-
AD-A145 812

UNCLASSIFIED

DIFFERENCE SCHEMES FOR EQUHTIUNS OF SCHRODINGER TYPE

U) VHLE UNIY HEW HAYEN CT DEPT OF COMPUTER SCIENCE
N ET AL. JUN 84 YALEU/DCS/RR-320

N89814 82 K-0184 F/G 12/1

1/1

FuMEn

o




45 2_8 2 -
10 & M % -
i wo
3 T B2
- L7y
=
1L25 flie ps
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
o
13
)
(.
|
R ——
]
RS
£
o
l-. -';“
- /Y
)

bt e e P N Ve Ve




YALE UNIVERSITY
DEPARTMENT OF COMPUTER

84 07 23 042




Fo

-L We introduce and anslyze s collectnon of difference schemes for the numerical solution of &he
followinp equation rodinger type:’ wem{0-sh-if)uzy:> This includes explicit and xmphcn
schemes, 2-leve! and 3-level schemes and real and complex schemes. Many of these are analogous
to classical schemes for the heat equation and the wave equation but some schemes are unique
to the Schrodinger equation. Von Neumann type stability results are given for all the schemes
and extensions to higher dimensions are derived in most cases. Many of stability results are quite
different from the corresponding results for the heat equation and the wave equation. &
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1. Introduction

. Equations of the Schrodinger type arise in many disciplines, such as quantum mechanics, fluid
' mechanics, plasma physies, laser propagation, acoustics and opties {4, 5, 19, 23, 25, 27, 34, 35, 36,
87). This paper is primarily concerned with the numerical solution of the equation

Uy = Aug,, (1.1)

with A = ¢ + sb and ¢ > 0, and its extension to higher dimensions:
»
Uy = Z&“U,l] (1.2)
=1

where A; = o; + ¢b;, with a; 2 0 and §; real, and of + §f ¥ O for I= 1,---,m.

Equation (1.1) includes both the beat equation «; = eu,, and the Schrodinger equation
uy = shug,. It is well known that a rather complete collection of stability results for difference
schemes exist for the heat equation [29):

Uy = QUg,. (103)
and for the advection-diffusion equation [6, 9):
th = augy + bu,. (1.4)

It is our intention to provide a similar collection of results for the Schrodinger equation. We propose

N a collection of finite difference schemes, and anaiyze their accuracy and stability properties. Some
of the schemes are analogous to well-known schemes for the wave equation and the heat equation
but others are unique to the Schrodinger equation. This includes explicit and implicit schemes,
2-level and 3-level schemes and real and complex schemes. Many of these are analogous to classical
schemes for the heat equation but some schemes are unique to the Schrodinger equation. Von
Neumann type stability results are derived for all the schemes and extensions to higher dimensions
are derived in most cases. Many of stability results are quite different from the corresponding
results for the heat equation and the wave equation.

The existence, uniqueness and regularity properties of equations of the Schrodinger type have
been investigated in recent years {2, 3, 14, 17, 25, 34, 39]. We are mainly going to discuss finite
difference methods for such equations. Among the numerical methods for these equations, the
finite difference method is not only a basic one, but also one of the most extensively used. Since
many conventional explicit schemes are unconditionally unstable for the Schrodinger’s equation
{1, 16, 19, 23], implicit schemes have been the most popular — especially the Crank-Nicolson
scheme. These results can be found in (1, 10, 11, 15, 16, 19, 23, 27]. Recently, it has been found
that stable explicit schemes for equations of the Schrodinger type can be derived if appropriate
dissipative terms are added (8] and some of these explicit schemes have been applied to underwater
acoustics problems [7]. The articles [16, 40] investigate the existence and convergence of implicit
schemes. In recent years, the trend of applying spectral methods {4, §, 12, 13, 18, 28, 35, 36, 37,

t 88] and the finite element methods [11, 16, 31] is increasing as well. Methods of lines methods have
also been used [22, 24). Since the solutions of nonlinear equations of the Schrédinger type often
poesess conservation laws, attempts have also made to construct schemes which satisfy discrete
conservation laws. To achieve this, M. Delfour et. al [11] modified the Crank-Nicolson scheme S
and J.M. Sanz-Serna, and V.S. Manoranjan [30] used the Leap-frog technique. Among three Jevel
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schemes, the Leap-frog scheme has been suggested [31]. In {15}, predictor-corrector schemes are
discussed. For applications of some of the schemes proposed in this paper, the reader is referred
to the references |7, 20, 21, 23].

In Sec. 2, our definition of stability is given, as well as a general method for deriving stability
results from the characteristic polynomial of a numerical scheme. In Sec. 3, the special case ¢ = 0
is considered first and the issue of the existence of stable 2-level explicit schemes is addressed.
In Sec. 4, we consider s general two-level scheme for (1.1). In Sec. §, 6 and 7, we consider
3-level schemes: the Leap-frog scheme, the Du-Fort Frankel scheme and the backward difference
scheme. In Sec. 8, we separate the real and imeaginary parts of (1.1), and consider schemes that
are specifically designed for the resulting system of real equations.

Throughout this paper, k denote the temporal mesh size, h the spatial mesh size, r = &, n =

4s5in’§, 0SS 27 and Y= 1.

