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I.     BACKGROUND 

A.     Stick Charge Phenomenology 

We have previously reported on the application of advanced interior 
ballistic modeling techniques to the problems of base- and centercore-ignited, 
granular propelling charges. ■ In those studies, our interest revolved 
around the complex interplay between igniter, ullage, and propellant packaging 
and its influence on the path of flamespreading, the formation of pressure 
waves, and movement of the solid phase. In the current work, we shift our 
attention to the phenomenology of the stick propellant charge, a configuration 
that, by the substitution of natural flow channels for the tortuous path 
encountered through a bed of granular propellant, substantially reduces the 
problem of pressure waves — but not without exhibiting some very interesting 
and yet  to be  totally understood  features of   its  own. 

We begin by looking at a schematic representation of the interior 
ballistic cycle for a stick propellant charge (Figure 1). Functioning 
involves initiation of the basepad by the primer and subsequent transfer of 
ignition to the stick propellant itself. The igniter gases are expected to 
penetrate easily through the bundle of sticks, with flamespread proceeding 
rapidly in a one-dimensional fashion. Some portion of the igniter gases may 
be expected to flow around rather than through the charge, but to a lesser 
extent than might be expected with a granular propellant charge. There doe6 
exist some photographic evidence that the charge ignites essentially uniformly 
over its entire length after being sufficiently bathed in hot igniter gases 
which have previously flowed unimpeded around and through the bundle of 
sticks. However, the flow of igniter gases and the path of flamespreading 
within the long perforations of stick propellant, particularly if unslotted, 
are largely unknown and must be assumed to proceed independently of 
corresponding processes in the interstices. Nevertheless, the minimal 
resistance   to   axial    flow   and   the   accompanying   near   uniformity   of 

A.W. Horst and P.S. Gough, "Modeling Ignition and Flamespread Phenomena in 
Bagged Artillery Charges," ARBRL-TR-02263, USA ARRADCOM, Ballistic Research 
Laboratory,   Aberdeen Proving Ground,   MD,   September  1980  (AD A091790). 

2A.W. Horst, F.W. Robbins, and P.S. Gough, "A Two-Dimensional, Two-Phase Flow 
Simulation of Ignition, Flamespread, and Pressure-Wave Phenomena in the 155- 
mm Howitzer," ARBRL-TR-02414, USA ARRADCOM, Ballistic Research Laboratory, 
Aberdeen Proving Ground,   MD,   July  1982   (AD Al 19148). 

3T.C. Minor, "Experimental Studies of Multidimensional, Two-Phase Flow 
Processes in Interior Ballistics," ARBRL-MR-03248, USA ARRADCOM, Ballistic 
Research Laboratory,  Aberdeen Proving Ground,   MD,   April   1983   (AD A128034). 
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Figure 1.  Stick Propellant Charge Phenomenology 



T.C. Minor and A.W. Horst, "Ignition Phenomena in Developmental, Stick- 
Propellant, Combustible-Cased, 155-mm, M203E2 Propelling Charges," ARBRL-TR 

, USA AMCCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 
(not yet released). 

T.C. Minor, "Mitigation of Ignition-Induced, Two-Phase Flow Dynamics Through 
the Use of Stick Propellants," ARBRL-TR-02508, USA ARRADCOM, Ballistic 
Research Laboratory, Aberdeen Proving Ground, MD, July 1983 (AD A133685). 

pressurization over the length of the charge, at least in the interstices, is 
apparently responsible for the observed substantial reduction in both charge 
motion and pressure waves accompanying the stick propellant configuration.^»^ 

Several other items need be mentioned before we conclude these background 
remarks on stick charge phenomenology. The first relates to the mechanical 
behavior of the stick propellant in the ignition environment. Once ignition 
does occur within the long perforations, rapid internal pressurization in 
excess of that in the interstices could lead to splitting or fracture of the 
sticks, yielding an unprogrammed burning surface. Slotted configurations may 
well reduce the pressure differential between inner and outer regions but also 
substantially weaken the sticks. Further, the ability of stick propellant to 
support reasonable tensile loads without being separated and carried downbore 
by interphase drag forces (as is granular propellant) is expected to result in 
most of the propellant charge being burned within the gun chamber itself and 
should be expected to impact on both gun performance and tube life. Finally, 
we caution the reader that the above processes are all potentially complicated 
by the presence of a propellant charge case, the initial impermeability, 
mechanical strength, and ignition and combustion characteristics of which may 
play major roles themselves in characterizing the above sequence of events. 

