0 \), and \(G_0 \) have the same form as in Eqs. (4.10-4.12):

\[
E_0 = \frac{c_1 - (c_{12}/c_{22}) c_2}{G_0} \tag{E2}
\]

\[
F_0 = \frac{(c_{11}/c_{22}) c_2 - (c_{21}/c_{22}) c_1}{G_0} \tag{E3}
\]

\[
G_0 = c_{11} - (c_{12}/c_{22}) c_{21} . \tag{E4}
\]

The definitions of \(c_1 \) and \(c_2 \) [Eqs. (4.7-4.8)] are unchanged, but the \(c_{ij} \)'s reduce to:

\[
c_{11} = 3 + is \tag{E5}
\]

\[
c_{12} = (1 + 2\delta_a) (1 - is) \tag{E6}
\]

\[
c_{21} = (b/a) \ (3 + is) \ s^2 \tag{E7}
\]

\[
c_{22} = (b/a)^{-1} (1 - is) \ (2 + 4is - s^2) . \tag{E8}
\]

Note that for a fully-filled cylinder \((b = 0) \), Eqs. (E2, E3) reduce to

\[
E_0 = 2 \ is \ (1 + is) \tag{E9}
\]

\[
F_0 = 0 \tag{E9}
\]

In Reference 1, Murphy shows that the effect of \(h \) on the \(C_{LM}p_x \) equation is to add a small term:
where
\[H_{pL} = -\frac{ih}{2a^2} \int_{h-c}^{h+c} C_{p0}(a) \, dx \] (E11)

and where
\[C_{p0}(a) = \left[R_0(r) - \frac{is}{ac} (2 + isi) hr \right]_{r=a} \] (E12)

Hence, we have
\[H_{pL} = -\frac{i(h/a)^2}{\tau} [E_o + F_o - is (2 + is)] \] (E13)

For \(b = 0 \), this reduces to
\[H_{pL} = \frac{is^2 (h/a)^2}{\tau} \quad \text{[} b = 0 \text{]} \quad \text{(E13a)} \]

and for \(b = c = 0 \),
\[H_{pL} = -i\tau (h/a)^2 \quad \text{[} b = c = 0 \text{]} \] (E13b)

Offset \(h \) has no effect on \((C_{LM})_{pe}\) or on \((C_{LM})_{ve}\). The effect on the remaining component of \(C_{LM} \) can, according to Murphy, be written as
\[(C_{LM})_{ve} = [\text{RHS of Eq. (2.12)}] + H_{ve} \] (E14)

where
\[H_{ve} = \frac{ha}{2 c^2} \Re \tau \int_{b}^{a} \left[\frac{c}{K} \frac{3 (w_{sv} - iv_{sv})}{ax} \right] \frac{x = h + c}{r \, dr} \] \quad (E15)

34
From relations given by Murphy, we can simplify the integrand:

\[
\left[\frac{c}{K} \frac{a (w_{sv} - iv_{sv})}{a x} \right]_{x = h + c}^{x = h - c} = \frac{4 \beta (h/a) [E_0 - 2is (1 + is)]}{1 - is} \quad (E16)
\]

where \(\beta \) is defined in Eq. (C12) and where

\[
\beta \frac{1}{Re} = \left(\frac{c}{a} \frac{1 + i}{2 Re} \right)^{1/2} \quad (E17)
\]

Substituting (E16) and (E17) in (E15), we have

\[
H_{ve} = (h/c)^2 (c/a) \left(\frac{b^2}{a^2} \right) \frac{(1 + i) [E_0 - 2is (1 + is)]}{\tau [2 (1 - is) Re]^{1/2}} \quad (E18)
\]

Thus, the effect of offset \(h \) on the liquid moment coefficients can be written as:

\[
C_{LSM} = (C_{LSM})_{h=0} + R \{ H_{pL} + H_{ve} \} \quad (E19)
\]

\[
C_{LIM} = (C_{LIM})_{h=0} + I \{ H_{pL} + H_{ve} \} \quad (E20)
\]
APPENDIX F. CENTRAL ROD

