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I. INTRODUCTION

sIntegrated or Guided-Wave Optics is an emerging technology that has the

ultimate potential of integrating miniature optical components such as laser
light sources, modulators, switches, deflectors, lenses, prisms, and detectors
in a common substrate. The resultant integrated optic circuits and subsystems A
are expected to have a number of advantages over the conventional bulk optical
systems in certain areas of applications. Some of the advantages include
smaller size and lighter weight, wider bandwidth, lesser electrical drive

power requirement, greater signal accessibility, and integratability. The
integrated optic circuits are also expected to possess advantages in stability,
reliability, ruggedness, and ultimate cost. It has been recognized for some
time that the most immediate applications of integrated optics lie in the
areas of wideband multichannel communications and signal processing (for both
civilian applications such as fiber optic systems and military hardwares such

as sensors and radars).

The general objectives of this research program are to study the basic
physical mechanisms/phenomenon of new and novel guided-wave devices with
application to wideband multichannel optical information processing. The

major tasks that have been carried out during this program year include

theoretical and experimental research on the following two major topics:

1. Wideband Guided-Wave Acoustooptic Interactions and Devices in Gais-

Zn0 composite waveguides, and

2, Planar Guided-Wave Magneto-Optic Bragg Diffraction and Devices in

YIG-GGG Waveguides. - -

Some very significant progress has been made in each research topic.




IT. PROGRESS DURING CURRENT PROGRAM YEAR

A. Summary of Research Achievements

Research efforts for the current program year have been focused on the
two topics as listed in the Introduction. Since both topical areas had been
practically unexplored previously, a considerable amount of effort was spent
on necessary preparations for in-depth studies of these two topics. The
preparations include preliminary theoretical formulation of the problems,
establishment of laboratory facilities for fabrication of the devices, and
construction/assemblage of a large variety of required optical and RF equip-
ment for experimental verification of the basic concepts. Some very signi-
ficant progress has been achieved in both topics. In the first topic, the
theoretical analysis has uncovered a very efficient wideband Bragg dif-
fraction configuration which involves a single-mode optical waveguide in
the (001) plane of a GaAs substrate with the SAW propagating in the “100-
and <110>- directions. In the experimental phase, construction of an
in~house sputtering system for fabrication of ZnO thin-film SAW transducers
has been completed. This sputtering system was used to fabricate preliminary
devices that have demonstrated high diffraction efficiency at 200 MHz SAW
frequency. A paper which reports this progress was published recently.(l)
A second paper was published in the Proceedings of the 1983 International

(2)

Integrated Optic and Optical Fiber Communications Conference.

In the second topic, through an all-out effort we have recently made
significant progress in the experimental phase of research. We have most
recently succeeded in the experimental observation of Non-Collinear Aniso-
tropic Magnetooptic Diffraction from Magnetostatic Surface Waves in
YIG/GGG Substrate. To the best of our knowledge, this is the first observa-
tion of its kind. We are in the process of improving the electronic instru-
mentation to facilitate detailed quantitative measurement. A paper was

published in the Technical Digest of the 1984 Topical Meeting on Integrated
(3)

and Guided-Wave Optics.

B. Research Progress

A detailed description of the progress and the achievements now follows:

1. Guided-Wave Acoustooptic Interactions and Devices in GaAs-ZnO

Composite Waveguides
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As indicated previously, integrated optic modules or circuits are
expected to have a number of advantages over the conventional bulk counter-
parts in certain areas of optical information processing applications.(a)
At present, LiNbO3 and GaAs are being identified as the two most promising
substrate materials for eventual realization of integrated optic circuits.
Clearly, in comparison to the LiNbO3 substrate, the GaAs substrate provides
a greater future potential for integration of active and passive components
that are required in information processing and communications applications.
One of the key components in such future GaAs integrated optic circuits is
an efficient wideband acoustooptic (AO) modulator/deflector. This AFOSR-
supported research project is aimed at developing this key component

through a detailed theoretical and experimental studv.

In the theoretical study, we have discovered an interaction configuration
of great interest, namely the one with the SAW propagating along the <100> or

! <110> direction of the (001) plane of a GaAs substrate.(l)

The analysis has
shown that for SAW propagation directions such as those referred to above,
numerical computations can be simplified considerably to generate a variety
of design data unavailable heretofore. For example, it was shown in the
last program year that very efficient wideband Bragg diffraction (1.6 GHz)
could be achieved at 0.83 um optical wavelength. We have recently obtained

(2)

further theoretical results. For example, as shown in Fig. 1(a) and 1(b),
the topographical distribution of the induced changes in dielectric constant
created by the <121>-propagating SAW in the (l1l)-substrate differs drastically
from that created by the <100>-propagating SAW in the (00l)-substrate. The

nodal planes are seen to be flat in Fig. 1(a) but not in Fig. 1(b). The

effects of this observation are reflected in the corresponding frequency
dependence of the acoustic power-beam width product (PI) as shown in Fig. 2(a)

and 2(b), exhibiting a phase cancellation in the former but not in the latter.

