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1.0 INTRODUCTION

The principal objective of this research effort is to investigate
the feasibility of calculating the roll-up of the endwall boundary layers
and subsequent formation of the blade leading edge horseshoe vortices that
form at the hub and shroud of a turbine cascade. This investigation is the
continuation of a numerical study of the viscous aerodynamics of an annular
NASA core turbine cascade described in Reference 1.

The previous viscous aerodynamics cascade study was conducted with
the VANS blade-to~blade computer code (Ref. 2). The subsonic turbine
cascade flow field was generated in blade-to-blade surfaces. Calculated
blade pressures at the hub, mid and tip radii of the cascade agreed with
corresponding measurements. However, endwall effects were not included
in the blade-to-blade analysis.

Based on the blade-to-blade flow field as the previous approximation, a
new meridional computer code was developed to compute endwall effects. The
meridional computer code development started from an external aerodynamics
code (Ref. 3), This computer code (VANS/MD) numerically solves the equations of
motion in a meridional plane which simultaneously intercepts the hub, shroud,
and blade of the cascade. Thus, the flow fields at the junctions of the hub
and blade and shroud and blade are within the scope of the VANS/MD computer
code.

Two important numerical issues are addressed in this report.

1. Applicability of the VANS/MD meridional finite difference equations
to unsteady flow.

2., Mass conservation in meridional numerical computation.

The first issue arose because the horseshoe vortiées calculated at the blade

leading edge were periodic in nature, rather than steady. The second

from axial at the upstream boundary to angular at the blade leading edge.
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In addition to the above numerical issues, background on endwall
effects is presented and turbulence modelling is addressed for computation
of vortical endwall flow fields. Computations were made for laminar
flow and turbulent flow in the NASA core turbine cascade.

Finally, the endwall calculations are presented for the NASA core
axial annular turbine cascade. Figure 1 shows top and front views of
the NASA core turbine vane annular cascade (Ref. 1). The axial chord is
1.505", there are 36 vanes and the pitch is .174 radians. Flow conditions

for the cascade are as follows:

1. (V/ver);=.231
2. (V/Ver)e=.778

3. & = .3305 slugs/sec

The author wishes to acknowledge the important contributions of
four govermment scientists. Messrs. Curtis L. Walker and John Acurio of
the Army Pfopulsion Laboratory provided many helpful suggestions and
discussions in the course of this research effort. Dr. Louis A. Povinelli
of NASA Lewis posed some probing questions relating to the VANS numerical
method. These queries led to the important conclusion that the VANS
method was applicable to unsteady flows. Mr. Kestutis C. Civinskas of
the Army Propulsion Laboratory was very helpful during many discussions
in the course of this work and made the suggestion that oil trace data
of NASA could be compared to calculated velocity vectors. This permitted

an experimental-numerical comparison.
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2.0 SYMBOLS

A Area

c Perimeter of closed curve

Ca Axial chord

Cp Heat capacity at constant pressure

Cv Heat capacity at constant volume - .

E Specific internal energy ? B

H Thermodynamic heat function or enthalpy

hx Metric of transformation

hy Metric of transformation

hz Metric of transformation -

i Unit vector of curvilinear coordinate x

il Unit vector of rotating cartesian coordinate of xl A,’ ll g

i, Unit vector of rotating cartésian coordinate of X, | R
!._3 Unit vector of rotating cartesian coordinate of Xy

3 Unit vector of curvilinear coordinate y

3 Index specifying streamlike-lines on a blade-~to-blade or meridional surface
k Index specifying potential-like lines on a blade-to-blade or meridional surface
k Unit vector of curviiinear coordinate 2

M Momen tum

} Mass flux

n Time index for finite difference equation

P Pressure

r,R Radial coordinate whicn together with x3 form a cylindrical coordinate system
Sx Grid velocity component along x direction

sy Grid velocity component along y direction
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T Period

t Time or time-like-variable

u Velocity component along x direction
u Velocity wvector

U Speed of march along z direction

v Velocity component along y direction

- v Volume
v Critical velocity ratio

. v Velocity component along z direction

w-w-Uz Velooity along z on a Galilean Frame which moves with a constant
speed IJz along z with respect to the laboratory frame

x Curvilinear coordinate along Azimathal direction

)(l Coordinate axes of rotating Cartesian coordinate which rotate about
axial axis x3 with spged

s Coordinate axes of rotating Cartesian coordinate which rotate about
axial axis x3 with speed o