If an air core of radius \(b \) is replaced by a central rod of radius \(d \), the formulas for \(E_k \) and \(F_k \) change. System (4.4) becomes

\[
\begin{align*}
\hat{c}_{11} E_k + \hat{c}_{12} F_k &= c_1 \\
\hat{c}_{11} E_k + \hat{c}_{12} F_k &= (d/a) c_1
\end{align*}
\]

where

\[
\hat{c}_{11} = [(1 - 2 \hat{\delta}_a)(1 - is) - (1 + is) A_{kd}^2 \hat{\delta}_a] J_{1d}
\]

\[
+ [1 + is + (1 - is) \hat{\delta}_a] A_{kd} J_{0d}
\]

\[
\hat{c}_{12} = \text{form identical to } \hat{c}_{11} \text{ with } J \text{ replaced by } Y
\]

and where*

\[
\hat{\delta}_a = a \hat{\delta}_a (d + a \hat{\delta}_a)^{-1}
\]

\[
A_{kd} = A_k (d) = \hat{\lambda}_k d/c
\]

\[
J_{0d} = J_0 (A_{kd})
\]

\[
J_{1d} = J_1 (A_{kd})
\]

and similarly for \(Y_{0d}, Y_{1d} \). The rodded \(E_k \) and \(F_k \) values are the solutions of system (F1), the rodded determinant \(G_k \) is given by

\[
(G_k)_{rod} = \hat{c}_{11} \hat{c}_{12} - \hat{c}_{11} \hat{c}_{12}
\]

and the rodded eigenvalues are the roots of the equation

\[
(G_k)_{rod} = 0.
\]

* In Reference 1, Murphy approximates \(\hat{\delta}_a \) by \(\delta_a/d \) in \(\hat{c}_{11} \) and \(\hat{c}_{12} \). This is consistent with his use of \(\delta_a \) for \(\hat{\delta}_a \) in Eq. (4.5) but is less valid. The distinction between \((d + a \hat{\delta}_a)^{-1} \) and \(d^{-1} \) can be significant for small rod radius \(d \).
The rodded value of \(C_{LM} \) will depend, of course, on the \(E_k \)'s and \(F_k \)'s computed from Eq. (F1) rather than Eq. (4.4). In addition, \(C_{LM} \) is affected by explicit changes in Eqs. (5.1-5.4). For the two end-wall components, the change consists of replacing \(b \) with \(d \):

\[
\left[(C_{LM})_{pe} \right]_{rod} = \text{the (C\(_{LM}\))}_{pe} \text{ of Eq. (5.2) with } b \text{ replaced by } d \text{ and } T_{3b} \text{ replaced by } T_{3d}
\]

\[
\left[(C_{LM})_{ve} \right]_{rod} = \text{the (C\(_{LM}\))}_{ve} \text{ of Eq. (5.4) with } b \text{ replaced by } d \text{ and } T_{4b} \text{ replaced by } T_{4d}
\]

where

\[
T_{3d} = \sum [R_k(d) - dR_k(d)] \cdot \hat{\lambda}^2 \cdot X_k(c)
\]

\[
T_{4d} = \sum R_k(d) \cdot X_k(c)
\]

For the two lateral components, new terms appear in Eqs. (5.1) and (5.3):

\[
\left[(C_{LM})_{pe} \right]_{rod} = \frac{i (c/a)^2}{\tau} \left\{ \left(1 - \frac{d^2}{a^2}\right) \frac{is \ (2 + is)}{3} - \frac{1}{2} \left[T_1 - (d/a) \ T_{1d} \right] + \frac{d}{a} \left[T_5 + T_{5d} \right] \right\}
\]

\[
\left[(C_{LM})_{ve} \right]_{rod} = -\frac{i \delta_a}{\tau} \left\{ T_4 + (d/a)^2 \ T_{4d} + \frac{(c/a)^2 \ (1 + is)}{2} \left[T_5 + T_{5d} \right] \right\}
\]

