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INTRODUCTION

To increase the maximum pressure a cylinder can contain, it is common

practice to produce a more advantageous stress distribution involving residual

compressive hoop stresses near the bore by autofrettage treatment of the

cylinder prior to use (ref 1). The determination of residual stresses is

important in the fracture analysis and the fatigue life estimation (refs 2-6).

There is, however, considerable disagreement over solutions obtained by

different investigators for the residual stress distribution in the cylinder

after the autofrettage process (refs 7-12). This discrepancy in residual

stress is a result of different mathematical methods, end conditions, and

material models. Different assumptions for the material properties such as

compressibility, yield criterion, flow rule, hardening rule, Bauschinger

effect, etc., can lead to many material models. Most of the earlier solutions

for residual stresses were based on the assumption of elastic unloading and

only a few considered reverse yielding (refs 8,11). For unloading with

reverse yielding, there is no general agreement in the literature over which

material model should be used. Many plasticity theories have been proposed

and reviewed (ref 13), yet no theory is completely adequate. In particular,

it seems that no theoretical model has been given to represent accurately the

actual material behavior in a high strength steel as reported by Milligan,

Koo, and Davidson (ref 14).

References are listed at the end of this report.
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In this report a new theoretical model is proposed with one attempt to

give a better representation of the actual loading/unloading behavior in a

high strength steel. A closed-form solution for calculating residual stresses

in autofrettaged thick-walled cylinders is obtained, and some numerical

results will show the influence of the Bauschinger and hardening effects.

MATERIAL BEHAVIOR AND MODELING

The material chosen for this investigation was a modified 4330 steel

having a martensitic structure. A description of its chemical composition and

various heat treatments is given in Reference 14 by Milligan, Koo, and

Davidson. They studied material behavior by utilizing a uniaxial tension-

compression specimen. Figure 1 shows the stress-strain curve during loading

and unloading after overstrains in tension. The stress-strain curve during

loading was assumed to be elastic-perfectly plastic. This was a good

approximation since the tensile test exhibited very little strain-hardening

during loading. This would also be true for other steels used such as in

References 6 and 9.

Initially the yield stresses in tension and compression are approximately

equal so that the material :an be considered as isotropic. However, the ratio

of the yield stress upon reverse yielding LU the initial yield stress is

strongly affected by overstrain as shown in Figure 1. The values of the

Bauschinger effect factor (BEF) also depend on the offset, and the 0.1 percent

offset was chosen for the present study. Figure 2 shows the Bauschinger

effect factor (f) as a function of percent tensile overstrain (C P). The graph

shows a decrease of the BEF with an increasing amount of tensile prestrain up
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to approximately two percent, at which point it becomes effectively constant

(ref 14).

The Bauschinger effect factor is very important in determining the range

of elastic unloading. After reverse yielding occurs, a very large slope of

strain-hardening will develop, even though the initial tensile test exhibits

very little strain-hardening. A bilinear model for elastic-plastic unloading

is proposed here, as shown in Figure 1. Choosing a new coordinate system

(0',0') with the origin at the point before unloading, we have for the plastic

portion of the reverse yielding curve

o'/oo - 1 + f + m'4'/(l-m') (1)

where V' - (E/oo)c'P, E is Young's modulus, oo is the initial yield stress,

m'E is the slope of the strain-hardening after reverse yielding, and E'P is

the additional plastic strain during unloading.

LA
ELASTIC-PLASTIC LOADING

Consider a thick-walled cylinder, inner radius a, and external radius b,

which is subjected to inner pressure p. The material is assumed to be elastic

ideally plastic, obeying the Treaca's yield criterion and the associated flow

theory. The elastic-plastic solution during loading has been found by Koiter

(ref 7). The expressions for the stresses and strains are:

Or/lo 1 p2  p (Pa)
oo/co " (• M +-) - log - , in (a 4 r ( p)2b" r (3a)

Or/co 1 p 2  p2 (2b)

2 b2 ~ in (p 4 r 4. b) ( b
rea 2  ) '(3b)