X Axjial coordinate

Y Curvilinear coordinate along streamwise direction (from inlet to discharge)

z Curvilinear coordinate in marching direction

Heat capacity ratio cp/cv
Boundary layer thickness
Eddy viscosity

Molecular viscosity coefficient

RFotation velocity of impeller
Total stress tensor

¥
d
€
f/ Kinematic viscosity coefficient
@
%
Z'-’- Reynolds stress tensor

Angle of attack

oL
3
5 I) Local flow angle between vane pressure surface and meridional plane
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T Characteristic time
Shearing stress at wall

Azimuthal coordinate angle, together with r and x3 form cylindrical
coordinate system

Curvilinear coordinates

Inlet conditions to cascade

v
-' P

( ) e Exit conditions of cascade -
( )V- Reference condition
-

( ) Previous approximation property
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3.0 BACKGROUND ON ENDWALL EFFECTS

The endwall flow in a turbine cascade is highly three-dimensional
and viscous. Langston (Ref. 4) has developed a physical explanation of
this endwall phenomenon from measurements. A schematic of the vortical
endwall flow, developed by Langston, is shown in Figure 2. At the endwall
of the cascade the inlet boundary layer separates and forms a horseshoe (or
leading edge) vortex, with one leg of the vortex in one airfoil passage and
the other leg in the adjacent passage. A brief description of Langston's
physical interpretation of the horseshoe vortex follows.

One leg merges with and becomes part of the passage vortex. Thus in
a cascade flow, that part of the secondary flow that is called the passage
vortex is an amalgamation of one leg of the horseshoe vortex (and hence
part of the inlet boundary layer), the crossflow from the endwall boundary
layer formed within the cascade, and entrained fluid from the mainstream
flow in the cascade passage.

As shown in Fig. 2, the other leg of the horseshoe vortex, which has
been labeled the counter vortex, remains in the suction surface endwall
corner. The counter vortex has a sense of rotation opposite to the passage
vortex. It is much smaller than the passage vortex and may be dissipated by
viscosity. ¢

The ribbon arrow representation of both vortices in Fig. 2 has been
drawn to exaggerate the vortex rotation, in order that the sense of rotation
of each vortex would be clearly shown. The core of the passage vortex studied
approximated a Rankine vortex. A Rankine vortex consists of a circular cylindrical
vortex with its axis vertical in a liquid which moves under the action of gravity.
The upper surface of this vortex is exposed to atmospheric pressure. A particle
of fluid that was near the viscous-inviscid interface of the Rankine vortex would
actually have a total gross rotation of one or two revolutions about the center

line of the passage vortex, as it passed through the cascade passage,
6.
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. Briley and McDonald (Ref. 5) numerically computed the interaction
. of a 2-D wall boundary layer with a single elliptic strut mounted normal
to a flat surface. The flow considered was laminar at very low Mach number,
and resulted in the calculation of a horseshoe-type-vortex. Fig. 3 shows the
strut geometry, coordinate system and representative grid. The equations of
motion were solved in an elliptic-cylindrical coordinate system which fits
all solid surfaces. Planes at constant curvilinear coordinate 12 (see Fig. 3)
were rotated from the leading edge of the system to the minor axis of the
ellipse. At the symmetry plane of the system these planes are like meridional
planes to the flow, while at the outflow station they become like cross-
sectional planes to the flow. Interactive boundary conditions,derived from
incompressible potential theory and boundary layer theory, were employed along
the inflow elliptical surface. The pressure gradient in the Q direction, which
is the driving force for the computation, was derived from potential theory.
Briley and McDonald solved for the flow field for angle~of-attack Of of
0 degrees and 5 degrees, respectively. A saddle-point type of flow separation,
i.e., horseshoe vortex, originated upstream of the leading edge and, in the
case of 1 -5°, toward the high pressure surface of the ellipse., These
results are encouraging, in that a marching method, similar to what is

proposed herein, can compute a horseshoe vortex. However, the vortex was

confined to the immediate vicinity of the elliptic surface due to the single

strut configuration.




