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INTRODUCTION

To increase the maximum pressure a cylinder can contain, it is common
practice to producc a more advantageous stress distribution involving residual
compressive hoop stresses near the bore by autofrettage treatment of the
cylinder prior to use (ref l). The determination of residual stresses is
important ian the fracture analysis and the fatigue life estimation (refs 2-6).
There is, however, considerable disagreement over sclutions obtained by
different investigators for the residual stress distribution in the cylinder
after the autofrettage process (refs 7-12). This discrepancy in residual
stress 1s a result of different mathematical methods, end conditions, and
material models. Different assumptions for the material properties such as
compressibility, yleld criterion, flow rule, hardening rule, Bauschinger
effect, etc., can lead to many material models. Most of the earlier solutions
for resi{dual stresses were based on the assumption of elastic unloading and
only a few considered reverse yielding (refs 8,11). For unloading with
reverge ylelding, there {s no general agreement in the l{terature over which
material model should be used. Many plasticity theories have been proposed
and reviewed (ref 13), yet no theory is completely adequate. In particular,
it seems that no theoretical model has been given to represent accurately the
actual material behavior in a high strength steel as reported by Milligan,

Koo, and Davidson (ref 14).

References are listed at the end of this report.
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In this report a new theoretical model 1s proposed with one attempt to
give a better representation of the actual loading/unloading behavior in a

high strength steel. A closed-form solution for calculating residual stresses

in autofrettaged thick-walled cylinders Ls obtalned, and some numerical

results will show the influence of the Bauschinger and hardening effects.

MATERIAL BEHAVIOR AND MODELING

The material chosen for this investigation was a modified 4330 steel
having a martensitic structure. A description of Its chemical composition and
various heat treatments is given in Reference 14 by Milligan, Koo, and
Davidson. They studied material behavior by utilizing a uniaxial tension-
compression specimen. Figure 1 shows the stress—strain curve during loadling
and unloading after overstralns in tension. The stress-strain curve during
loading was assumed to be elastic-perfectly plastic. This was a good
approximation since the tengile test exhibited very little strain-hardening
during loading. This would also be true for other steels used such as in
References 6 and 9.

Initially the yield stresses in tenslon and compression are approximately
equal so that the material -an be considered as isotropic. However, the ratto
of the yield stress upon reverse ylelding to the {nitial yi{eld stress is
strongly affected by overstralin as shown in Figure 1. The values of the
Bauschinger effect factor (BEF) also depend on the offset, and the 0,1 percent
offget was chosen for the present study. Figure 2 shows the Bauschinger

p
effect factor (f) as a functlon of percent tensile overstrain (€ ). The graph

shows a decrease of the BEF with an increasing amount of tenglle prestrain up
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to approximately two percent, at which point {t becomes effectively counstant
(ref 14),

The Bauschinger effect factor is very important in determining the range
of elastic unloading. After reverse ylelding occurs, a very large slope of
strain~hardening will develop, even thcugh the initial tensile test exhibits
very little strain-hardening. A bilinear model for elastic-plastic unloading
is proposed here, as shown in Figure 1. Choosing a new coordinate systen
(o',e') with the origin at the point before unloading, we have for the plastic
portion of the reverge yielding curve

o'/ag= 1+ £ + m'¢'/(l-n") (1)
where ' = (E/o,)c'P, E is Young's modulus, 0, {8 the initial yield stress,
o'E 1s the slope of the strain-hardening after reverse yielding, and €'P ig

the additional plastic strain during unloading.

ELASTIC-PLASTIC LOADING

Consider a thick-walled cylinder, inner radius =2, and external radius b,
vwhich is subjected to inner pressure p. The material i{s assumed to be elastic
ideally plastic, obeying the Tresca's yield criterion and the associated flow
theory. The elastic-plastic solution during loading has been found by Koiter

(ref 7). The expressiong for the stresses and strains are:

or/0s 1 p2 p (2a)
= - (*1+ =3) ~log - , in(a <r <p)
0g/04 2 b r (3a)
op/dq 1 p2  p2 (2b)
- - (-3 F-3) » tn(e < <b)
og/o, 2 b r (3b)