where

\[
T_{1d} = \sum R_k(d) \cdot b_k
\]
\[T_{2d} = \sum d R_k' (d) \cdot \tilde{b}_k \]
\[(F13) \]

\[T_{5d} = \frac{1}{1 - \frac{1}{15}} \left[(1 + \frac{1}{5s}) \frac{T_{1d} + 2 T_{2d}}{3 + \frac{1}{5s}} - \frac{4 (d/a) \frac{1}{5s} (1 + \frac{1}{5s})}{3} \right] . \]
\[(F14) \]
LIST OF SYMBOLS

a radius of the liquid-payload cylinder

a_k coefficients in the least-squares fit:

$$\sum a_k X_k(x) = \frac{x}{c} \quad [k = 1,3,5,...N]$$

b radius of the air core in a partially filled cylinder

b_k

$$c^{-2} \int_{-c}^{c} X_k(x) x \, dx \quad [k = 1,3,5,...]$$

bjk

$$c^{-1} \int_{-c}^{c} X_j(x) X_k(x) \, dx \quad [j, k = 1,3,5,...]$$

c half-height of the liquid-payload cylinder

d radius of a central rod within the liquid-payload cylinder

h axial offset: the distance between the centers of mass of the projectile and its liquid-payload cylinder

k axial wave number [1,3,5,...]

m azimuthal wave number (taken as 1 in this report)

m_L

$$2\pi a^2 c \rho_L, \text{ the mass of the liquid in a fully filled cylinder}$$

n radial wave number [1,2,3,...]

p_s

nondimensional pressure perturbation

p_{si}

inviscid component of p_s

p_{sv}

viscous component of p_s

r radial coordinate in an earth-fixed cylindrical system

s

$(c + 1) r$
LIST OF SYMBOLS (Continued)

\(s_g \) gyroscopic stability factor

\(s_{kn} \) eigenvalue of \(s \) for wave numbers \(k \) and \(n \)

\(t \) time

\(u_s, v_s, w_s \) axial, radial and azimuthal components of the nondimensional velocity perturbation

\(u_{si}^*, v_{si}^*, w_{si}^* \) inviscid components of \(u_s, v_s, w_s \)

\(u_{sv}^*, v_{sv}^*, w_{sv}^* \) viscous components of \(u_s, v_s, w_s \)

\(x \) axial coordinate in an earth-fixed cylindrical system

\(A_k(r) = \hat{\lambda}_k r/c \), the argument of the Bessel functions

\(B_1 = m_L a^2 / I_x \)

\(B_2 = 1 - (4 s_g)^{-1} \)

\(C_{\text{LIM}} \) liquid in-plane moment coefficient, Eqs. (2.4, 2.6)

\(C_{\text{LM}} \) \(C_{\text{LSM}} + 1 C_{\text{LIM}} \), transverse liquid moment coefficient, Eq. (2.4)

\((C_{\text{LM}})_{pe} \) that part of \(C_{\text{LM}} \) due to pressure on the end walls of the cylinder

\((C_{\text{LM}})_{pl} \) that part of \(C_{\text{LM}} \) due to pressure on the lateral wall of the cylinder

\((C_{\text{LM}})_{ve} \) that part of \(C_{\text{LM}} \) due to viscous shear on the end walls of the cylinder

\((C_{\text{LM}})_{vl} \) that part of \(C_{\text{LM}} \) due to viscous shear on the lateral wall of the cylinder

42
LIST OF SYMBOLS (Continued)

\(C_{\text{LRM}} \) liquid roll moment coefficient, Eq. (6.2)

\(C_{\text{LSM}} \) liquid side moment coefficient, Eqs. (2.4, 2.6)

\(C_p \) nondimensional magnitude of the complex pressure coefficient, Eq. (9.1)

\(E_0(s), F_0(s) \) complex functions in the definition of \(R_0 \); computed by Eqs. (E2 - E3)