Gaugler and Rnésell (Ref. 6) conducted a large scale test 6f the
NASA core axial annular turbine cascade. From endwall oil traces and
streakline flow visualization, the roll-up of the boundary layer and
development of the horseshoe vortex was observed. These experiments were
conducted over the same Reynolds number range as the small scale axial
annular cascade test (Ref. 1); however, the incoming critical velocity
ratio of the large scale model was lower than that of the small scale
model. Thus, in the leading edge region, where the velocities are small,
the simulation between the large and small scale model is good. However,
the expansion critical velocity ratio will differ. The endwall oil
traces in Fig. 4 show the horseshoe vortex emanating from the pressure
surface (Ref. 6).

Finally, NASA has obtained detailed laser velocity measurements for the
small scale axial annular turbine cascade model (Ref. 7). These measurements
were made at an exit critical velocity ratio of .78. Velocity and flow
angles in the blade-to-blade plane were obtained at every 10 percent of axial
chord within the passage and at one-half axial chord downstream of the vanes
for radial positions near the hub, mean, and tip.

Therefore, the detailed measurements of references 1, 6 and 7 can be
employed to evaluate the accuracy of the VANS/MD computations. On the
basis of both the experimental and numerical data, the principal fluid
mechanics of the endwalls of the system can be resolved. This would
represent a major achievement in the computational fluid mechanics of

turbomachines.
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4.0 THE VANS MERIDIONAL COMPUTER CODE

The VANS numerical method (Refs. 2, 8, 9) for turbine cascade flows
marches in two alternating directions through the domain of computation. 1In the
blade~to-blade mode of marching (VANS/BB), flow separations along the vane sur-
faces are computed. The meridional mode of marching (VANS/MD) will calculate
hub and shroud effects, including the formation of the horseshoe vortices at the
leading edge near the tip and hub endwalls. In addition, VANS/MD can calculate
the propagation of the vortex as it moves from the pressure to the suction surface.
The blade-to-blade flow fiedd is employed to evaluate source terms in the VANS/MD
computer code. Thus, the VANS/BB field is called the previous approximation.

This section addresses three topics:

1. BAnalogy between the VANS equations and the unsfeady equations of
motion,

2. Mass conservation for the VANS meridional computer code.

3. Technical approach for computation of endwall effects.

4.1 Analogy Between the VANS Equations and the Unsteady Equations of Motion

An important issue of this study was whether or not the VANS
meridional equations were capable of computing unsteady flow. It has been
found that in the limit as the angular velocity, Uz, approaches zero, the VANS
meridional continuity equation approaches the time-dependent, three-dimensional
continuity equation in the meridional plane. A proof of this property of the
VANS continuity equation is presented in Appendix A. It follows from the
results of Appendix A that the VANS meridional equations reduce to an unsteady
set as v, approaches zerxo. .

4.2 Mass Conservation for the VANS Meridional Computer Code

Figure 5 shows the intersection of a meridional plane with the leading
edge. In the case where the flow field is steady, the mass flux entering

the upstream boundary must balance the mass flux leaving the face of the
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meridional plane. No mass can pass through the hub, shroud or blade leading
edge.
The continuity eguation for a closed curve C of area A in the meridional

plane of Figure 5 is as follows (Ref. 2):

& ehchy + feg-2) 1 dc
i[ ew' §:-n dc = 'O/IA € Whehgdh
where: uhy}k_é + V‘X‘lt;):
Schehy &+ S;/)x)h;zg:
Ve £

b Unit normal to closed curve C

l=Q
|

L)

IX Nyt
|

In the case where the curve C corresponds to the meridional boundaries of
Figure 5, the second and third terms on the lefthand side of Equation (1) must
equal the term of the righthand side of the equation. This follows from the
fact that: @) the flow field is steady; (b) as v, approaches zero, the VANS
continuity Equation (1) approaches the 3-D, time-dependent continuity egquation
(Appendix A); and (¢) only inflow occurs on the boundary C. The pressure
gradients of the previous approximation (blade-to-blade solution) were revised
to produce a previous approximation angular velocity field which globally
preserves continuity (Appendix B). This is similar to global continuity
preservation in Spalding's method (Ref. 10). The mass conservative VANS
meridional code was then used to run the cascade problem.