3. Definltion of Stability and The Schur-Cohn Theory

The usual von Neumann type definition of stability requires that the roots R; of the charac-
teristic polynomial of a numerical scheme satisfy

[R;] € 1+ O(k) (21)

[29). While this is the appropriate definition of stability for proving convergence as k and A tend to
zero, in conjunction with the Lax-Equivalence theorem [29], for practical computations with fized
k and A this definition allows the numerical solution to grow with the number of time steps taken.
For equations the solutions of which are known to be nonincreasing in time, as is the case for (1.1),
this is often undesirable. Hence, for the stability of s numerical scheme, we shall require that the
pumerical solutions also do not grow in time. This definition of stability is sometimes known as
the practical stabslity criteria [29] and is slightly stricter than the definition (2.1). In the absence
of lower order terms (e.g. u, or u) or in the limit as k and A tend to zero, the difference between
the two definitions of stability is usually very slight. In what follows, we shall make this definition
of stability more precise and outline a procedure for systematically deriving stability conditions
for a given numerical scheme.
We shall follow the methodology developed in {6, 9). We define two classes of polynomials:

Ml“bl 1. :

We shall call polynomials ¢(z) with roots R; Schur Polynomials if |Rj| <1 Vj, and Simple
von Neumnann Polynomials if |R;] €1 Vj and the roots with magnitude equal to one are distinct.

Let 4(2) be the characteristic polynomial corresponding to a particular scheme, obtained via
Fourier analysis [29).
Definition 3.3. :

A numerical scheme is defined to be stable if its characteristic polynomial is Simple von Neu-
mann.

To determine whether a polynomial is a Simple von Neumann polynomial, we shall use the
theory of Schur [26, 33, 32]. This theory enables one to determine conditions on the coeflicients of
the characteristic polynomial for it to be Simple von Neumann.

Given a polynomial

#2)=ag+oyz+---+0,2" = tc,-z’,
j=0

A
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of degree v (with a, ¥ 0, ay ¥ 0), one can associate with ¢ another polynomial ¢°, defined by

#°(2) = 5;7,
j=0

where @ denotes the complex conjugate of a. The reduced polynomial ¢, is defined by
é1(z) = (6°(0)¢(z) - ¢(0)¢°(2))/=.

By defintion, the degree of ¢, is one less than that of ¢. The main results that we need are contained
in the following two theorems:

Theorem 2.1. ¢ is a Schur Polynomial iff |¢°(0)] > |¢(0)] and ¢ is a Schur Polynomial.

Theorem 3.2. ¢ is s Simple von Neumann Polynomisl iff either (1) |¢°(0)] > |#(0)] and ¢; is a
Simple von Neumann Polynomial, or (2) ¢, = 0 and ¢' is a Schur Polynomial (¢' denotes the
derivative of ¢ with respect to its dependent variable).

By repeated applications of the above two theorems, it is possible to reduce the question of
whether an n-th degree polynomial is a Simple von Neumann Polynomial to that for a first degree
polynomial, which can be solved more easily by analytical means. This procedure turns out to
be very eflective for determining stability limits of general numerical schemes, as compared to
first finding the roots of the characteristic polynomial explicitly and then determining conditions
for their absolute values to be less than unity. Furthermore, this last approach may not even be
applicable for polynomials of higher degrees which arise in the analysis of multi-leve) schemes and
systems of equations (see Sec. 8). Finally, it is worth noting that this reduction process preserves
the necessity and sufficiency of the stability conditions.

8. Stable Explicit Schemes for u; = iu,,
We shall first consider the more special equation

Ug = fug,. (3.1)

Even in this simple case, the stability properties of some popular schemes are quite different from
that for the superficially similar heat equation u; = u,,.

3.1. Taylor Series Schemes
Consider the basic Euler Scheme:
u;.'+lk_ u} - s'D}'u ’ (3.2)
where Diu= Ui = 2:.3 t Ui . (3.3)
The truncation error is O(k, A®). The corresponding characteristic polynomial is
6(2) = 2z = (1 =iv). (3.4)

Since the only root is R = 1 -4y and [R[®* = 1442 > 1 for ¥ # 0, ¢(z) is not Simple von Neumann,
and thus the Euler scheme is unconditionally unstable, as is well-known |[8, 23].




Page 4
The Euler scheme is the first member of a class of schemes derived from the following Taylor
series expansion of a solution u(z,t) of (1.1):

u(z,t + k) = u(z,t) + kug + —uy + —u

2 6
= u(z,t) + k(sus;) + ;—’-(.Qum,) PR

s6t + son
(3.5)

A family of schemes can be derived from (3.6) by replacing the spatial derivatives by difference

operators, namely:
- ‘z: k" ¢ D") .

The truncation error is O(k?, A%). The Euler scheme corresponds to p = 1. By retaining the next
term in the expansion (p = 2), we obtain the following Lax-Wendroff type scheme:

uu-H - ".

gt-wy k
-L_TJ_ = iD;I - E(D;-)’I.

The truncation error is O(k?, A?). The corresponding characteristic polynomial is
MHr)m sz~ (l-i-y— -7;-)

Sinee the only root is R = (1- F) - i7 and

2
|RI’=(1-1;-) +1’=l+¥>l for v#£0,
this scheme is also unconditionally unstable [8].
Since the first two members of this family of schemes are unconditiopally unstable, it is
of theoretical interest to determine whether there is any member that is conditionally stable.