\(E_k(s), F_k(s) \) complex functions in the definition of \(R_k \); computed by Eqs. (4.10 - 4.11) \([k = 1,3,5,...] \)

\(G_0(s) \) determinant of the system that determines \(E_0 \) and \(F_0 \), Eq. (E4)

\(G_k(s) \) determinant of the system (4.4) that determines \(E_k \) and \(F_k \); the roots of \(G_k(s) = 0 \) are the eigenvalues \([k = 1,3,5,...] \)

\(I_x, I_y \) axial and transverse moments of inertia of the projectile

\(J_0, J_1 \) Bessel functions of the first kind of order 0 and 1

\(K \) complex constant in the definition of \(\tilde{z} \), Eq. (2.1); Murphy's equations were obtained by linearizing with respect to \(K \)

\(M_{Lx}, M_{Ly}, M_{Lz} \) rectangular components of the liquid moment in an aeroballistic non-rolling system

\(N \) arbitrary upper limit on \(k \) for computational purposes (taken as 29 in our program)

\(R_0(r) \)

\[
\left(\frac{h}{c} \right) \left[\frac{E_0 r}{a} + \frac{F_0 a^2}{r} \right]
\]

\(Re \) Reynolds number, \(\frac{\dot{\omega} a^2}{v} \)

\(R_k(r) \)

\[
a_k [E_k J_1 (A_k) + F_k Y_1 (A_k)] \quad [k = 1,3,5,...]
\]
LIST OF SYMBOLS (Continued)

\(S_i \) summations defined in Appendix A [1 = 1 - 5]

\(T_i \) summations needed to compute \(C_{LSM} \) and \(C_{LIM} \)

Eqs. (5.5 - 5.11)

\(X_k(x) \) \(\sin \left(\lambda_k \frac{x}{c} \right) \quad [k = 1,3,5,...] \)

\(Y_0, Y_1 \) Bessel functions of the second kind of order 0 and 1

\(\alpha \) \(\left(\frac{c}{a} \right) \left[-i \left(3 + is \right) \text{Re} \right]^{1/2} \)

\(\beta \) \(\left(\frac{c}{a} \right) \left[i \left(1 - is \right) \text{Re} \right]^{1/2} \)

\(\delta_a \) \(\left(1 + i \right) \left[2 \left(1 + is \right) \text{Re} \right]^{-1/2} \)

\(\delta_c \) \(\frac{1}{2 \left(1 + is \right)} \left[\frac{3 + is}{\beta} - \frac{1 - is}{\alpha} \right] \)

\(c \) (yaw damping rate)/(coning rate)

\(c_A \) aerodynamic damping constant, Eq. (8.1)

\(\theta \) azimuthal coordinate in an earth-fixed cylindrical system

\(\lambda_k \) nondimensional frequency number, determined from Eq. (3.2)

\([k = 1,3,5,...] \)

\(\lambda_k \) \(\left(\frac{3 + is}{1 + is} \right)^{1/2} \lambda_k \)

\(u \) kinematic viscosity of the liquid
LIST OF SYMBOLS (Continued)

\(\dot{\omega} \)
\(\dot{\omega} e^{\text{Sf}} \), the complex yaw in an aeroballistic non-rolling coordinate system

\(\rho_L \)
density of the liquid

\(\tau \)
coning rate/\(\dot{\omega} \)

\(\tau_{kn} \)
eigenvalue of \(\tau \) for wave numbers \(k \) and \(n \)

\(\phi \)
\(\dot{\omega} \)

\(\dot{\phi} \)
spin (assumed positive and constant)

\(\phi_p \)
orientation angle of the complex pressure coefficient, Eq. (9.1)

\([\cdot] \)
complex conjugate

\([\cdot]' \)
derivative with respect to whatever independent variable is present

\([\cdot]_b \)
value at \(r = b \)