For the case of periodically fluctuating conditions, the righthand side of
Equation (1) will equal the sum of the second and third terms on the lefthand
side after a time average over one period. Thus, this analysis is approximate

for periodically fluctuating flow.
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4.3 Technical Approach for Computation of Endwall Effects

The technical approach for computation of endwall effects, including
periodic fluctuations in the flow field, is composed of a blade-to-blade mode
of marching followed by a meridional mode of marching. The initial field from
which all computation commences is the inviscid MERIDL flow field (Ref. 11).
In the blade-to-blade mode of marching, the computation takes place on a
blade-to-blade surface which is normal to the meridional planes of the
machine, extends from inlet to exit, and moves from the hub to the shroud.

The blade-to-blade method of marching is illustrated in the
blade passage schematic shown in Figure 6. The Xy X0 and %, coordinates
of Figure 6 represent a left-handed, rotating, Cartesian coordinate system
and coordinates (x, y, z) represent a left-handed, rotating, orthogonal,
curvilinear coordinate system. The z-direction is the marching direction
with the calculation taking place in the (x,y) blade-to-blade surfaces.

The (x,y) blade-to-blade surfaces move from the hub to the shroud of the
cascade. The blade-to-blade surface is first coincident with the hub.

The velocity Uz is set near zero, i.e., Uz = .20 fps, and the calculation

is continued until a steady-state is reached. For the blade-to-blade mode

of computation the inlet boundary layer is not present; hence, vortices

are not produced. After stabilization at the hub, the blade-to-~-blade surface
is moved to another nearby station; i.e., Uz = 100 fps during the process

of going from the initial station to the nearby station. The field is then
run to a steady-state in the nearby blade-to-blade surface (Uz = ,20 fps).
This process is repeated until the entire passage is filled with stabilized
blade-to-blade surfaces. For practical purposes approximately ten stabilized
blade-to-blade surfaces are desired. This solution represents the first

approximation for the meridional mode of computation.

11




In the meridional mode of marching, the meridional plane is first

coincident with the vane leading edge

From this position, the plane is then

rotated in an angular direction until it intercepts the next vane's suction

surface trailing edge. A schematic of two adjacent vane passages with

the meridional plane indicated is presented in Fig. 7. The z-direction

is now the angular direction. The meridional plane is first coincident

with the vane leading edge at its pressure surface (Fig. 5). The angular

velocity Uz is set near zero (Uz = ,20 rad/sec) and the calculation

is continued until a periodic state has occurred. It is anticipated

that at least two periods must be computed in this periodic state. After the

periodic flow field is obtained at the first station, the meridional plane is moved

to a nearby station. The angular velocity is increased to about 100 radians/sec

for this purpose. The field is then run to a periodic steady-state in this

nearby station. The process is repeated until the entire passage is filled

with meridional planes. For practical purposes, approximately ten periodic

meridional surfaces are desired.

The blade-to-blade and meridional modes of marching contrast in the

boundary conditions that are applied.

For the blade-~to-blade mode of computation

the same boundary conditions are applied throughout the computational process

(Ref. 2). However, for the meridional mode of computation the boundary

conditions vary (see Section 5.1.3).