However, from Fig. 3(a) and 3(b), the inherent AO Bragg bandwidth in the two

interaction configurations are rather similar, again indicating the wideband

capability with acoustooptic interactions in GaAs optical waveguides.

In the experimental study, we were convinced at the outset that establish-
ment of an in-house RF sputtering facility for fabrication of a ZnO thin-
film SAW transducer on the GaAs waveguide would greatly expedite this research.

Consequently, a great deal of effort was made toward the construction of a

I
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modern sputtering system at the author's laboratory. This construction

has been completed (See Fig., 4). In fact, the system has gone through
several test runs and has already produced good-quality Zn0O SAW trans-
ducers on glass substrates. Although at a lower degree of success, some
Zn0 films were also deposited on GaAs waveguide substrates for transduction

of SAW at 200 MHz.

As a second step to the experimental study, the device configurations
as shown in Fig. 5 was recently fabricated. A 2-micron thick piezoelectric
Zn0 film was first deposited on the GaAs waveguide by the sputtering svstem
referred to above. A 200 MHz transducer (20 finger pairs and 1 mm aperture)
was subsequently formed on the ZnO film. The verv high refractive index of
GaAs, namely, 3.4 at 1.15 micron laser wavelength has made excitation of
guided-wave through prism coupling extremely difficult. Consequently, the
(110) cleaved plan of GaAs was used to edge-couple the light beam. This
preliminary AO Bragg cell has demonstrated high diffraction efficiency,

(1)

namely, 507 diffraction at 47 mw RF drive power. This preliminary result
is in fair agreement with the theoretical prediction. Improvements in the
qualities of the optical waveguide and SAW transducer should produce even

better results and closer agreement with the theoretical predictions.

2. Guided-Wave Magneto-Optic Bragg Diffraction and Devices in YIG/GGG
Waveguides

This project concerns thecretical and experimental studies on "Inter-
actions between Guided-Optical Waves and Magnetostatic Surface Waves in
Thin-Film YIG/GGG Composite With Applications to Optical Information Process-

ing. An interaction configuration of particular interest that has been

identified is shown in Fig. 6. Note that in this non-collinear configuration,

the propagation direction of the lightwave is nearly orthogonal to that of the
magnetostatic surface wave (MSSW), in contrast to the co-llinear configuration

(5)

that was reported recently. Like guided-wave acoustooptics, non-collinear
guided-wave magnetooptic interactions are expected to be much more versatile
in application that the collinear interactions. The MSSW excited in the YIG
film by means of a short-circuited metallic strip serves to induce changes

in the refractive index. We suggested in the original proposal that the
grating created by this induced index changes then diffracts the incident
light in a manner similar to the diffraction due to the well-known acousto-

optic effect. However, the resultant magnetooptic devices will have the
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following unique characteristics in comparison to the existing acoustooptic

devices:

1. wvery high and electrically tunable RF center frequency (2 to 20 GHz)
enables the devices to operate at the actual operation frequencv of

radar and communication syvstems.

2. design and fabrication of efficient and wideband transducers for the

MSSW are considerablyv simpler,

3. the propagation loss of the MSSW is much lower than that of the con-
ventional SAW, especiallv at the upper range of the frequencies

referred to in item 1, and

4. the combined nondispersive and dispersive properties of the MSSW

provides a potential for a new class of signal processing devices.

Since this non-collinear guided-wave magnetooptic diffraction had been
totallv unexplored and the experimental setup for observation of this dif-
fraction phenomena requires a large assortment of microwave and optical com-
ponents, a considerable amount of time and effort has been spent in building
and assembling of the experimental setup from scratch. The setup used for
this experimental observation is shown in Fig. 7. The YIG/GGG substrate
furnished by Drs. Howard Glass and Larry Adkins of Rockwell International
was first brought in contact with an alumina plate which has a pair of
parallel metallic strips deposited on it for excitation and detection of the
MSSW (See Fig. 8). The composite sample was then mounted on a speciallyv-made
holder and inserted in the air gap of an electromagnet. A microwave signal
centered at 4.0 GHz was then applied to one of the metal strips to excite the
MSSW.(6_8) The MSSW generated propagates in the plane of the sample and is
detected by the other metal strip. By changing the magnitude of the D-C
magnetic field, the frequency of the MSSW has been tuned from 3.0 GHz to
5.0 GHz, demonstrating a bandwidth of 2.0 GHz.

Following the successful excitation of the MSSW, an attempt was under-
taken to excite guided-optical waves using a He-Ne laser at 6328 % as the
optical insertion loss of the sample was found to be too excessive at this
visible light wavelength to obtain any meaningful result. Subsequently, a
Jodon He-Ne Laser at 1.15 um wavelength was purchased using the funds
provided by the Universitv. This laser arrived finallv after a long delav

and was recentlv put into operation after repairment. 1In order to minimize
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Fig. 9 Output Beam Profile Of A TM-Mode Guided Light Zn A
YIG/GGG Waveguide Excited By Edge-Coupling Using A

Cvlindrical lens

Fig. 10 Non-collinear Planar Guided-Wave Magneto-
optic Diffraction From Magnetostatic Sur-
face Wave: 1.4 KC Square-Wave Modulated
Magnetostatic Surface Wave At 3.9 GHz
Carrier Frequency (Top Trace); Diffracted
Light Waveform (Bottom Trace).
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the optical insertion loss, the dimension of the YIG/GCGG substrate along
the optical propagation path was chosen to be as small as 5.0 mm. This
small dimension also necessitated usage of edge-coupling for excitation
of guided optical modes in the YIG waveguide. Tvpical beam profiles of
the guided-mode generated in a 13 um YIG film as recorded in an IR image

converter is shown in Fig. 9.