\([\cdot]_d \)
value at \(r = d \)
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 12 | Administrator
 Defense Technical Information Center
 ATTN: DTIC-DDA
 Cameron Station
 Alexandria, VA 22314 |
| 1 | Commander
 US Army Engineer Waterways Experiment Station
 P.O. Box 631
 ATTN: R. H. Malter
 Vicksburg, MS 39180 |
| 1 | Commander
 US Army Materiel Development and Readiness Command
 ATTN: DRCDMD-ST
 5001 Eisenhower Avenue
 Alexandria, VA 22333 |
| 1 | Commander
 Armament R&D Center
 US Army AMCOM
 ATTN: DRSMC-TDC(D)
 Dover, NJ 07801 |
| 2 | Commander
 Armament R&D Center
 US Army AMCOM
 ATTN: DRSMC-TSS(D)
 Dover, NJ 07801 |
| 6 | Commander
 Armament R&D Center
 US Army AMCOM
 ATTN: DRSMC-LCA-F(D)
 Mr. D. Mertz
 Mr. E. Falkowski
 Mr. A. Loeb
 Mr. R. Kline
 Mr. S. Kahn
 Mr. S. Wasserman
 Dover, NJ 07801 |
| 1 | Director
 US Army Air Mobility Research and Development Laboratory
 Ames Research Center
 Moffett Field, CA 94035 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Commander</td>
<td>US Army Missile Command</td>
<td>2 Commandant</td>
<td>US Army Infantry School</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMI-YDL</td>
<td></td>
<td>ATTN: ATSH-CD-CSO-OR</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898</td>
<td></td>
<td>Fort Benning, GA 31905</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Missile Command</td>
<td>3 Commander</td>
<td>Naval Air Systems Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMI-R</td>
<td></td>
<td>ATTN: AIR-604</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898</td>
<td></td>
<td>Washington, DC 20360</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Missile Command</td>
<td>2 Commander</td>
<td>David W. Taylor Naval Ship</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMI-RDK, Mr. R. Deep</td>
<td></td>
<td>Research & Development Ctr</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898</td>
<td></td>
<td>ATTN: H.J. Lugt, Code 1802</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. de los Santos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Commander</td>
<td>Bethesda, MD 20084</td>
</tr>
<tr>
<td></td>
<td>Naval Surface Weapons Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: DX-21, Lib Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dahlgren, VA 22448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Director</td>
<td>US Army TRADOC Systems</td>
<td>4 Commander</td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Analysis Activity</td>
<td></td>
<td>Applied Aerodynamics Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATAA-SL</td>
<td></td>
<td>ATTN: J.T. Frasier</td>
</tr>
<tr>
<td></td>
<td>White Sands Missile Range,</td>
<td></td>
<td>M. Climent</td>
</tr>
<tr>
<td></td>
<td>NM 88002</td>
<td></td>
<td>A.E. Winklemann</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W.C. Ragsdale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 AFATL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(DLDL, Dr. D.C.Daniel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eglin AFB, FL 32542</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 AFWAL</td>
<td>(W.L. Hankey; J.S. Shang)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wright-Patterson AFB, OH 45433</td>
</tr>
<tr>
<td>1 Aerospace Corporation</td>
<td>Aero-Engineering Subdivision</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aviation Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subdivision</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: Walter F. Reddall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>El Segundo, CA 90245</td>
</tr>
<tr>
<td>1 AGARD-NATO</td>
<td>ATTN: R.H. Korkegi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APO New York 09777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 AFML/SUL</td>
<td>Kirtland AFB, NM 87117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Director National Aeronautics and Space Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ames Research Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: D.R. Chapman</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Rakich</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W.C. Rose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Wick</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Kutler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moffett Field, CA 94035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Director National Aeronautics and Space Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langley Research Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Lib</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. South</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langley Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hampton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VA 23365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director National Aeronautics and Space Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lewis Research Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: MS 60-3, Tech Lib</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland, OH 44135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Director National Aeronautics and Space Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marshall Space Flight Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: A.R. Felix, Chief</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S&SE-AERO-AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. W.W. Fowlis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Aerospace Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: H. Mirels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R.L. Varwig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aerophysics Lab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 