12
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5.0 ENDWALL FLOWFIELD CALCULATIONS FOR THE NASA CORE TURBINE CASCADE
In this section the results are presented for turbulent flow in the NASA Tff
. core turbine cascade. The previocus approximation is discussed, as well as f}i
meshes, boundary conditions and initial conditions. In addition, the unsteady i&ii
s
nature of the vortical flow is described. .y
5.1 Previous Approximation, Meshes, Boundary Conditions, and Initial Conditions Ziij
The calculation completed was that of stagbilizing the flow field 211?
in the meridional plane intersecting the pressure vane surface at its leading ?ﬁ?
edge (Fig. 5). To this end the angular velocity of the meridional plane u, .Eéi
was set to the small value of .20 radians/sec for most of the computation. E;}Z
5.1.1 Previous Approximation :;:
Fig. 8 shows a meridional plane and a blade-to-blade surface. :}ii
The (x,y) curvilinear coordinate system is shown with the z coordinate being }iﬁ
the angular direction. We interpolate the blade-to-blade flow field data (Ref. 2) :::;
onto the meridional plane. Each blade-to-blade surface contributes one line ?E}
of data to each meridional plane. The result is a set of meridional planes ij
containing the blade-to-blade solution. This field becomes the previous :;:
approximation to the VANS/MD code, as discussed in Section 4.0.
5.1.2 Finite Difference Meshes
The finite difference mesh on a meridional plane intersecting —
the pressure vane gurface is shown in Fig. 9. The hub, shroud, upstream
boundary and cascade vane leading edge are shown. There are 50 vertical lines
and 35 horizontal lines. Spacing is fine near the surfaces of the system and _
coarse away from surfaces. Grid spacing is fine enough to provide about three -
points in the hub boundary layer at the upstream boundary and seven points in
'

the corresponding shroud boundary layer. —

13




5.1.3 Boundary Conditions

The upstream boundary is located 89 percent of an axial
chord upstream of the vanes (Fig. 9). The velocity, density and specific
internal energy from the blade-to-blade solution are imposed at the upstream
boundary. Measured boundary layer velocity profiles are superimposed on
the blade~to-blade velocities at the upstream boundary. At the shroud the
boundary layer thickness is seven percent of the radial distance between hub
and shroud, while on the hub the boundary layer thickness is two percent.

It is noted that the boundary layer measurements were taken at an axial chord
upstream of the blading; however, they are being employed at the 89 percent
chord station for this problem.

A no-slip condition is imposed on the hub, shroud ;nd vane
leading edge (Fig. 9).

5.1.4 1Initial Conditions and Early Stages of Computation

The interpolated blade-to-blade data (Ref. 2) on the
meridional plane intersecting the pressure surface leading edge (Fig. 5) were
used as the initial conditionms.

The initial angular coordinate was z = -.17453 radians. This
angular coordinate will rotate through two pitches, i.e., .348 radians
before the solution is completed through the passage.

Figure 10 shows the initial meridional component of the velocity
field at a z coordinate of -.17453 radians. The imposed upstream hub and shroud
boundary layers are indicated in the figure.

Based on the meridional component of the velocity field
of Fig. 10 as the initial condition,the VANS computation commenced at
an angular velocity Uz of two radians per second. After 200 cycles*
of computation the axial velocity components became erratic near

the vane leading edge. This behavior was traced to the turbulence

* A cycle of computation updates all the dependent variables on the mesh in

one meridional plane. 14
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model. The Cebeci-Smith mixing length theory (Ref. 12) is not applicable

near a stagnation point flow. The turbulence model was gradually shut off
starting from 4.4 percent of an axial chord upstream of the vane leading

edge. The erratic behavior in the axial velocity field then ceased. The
calculation was then run 2400 cycles. The angular coordinate increased by
.00237 radians at an angular velocity of two radians per second.

Fig. 11 shows the velocity field after 2400 cycles of computa- 4:;;
tion. Stagnation point flow is indicated at the blade leading edge. 1In ;:"‘
addition, a vortex is seen at the junction of the hub and vane leading edge. .;fq
However, the rotation of the vortical flow is not correct. The vortex is ;;_:
rotating counterclockwise and should be rotating clockwise (Ref. 4). The e
problems were traced to the fact that the VANS meridional code was only ;;;
approximately conserving the passage mass flux. This issue is addressed in :;i
Section 4.2 and Appendix B. The VANS/MD computer code was revised to conserve fffl
the passage mass flux and the computation commenced with the revised computer iﬁ
code . i{

wod
5.2 cCalculations of Endwall Boundary layer Roll-up and Vortex Formation. fffj
The VANS mass conservative meridional code was then rerun, in an iffi

attempt to stabilize the flow field in the meridional plane intersecting the ?
pressure blade surface leading edge. The meridional plane was initially moved hanay
at Uz of two radians per second and then slowed to Uz of .20 radians/sec. ' }f
The angular coordinate z increased from z = -,1745330 radians to z = -.1660508 371-
radians; i.e., a change of .0085 radians. The meridional plane was moved %“j
4.9 percent of the angular vane pitch. };;g
To define stabilization, the z coordinates were converted to time Atii

units, t, through division by the angular velocity Uz. The time variables

were then compared to a characteristic time for this problem. The characteristic

15
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- time is defined as the time it takes a mid-plane freestream particle to go
from the upstream boundary to the vane leading edge. This characteristic

time, tc, was determined to be .55 ms. A non-dimensional parameter l’ was then

DAGARS
.