Following the successful generation of both the MSSW and the guided-
optical wave, the incident angle of the guided light beam was adjusted to
maximize the output of the IR detector. We have found that the polariza-
ation of the diffracted light is orthogonal to that of the incident light.
Fig. 10 shows the oscilloscope trace of the detector output together with
that of the corresponding square-wave modulation and the MSSW at 3.9 GHz.
Clearly, we have for the first time succeeded in observation of Guided-

Wave Non-Collinear Magnetooptic Diffraction Using Magnetostatic Surface

Waves. We are in the process of improving the electronic instrumentation
to facilitate optimization of the detected signal for detailed quantitative

measurement.,
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tion of efficient wideband diffraction and electronic tuning of the
RF carrier frequency of the resultant magnetooptic device was much
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Bragg cells in wideband real-time signal processing applications.
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PLANAR GUIDED-WAVE MAGNETOOPTIC DIFFRACTION BY MAGNETOSTATIC
SURFACE WAVES IN YIG/GGG WAVEGUIDES*

C.S. Tsai, D. Young, L. Adkinsu, C.C. Lee, and H. <liss

-~

Department of Electrical Engineering

University of California

Irvine, CA 92717
Summarv

Modulation and switching of light waves in Yttrium iron gzarnet (YIG)-

(i)

Gadolinium gallium garnet (GGG) waveguides using Farady rotation ,» and light

propagation and mode-conversion in a thin-film dielectric waveguide using magneto-
optic YIG substrate(2'3) had been studied in detail. More recently, propagation
and mode-conversion in a YIG/GGG waveguide with an isotropic top .aver usinz
Faraday rotation was also analyzed.(g) In this paper we report on widebanda moid-
ulation at multigigahertz (2 to 7 GHz) center frequency that results from planar
magnetooptic diffraction by magnetostatic surface waves in the YIG/GGG waveguide.

Magnetostatic surface waves (MSSW) results from propagation of electron spin
precession around an external DC magnetic field and has its energv confined mostly
in a thin-film of ferromagnetic material such as YIG on a suitable substrate such
as GGG. The MSSW can be readilv and efficiently gzenerated bv applving a micro-
wave signal to a short-circuited metallic strip which is brought in close prox-
imity to the ferromagnetic film. The center frequency of the MSSWw can be simply
tuned, tyvpically from 1.0 to as high as 20 GHz, by varving the frequencv of the
microwave signal generator and the DC magnetic field.

Similar to the surface acoustic waves (SAW) that induce changes in the
refractive index through its stress or strain field, the MSSW can also induce
changes in the refractive index of the ferromagnetic film throush its RF maznetic
field. Consequently, a moving optical grating is created in the waveguide through
propagation of the MSSW. The periodicity of the grating is determined bv the
dispersion characteristic of the MSSW. The optical grating created can cause dif=-
fraction of an incident guided-light wave in the plane of the waveguide if phase
matching condition is satisfied among the incident lisht wave, the diffracted
light wave, and the MSSW. Clearly, such planar guided-wave structure possesses

the potential for miniaturization and integration of the resultant devices in com-

*This work was supported by the AFOSR and the University of California.
“Rockwell Internat ‘onal, Anaheim, CA
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parison to the one that utilizes unguided-light waves and magnetostatic bulk

waves.(s-s) The general configuration of the guided-wave magnetooptic diffrac-
tion described above is‘depicted in Fig. 1. Note that the collinear configura-
(9

tion reported recently in which all three wave vectors of the incident-, dif-
fracted-, and the magnetostatic surface-waves lie in one direction (6i = 90°) is

a special case of the non-collinear configuration to be emphasized in this paper.

As in planar guided-wave acoustooptic diffraction,(lo) device application with non-
collinear configuration is expected to be more versatile than the collinear config-
uration.