B.  Case in Point 

The 155-mm, M203E2 Propelling Charge, shown in Figure 2, is currently 
undergoing development by the Large Caliber Weapon Systems Laboratory of the 
US Army Armament, Munitions and Chemical Command (LCWSL, USA AMCCOM) for the 
155-mm, M198 Howitzer. This charge employs an M31-type stick propellant 
packaged in a rigid, combustible cartridge case. In June of 1982, limited 
testing of developmental M203E2 Charges using experimental propellant produced 
at LCWSL yielded higher maximum chamber pressures at cold temperatures than at 
ambient or hot temperatures. For example, a charge with an assessed ambient 
pressure of 351 MPa yielded pressures of 397 MPa at -54 degrees C and 337 MPa 
at 63 degrees C. 

In an attempt to identify potential contributors to this observed, 
inverse temperature sensitivity, several M203E2 firings were conducted by 
Minor^ in the Ballistic Research Laboratory 155-mm howitzer simulator. The 
charges were modified to permit direct viewing of the interior of the 
propellant bundle, conditioned to the desired temperature, and fired in the 
simulator using transparent plastic chambers. High-speed cinematography was 
used to record the path of flamespreading and early response of the case, 
while flash X-rays, triggered at a pre-determined pressure, were taken to 
monitor the behavior of the propellant. In addition, spindle pressures and 
pressures  and  forces  on  the  base  of   the  projectile   were  recorded.     Testing  of 
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Figure 2.  155-mm, M203E2 Propelling Charge 



cold, unmodified charges indicated a preferential flow of igniter gases around 
the outside of the charge, leading to compaction of the charge and an 
associated reduction in propellant bed permeability to igniter and perhaps 
subsequent combustion gases. A further test with the igniter charge packaged 
in a cloth bag rather than its original plastic cup displayed the intended 
mode of ignition, with igniter gases penetrating and igniting the main charge 
and fracturing the cartridge case from within. While subsequent charges 
manufactured with cloth bag igniters (and, unfortunately from a diagnostic 
standpoint, with different propellant lots as well) have all exhibited 
"normal" (i.e., not inverse) temperature sensitivities, the link between the 
igniter configuration and maximum chamber pressures at extreme temperatures is 
still unclear. 

Moreover, an understanding of the mechanisms involved is of more than 
just academic interest. Current data for the M203E2 Charge suggest that it 
will necessarily operate at a higher ambient pressure than does the M203 
Charge it will replace. Thus, in order to meet system constraints on the 
maximum chamber pressure at the hot temperature extreme, the M203E2 Charge 
must exhibit a  low  and  reproducible  temperature  coefficient. 

II.     TECHNICAL DISCUSSION 

A.     Summary of Modeling Approach 

The TDNOVA code was developed to simulate the interior ballistics of 
multi-increment propelling charges by means of a numerical solution of the 
equations of two-dimensional, two-phase flow. A major effort was just 
completed and reported by Gough" to extend the TDNOVA code to permit 
simulation of rigidized, stick propellant charges. Under this representation, 
the charge is assumed to consist of a number of increments of similar but not 
necessarily identical diameters loaded end-to-end. Each increment is assumed 
to be separately enclosed in a container which may be either a flexible bag or 
a rigidized case. Each segment of each container may be characterized as 
having two reactive substrates on each side, permitting the simulation of 
combustion on each side of the container, as well as an additional component, 
such as a basepad, attached to the surface. Each increment may also 
incorporate a centercore igniter which is modeled as a quasi-one-dimensional, 
two-phase flow. The main charge of each increment may be either granular or 
stick propellant. Stick propellant may be unperforated, perforated, or 
perforated and slotted. A dual-voidage representation is made of perforated 
stick propellant; the state of the gas in the perforations is assumed to 
differ from that in the interstices. We similarly distinguish between the 
exterior and interior surface temperatures and combustion rates of perforated 
stick propellant. The interphase drag and heat transfer and the solid-phase 
stress   tensor  for  stick  charges  are  all  posed  in  terms  of  anisotropic  laws. 