0/ 05 = v(optog)/ oy + Bep/ag (4)
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and

i (E/og) €, = (u=29)(p/og)/(b4/a%-1)

relat{ng to the {nternal pressure p hy
1 . ¥
p/og = > (1-+</b") + log(u/a)

The equivalent plastic straln can be calculated by
p .
(E/ug)r = o = pp{»/ré-1) in(a S r < )
and — ,
Py o= (2/93)(1=v7)
REVERSE YIELDING

If the pressure p given hy Eq. (7) is subsequently completely removed

(3)

(6)

where u = 0 (open-end), 1 (closed-end), and ;: {s the elastic-plastic boundary

(7)

(8)

with no reverse yielding, the unloading 1is entirely elastic and the solution

is given by
g.! 2
r - ___Bz__ + .__2. - 1]
00' bZ/a -1
0," = Vv(op'+og') + E &’

£ oe,' = ~(L=2v)p/(b?/a’-1)
E u/r = =[(1=v-uwv) + (1+V)b%/r]p/(b’/a‘-1)
Let A double prime denote a component in the residual state, i.e., ug
og + 0p'+ Assuming a reduced compressive yield strenpth as a result of th

Bauschinger effect and using Tresca's critecion subject to o." > 0" > og”

the reverse ylelding will not occur 1iFf

(9
(10)
(1)
(12)
(13)
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- og" = £ o, (14
Substituting the loading and unloading solutions into Eq. (l4), we can
deternine the minimum pressure (p,) for reverse yilelding to occur. The

equation for p, is given by

. .
Pa/% = 3 (1+£)(1-a%/b2) (15)

Equating Eq. (7) to Eq. (15), we can calculate p; and determine the maximum

anmount of overstrain for reverse ylelding not to occur.

ELASTIC-PLASTIC UNLOADING

Now suppose that the loading has been such that the internal pressure {s
larger than py, given by Eq. (15). On unloading, yielding will occur for a <
r < p' with p' < p. Taking into account the Bauschinger effect (E) and the
strain-hardening during unloading (m'), we have

Op” = 0g" = f 05 + m'Ee‘p/(l-m') (16)
assuming that o, " » 0," » 093" ina ¢ r < p'.

The material is assumed to be elastic-plastic, obeying the Tresca's yleld
criterion, the associated flow theory, and a linear strain-hardening rule
during unloading. Following the procedure {n Bland's work (ref 8), a closed-
form solution for elastic-plastic unloading can be obtained. The stresses in

the reverge yielding zone (a € r € p') are given by
1 2 27..2
Gp'/ag = plog = E B2' (M+£)(p'/a)“(1-a°/r) - (1-82')(1+f) log(r/a) (17)

0g'/0g = 0p'/0g = (14f) - m'¢'/(1-a") (18)

g o= By'(L+E)(p'2/c%-1) (19)
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where

. ' ) ) By '8/ (1~m’ (20)
gy' = (1=-m")/[m' + 3 (l_vz)l » B2 m' By /(1~m")

The stressea in the elastic zone (p' € r < b) are

g,.'/o 1 . (21)
O e s it (/) - (0'/0) )
ag'/og 2 (22)
The other expressions for the entire tube (a < r \ b) are
9,'/ 0 = V(up'+0g')/ 0y + E €'/ 4, (23)
E €,'/ 0y = =(1=2V)(p/uy)/(b?/a2-1) (24)

(Ef0g) u'/r = (1=20)(14V)(0,"/0o) = (1-vA(I+E)(p'/r)? = VE €," /0,  (25)
The resfdual stresses and the residual displacement are found by addition

g " = 0p + 0p' , 0" mog+ oy’ , 0" w o, + g,

and u” = u + u’ (26)

NUMERICAL RESULTS AND DISCUSSION

The numerical results for two closed-end thick~-walled cylinders with b/a
= 2 and 3 were obtained. Various values of f and m' were used for the purpose
of showing the Bauschinger and hardening effects on residual stregses.
Although the numerical results for all the stresges, strains, and displacement
were obtained, only those for the residual hoop stresses will be shown here.
The material constants used in all cases were Vv = 0.3, E/o, =« 200. The slope
of unloading after reverse yielding was estimated to be 0.3E for a high
strength steel (ref 14).