The detailed arrangement and basic dimensions of the YIG/GGG waveguide and
the MSSW transducer used in our experimental study are shown in Fig. 2. The YIG
film was fabricated using liquid phase epitaxy. A pair of parallel metallic strips
with a separation of 5.0mm in between was deposited on an alumina substrate. The
electrode pair was then brought to near contact with the YIG film by flipping the
alumina substrate. One electrode was used to excite while the other was used to
detect and measure the MSSW. Efficient excitation of the MSSW was accomplished
over a frequency band as large as 2 to 7 GHz. The corresponding DC magnetic field
was 200 to 1700 Gauss. Excitation, propagation, and detection of single-mode op-
tical waves at 1.152 .m wavelength were facilitated using edge coupling. Planar
guided-wave magnetooptic diffraction from the MSSW was observed with the non-
collinear configuration as well as the collinear configuration. Fig. 3 shows a
1.4KC modulated MSSW at 7.0 GHz carrier frequency and the corresponding modulated
light intensity. In this particular experiment the optical modulation was facili-
tated with non-collinear interaction of the TEO— and the TMO—mode optical waves and
the MSSW. To the best of our knowledge such non-collinear planar guided-wave mag-
netooptic diffraction was observed for the first time.(ll)

The measured diffracted light power was shown to depend linearly on the in-
put RF drive power for a power range of at least 15 dB. At 4.0 GHz center frequen-
cy the diffraction efficiency was measured to be 2.57% at 1.0 watt RF drive power.
A -3 dB magnetooptic bandwidth of 500 MHz centering at 4.0 GHz was also measured
by varing the carrier frequency of the MSSW but with the DC magnetic field fixed

at 803 Gauss.
In summary, wideband non-collinear planar guided-wave magnetoortic diffrac-

ion from 2 to 7 GHz magnetostatic surface waves has been observed and measured in
detail for the first time. This magnetooptic diffraction phenomenon should result

in a number of integrated optic devices for wideband communications and signal

processing applications. Inteaction configurations, physical mechanisms, and

“*_—J
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detailed experimental results will be presented.

Dr. C.T. Lee participated in the research described in this paper when the

research was first initiated some three years ago.
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HYBRID INTEGRATED OPTIC MODULES FOR REAL-TIME SIGNAL PROCESSING*

Chen S. Tsai
Department of Electrical Engineering
University of California, Irvine

ABSTRACT

This paper reports the most recent progress on four relativelv new hvbrid inte-
srated optic device modules in LiNbO, waveguides and one in YIG/GGG wave-
suide that are currently being studiéd at the author's laboratory. The five hybrid
podules include a time-integrating acoustooptic correlator, a channel waveguide
acoustooptic frequency shifter/modulator, an electrooptic channel waveguide TIR modu-
lator/switch, an electrooptic analog-to-digital converter using a Fabrv-Perot modula-
tor array, and a noncollinear magnetooptic modulator using magnetostatic surface

waves.

All of these devices possess the desirable characteristics of verv laree

pandwidth (GHz cr higher), very small substrate size along the optical path (tvp-
ically 1.5 cm or less), single-mode optical propagation, and low drive power reguire-

ment.

The devices utilize either acoustcoptic, electrooptic or magnetooptic effects

in planar or channel waveguides and, therefore, act as efficient interface devices
between a light wave and temporal signals. Major areas of application lie in wide-
band multichannel optical real-time signal processing and communications. Some of
the specific applications include spectral analysis and correlation of RF signals,
fiber-optic sensing, optical computing and multiport switching/routing, and analog-
to-digital conversion of wide RF signals. The common technical problems that require
further research and development include fabrication vield, fiber-waveguide and diode
laser-waveguide couplings, and resistance to optical damage.

INTRODUCTION

Recent advancements on the performances of individual guided-wave optical de-
vices, basic building blocks, their interconnections, coupling to and from waveguide,
and specific real-world applications have been quite significant. Together with the
recent progress on fabrication of miniature laser sources, waveguide lenses and
photodetectors, integration of all passive and active components on a single sub-
strate or a small number of substrates is becoming a reality. This emerging technol-
ogy can be utilized to implement integrated optic modules for wideband multichannel
optical communications and signal processing systems. Clearly, such future integra-
ted optic modules should share a number of attractive features, such as very large
bandwidth, low electrical drive power, small size, light weight, less susceptibility to
environmental effects, and potentially less cost in fabrication. In this paper five
new hybrid integrated optic modules currently being explored at the author's labora-
tory are reported together with most recent results.

*This work was supported by the AFOSR, and the AROD.
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TIME-INTEGRATING ACOUSTOOPTIC CORRELATOR

Time-integrating correlation of RF signals using bulk-wave isotropic acousg,.
optic (AO) Bragg diffraction has become a subject of great interest because of itg |
applications in radar signal processing and communications. Some encouraging reg,,
with the experiments which utilize guided-wave isotropic Bragg diffraction was re;“3 '
ported earlier (ref. 1). Subsequently, hybrid and monolithic structures for

integrated optic implementations were suggested (ref. 2). In a conventional conps