The ballistic consequences of heat loss to the tube may be evaluated by 
means of models based on steady-state pipe and plate flow correlations or by 
reference  to  an  unsteady  boundary   layer  model.     Other   constitutive  extensions 

6P.S. Gough, "Modeling of Rigidized Gun Propelling Charges," ARBRL-CR-00518, 
USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 
November   1983  (AD Al35860). 
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to the code include the influence of erosive burning, flow resistance in 
narrow regions of ullage, slow gas-phase kinetics with partial heat release at 
the surface of the solid phase, and a revision to the interphase drag 
correlation in a bed of granular propellant. 

Each main charge increment is modeled as a two-dimensional, two-phase 
flow until flamespreading is complete, all containers are fully ruptured, and 
radial pressure gradients have subsided to within some user-selectable 
tolerance. Subsequently, a quasi-two-dimensional representation, in which 
propelling charge and circumferential ullage are treated as coupled regions of 
quasi-one-dimensional flow, is effected to complete the simulation of the 
interior ballistic cycle in an economical manner. The solution is obtained by 
means of an explicit two-step marching scheme for all interior mesh points 
together with characteristic forms at the external boundaries defined by the 
chamber and projectile and at the internal boundaries defined by the 
interfaces between the mixture and the ullage. The physical role played by 
the containers of the increments, including reactivity, resistance to 
penetration by the gas phase, and confinement of the solid phase, is reflected 
in the model by reference to the internal boundary conditions. 

B. Application of TDNOVA to the M203E2 Charge 

We now address application of the above-described TDNOVA representation 
to the M203E2 Propelling Charge by reference to the schematic of Figure 3. 
The exterior boundary depicts an axisymmetric representation of the gun 
chamber, including spindle face at the breech end and projectile boattail at 
the forward end. The centerline, breech end, and sidewall remain fixed 
boundaries, while projectile motion in response to the burning charge is 
resisted by an independently determined projectile engraving/bore resistance 
profile. 

Internal boundaries are shown to reflect packaging of the individual 
increments — in this case, the igniter region and the main charge 
compartment. Mechanical properties of each segment of the container are 
identified by a single digit number which points to an input file providing 
information on permeability, strength, and related parameters. Corresponding 
reactivity characteristics for each segment are indicated by a four-digit 
number, identifying files describing gasification rates and thermodynamic 
parameters associated with each of the inner and outer surfaces and attached 
components as described above. The small black powder charge in the igniter 
increment is seen to be treated here as an attached component described by 
reactivity file #1. Different reactivity pointers are associated with each of 
the two case increments to reflect the different nitration levels used for 
case components in the two regions. The many different mechanical properties 
pointers admit to the possibility of differing properties, though actual data 
are extremely limited. 

Propellant input files are also required for the Clean Burning Igniter 
(CBI) and M31-type propellant to describe mechanical properties, dimensions, 
thermal properties of the solid, ignition and combustion characteristics, and 
thermodynmic properties of the product gases. If explicit modeling of the 
ignition and combustion of the container walls is desired, corresponding 
propellant input files are required for these materials as well. 

A number of degenerate forms of this data base are also addressed in this 

12 
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Figure 3.  TDNOVA Representation of the M203E2 Propelling Charge 



paper, various simplifications of the representation having been adopted in an 
attempt to circumvent computational difficulties encountered during the course 
of the investigation. The first of these entailed a simplification of the 
level of modeling of the rigid combustible case modules, as an insufficient 
treatment of boundary values associated with the rupture of two adjacent 
increment sidewalls led rapidly to an instability which prevented further 
study of the problem. While the source of this difficulty is under study, 
immediate interest in the problem of flamespreading in the M203E2 Charge 
motivated a temporary, more elementary treatment of the sidewall. Rather than 
the rigidized sidewall model with failure based on an equivalent stress 
calculated using a linear elastic model, a previously developed flexible 
sidewall representation with rupture based simply on a predetermined 
overpressure  criterion was  employed   to  allow  continuation  of  the  calculation. 