defined as:

T =t (2)

o
0

For the axial cascade problem € went from zero to 5.44.

A set of velocity vector plots are now presented in terms of the
characteristic time parameter 1: . These plots depict the transient process of
boundary layer roll-up and formation of the horseshoe vortices on the hub
and shroud of the system. The meridional camponent of velocity is plotted.

Figs. 12 to 17 show the velocity field as the characteristic time
parameter ¥ goes from zero to 5.44. At a characteristic time W = .049 (Fig. 12)
a pressure wave is seen moving upstream of the blade leadiﬁg edge. Fig. 13
at ¥ = .63, shows the origins of horseshoe vortex formation at the hub and
shroud. In addition, a few velocity vectors are parallel to the vane boundary
indicating stagnation point flow at the vane leading edge.* Figs. 14 through 17
show the development of the hub and shroud horseshoe vortices. At I = 5.44
these vortices are fully formed (Fig. 17).

Figs, 18, 19 and 20 show critical velocity ratio contour maps at

characteristic time parameters of 0.0, 1.93, and 5.44, respectively. In Fig. 20

vortices are indicated in the contour plots and there is a strong viscous flow
on the hub and shroud surfaces.

5.3 Unsteady Nature of Vortical Flow Field ——

The pressure field was inspected from ¥ =0to T - 5.44, to ascertain
whether or not the flow field had stabilized. Table 1 below presents the
geometric locations of six points in the meridional plane whose time histories —f—q

were studied.

* The meridional flow field breaks up into two paths
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TABLE 1: GEOMETRIC PROPERTIES OF MESH POINTS WHOSE TIME HISTORIES WERE STUDIED

. Axial Position Radial Position
Point X3/Ca R/Ca Description
i -.62 6.7 Near shroud up-
stream boundary
2 -.09 6.7 Near shroud vortex
3 -.62 6.2 Near mid-plane up-
stream boundary
4 -.09 6.2 Near mid-plane at
leading edge
5 -.62 5.7 Near hub upstream
boundary
6 -.09 5.7 Near hub vortex

The axial position and radial position are in units of axial chord Ca

A rastexr plot of pressure characteristic time histories is presented
in Pig. 21. The ordinate of Fig.21 corresponds to the lower curve
()1{3/ca = ~,62, R/ca- 6.7). Shifting of the ordinate by one-tick-mark makes
it applicable to each of the remaining five time histories. On the basis of
these data of Fig.2l , it is difficult to determine whether or not the pressure
field has stabilized. In order to assess the transient nature of these pressure
traces, they were detrended and Fourier analyzed.

Fig. 22 shows raster plots of the mean pressure time histories.
A least-square cubic was employed to detrend each of the six pressure traces.
The pressure traces near the vortices (x3/ca = -,09, R/Ca =5,7 and
)(3/Ca = -.09,}?./Ca = 6.7) have trends which change significantly; however, they
appear near stabilization at T = 5.44. For points away from the vortical regions,
the trend of the data does not significantly change. On balance the trend of

the data appears to stabilize for characteristic times greater than T = 3.0.

.17
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Raster plots of the fluctuating part of the pressure~time histories
are presented in Fig. 23. These curves are determined from the difference
between the instantaneous values of Fig. 21 and the detrended values of Fig. 22.
These fluctuating data of Fig. 23 are undersampled in the characteristic time
period of 04 t £ 5.44. Thus, it is difficult to determine whether or not
a single frequency persists.