Moreover, this has practical implications as well, because simple explicit schemes are easier to
implement (and vectorize) than implicit schemes, especially for higher dimensional problems.

The third order (in time) scheme derived this way has a characteristic polynomial given by

¢(z)-:-(l-n-§+w’)

ta(1-1 x _rL
12t = (1 ) +(a- ) “"ntw
the condition that ¢(z) be Simple von Neumann reduces to

.
.10 1‘ .
mAx (ﬁ' 56) <0, ‘3
O
]
°
. - ;w;“‘ FUREIT S T Aot e —d
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which is satisfied if and only if 4 < V3. The stability condition is thus

'5?-
Fot the fourth order scheme, we have
T _ 1‘)
z)=z (l-—n -2-+—6—+-ﬂ .

After a similar computation, it can be verified that this scheme is stable if and only if r < 3

We thus see that there are stable members in this family of schemes. Unfortunately, while
the third and fourth order schemes are conditionally stable, they are not very practical for initial
boundary value problems becsuse their spatial stencils extends over 7 (resp. 9) points, which makes
the construction of stable numerical boundary conditions difficuit.

This leads to a natural question:

Does there ezist atable explicst schemes with smaller stencilsf
3.3. Schemes With Artificial Dissipation

The answer to this question is positive. As shown in [8}, stable explicit schemes with a 5-point
stencil can be derived from the Euler scheme by adding appropriate dissipative terms. Although
the addition of dissipation to stabilize a numerical scheme is rather natural, the question remains
as to whether this is the only way to obtain a stable scheme for (3.1). In what follows we shall
answer this in the positive by deriving the dissipative schemes in [8] from a general sheme with a
5-point spatial stencil that satisfies certain symmetry conditions.

Suppose an explicit scheme to solve (3.1) takes the form

Wt o
_’—k—_L = ; e,-“u;ﬁ. (3.6)

Of course, 3 ¢;41u},; must be a consistent approximation of iu,, for (3.6) to be consistent with
{

(3.1). Using Taylor expansion, we find that the following consistency conditions must be satisfied:
Y ciu=0
]
lejsi=0
> o

2
FC,‘.“ = 13-
LPen =g

If we look for schemes with symmetry, i.e. ¢;41 = cj-;, then (3.7) becomes ]
e+ 22 cjq =0, :-TQ:‘_.-;‘--_‘-‘
>0 RRR
2% (3.8)
22":,-«8 B !*'_1
i>0 .
*
;; ".,- IS PR O A Ao a e . o _J
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If we take | = —1,0,1, i.e., using 3 points to approximate su,,, from (3.8) we find ¢ = ~ x’é,
¢y = ¢y = Jy. This is just the Euler scheme (3.2) and is unconditionally unstable.

Now, let us take | = -2,-1,0,1,2, i.e., using § points to approxlmate fug,. Following the
same procedure as above, we can easily find

where ¢ is a constant to be determined. We want to determine ¢z such that scheme (3.6) is stable.
Writing ¢3 = 3, where ¢ = a + ¢ with real constants a, §, (3.6) becomes

“9+l

u‘.
L‘T“ Y] " (o +8) (4a + u3-) + (6 = ala + 68)) (uhyy + u]y) (6la + 68) - 20) 3] .
3.9
After some rearrangements, scheme (3.9) can be rewritten into another form: 49)

+ n

TbeInttemcanbeviewedﬁadinip&tivetemvhidlisaddedtothemublescheme

gt - ,,(4%‘2_“?""‘?-1
k [ ’

and the truncation error is O(k, A%). The root of the characteristic polynomial for (3.9) is
R=1-im+ (a+if)m’.

Thus we have
IR = (1 + arn®)? + (Bry* — ry)?
=1+ (r? + 2ra)n® - 2.2 80® + r¥(a® + £%)n".

The condition |R* < 1 reduces to
(r +2a) - 2r8n +r(a® + B*)n* <0,

from which it follows that the condition on r is
-2a
a2n+(fn - 1)*’
For a finite stability interval, we must have a < 0. By diflerentiating ¢(n), it can be verified

that g(n) cannot achieve its minimum within the interval 0 € n < 4. Thus the conditions on r
reduces to

r<e(n) =

r < min(g(0), 5(4)),

r < min (-2a, o +"(2"; — 1)2) . (3.11)
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To obtain the scheme with the least restrictive stability condition, one should make the right L
band side of (3.11) as large as possible. Obviously, one should take # = 1. Condition (3.11) then o
reduces to . :
r < min (-—20,-—) . S
8a
The right hand side achieves its maximum when —2a = —é—, ora= -%. Thus we have for .'j:_'.'j
the stability condition: . R
rs E. (3.12)

We summarize the results in the following theorem.

Theorem 3.1. For any real 8 and a < 0, the sheme (3.10) is conditionally stable, the necessary and
sufficient condition being (3.11). The least restrictive stability condition is (3.12) and is obtained
whena=-4,8=1. -

We can also consider a similar dissipative scheme:
e I 2 -t( 2 la; 2 )+(c+!ﬁ)k( . : b: : : ), (3.13) ]

whose dissipative term is different from (3.10). For (3.13), the following theorem has been proved
in [8):

Theorem 3.3. The scheme (3.13) is stable if and only if a < -}, except for the half line
{a=-1,A50}, and
\/:‘(—2‘__—")‘
'<ﬂ+ a(20°+2f° +a . (3.14)

= 4(a2 + §?)
The least restrictive stability constraint is

(3.15)

*
A
O o=

and is obtsined when a = -}, f = }.