Using this representation, some limited but very interesting insight was 
gained into the problem. Figure 4 displays the pressure field at various 
times very early in the ballistic cycle. We note first features of the 
pressurization event associated with the localized burning of the black powder 
spot within the igniter increment, the more extended region of CBI (assumed 
here to fill the igniter increment), and the energetic case material itself. 
We need to keep in mind here that, while flamespreading through the CBI and 
the M31-type stick propellant is driven in the calculation by convective heat 
transfer as deduced from the two-phase flow, combustion of the case, like that 
of the black powder spot, has been given a tabular representation with a small 
but finite contribution occurring right from time zero. This perhaps 
premature contribution to the pressure from the case was examined briefly in a 
subsequent calculation; however, a more meaningful analysis of this effect 
within the framework of TDNOVA awaits both activation of the explicit case 
ignition and combustion submodels within the code and useful ignition, burning 
rate, and heat release data for the case material. Nevertheless, by about 0.8 
ms into the cycle, substantial pressurization is seen within the rear portion 
of the charge, the progression of which through the charge is seen to dominate 
the picture  from   that   time  forward. 

Normalized flow field plots of the gas phase for this calculation are 
provided in Figure 5. (Flow vectors originate at the centers of the cells and 
are normalized with respect to the largest value of velocity for that phase at 
that particular time in the calculation. Further, the expanded width-to- 
length ratio depicted in these views similarly increases the apparent radial 
components of flow.) A substantial portion of early igniter output is seen to 
flow rearward and around the case, contributing to pressurization of the 
ullage, rather than forward into the bundle of stick propellant. However, a 
major contribution to the early flow of gas, both into the ullage and into the 
bundle of propellant, results from the case reactivity, as mentioned above. As 
the calculation progresses, we note significant distortion of the igniter 
element mesh, associated with the high drag forces exerted on the finely 
granulated CBI, leading to a prediction of substantial rearward motion of the 
igniter increment. While we emphasize the inaccuracies associated with the 
very coarse axial mesh which, in fact, may have led to the premature 
termination of the calculation, the reader is also reminded of the 
experimental results of Minor^ in which the igniter cup was apparently 
observed, via high-speed cinematography, to be propelled rearward towards the 
spindle face. The calculation will be attempted once again after some 
restructuring of the code has been made to allow a greater pre-allocation of 
axial   mesh  points   preferentially  to  the  fine-grained  igniter  region. 

14 
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A second, and this time major, simplification to the representation was 
then effected to circumvent numerical difficulties associated with separation 
of the coarsely described igniter increment from the main charge and 
stagnation against the spindle face. Figure 6 depicts a single-increment 
version of the M203E2 data base, with the entire igniter charge (black powder, 
CBI, and combustible case material) described as attributes of the rear 
boundary of the charge. Hence, while separation of the igniter charge from 
the bundle of sticks was not possible, the partitioning of the flow of igniter 
gases forward into the bundle of sticks and rearward into the ullage, as 
influenced by the permeability of the boundary itself, was still amenable to 
treatment. In order to describe a problem of some interest, the black powder 
and CBI were lumped together and treated as an added energetic component 
external to the semi-permeable rear boundary, while igniter-increment case 
energetics (both rear and forward endwalls) were released at the surfaces of 
the now single rear boundary. Finally, in the same spirit, the physical 
attribute of case thickness was temporarily eliminated in order to circumvent 
a related computational difficulty. With this substantially simplified data 
base, we were then able to complete calculations through the completion of 
flamespreading and transformation of the problem to the quasi-two-dimensional 
representation. 