The pressure fluctuations near the eye of the hub vortex have an
amplitude of approximately 100 pgf (Fig. 23), This is approximately 5 percent
of the ambient pressure level. Under steady-state conditions this would imply
significant velocity fluctuations. However, due to the unsteadiness in the
flow field, the stagnation enthalpy of the system is itself varying with time.
Thus the total pressure is time-dependent as well. This prevents the velocity
fluctuations from becoming large.

These data of Fig. 23 were Fourier anélyzed to determine the power
spectral density in frequency space. Fig. 24 shows raster plots of the power
spectral density of the pressure fluctuations. Plots of spectral density in

units of (PSFA)Z/Hz are presented versus logjgpf. At a value of 1oglof-3.55

there appears a consistent peak in the power spectral density of all pressure
fluctuations curves; although, the peak is more pronounced in some and less

pronounced in others.

4

Two numerical experiments were conducted to insure that this periodic
phenomena is not caused numerically. First the marching increment; i.e.,
timestep, was decreased by a factor of two. The VANS code was run 2000 cycles

at this reduced timestep with no change in the periodic nature of the flow field.

Second the angular speed U, was decreased from two radians/sec to one radian/sec

and then to .20 radians per second. The periodic nature of the flow field was

e

still unchanged. However, these numerical experiments do not rule out numerical
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problems. NASA Lewis Research Center will shortly conduct an experiment
with high frequency response transducers near the vane leading edge. These
measurements will ascertain whether or not the horseshoe vortices are periodic.

The power spectral density curve of Fig. 24 show a maximum level
near the eye of the hub vortex and a minimum level near the eye of the shroud
vortex. Thus, the hub vortex appears to be the source of the periodicity.
Fig. 25 presents plots of the location of the separation point for the hub
and shroud horseshoe vortices as a function of calculation time. The
amplitude of the hub vortex oscillations appears much greater than the shroud
vortex oscillation, although the oscillation frequency appears to be the same.
Thexrefore, the horizontal motion of the hub vortex seems to be the driver
for the vortical system. ’

The meridional flow field was averaged over two periods of the
frequercy; i.e., T=1=.286 msec. A velocity vector plot, a critical velocity
ratio contour map, ind a vorticity ratio contour plot were made of the time-
averaged flow field. |

Fig. 26 shows the time-averaged velocity field. Boundary layers
are present along the hub and shroud. A stagnation point flow is also

indicated along the blade leading edge. In addition the vortices do not

appear tc be the same size. The hub vortex takes up about 16 percent of the

radial distance between hub and shroud, while the shroud vortex takes up about
12 percent of this radial distance. -

Contours of the critical velocity ratio of the time-average flow

field are shown in Fig. 27. Deceleration of the flow from V. e .23 to o

Ver 2
V_wM 0.0 is clearly seen. In addition the boundary layers and vortices are *";
Ver )
indicated. Contours similar to this plot, generated downstream of the vane leading S

edge, can be used to compare with the laser anemometer data of Goldman (Ref. 7).
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in order to get a more accurate geometric picture of the calculated
vortices, contour maps of the vorticity ratio were made in the meridional plane.
The vorticity ratio 7 is defined as:

7 = - ( j’;(“ - % ) (3)
% L % .,
where 7° is a normalization parameter equal to 7. = (Lc,(;” - J_s ) . and
where (4' is the velocity at the upstream boundary, é&” is the hub boundary
layer thickness and ¢{s is the shroud boundary layer thickness. The parameter
40 =69200 radians/sec.

Fig.28 éhows vorticity ratio contour plots of the time-averaged
meridional flow field. The hub vortex has negative vorticity, while the shroud
vortex has positive vorticity. Vorticity at the eye of each vortex is about
the same; i.e.)7ﬂ 2.0. However, the vortical shapes are different. The
shroud vortex is an oval shape and the hub vortex is more circular. The
dividing streamline of the flow between the two vortical regions occurs at a

radial position of approximately R~ .81 feet; i.e.)'l-O at R« .81,

Calculated time-averaged velocity vectors along the hub (axial and

angular components) are compared with a photograph of hub endwall oil traces

(Ref. 13) in Fig. 29. The vectors in the calculated separation region are not

shown in the figure; i.e., they appear as dots. Since the oil traces show only
streamline direction, the calculated vectors have been normalized by their
magnitudes. Thus, only vector directions emanating from their tails are rele-
vent.. The separation point in the figure represents the point at which the
meridional vector goes to zero. Upstream of the separation region the calculated
vectors are pointed in a direction parallel to the o0il trace streamline, and in
fact rapidly change direction in the same place as the oil traces. The ratio of
the separation point axial distance upstream of the vane to the pitch of the vanes
is .267. This compares favorably with the size of the endwall separation region

in the oil trace photograph.
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6.0 TURBULENCE MODELLING AND UNSTEADY VORTICAL FLOW