92957</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Director Jet Propulsion Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: L.M. Mach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tech Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4800 Oak Grove Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pasadena, CA 91103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Arnold Research Org., Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: J.D. Whitfield</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R.K. Matthews</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J.C. Adams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arnold AFB, TN 37389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AVCO Systems Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: B. Reeves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201 Lowell Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wilmington, MA 01887</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Boeing Commercial Airplane Company</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: R.A. Day, MS 1W-82</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.E. Rubbert, MS 3N-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J.D. McLean, MS-3N-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seattle, WA 98124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Calspan Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: A. Ritter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Homicz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. Rae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Research Lib 2246</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 748</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Worth, TX 76101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Electric Company, RESD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: W.J. East</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3198 Chestnut Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Grumman Aerospace Corporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: R.E. Melnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L.G. Kaufman</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bethpage, NY 11714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Lockheed-Georgia Company</td>
<td>2</td>
<td>United Aircraft Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: B.H. Little, Jr.</td>
<td></td>
<td>Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>G.A. Pounds</td>
<td></td>
<td>ATTN: M.J. Werle; Library</td>
</tr>
<tr>
<td></td>
<td>Dept 72074, Zone 403</td>
<td></td>
<td>400 Main Street</td>
</tr>
<tr>
<td></td>
<td>86 South Cobb Drive</td>
<td></td>
<td>East Hartford, CT 06108</td>
</tr>
<tr>
<td></td>
<td>Marietta, GA 30062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lockheed Missiles and Space Company</td>
<td>1</td>
<td>Vought Systems Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Info Center</td>
<td></td>
<td>LTV Aerospace Corporation</td>
</tr>
<tr>
<td></td>
<td>3251 Hanover Street</td>
<td></td>
<td>ATTN: J.M. Cooksey, Chief,</td>
</tr>
<tr>
<td></td>
<td>Palo Alto, CA 94304</td>
<td></td>
<td>Gas Dynamics Lab,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-53700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P.O. Box 5907</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dallas, TX 75222</td>
</tr>
<tr>
<td>3</td>
<td>Martin-Marietta Laboratories</td>
<td>1</td>
<td>Arizona State University</td>
</tr>
<tr>
<td></td>
<td>ATTN: S.H. Maslen</td>
<td></td>
<td>Department of Mechanical and</td>
</tr>
<tr>
<td></td>
<td>S.C. Traugott</td>
<td></td>
<td>Energy Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>H. Obremski</td>
<td></td>
<td>ATTN: G.P. Neitzel</td>
</tr>
<tr>
<td></td>
<td>1450 S. Rolling Road</td>
<td></td>
<td>Tempe, AZ 85281</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>McDonnell Douglas Astronautics Corporation</td>
<td>1</td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Xerikos</td>
<td></td>
<td>Graduate School of Aero Engr</td>
</tr>
<tr>
<td></td>
<td>H. Tang</td>
<td></td>
<td>ATTN: Library</td>
</tr>
<tr>
<td></td>
<td>5301 Bolsa Avenue</td>
<td></td>
<td>Ithaca, NY 14850</td>
</tr>
<tr>
<td></td>
<td>Huntington Beach, CA 92647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>McDonnell-Douglas Corporation</td>
<td>3</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Douglas Aircraft Company</td>
<td></td>
<td>ATTN: Tech Library</td>
</tr>
<tr>
<td></td>
<td>ATTN: T. Cebeci</td>
<td></td>
<td>H.B. Keller, Math Dept</td>
</tr>
<tr>
<td></td>
<td>3855 Lakewood Boulevard</td>
<td></td>
<td>D. Coles, Aero Dept</td>
</tr>
<tr>
<td></td>
<td>Long Beach, CA 90801</td>
<td></td>
<td>Pasadena, CA 91109</td>
</tr>
<tr>
<td>3</td>
<td>Rockwell International Science Center</td>
<td>1</td>
<td>Illinois Institute of Tech</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. V. Shankar</td>
<td></td>
<td>ATTN: H. M. Nagib</td>
</tr>
<tr>
<td></td>
<td>Dr. N. Malmuth</td>
<td></td>
<td>3300 South Federal</td>
</tr>
<tr>
<td></td>
<td>Dr. S. Chakravarthy</td>
<td></td>
<td>Chicago, IL 60616</td>
</tr>
<tr>
<td></td>
<td>1049 Camino Dos Rios</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thousand Oaks, CA 91360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sandia National Laboratory</td>
<td>1</td>
<td>The Johns Hopkins University</td>
</tr>
<tr>
<td></td>
<td>F.G. Blottner</td>
<td></td>
<td>ATTN: S. Corrsin</td>
</tr>
<tr>
<td></td>
<td>W.L. Oberkampf</td>
<td></td>
<td>Baltimore, MD 21218</td>
</tr>
<tr>
<td></td>
<td>Tech Lib.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albuquerque, NM 87115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