3.3. Stable Dissipative Schemes In Multl-Dimensions
We pext consider the multi-dimensional equation:

m
w = Zl'bm,,.,.
I==3

We assume that the b;’s have the same sign.

Without loss of generality, we assume §; >0 (I =1,.--,m). We consider the natural exten- |
sion of scheme (3.10): T

"Q-M -y® m 1
A =Y u[iDju + (o + i (D3) ] (3.16) .
{=) -
A
Here j represents a multi-index (5,-+*,Jm), D7, is the second order centered difference operator -4

with respect to 5; and A; is the corresponding mesh size.

PPN |
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Theorem 3.3, Scheme (3.16) is stable if and only if a < 0 and

2a a

m ot 1 ™,
Lo - Dlnd

k<min] -

The least restrictive stability constraint is

and is obtained when o = -1 and 8 = §.
Proof. See Appendix.

4. A General Two-Level Scheme

4.1. The One Dimensional Case:
We now return to the attention of the more general equation (1.1). We consider the following
finite difference scheme for (1.1):

UH-w? pa 1-p)A
Lt B (w2t e i) + (—h-,“)— (WP -2 +ul,),  (41)

where p is a parameter such that 0 < p < 1. It is easy to see that when p =0, (4.1) is the explicit
Euler scheme, when s = %, (4.1) reduces to the Crank-Nicolson scheme and when g = 1, (4.1) is
the fully implicit Backward Euler scheme. The truncation error is O(k, A%) except it is O(k*, h*)
for the Crank-Nicolson scheme.
Theorem 4.1.

1. It} < p € 1, then Scheme (4.1) is unconditionally stable.

21f0<p< % and @ > 0, then (4.1) is conditionally stable, the stability condition is

a
T - B (42)

3.1f0< p < } and a = 0, then (4.1) is unconditionally unstable.

Proof. The root of the characteristic polynomial for (4.1) is

2 1= (1 -pley—i(l - p)ly

R 1+ pay + spby
Theref
- Rt L= (= R0rT 4 (1= P )
(14 par)2 +p2832 )

— At

Rttt
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The condition |RJ* < 1 reduces to

1-2p
2

If 1 < g <1, then (4.4) sutomatically holds; hence Scheme (4.1) is unconditionally stable. If
0 < p < 1, then the condition (4.4) reduces to (4.2). Clearly, if a = 0, (4.2) cannot be satisfied for
7 > 0 and bhence is unconditionally stable.

(a®+b%)y-a <. (4.4)

|
Note that when b = 0, (4.2) reduces to the well-known stability condition for the heat equation
[29].
4.2. The Multi-Dimensional Case:

In this section, we are going to extend the results in Sec. 4.1 to the case of multi-dimensions.
We suppose the 2quation is of the form (1.2) and consider the natural extension of the scheme
(4.1) to multi-dimensions:

o™t - m “ m
—"——E—'L =p) A;D}'u+(1-p) ) A; D}, (4.5)
=1 =1

where we have used the same notation as in Sec. 3.3.
As in Sec. 4.1, here p is a parameter, 0 < p < 1. Before we state the stability results for this
scheme, we need a few definitions.

Definitlon 4.1. Define an m-dimensional index vector v to be a vector in R™ with components
baving values of either 0 or 1. Define [, to be the set of all ni-dimensional index vectors except
the vector {0,0,-- -,0}T.
Theorem 4.2.

1.If} < p <1, then Scheme (4.5) is unconditionally stable.

210<u< ;:;, and a;> 0 forl=1,..-,m, then (4.5) is conditionally stable, the necessary and
sufficient condition is

£ i
b -t m L (4.6)
'.‘*
=1 1

Proof. The root of characteristic polynomial for (4.5) is

1-(1-p) 5 A
R= =1

m
1+pY A
=1

where

Y/
9 = 4n sin? E‘-, 0< & < 2x,

1‘]3*’-.?.




Page 10

We can easily obtain

[1 -1-pXr ﬂm] +(1-p)? (Z 5:“1:)
=1 i=1
" 2 m 2 *

(l + p‘E am) +p2{ Y bm)

=1 =3

Then, from the stability condition |R] £ 1, we get

m m 2 m 2
o(n, e vm) = =D arm + (% - n) [(Z am) + (Z:lm) ] <o. (4.8)
=1

i=1 i=1

|R? =

(4.7

It is clear that (4.8) is true if 3 < p < 1, and (4.5) is unconditionally stable in that case. In the
case 0 € p < §, it can be verified that g(v1,- -+, m) reaches its maximum value in the region
D= {(n,,m), 0 1< 4r, {=1,---,m} only at the boundary of D. Clearly, at (0,---,0),
(4.8) always holds. Hence, we obtain {4.6).