The residual stresg distributions in an autofrettaged thick tube of wall
ratlo two are shown in Figure 3 for p/a = 1.4 and 1.8. For a 40 percent

autofrettaged tube, we have shown the results for three cases (a) f = 1, m' =

sl
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0; (b) £ = 0.50, m' = 03 (c) £ = 0.50, ' = 0.3, The first case represents no
Bauschinger effect with no reverse ylelding. The second case shows the
Bauschinger effect only (ref 11). The third case shows the influence of the
combined Bauschinger and hardening effectc. For an 80 percent autofrettaged
tube, we have ghown the regidual stress distributions for three cuses (a) f =
1, m' =0; (b) £ = 0.42, m' = 0; (c) £ = 0,42, m' = 0,3. Now the influence of
the Bauschinger and hardening cffects is more significant. Comparing the
residual hoop stress at the bore given by cases (a) and (b) with case (c), the
results indicate that neglecting both effects will overestimate by 46 percent,
while includfng the Bauschinger effect only will underestimate by 25 percent.

The residual gtress distributions in an autofrettaged thick tube of wall
ratio three are shown in Figure 4 for p/a = 1.4 and 2.2, The values of f used
for the 20 and 60 percent autofrettage are 0.54 and 0.40, respectively. 1f
the hardening effect (m') 1s nepglected, we would have a smaller compressive
stress at the bore. If we neglect both the Bauschinger and hardening effects,
{.e., f » 1l and m' = 0, we would have a larger residual compressive stress at
the bore. At 60 percentage autofrettage, reverse yfelding still occurs but in
a smaller portion of the tube around the hore.

In order to further discuss the Bauschinger and hardening effects on the
residual stress distributions, we have used other values for f and m' in a
thick tube with wall ratio three and 100 percent a:: frettage. Figure 5 shows
the Bauschinger effect (f = 0.36, 0.68, 1.00) only with no hardening (m' = 0).
Figure 6 shows the effect ol hardening (m' = 0, 0.1, 0.2, 0.3) with f = 0.36.

Figure 7 shows the Bauschinger effect (f = 0.36, 0.68, 1.00) with hardening

(m' = 0.3). These results indicate that the i{nfluence of the combined

v i)

aw,

]

bl

. PR

o

e e



Bauaschinger and hardening effects on the residual stress distribution {s

significanc.

CONCLUSIONS

A new theoretical model for a high streangth steel has been proposed. The
real Bauschinger effect factor can be used to determine the range of elastic
unloading. The small strain-hardening during lnading is neglected, but the
large strain-hardening after reverse yifelding 1s taken into account.

A clogsed-form solution for calculating the residual stresses and strains
vith reverse ylelding has been obtained. The numerical results for the
tesidual stress distributions in two autofrettaged thick-walled cylinders have
been g{ven. The new results {ndicate that the {nfluence of the combined
Bauschinger and hardening effects on the residual stress distribution 1ic
significant.

Comparing the residual hoop stress at the bore for an 80 percent
autofrettaged tube with wall ratio two, Koiter's model neglecting hoth effects
(ref 7) will overestimate by 46 percent, while Parker's model including the
Bauschinger effect only (ref 11) will underestimate by 25 percent when
compared with the present model taking into account both the Bauschinger and

hardening effects.
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Figure 1. Stress-strain curve during loading and unloading.
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Figure 2. Bauschinger effect factor as a function of pre-strain.
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Figure 3. Residual stress distribution in 2n autofrettaged tube
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' (b)
; (c)

Figure 4. Residual stress distribution in an autofrettaged tube
(h/a = 3, p/a = 1.4 and 2.2).
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Figure 5. Bauschinger effect on residual stress distribution
(b=p =3a, m = 0).
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Figure 6. Hardening effect on residual stress distribution
(b=p =3a, f=0.36).
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Figure 7. Combined Bauschinger and hardening effects on residual
stress distribution (b = p = 3a, m' = 0.3).
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