uration that utilizes either bulk-wave or guide-wave isotropic Bragg diffraction,
pair of imaging lenses and a spatial filter are used to separate the diffracted !i,.,
beam from the undiffracted light beam. We are presently exploring a new and nove:
hybrid structure which utilizes guided-wave anisotropic Bragg diffraction and hyby:.
integration (See Fig. 1) (ref. 3). This new structure can conveniently incorporatel
thin-film polarizer to separate the diffracted light from the undiffracted light )
prior to detection and, therefore, eliminate the need of imaging lenses and spatia]
filter. As a result, the acoustooptic time-integrating correlator is not only much
smaller in dimension along the optical path and capable of providing a larger time
window and a lower optical insertion loss, but it is also easier to implement in inte.
grated optic format. A laser diode and a thin-film polarizer/photodetector arrav
(CCPD) composite are butt-coupled to the input and the output end faces of a Y-cut
LiNbO4 plate (2mm x 12mm x 15.4mm), respectively. A single geodesic lens (with 8mpm
focal length) is used to collimate the input light beam prior to interaction with the
surface acoustic wave (SAW). The SAW propagates at 5 degrees from the X-axis of the !
LiNbO. plate to facilitate anisotropic Bragg diffraction between TE, and TM, modes. |
In opération, the correlation between the two signals S (t) and S (t) is performed 4
separately modulating the laser diode and the RF carrier to the S&W transducer. Fi-
nally, the time-integrating correlation waveform is read out from the detector arrav
by the charged-coupled device.

i2-
)

The preliminary experiment carried out earlier with the correlator of incomplete
hybrid integration at 0.6328um wavelength and the SAW at 391 MHz center ;requencv had .
demonstrated a bandwidth of 60 MHz, a time bandwidth product of 4.2 x 107, and a dy-
namic range of -27dB (ref. 3). A considerably larger bandwidth can be realized as it
is now possible to design and fabricate GHz bandwidth planar acoustooptic Bragg cells
(ref. 4) and it is also possible to modulate the diode laser at GHz rates. Fig. 2
shows the LiNb0O, substrate of the module with the geodesic lens located at the center |
and the SAW transducer at the right end. Most recently, complete hybrid integration
using a diode laser at 0.78um wavelength and the SAW at 314 MHz center frequencyv was
accomplished. Some preliminary results have been obtained but the aperture of the
collimated guided-light beam needs to be enlarged in order to perform a meaningful
evaluation of this hybrid integrated correlator module. '

CHANNEL WAVEGUIDE ACOUSTOOPTIC DEFLECTOR/MODULATOR

While planar waveguide AO devices have already reached some degree of sophisti-
cation and found immediate applications (ref. 5), channel waveguide A0 devices, which
result from acoustooptic deflection in channel waveguides, have only started to re-
ceive interest and attention (ref. 6). This interest was motivated by the fact that
comparable cross sections of the channel waveguide and the optical fiber would great-
ly facilitate the interfacing of the resultant AO channel devices with fiber optic
systems. One interaction configuration of particular interest is shown in Fig. 3.
Two identical channel waveguides in a Y-cut LiNbOj substrate are crossed at an angle
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R form a 24n straight intersection (ref. 7). Unlike the conventional n inter-

ection, the retractive index change in the crossover region is twice that in the
Zhef parts of the channel waveguide. As a result, the light wave is also guided in
che crossover region and the crosstalks between the two channel waveguides can be

si pnificantly smaller. An interdigital transducer is symmetrically positioned so
chat the SAW generated propagates in the intersection region. The center frequency
of the SAW is such that the corresponding Bragg angle is equal to one half of the
1ntersectlon angle. An optical wave incident at guide 1 is diffracted by the mov1ng
otical grating induced by the SAW. Consequently, a portion of the incident lizht is
;eflecced into guide 3. The frequencv of the deflected light is up-shifted by an
jmount equal to the acoustic frequency. Similarly, an optical wave incident at zuide
> will have a portion of its intensity deflected into guide 4 and have the frequency
of the deflected light down-shifted by the same amount. Such a device module should
¢ind a variety of applications in tfuture integrated and fiber optic systems. In the
spplication for heterodvne detection, the frequency-shifted light can be conveniently
used as a reference signal (local oscillator) in connection with optical communica-
rions and fiber optic sensing.

A high diffraction efficiency was demonstrated earlier in a preliminary
experiment (ref. 8) with multimode crossed-channel waveguides of 3Uum channel width
in @ Y-Cut LiNbO3 substrate and a SAW operating at 634 MHz center frequencv. We have
recently extended this experimental study to single-mode crossed-channel waveuuides
of 10um channel width, and have obtained similarly encouraging results (ref. 6).
Specifically, a 507% diffraction efficiency and a bandwidth of 13.4 MHz were obtained
with 0.13 watt of acoustic power centered at 320 MHz. This result clearlv indicates
the feasibility for realization of an active integrated optic module with a 50-50
power split and a tunable frequency offset. Consequentlv, this crossed-channel A0
module should find a variety of applications in integrated and fiber optic svstems.
Fig. 4 is a photograph of the resultant module. L cated in the center of the device
holder is the LiNb03 plate which has the dimensions 0.2 x 1.0 x 1.4 cm. A pair
of RF connectors for excitation and detection of the SAW are also shown. While both
prism-and edge-couplings of the light beam have been utilized successfully, a more
rigid coupling using single-mode fibers is being pursued.