Y

]
4 Corollary 4.1. Suppose 0S p < }.
k 1. If a; = O for some I, then (4.5) is unconditionally unstable.
2. If all the b; have the same sign, then the stability condition is
[ ”
f aF-
l =1 bl
< . .
k_w_zp) = P (4.9)
i
(=1 "¢
3. If b =0, 1 €1 < m, then the stability condition is
11 (4.10)

k< ————
T1-2) P g’
&t
which is a classical result for the heat equation [29).
Proof. To prove the corollary, note first that if a; = 0, then by choosing v = (0,---,0,1,0,---,0),
with the “1” in the /-th position, in (4.6), we have k < 0 and hence the scheme is unconditionally
unstable.

Second, if all the b; have the same sign, the minimum in (4.6) must occur for v = {1,1,---,1}T
from which (4.9) follows.

Lastly, if ; =0, 1 € ! < m, then (4.10) follows directly from (4.9).
|

The result (4.6) can be viewed as the extension of the stability result for the multi-dimensional
heat equation. It is easy to see that (4.6) is also the extension of (4.2) in Theorem 4.1.

§. The Leap-Frog Scheme
We now consider some three level schemes. First, we study the Leap-Frog Scheme:

U -u? 4
S t=g (u;z,' - 2ul* 4 u;:,') ) (s.1)

The truncation error is O(k2, h%).




Theorem §.1. Scheme (5.1) is stable if and only if a = 0 and r < .
Proof. The characteristic polynomial is
#(z) = 2+ 2(a +ib)yz - 1. (5.2)
We shall use the Schur theory outlined in Sec. 2 to determine conditions under which ¢(z) is
Simple von Neumann. We have
$(2)=-2+2a-b)yz+1
and  ¢)(z) = 4a9z.
Since [¢°(0)] = [¢(0)|, ¢(z) can be simple von Neumann only if ¢;(z) 2= 0, i.e. ¢ = 0. Assuming
this, for ¢(z) to be simple von Neumann, ¢'(z) = 2z + 2iby must be Schur, which Jeads to the
condition r < ;h
]

The stability result for the Leap-Frog scheme can be easily generalized to higher dimensions.
Consider the following scheme for (5.1)

ot _

Lt = AD (53)

The corresponding characteristic polynomial is

6(z)=22+2 (zm:An;) z~1

i=1
By following the same proof as outlined above, it is easy to derive the following stability condition

for (5.3)

m

Y bew
=1
From (5.4) it is straightforward to derive the following:
Theorem §.3. Scheme (5.3) is stable if and only if

ay=0 [=12---m

<l (5.4)

and )
€ ———
*S Tmax(B, By)’
where N I
>0 ( <0 {

6. The Du-Fort Frankel Scheme
This is a well-known scheme for the heat equation. With regard to (5.1), using } (u;-""z + u;')
instead of u,?'”, we obtain the Du-Fort Scheme:

42 _ . »
u’- ll,- :i

=

2k h?
where DF? ' = u}}] ~ o} - u}*? + w3} The truncation error is O (k’, », (f)z) .

DF*q, (6.1)

J

n.
.1

]
b

S Y
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Theorem 8.1. Scheme (6.1) is unconditionally stable.
Proof. The corresponding characteristic polynomial is
é(2) = (1 + 2Ar)z* = (4Ar cos#)z — (1 ~ 24r).
We thus have
¢°(2) = ~(1 — 2(a — sb)r)z* — (4(6 ~ sb)r cos )z + (1 + 2(a — sb)r),
é1(z) = 8arz — 8arcos ¥,
[6°(0)[® = (1 + 2ar)* + 432,
and  |4(0)]* = (1 — 20r) + 483>,

Since |¢°(0)] > |6(0)| and é(2) is clearly simple von Neumann, this scheme is unconditionally
stable

]
The extension of (6.1) to multi-dimensions is:

AL u

e Z: A DFJ'u (6:2)

where DF;‘ is the DuFort-Franke! operator in the z:-d:rectm. The characteristic polynomial is
- A
#z)= (1 +2k2 h,) s (Ak: e 0,) (1 -2k)" IT’) .

=1 =) ]

By following the same proof as in the one dimensional case, with ar replaced by & E ﬂ and br by

=g
k 2 -4;, one can easily prove:
=1

Theorem 8.3. Scheme (6.2) is unconditioually stable.

7. The Three Level Backward Difference Scheme
This scheme [6, 29] is

Al 0 ® -y
: (_T_) -1 (__1__) - AD}Me, (1)

and its truncation error is O(k?, h%).
Theorem 7.1. Scheme (7.!) is unconditionally stable.
Proof. The characteristic polynomial is

¢(=)"( +¢1+3h):’ 2:+%

¢°(2) = iz’ -2+ (; +av- ib-y) ,

and  ¢y(2) = [(3 + o-y) + 5’1’] s=2(1+av-ib).

R !
POu
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It can be verified that
i6°(0)} > |¢(0)]

and therefore for stability, ¢1(z) must be simple von Neumann, which gives the condition:

2(1 +av-1by)
(2 +a7)" +8242

(7.2)

Let T = (} + a7)® + §*42, then condition (7.2) is equivalent to
4((1+0y)+8342) <1
or C(T-g-l-c-y) <T

oo (T~2P+1+487>0

which is always satisfied since a > 0. Therefore, this scheme is unconditionally stable.