We note first in Figure 7 early pressurization of the ullage, again a 
result of both igniter functioning and early case combustion. Some 
pressurization at both ends of the charge then takes place, but pressurization 
within the rear portion of the charge is seen to dominate the picture, with 
ignition first predicted to occur adjacent to the igniter shortly before 0.5 
ms into the cycle. Some additional insight into the process can be gained 
from the gas- and solid-phase flow field plots of Figures 8 and 9, the latter 
suggesting radial compaction of the stick bundle at 0.5 ms, as observed 
experimentally by Minor. Accompanying flamespreading contours for the first 
1.0 ms of the event are displayed in Figure 10, revealing a largely one- 
dimensional event, both inside the perforations and on the outside surfaces of 
the  sticks. 

Additional runs were ma4e with the permeability of the boundary between 
the igniter and the bundle of propellant substantially decreased (to as low as 
10% of the total boundary area devoted to ventholes), with surprisingly little 
noticeable   impact  on  the  results.     We  will   return  to   this   result   in  a  moment. 

Several calculations were made with case reactivity turned off in order 
to determine its impact on the above observations. Early pressurization in 
the external ullage was predicted to be substantially reduced, slowing the 
charge pressurization and flamespreading events as well. Perhaps most 
significantly, the influence of the permeability of the boundary between 
igniter and propellant then became evident (Figure 11). Though preliminary, 
this result may be a first indication of the importance of packaging 
properties to the path of flamespreading for stick as well as granular 
propellant  charges. 

Finally, calculations were also performed with the propellant slots 
initially closed (i.e., no mass transfer between perforations and 
interstices), leading to an expected increase in pressurization rates within 
the perforations (Figure 12). As the slots were allowed to open, in the 
simulation, when internal pressures exceeded external by only 10 MPa, very 
little  subsequent  effect   was  observed. 
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III.     CONCLUDING REMARKS 

At this point, it should be stated that, above all else, the M203E2 
Propelling Charge has shown itself to be an excellent vehicle for shaking down 
the new capabilities of the TDNOVA code. A number of minor coding errors were 
located and corrected, and several problems were encountered that require 
further work before additional progress can be made with the M203E2 study. 
While most of these are considered to be simple coding "glitches," it remains 
to be seen whether or not the preferential allocation of additional axial mesh 
points to the igniter increment will then allow completion of the 
unadulterated data base. Further, it seems reasonable to activate the 
explicit ignition and combustion submodels for the case material, based on the 
above results, before proceeding too much further with the problem. Useful 
exploitation of this feature will, however, be dependent on the availability 
of  required  case   ignition  and   combustion  data. 

Indeed, we have yet to provide a complete explanation for the reverse 
temperature sensitivity experienced with an early version of the M203E2 
Charge. However, one possible sequence of events consistent with the apparent 
influence of the path of flamespreading on maximum chamber pressures has been 
postulated. This mechanism, which indeed seems more likely with cold- 
conditioned propellant, involves splitting of the sticks upon ignition and 
rapid overpressurization within the perforations while the bundle of sticks is 
still tightly compacted from early flow exterior to the charge. The 
additional, unplanned burning surface then leads to the observed increase in 
maximum chamber pressure. With the preferred mode of flamespreading, early 
igniter products flow into the bundle of sticks, pressurizing and rupturing 
the case and dispersing the sticks radially. Ignition and pressurization 
within the perforations can then readily lead to a slight opening of the slot6 
and rapid equilibration of pressures inside and outside the sticks, preventing 
any significant splitting. Complete verification of this hypothesis was 
unfortunately outside  the  scope of  Minor's   limited   experimental   investigation. 

It is not unreasonable to expect that we might be able to examine the 
feasibility of this sequence of events as the source of the problem with 
TDNOVA in the not-too-distant future. In addition to the above improvements, 
however, we plan first to upgrade the stick splitting/opening submodel to be 
based perhaps on the Lame' equation and, necessarily, to include the influence 
on radial bed compaction as a resisting force. A complete investigation of 
the  proposed mechanism  is   then anticipated. 
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