ELECTROOPTIC CROSSED CHANNEL WAVEGUIDE TIR MODULATOR AND 4 X 4 SWITCHING NETWORK

A varietv of channel waveguide electrooptical (E-0) devices in LiNb0O, substrates
have demonstrated desirable characteristics, including low RF drive power, small
sizes, and high switching speed or large modulation bandwidth. Consequentlyv, such
E-0 devices should provide essential functions for realization of single-mode optical
fiber communication and optical signal processing svstems. One of the guided-wave
E-O devices that has received increasing interest utilizes the electrically-induced
total internal reflection (TIR) in a crossed-channel waveguide (ref. 9). The basic
device configuration is shown in Fig. 5. The crossed-=channel waveguide emploved in
this TIR device is similar to that employed in the channel waveguide acoustooptic
device described in the last section. A pair of parallel metal electrodes are de-
posited in the middle of the crossover region. In absence of an applied voltage, an
incident light from port 1, for example, will transmit rather freely through the
layer defined by the parallel electrodes and exit at port 4. However, when a voltaee
of appropriate polarity is applied, the refractive index in the laver is reduced due
to the linear electrooptic effect. Two refractive index interfaces are thus created
electrically. A total internal reflection (TIR) of the light will occur at the first
interface i{f the incident angle is larger than the critical angle *.. Therefcre, it
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the intersection angle of the channel waveguides and, consequently, the incidens
gle of the light beam is chosen to be in the neighborhood of the critical ang]e an.
ratio of the reflected (switched) light power to the transmitted (unswitched) 1;;“
power becomes a sensitive function of the applied voltage (ref. 9). It is cleargs
the very small length of the parallel electrode pair suggests a very small CaPacif
tance and thus a very large base bandwidth for the device. For example, an elect,
length of lmm and 50-ohm termination will provide a theoretical base bandwidth onQ
20 GHz. It was also previously shown that by using a suitable intersection angj,
both low drive voltage and low crosstalk could be simultaneously achieved (ref,ﬁ)

at

mode crossed channel waveguides in Y-cut LiNbQ3 substrates (ref. 6). We haVé—;;EHt

ly realized a single-mode multigigahertz bandwidth TIR modulator and a simple 4 X 4
switching network which consists of five such basic modulators, again in the Y-cy;
LiNb03 substrates (ref. 10). The channel width and the intersection angle of the
crossed channel waveguide are 10um and 1.5 degrees, respectively. The length of the
basic modulator along the optical path is 2.2mm. The best measured results for the
basic modulator at 6328 A wavelength are a base bandwidth greater than 2.0 GHz
(limited by the availability of high-speed electronics testing equipment), a drive
voltage of 18 volts for 90% switching efficiency, a crosstalk of -15 dB, and an eg-
timated insertion loss of 1 dB. A simple scheme which employs a cascade of three
identical devices for reduction of the crosstalks by a factor of two in dB, namely,
from -15 dB to -30 dB, was also verified experimentally. |

|
{
We had earlier fabricated and tested such TIR modulators and switches in mylgj. .

Fig. 6 is a photograph of the finished basic modulator module and the micro-
scope objectives at right and left for edge-coupling of the light beam in actual
experiment. The LiNbOj plate and the RF connector to the coplanar microstrip trans-
mission on it are positioned at the top and a 50-ohm termination at the bottom.

pected to provide a variety of high-speed operations, such as multiport routing and
multiplexing in single-mode fiber optic communication and signal processing systems.
Fig. 7(A) shows the geometry of a simple 4 x 4 optical switching network which was !
fabricated and tested (ref. 10). The total length of the switching network along the
optical path is 0.74cm. This very small dimension is attributed to the fact that all
individual switches are very small along the optical path and that only straight \
channel waveguides are required for their interconnections.

Channel waveguide optical switching networks or matrices (ref. 11,12) are ex- ‘

Multiport beam switching and routing experiments were carried out with the light
incident at the second input port and subsequently modulated by switch Sy at 1 KHz. :
Routing of the light to any of the four output ports was accomplished by setting ’
switches S,, S, and Sg at appropriate switching states as indicated. Since the amp-
litudes of all four output waveforms as shown in Fig. 7(B) are practically the same,
it is reasonable to conclude that the optical insertion loss associated with each
individual route is also practically the same. Furthermore, since the total lengths
of channel waveguides in all routes are almost identical, it is reasonable to suggest i
that the insertion loss of the switch was the same for all and was estimated to be at !
most 1 dB. This insertion loss for the switch was determined by comparing the output
waveform of the route involving switches 81 S and So. Finally, the measured cross-
talks at the unintended ports are typically -15 to -17 dB.

In summary, various single-mode crossed channel waveguide TIR device confioura-
tions, including single, cascaded, and matrix modulator/switches, have been realized

in a Y-cut LiNbU3 substrate. A bandwidth greater than 2 GiiZ has been demonstrated
in the single modulator. Since only straight channel waveguides are required, such
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TIR devices possess the advantage of being very small in dimensions along the optical
path which in turn results in very low insertion loss and high packing density. Var-
jous potential applications of such TIR devices are possible. For example, optical
computation using an array of such TIR devices has been suggested (ref. 13,11). Some
of the more obvious applications of such devices include high-speed multiport switch=-
ing and routing in single-mode fiber optical communication and signal processing svs-
tems as well as data routing in electronic computer networks.