The extension of (7.1) to multi-dimensions is
3fu-u?) 1 [u?-u}? =
3 (__._-._’ I ") -3 21 2k, - EA‘ D;:‘"“' (7.3)

The characteristic polynomial is

#(2) = (; + Zal‘n +l'25"u) £-2:4 %

i=1 =1
By following the same proof as in the one dimensional case, with a+ replaced by f: oy and by by
=3

»m
Y 4, one can easily prove:
i=1

Theorem 7.3. Scheme (7.3) is unconditionally stable.

8. Schemes for the Real System

The schemes considered so far are applied directly to the equation (1.1), which is complex-
valued in general. But note that if we let u = v + fw (where v and w are real functions), then we
can rewrite (3.2) into the following real system:

) = QUgy — by, (8.1)
wy = bvu + a0,,. (8-2)

While any scheme for (1.1) has a direct analog for (8.1) and (8.2), this new system opens
up more possibilities for constructing numerical schemes because the individual terms of the right
hand side of (8.1) and (8.2) can be treated independently of one another by different methods. It
is also straightforward to implement these schemes in resl arithmetic. In the next two sections, we
shall consider a few examples of such schemes.

A e L
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8.1. A Two-Laval Real System Scheme :
In this section, we shall consider the following 2-level scheme which is similar to, but effectively =~
different from, the Euler scheme for (1.1). -

D
PR

P g
e

vl-H - "

. 1
L = o [0 (P =200+ 01) ~ (0] - 20] +0]Ly)] (8.3) o
e g -mrg) telet -2t 4e)] @) -

This scheme appears to be semi-implicit, but actually it is explicit for computing because we can
compute v}*! from (8.3) explicitly, then substituting v3*! into (8.4), we can explicitly compute

w1, It is easy to see that the truncation error of (8.3) and (8.4) is O(k, 4?).
Theorem 8.1. Scheme (8.3) and (8.4) is stable if and only if

1
r< m. (8.5)

Proof. The amplification matrix for this scheme is

Sl RN G

1- . 5
'(-(1-:;)57 1-a7-84)° S

and the characteristic polynomial is
¢(2)=2-2(2(1-0a7)-8¥)+(1~0a7)
It follows that —

¢°(z) = (1 - a7)*2% = 2 (2(1 — a7) = $*4%) +1
and  4(2)=z(1-(1-a7)') - (1-(1~-0a7)%) (2(1 - a7) - $*4?).

Since |¢°(0)] > |#(0)], é1(z) bhas to be simple von Neumann for the scheme to be stable.

Defining 22
2(1~ay)-b
A -

this reduces to the condition _

-1€1<1. -
Since A can be rewritten as :

yo L= an) (2 +)
14+(1-a9)2 !
it can be easily seen that the condition A € 1 is always satisfied. The condition that =1 < )\
reduces to -
5(7) = —(av = 2)* + 1342,
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which is equivalent to the condition
18| £ 2 -ay,
and gives the stability limit .
€
TS eEm)
]

Note that this scheme spans a stencil identical to that for the Euler scheme but the stability
condition is quite different. Unlike the Euler scheme, this scheme is conditicnally stable even when
¢ = 0. This improvement results from the implicit treatment of the v-term in (8.4) and is a direct
consequence of separating the original equations into real and imaginary parts.

At first sight, it may appear possible to switch the role of v and v in (8.1) and (8.2) at
alternate time steps, similar in spirit to the ADI method, in order to achieve a combined scheme
that is second order in time. Unfortunately, it can be verified that this is not true and the resulting
alternating scheme is still first order in time.

8.2. The Two-Level Real System Scheme In Muitl-Dimensions

The results in the previous section can be extended to higher dimensions. Consider the
equation (5.1) which can be written into the following real system

U= Elﬂ’lm - Z‘Wu.ﬂ

o= Z brvgs, + ; LI
and the following scheme:
vu+l - vl
-"—-k——-- = ZCID.,I” Z‘lD',:".
ot - o} +1 .
k = Z WD v+ Z aD}yv,
i=) =)

The truncation error for (8.7) is again O(k, A%).

By replacing the terms ay and by in the previous proof by E oy and 2 b respectively,
the same proof goes through for (8.7) and we obtain the followmg stlbxhty mult
Theorem 8.2. Scheme (8.7) is stable if and only if

BB

8.3. A DuFort-Franke! Leap-Frog Scheme for the Real System

Although the real system (8.1) and (8.2) can result in schemes that have superior stability
properties than schemes for the complex equation (1.1), deriving such schemes is not at all au-
tomatic. In this section, we shall show that a rather natural scheme for the real system (8.1)

- Bty
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and (8.2) actually has worse stability properties than the corresponding schemes for the complex
equation (1.1).
We construct a real 3-level scheme for (8.1), (8.2) as follows:

O _ '
f - i = o (v;-'_ﬂ - o;."ﬂ - u;.' 14 v;-'.‘) " (o;-',,,, - 20;-‘ + v;_,) . (8.8)
L o B . )
] 2k_.’ = z,:, U;Il‘ - 2"?‘ + U;:ll) + "T" (U;'.,‘ - v;"l - ; 1 + U;_‘) . (8.9)
Thisis s con;bimtion of Du-Fort Frankel Scheme and Leap-frog Scheme. The truncation error is
ok, %, (1))
Theorem 8.3,

1.If ¢« = 0, then (8.8), (8.9) (the scheme is equivalent to the complex Leap-frog Scheme) is
conditionally stable, the stability condition is

r< -‘-"‘-' (8.10)

2. Ifb = 0, then (8.8) (8.9) (the scheme is equivalent to the Du-Fort Frankel Scheme for the heat
equation) is unconditionally stable.
3. Ifa 70 and b # 0, (8.8) (8.9) is unconditionally unstable.