0Z/0o v(Or+Oe)/oo + gECZ/o (4)
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i i i i I I I I I I I
Or 2

--..o (I -2v)( +',) -- +- (1-• 2 ) r• - v-- (•)
a 00 r it) r Gij

and

(E/o 0 ) 0 = (ii-2v)(Plu0 )!(b~la'-1) (6)

where P = 0 (open-end) I (zlosed-end), and i; ts the elastic-plastic boundary

relating to the internal pressure p by

I
P/ 0° 2 (l-,'/b-) + log( /a) (7)

The equivalent plastic strain car ho calculated by

/ = • pp( ' / r2-1) in (a % r (

and
Kl (21/Y) (l- v 2) (8)

REVERSE YIKLDING

If the pressure p given by Eq. (7) is subsequently completely removed

with no reverse yielding, the unloading is entirely elastic and the solution

is given by

Or' p b 2  (9)

00 bz/a 2-1 r (10)

oz- V(or'+0') + E Lz' (11)

Ei t' ' = -( ý-2,) jp/ (b 2/'j - 1) (12)

E u/r =-[(l-v-Wv) +. (l-v)b2/r2]p/(b2/aZ-l) (13)

Let a double prime denote a component in the residual state, i.e., ub" -

00 + 00'. Assuming a reduced compressive yield strength as a result of the

Bauechinger effect and using Tresca's criterion subject to Or" > oZ" > o0",

the reverse yielding will not occur iF
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<
Or" - 0" - f 0o (14)

Substituting the loading and unloading solutions iato Eq. (14), we can

determine the minimum pressure (Pm) for reverse yielding to occur. The

equation for pm is given by [

pm/o- 2(+f)(l-a2/b2) (15) {
Equating Eq. (7) to Eq. (15), we can calculate pm and determine the maximum

amount of overstrain for reverse yielding not to occur.

ELASTIC-PLASTIC UNLOADING

Now suppose that the loading has been such that the internal pressure is

larger than pm given by Eq. (15). On unloading, yielding will occur for a<

r < P' with P' < P. Taking into account the Bauschinger effect (f) and the

strain-hardening during unloading (m'), we have

Or" 0 06" " f Co + MI'EC' P/(-M') (16)

assuming that Or" oz." a os" in a 4 r 4 P'.

The material is assumed to be elastic-plastic, obeying the Tresca's yield

criterion, the associated flow theory, and a linear strain-hardening rule

during unloading. Following the procedure in Bland's work (ref 8), a closed-

form solution for elastic-plastic unloading can be obtained. The stresses in

the reverse yielding zone (a 4 r 4 p') are given by

1
Or'/Oo " p/oo - a B2' (l+f)(P'/a) 2 (l-a 2 /r 2 ) - (1-02')(l+f) log(r/a) (17)

2

061/0" Or'/Oo - (l+f) - m'I/(1-m') (18)

' B1 '(l+f)(P' 2 /r 2-1) (19)
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where

* l (1-rn')/[rn' + - 2;1 ' •2' - m' Il'/1(1-r') (20)
all + ~~2 (1-v2) ) 2(0

The stresses in the elastic zone (W' 4 r 4 b) are

Or'/Oo (21)
2 - (l+f);t (P'/r)2 - (p'/b) ] (22)

•ele 2 (22)

The other expressions for the entire tube (a • r • b) are

Oz'/Oo V(Ur'+O0)/Oo + E Cz'/Io (23)

E tz'/o - -w•-2v)(p/0o)/(b 2 /a 2 -1) (24)

(E/oo) u'/r =(- 2 V)(lV)(Or'/do) •(-v 2 )(1+f)(P'/r) 2 - yE tz'fo (25)

The residual stresses and the residual displacement are found by addition

r "r + Or' Z'6" " 4- O' z" zU + °

and u" u u + u' (26)

NUMERICAL RESULTS AND DISCUSSION

The numerical results for two closed-end thick-walled cylinders with b/a

- 2 and 3 were obtained. Various values of f and m' were used for the purpose

of showing the Bauschinger and hardening effects on residual stresses.