ELECTROOPTIC ANALOG-TO-DIGITAL CONVERTER USING CHANNEL WAVEGUIDE
FABRY-PEROT MODULATOR ARRAY

One of the important signal processing applications that utilizes guided wave
electrooptic (E-0) devices lies in analog-to-digital (A/D) conversion ot wideband RF
signals (ref. 15,16). Several types of electrooptic A/D converters which utilize
guided-wave E-O devices in LiNbO3 have been demonstrated (ref. 17-21).

We are currently studving a new tvpe of E~O A/D converter (ref. 22) which util-
izes an array of channel waveguide Fabry-Perot modulators (ref. 23) in a X-cut LiNbO
substrate. A 4-bit converter has been fabricated and the experimental results cb-
tained with a He-Ne laser at 6328 X have demonstrated some of its desirable features.
The elements of this integrated E-O0 A/D converter are depicted in Fig. 8. A set of
parallel electrode pairs to which the analog voltage is applied electrically in par-
allel is designed such that the electrode lengths of adjacent modulators differ by a
factor of two for a binary-code representation. Activation of this apodized elec-
trode array by the analog voltage will result in modulation of the refractive index
and thus the phase shift of the light and the optical trinsmission characteristic in
each channel waveguide. Thus an E-O Fabry-Peroc¢ modulator (ref. 24) is formed in
each waveguide. It can be shown that the shape of the transmission characteristic
versus the applied analog voltage or the total phase shift in each channel waveguide
is periodic and its periodicity is inversely proportional to the length of the elec-
trode. Accordingly the periodicity of modulation as a function of the applied volt-
age is reduced by a factor of two between adjacent channel waveguides. It is to be
noted that each channel waveguide modulator is also incorporated with an electrooptic
phase shifter to provide independent adjustment of its static phase shift. The depth
of modulation in the transmitted light of each Fabry-Perot modulator is determined by
the reflectivity of the two identical mirror facets and the attenuation coefficient
in the channel waveguide. A series of plots generated by a computer calculation has
shown that a significant modulation depth in the transmitted light intensity is
achievable in the aforementioned LiNb0O., substrate if the reflectivity of the mirrors
and the optical attenuation coefficieng are sufficiently low. Specifically, a re-
flectivity of 0.14 (which results from the difference in refractive index between the
air and the X-cut LiNb0O, channel waveguide) and an attenuation coefficient of up to
2.0 dB per cm are suffiiient for this purpose. To summarize, the readily achievable
modulation depth in the periodic dependence of the ocutput light as a function of the
applied voltage and the electrode length in a channel waveguide Fabry-Perot modulator
suggests that a suitable light intensity threshold may be chosen to establish the "1"
and "0" states for each element of the modulator array.

Referring to Fig. 8 again, a suitable laser diode array (ref. 25) is edge-
coupled to one end face of the LiNb0, plate to provide the sampling optical puises
at a very high rate by direct modulagion of injection current. At the output end an
array of high~speed avalanche photodetectors, edge-coupled to the other end face of
the LiNbO; plate, serve to convert the optical signals into electrical signals. If
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necessary, the resultant electrical signals may also be enhanced by amplifiers. Fi.
nally, the high-speed electronic comparators which follow the amplifiers serve to
compare the electrical signals with appropriate reference thresholds and generate th,
digital outputs.

In the experimental study, a 4-bit converter which consists of four parallel ;
single-mode channel waveguides along the Y-axis was first designed and fabricated in
a X-cut LiNbO. substrate using the conventional Ti-diffusion method (ref. 26). While
the separation between adjacent waveguides is 500 um, the separation of all electrode
pairs in the apodized electrode array is 10 um. The length of the longest electrode
pair (for the LSB) is 10.0mm and the leneth of the static nhase shifter in each wave-
guide is 2.0mm. Fig. 9 is a photograph of the LiNbO, substrate with the channel
waveguide Fabry-Perot modulator array. A cw hHe-Ne laser (Fig. 10) shows the 22 KHz
ramp analog test signal and the corresponding outputs from both the photomultiplier
and the comparator for all bit channels of the 4-bit converter. It is seen that the
period of the 2nd bit is twice that in the LSB as expected. This observation is
valid for all adjacent bits. Since the maximum peak voltage of the ramp test signal
was limited to 30 volts while the measured half-wave voltage for the LSB was 6.6
volts, some of the voltage levels were not digitized in this particular experi-
ment.

In summary, a new electrooptic analog-to-digital converter which utilizes an
array of channel waveguide Fabry~Perot modulators in a X-cut LiNbOj substrate has
been studied using a 4-bit converter in a binary-code representation. The experimen-
tal results obtained have shown that it is feasible to fabricate Fabry-Perot modula-
tor array with uniform quality. The length of the LiNbO, substrate used in this
preliminary converter is 2,5cm; however, it can be easily reduced to l.5cm in future
design. Although this preliminary converter would require a peak-to-peak voltage of
52.8 volts to generate all digital words, this voltage requirement can be easily re-
duced by a factor of four in future design. Since only straight channel waveguides
are required, this type of E-O A/D converter should possess the inherent advantages
of simple geometrical layout, small substrate size, and low optical insertion loss
as the number of bit precision is higher than, say, four. A preliminary analysis
indicates that such converters should be capable of providing 1 GHz sampling rate
with six to eight bits precisions.