Proof. The Fourier transform of (8.8),(8.9) can be written in this fom

(1 + 2ar)Ja™*! = Ma® + (1 ~ 2ar)Ia""?, (8.11)

“= (:) M= (.“-'2:77) (a2 'v))’

I is the identity matrix and (¢, ®) are the Fourier transform of v and ©.
It is easy to verify that A is normal and the eigenvalues gy of M are:

where

pa = a(4r = 2v) x i2)bly. (8.12)

Therefore M can be written as M = X~ AX,where A = (';” ‘0 ) and X is a unitary matrix.
Multiply from the left of (8.11) by X, we obtain

1+ 2a7)X@*H = XMe® + (1 - 287) X2, (8.13)
Defining
o= (:) = X&,
we have
(1 +2er)s™* = XMX~16" + (1 ~ 2ar)s™"L. (8.14)

PR
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Due to the property of X and the definition of s, the stability of s and 4 are equivalent. So we
need only to discuss the stability of s. Since XMX~? = A, we obtain from (8.14):

(1 + 2ar)s™*! = As® + (1 - 2ar)s™? (8.15)

ie.
(1 + 2ar)y™*! = pyy™ + (1 = 20r)y™~? (8.16)
(1 +2ar)z"* = p_z" 4 (1 - 2ar)2™2. (8.17)

Their characteristic polynomials are
é2(2) = (1 + 20r)A% - pyd ~ (1 - 2ar). (8.18)
From this we can easily derive

¢°(2) = (=1 + 2ar)A% = pz) + (1 + 2ar),
é1(2) = [(1 + 2ar)* = (1 - 20r)*]A = {(1 - 20r)ps + (1 — 20r)uz] = O, (8.19)
and  ¢'()A) = 2(1 + 20r)X - ps.

In the case a = 0, |¢*(0)] = |#(0)], and ¢;(\) = 0. Therefore stability requires ¢'()) to be
Schur, which reduces to the condition [b|y < 1. The stability condition is thus r < ;-h
In the case a > 0, [¢°(0)] > |#(0)], 20 ¢1(A) must be Simple von Neumann. The only roots of
é1(7) are
Ag=1- %*il&h.

Paf = (1- 1) + 002

Clearly, if b = 0, then |A+}* € 1 because 0 € v < 4r, and (8.8),(8.9) is stable. If b ¥ O,
[Asf? = 1+ 166%¢2 > 1 when v = 4r and (8.8),(8.9) is unstable.
1

Therefore, as far as stability properties are concerned, this scheme is similar to the Leap Frog
scheme but is inferior to the complex Du-Fort Frankel Scheme, which is unconditionally stable.

9. Summary and Concluding Remarks

In this paper, we have presented a rather exhaustive collection of difference schemes for the
Schrodinger’s equation (1.1). This includes explicit and implicit schemes, two and three level
schemes and schemes with artificial dissipation. It also includes schemes derived from the real
system obtained after separating the solution into its real and imaginary parts.

While many of the schemes are adaptations of well-known schemes for the wave equation and
the heat equation, the stability properties are often quite different and we have summarized the
main results in Table 1.
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Scheme Error Stability Condition
Taylor Series for u; = fu,, p = 1 : unstable (Euler)
p = 2 : unstable (Lax Wendroff)
O#l »
' si"’ D )u O(k*, h%) p=3:r$’.é
i=t
p=4:r< f%
General 2-level Scheme ptl: osm<}
O(k, h%) a; = 0 for some !: unstable
L1 L m
J_T_:Lgp‘SZ':lA;D;-‘f‘u p=}: all i have same sign: k_ﬂ—m-—‘ﬂ-—'-,
iy ]
m ) 2 -
+(l-#)“2144,”,-.‘u O(P,ll) l“‘[ 0: k< ﬂr—,:‘:
= M
(i) § < p < 1: stable -
Euler with dissipative term kugyqe (¢ = 0)
(a<-}, 8>00ra<~4,850)
"t
ST w bDRu + (alb) + iBB)E(DD)e Ok, ?) r g Lby/oele il a)
Sclheme with least restrictive stability
" .
i = idDju+ (-4 + 2) KDy Ok, k%) r< gy
Euler with dissipative term h%uze., (a; = 0) a<0
and
g 2
—1—‘—1 E bi(iD%u + (a + if)A} D};) ) O(k, h3%) k< min | -2, - —O
“ (o2) T3 -1y
[l 3]
Scheme with least restrictive stability
oty Ll . .
“te L b (iDu+ H-1+)B(D ) | O N) ey 5
[ 1]