Although the numerical results for all the stresses, strains, and displacement

were obtained, only those for the residual hoop stresses will be shown here.

The material constants used in all cases were v - 0.3, E/oO - 200. The slope

of unloading after reverse yielding was estimated to he 0.3E for a high

strength steel (ref 14).

The residual stress distributions in an autofrettaged thick tube of wall 4

ratio two are shown in Figure 3 for P/a - 1.4 and 1.8. For a 40 percent

autofrettaged tube, we have shown the results for three cases (a) f - 1, m' -

i

6i
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r -

0; (b) f " 0.50, m' 0 0; (c) f " 0.50, m' 0.3. T'he first case represents no

Bauschinger effect with no reverse yielding. The second case shows the

Bauschinger effect only (ref 11). The third case shows the influence of the

combined Bauschinger and hardening effects. For an 80 percent autofrettaged

tube, we have shown the residual stress distributions for three cdses (a) f -

1, m' - 0; (b) f - 0.42, m' - 0; (c) f - 0.42, m' - 0.3. Now the influence of

the Bauschinger and hardening effects is more significant. Comparing the

residual hoop stress at the bore given by cases (a) and (b) with case (c), the

results indicate that neglecting both effects will overestimate by 46 percent,

while including the Bauschinger effect only will underestimate by 25 percent.

The residual stress distributions in an autofrettaged thick tube of wall.

ratio three are shown in Figure 4 for p/a - 1.4 and 2.2. The values of f used j
for the 20 and 60 percent autofrettage are 0.54 and 0.40, respectively. If

the hardening effect (m') is neglected, we would have a smaller compressive

stress at the bore. If we neglect both the Bauschinger and hardening effects,

i.e., f - I and m' - 0, we would have a larger residual compressive stress at

the bore. At 60 percentage autofrettage, reverse yielding still occurs but in

a smaller portion of the tube around the bore.

In order to further di3cuss the Bauschinger and hardening effects on the

residual stress distributions, we have used other values for f and m' in a

thick tube with wall ratio three and 100 percent a':..frettage. Figure 5 shows

the Bauschinger effect (f - 0.36, 0.68, 1.00) only with no hardening (m' - 0).

Figure 6 shows the effect o: hardening (m' - 0, 0.1, 0.2, 0.3) with f - 0.36.

Figure 7 shows the Bauschinger effect (f - 0.36, 0.68, 1.00) with hardening

(m' - 0.3). These results indicate that the influence of the combined

7i



Saumchinger and hardening effect3 on the residual stresa distribution is

s ignif icant.

CONCLUSIONS

A new theoretical model for a high strength steel has been proposed. The

real Bauschinger effect factor can be used to determine the range of elastic

unloading. The small strain-hardening during loading is neglected, but the

large strain-hardening after reverse yielding is taken into account.

A closed-form solution for calculating the residual stresses and strains

with reverse yielding has been obtained. The numerical results for the

residual stress distrtbutlons in two autofrettaged thick-walled cylinders have

been given. The new results indicate that the influence of the combined

lauschinger and hardening effects on the residual stress distribution io

significant.

Comparing the residual hoop stress at the bore for an 80 percent

autofrettaged tube with wall ratio two, Koiter's model neglect'ing both effects

(ref 7) will nverestimate by 46 percent, while Parker's model including the

BauschtqRer effect onlb (ref I1) will underestimate by 25 percent when

compared with the present model taking into account both the Bauschinger and

hardening effects.
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Figure 1. Stress-strain curve during loading and unloading.
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Figure 2. Bauschinger effect factor as a function of pre-strain.

11



I
r/a

"2el--- Z 1.4 -

-. 50

(b)

I

Figure 3. Residual stress distribution in ar autofrettaged tube
(b/a = 2, p/a = 1.4 and 1.8).
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Figure 4. Residual stress distribution in an autofrettaged tube
(b/a ' 3, p/a = 1.4 and 2.2).
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Figure 6. Hardening effect on residual stress distribution
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stress distribution (h = p = 3a, m' = 0.3).
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