50
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| **4** Director | Johns Hopkins University
Applied Physics Laboratory
ATTN: Dr. R.D. Whiting
Dr. D.A. Hurdif
Dr. R.S. Hirsh
Mr. E.R. Bohn
Johns Hopkins Road
Laurel, MD 20707 |
| **2** Polytechnic Institute of New York
ATTN: G. Moretti
S.G. Rubin
Route 110
Farmingdale, NY 11735 |
| **3** Massachusetts Institute of Technology
ATTN: E. Covert
H. Greenspan
Tech Lib
77 Massachusetts Avenue
Cambridge, MA 02139 |
| **2** North Carolina State Univ
Mechanical and Aerospace Engineering Department
ATTN: F.F. DeJarnette
J.C. Williams
Raleigh, NC 27607 |
| **1** Northwestern University
Department of Engineering Science and Applied Mathematics
ATTN: Dr. S.H. Davis
Evanston, IL 60201 |
| **1** Notre Dame University
Department of Aero Engr
ATTN: T.J. Mueller
South Bend, IN 46556 |
| **2** Ohio State University
Dept of Aeronautical and Astronautical Engineering
ATTN: S.L. Petrie
O.R. Burggraf
Columbus, OH 43210 |
| **1** Purdue University
Thermal Science & Prop Ctr
ATTN: Tech Library
W. Lafayette, IN 47906 |
| **1** Rensselaer Polytechnic Institute
Department of Math Sciences
ATTN: R.C. Diprima
Troy, NY 12181 |
| **1** Southern Methodist University
Department of Civil and Mechanical Engineering
ATTN: R. L. Simpson
Dallas, TX 75272 |
| **1** San Diego State University
Department of Aerospace Engr
Engineering Mechanics
College of Engineering
ATTN: K.C. Wang
San Diego, CA 92182 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Southwest Research Institute Applied Mechanics Reviews 8500 Culebra Road San Antonio, TX 78228</td>
<td>2</td>
<td>University of Maryland ATTN: W. Melnik J.D. Anderson College Park, MD 20740</td>
</tr>
<tr>
<td>2</td>
<td>Stanford University Dept of Aeronautics/Astronautics ATTN: Dr. J.L. Steger Dr. S. Chakravarthy Stanford, CA 94305</td>
<td>1</td>
<td>University of Maryland - Baltimore County Department of Mathematics ATTN: Dr. Y.M. Lynn 5401 Wilkens Avenue Baltimore, MD 21228</td>
</tr>
<tr>
<td>1</td>
<td>Texas A&M University College of Engineering ATTN: R.H. Page College Station, TX 77843</td>
<td>1</td>
<td>University of Santa Clara Department of Physics ATTN: R. Greeley Santa Clara, CA 95053</td>
</tr>
<tr>
<td>1</td>
<td>University of California - Davis ATTN: H.A. Dwyer Davis, CA 95616</td>
<td>2</td>
<td>University of Southern California Department of Aerospace Engineering ATTN: T. Maxworthy P. Weidman Los Angeles, CA 90007</td>
</tr>
<tr>
<td>1</td>
<td>University of California - Berkeley Department of Aerospace Engineering ATTN: M. Holt Berkeley, CA 94720</td>
<td>2</td>
<td>University of Michigan Department of Aeronautical Engineering ATTN: W.W. Wilmarth Tech Library East Engineering Building Ann Arbor, MI 48104</td>
</tr>
<tr>
<td>2</td>
<td>University of California - San Diego Department of Aerospace Engineering and Mechanical Engineering Sciences ATTN: P. Libby Tech Library La Jolla, CA 92037</td>
<td>2</td>