Table 1: Summary of Schemes for us = i Apge, At =0, +1b,0, 20, u=v+iw.
=1

Next, we would like to comment briefly on the effect of lower order terms (such as u, and «)
on the stability results, which arise in many applications. If we adopt the slightly weaker definition
of stability (2.1), under which the necessary and sufficient stability conditions given in Table 1 are
still sufficient, then it can be shown [29] that, when lower order terms are present, these conditions
remain sufficient to insure convergence of the numerical solution in the limit as k and A tend to
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Scheme Error Stability Condition
Leap-Frog
O(k2, h?) all o; = 0 and
o 43 _y” m
gt =L AD} kS st
where B,= Y %, By=Y ¥
&>0 ! b<o !
Du-fort Frankel
o (k’,hz, (f)z) stable
Tt :ﬁ; A DFjftu
£~
Backward Difference
O(k2, h?) stable
g eyt ? m
t(52) -4 (555 = Eaopite
2-Jevel Real System Scheme
iy [..] m . 1
-‘—‘—Lt 2010;-",0- Zb{D"Jﬂ O(k,h ) ks - -
s (E#(E4)
[adl » ” m
:1_"_'1. = E:l b;D;.‘f’v + & o D}v
Du-fort Frankel-Leap Frog
Real System Scheme a=0:r< Th
o (.5, (%)) b=0: stable
adl_ o=l
5‘_;;)_:.017;'9-00;-; a # 0 and b # 0 : unstable
.n#l_.?-l

Table 1: Continued

zero (assuming the scheme is consistent). However, for fized k and A, the pumerical solution may
grow with each time step while the exact solution decays with time. We plan to further investigate
the practical stability of these schemes in the presence of lower order terms.

Stability results are important for at least two reasons: to ensure convergence of the numerical
solution to the exact solution as k£ and A tend to zero, and to ensure that the pumerical scheme is
insensitive to round-off errors for fixed k& and A. The choice of a numerical scheme for a particular
application depends on more than just the stability property. In practice, accuracy and efficiency
are often the controlling factors. The optimal choice can often ouly be detemined empirically with

some experimentation.
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While we have limited ourselves to second order centered finite difference schemes for the spa-
tial discretization, and have not considered the use of higher order and finite element and spectral
methods, the framework used here can be used to derive thses schemes and their corresponding .
stability results as well,

10. Appendix: Proof of Theorem 3.3
Proof. The amplification factor is given by

R=})- i birs [im ~ (@ + iB)n})

=1
where &
fi= -5 hza
and
m = 4sin® %
Stability requires
m 2 m
IR = [1 +3 ab,rm,’] +I 2 (brim - ﬁimm) sl
=3 i=1
ie. - - 2 ~ 2
2 z: abirinf +a® (E lmm’) + z(hrm - 3517171?)] <0 .
=] =) =]
If we define
fi= 3%
then this condition can be written as
»n m 2 m » 2
20 finf +a’k (}:fm,’) +k (Z!m. - ﬁ{jfm?) <o,
=) i=1 I=1 =
or "
2a Y finf
k<G(m, - ,nm)=- p 3 la‘... m 2
e(&mf) +(ﬁ‘2.:‘fm;’-‘.2‘f:m)
Let
p=(m, - m)
and define

D.{’; 05"1549"1:"""'}

D.-{p; pED and };ﬁmﬂgﬁnf}

D:-{m pED and Z!m>ﬁ2fma’}-
=1 i=]
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Clearly, D = D; U D;.
We separate the two cases: #2> 1 and g < §.

Case L 82 ¢
1.In Dy
Since
Y im<BY fii sd  OSmS4,
we have ;
0<BY fmt-Y_fmm<BY fini =32 fui
and therefore

2a ) finf
o (T !m?) + (8- 1% (T fnd)?

T+ (8- 1)=T‘f:fm,
2 S ETG-TTH

On the other band, in the case § 2> 4, (4,--<,4) € Dy, and

Ol = ~§ T G- TFITH

G2-

Hence
iBfG('h,'":'Dm )=~ Y (ﬂ TS
2.In D2
Since
> m< (S )} (S )}
we have s
0< Y -8 fink < () (S sod)* - 83 s,
and therefore : %0
G2- —.
oX(T i) + [(S )} - A(Z Jm} )
Letting
o=(T Im?)’ \
we have %
G2 Sto)= a’e? + [(2 M- ﬂ:r.
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(10.1)

- -
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It is easy to see
infw =0,
D3
and if we define
v’ =supw,
D,
then clearly,

o <omu(4, -, 4) =4 fi)
Because of the form of S(w), it achieves its minimum at the end points of the range of v and

s G 2 min(S(0), S(v*))
(- )
Hence

i2{ Glm, ) = min (-éiﬁ S(v')) - (10.2)

From (10.1),(10.2), we have

) a . 2a o
Fame (’8F=+w— 10 DT o Sk ’) '

Sinee
S(e*) > S(¢) = -

a
sr+ (-1 H
we have the following stability condition when £ 2> 4,

. a 2a
k € min (-BF’+(ﬂ-%)ﬂﬁ'-w)' (10.3)

Casell.f< !
Clearly, D; is empty and D = D;. It is easy to see that

G 2 min (3(°)vs (‘ (Zﬁ) i))

. 2a a
b ('ﬁ” o+ (8- ) z:n)‘

The general stability condition is therefore (10.3). Clearly, we must have a < 0. To choose a and
B such that the stability condition is the least restrictive, we should take # = } so that we have

o)

To maximize the right hand side, we should take
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and the stability condition becomes
- 1 1
k< = .
aE) > Ay >} "
]
]
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