NONCOLLINEAR MAGNETOOPTIC MODULATOR USING MAGNETOSTATIC SURFACE WAVE

Magnetostatic Surface Waves (MSSW) result from the electron spins precessing \
around a DC magnetic field but with its energy confined in a thin layer of ferro-
magnetic material such as YIG (Yttrium iron garnet) on a suitable substrate such
as GGG (Gadolinium gallium garnet). MSSW can be readily generated by applying a
microwave signal to a short-circuited metallic strip. The center frequency of the
MSSW can be simply tuned, typically from 1.0 to 20 GHz, by varying an external DC mag-
netic field (ref. 27-29). Other potential advantages of the MSSW in comparison to
the SAW include: 1) simple transducers not requiring critical photolithography,
typically 50 um wide; 2) lower propagation losses at the higher frequencies; and
3) both dispersive and nondisversive properties of the magnetostatic waves can be
utilized. Since, like the SAW, the MSSW will induce a moving optical grating in the
YIG film waveguide, a guided-light wave can be modulated by diffraction.

An interaction configuration of particular interest that has been identified is ,
shown in Fig. 11. Note that in this non-collinear configuration, the propagation
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direction of the lightwave is nearly orthogonal to that of the MSSW, in contrast tg
the collinear configuration (in which the light waves and the MSSE propagate in the
same line) that was recently reported (ref. 30). Like guided-wave acoustooptics,
pon-collinear guided-wave magnetooptic interactions are expected to be much more
versatile in application than the collinear interactions.

The dimensions of the YIB/GGG waveguide and the MSSW are shown in Fiz. 11. A
pC magnetic field of about 600 Gauss was applied to excite a MSSW with the center
frequency at 3.9 GHz. Fig. 12 shows the waveform of the square-wave modulated light
at 1.15 um wavelength. An RF bandwidth of 250 MHz and a dvnamic range of 15 dB have
peen measured in this preliminary experiment. Refined experiments are in progress.

In summary, noncollinear guided-wave magnetooptic diffraction using magnetostat-
ice surface waves has been observed for the first time. This diffraction phenomenon
should result in a number of integrated optic devices for wideband communication and
signal processing systems with a center frequency much higher than that of acoustc-
optic devices.

CONCLUSION

Encouraging performance figures in terms of base bandwidth and device substrate
sizes have been experimentally demonstrated with four single-mode hvbrid integrated
optic device modules in LiNbOq waveguide substrates and one in YIG/GGG
substrates. Consequently, such device modules should act as efficient interface de-
vices between a light wave and wideband temporal signals in optical communication and
real-time signal processing systems. Although the present fabrication yield of such
LiNb0,-based modules has been less than desirable, increased yield should be possible
through improvement in fabrication skills and facility. Both prism- and edge-coup-
lings have been successfully employed to couple the He-Ne laser light at 6328 A and
11500 & wavelengths to the waveguide substrates. However, such coupling methods
required delicate and time-consuming alignment and adjustment. A more robust ap-
proach, such as fiber-waveguide coupling, should enhance the practicality and utility
of such device modules. Finally, a total hybrid integration of the devices requires
coupling of a single-diode laser or an array of the same to the waveguide substrate.
Such diode lasers should also greatly reduce the susceptibility of the devices to
optical damage.
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“Figure l.- Acoustooptic time-integrating correlator using anisotropic
Bragg diffraction and hybrid optical waveguide structure,.

Figure 2.- Hybrid integrated module for acoustooptic time-integrating
correlation.
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Figure 3.- Acoustooptic diffraction from surface acoustic wave in
crossed-channel waveguides.

Figure 4.~ Single-mode crossed-channel waveguide acoustooptic modulator/
deflector in LiNb03substrate.
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Figure 5.~ Electrooptic total internal reflection in crossed-channel
waveguide in LiNbO3 substrate,

Figure 6.- Basic electrooptic TIR modulator/switch module in crossed-
channel waveguide showing LiNbO_plate in Middle and Microscope
objectives at right and left fo% edge-coupling of light beam.
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Figure 8.- Schematic diagram of electrooptic A/D converter utilizing array
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Figure 9.- Photograph showing LiNbO, plate with four parallel channel
waveguide Fabry-Perot moaulators for analog-to-digital conversionm.
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Figure 10.- Experimental results of a 4-bit electrooptic A/D converter
using channel waveguide Fabry-Perot modulator array in figs
(a) to (d).
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Figure 12.- Guided-wave noncollinear anisotropic magnetooptic diffraction
from magnetostatic surface wave: 1.4 KC square-wave modulated
magnetoatatic surface wave at 3.9 GHz carrier frequency (top
trace); diffracted light waveform (bottom Lrace).
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shown in Fig. 11. Note that in this non-collinear contiguration, tne¢
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