<td>University of Rochester Department of Mechanical and Aerospace Sciences ATTN: R. Gans A. Clark, Jr. Rochester, NY 14627</td>
</tr>
<tr>
<td>1</td>
<td>University of Cincinnati Department of Aerospace Engineering ATTN: R.T. Davis Cincinnati, OH 45221</td>
<td>1</td>
<td>University of Tennessee Department of Physics ATTN: Prof. W.E. Scott Knoxville, TN 37916</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>University of Texas</td>
<td>1</td>
<td>Woods Hole Oceanographic Institute</td>
</tr>
<tr>
<td></td>
<td>Department of Aerospace Engineering</td>
<td></td>
<td>ATTN: J.A. Whitehead</td>
</tr>
<tr>
<td></td>
<td>ATTN: J.C. Westkaemper</td>
<td></td>
<td>Woods Hole, MA 02543</td>
</tr>
<tr>
<td></td>
<td>Austin, TX 78712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Virginia</td>
<td>3</td>
<td>Virginia Polytechnic Institute</td>
</tr>
<tr>
<td></td>
<td>Department of Aerospace Engineering</td>
<td></td>
<td>and State University</td>
</tr>
<tr>
<td></td>
<td>Engineering & Engineering Physics</td>
<td></td>
<td>Department of Aerospace Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: I.D. Jacolson</td>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td>Charlottesville, VA 22904</td>
<td></td>
<td>ATTN: Tech Library</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dr. W. Saric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dr. T. Herbert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blacksburg, VA 24061</td>
</tr>
<tr>
<td>1</td>
<td>University of Virginia Research Laboratories</td>
<td></td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td></td>
<td>for the Engineering Sciences</td>
<td></td>
<td>Director, USAMSAA</td>
</tr>
<tr>
<td></td>
<td>ATTN: Prof. H. G. Wood</td>
<td></td>
<td>ATTN: DRXY-D</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 3366</td>
<td></td>
<td>DRXY-MP, H. Cohen</td>
</tr>
<tr>
<td></td>
<td>University Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charlottesville, VA 22903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Washington</td>
<td></td>
<td>Commander, USATECOM</td>
</tr>
<tr>
<td></td>
<td>Department of Mechanical Engineering</td>
<td></td>
<td>ATTN: DRSTE-TO-F</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Library</td>
<td></td>
<td>Commander, CRDC, USAAMCCOM</td>
</tr>
<tr>
<td></td>
<td>Seattle, WA 98105</td>
<td></td>
<td>ATTN: DRSNC-CLB-PA</td>
</tr>
<tr>
<td>1</td>
<td>University of Wyoming</td>
<td></td>
<td>W. C. Dee</td>
</tr>
<tr>
<td></td>
<td>ATTN: D.L. Boyer</td>
<td></td>
<td>DRSNC-CLB-PA</td>
</tr>
<tr>
<td></td>
<td>University Station</td>
<td></td>
<td>M. C. Miller</td>
</tr>
<tr>
<td></td>
<td>Laramie, WY 82071</td>
<td></td>
<td>DRSNC-CLJ-L</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Military Academy</td>
<td></td>
<td>DRSNC-CLB-PA</td>
</tr>
<tr>
<td></td>
<td>Department of Physics</td>
<td></td>
<td>DRSNC-CLN</td>
</tr>
<tr>
<td></td>
<td>ATTN: MAJ G. Heuser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Point, NY 10996</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>