!
.ﬁ

i As was discussed in Section 5.3, the calculated vortical flow field was

. periodic in nature with a frequency of 3600 Hz. Furthermore, it was found
that the Cebeci-Smith turbulence model (Ref. 12) had to be revised in the

neighborhood of the blade leading edge (see Section 5.1.4). Thus, an

e AT o+ ¥ 5 s

important issue arose, whether or not the turbulence mbdel was the cause of

the observed unsteadiness in the calculated flow field.

i It was suggested by representatives of NASA Lewis (Ref. 14) that the
problem be rerun with the turbulent eddy viscosity set to zero. This calcula-
tion is purely a numerical exercise, in that the flow conditions being employed

correspond to that of turbulent flow and the turbulence is not included in the

LIRS 5 LI P

calculation. If under these pseudo-laminar conditions unsteadiness still

occurred, at least it could not be attributed to the turbulence model employed.
In order to minimize the computational time required for this exercise,

it was decided to start the pseudo-laminar computation at a time of 2.42 msec

after the start of the turbulent computation. Fig. 30 shows a velocity vector

plot of the turbulent meridional flow field at a time of 2.42 msec after the

start of computation. This corresponds to a characteristic time of € of 4.4.

This field became the initial conditions for the pseudo-laminar calculation.

h The eddy viscosity € was set to zero throughout the flow field and the calculation
was continued. The pseudo-laminar computation was carried 8000 cycles or to a
characteristic time <« of 2.8,

6.1 Pseudo-Laminar Flow Field Structure.

Evolution of the turbulent field of Fig. 30 to a pseudo-~laminar

field is presented in the velocity vector plots of Figs. 31 to 33. At T = ,346
(Fig. 31) the vortices are starting to get longer and flatter. Fig. 32 (t=1.55)

and Fig. 33 (©=2.05) clearly show chat the vortex pattern has changed shape. N
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A comparison of turbulent and laminar vortical shapes is presented
i in the vorticity contour ratio plots of Figs. 34 and 35. At T =.17 (Fig. 34)
the flow is essentially turbulent, since the eddy viscosity was just shut off.
™ at T =2.09 (Fig. 35) the effects of é =0 are quite pronounced. The longer and
i flatter vortical shapes are clearly indicated.

3 6.2 Unsteady Nature of Pseudo-lLaminar Flow Field

Pressure characteristic time histories were examined at the same
. six geometric locations employed previously (Table 1).

L Fig. 36 shows the pressure characteristic time histories at the
six points of Table 1. The flow field appears unsteady; however, it is
difficult to tell.

The pressures of Fig. 36 were detrended with a least square cubic fit.
The detrended pressure characteristic time histories are shown in Fig. 37.

The trend appears to be approaching a constant at a characteristic time 1: of 2.8.

The principal issue is whether or not the pressure fluctuations from
the detrended values show a persistence of the oscillations. Fig. 38 shows
the pressure fluctuations with respect to the detrended values. The oscillations
clearly persist,

To demonstrate that a periodic state has occurred, we computed the
power spectral density of the pressure fluctuations of Fig., 38. The power
spectral density of the pressure fluctuations is shown in Fig. 39. It is clear
that a single frequency; i.e., £ = 3900 Hz dominates the system. Thus, for the
pseudo~laminar case, a periodic state exists at a frequency approximately
300 Hz higher than the turbulent case. Unsteady flow did not attenuate for the

pseudo~laminar calculation.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

The VANS blade-to-blade and meridional computer codes have been
applied to calculate the endwall effects at the NASA core turbine cascade
vane leading edge.

The principal conclusions of this study are four-fold:

1. The initial boundary layer roll-up and formation of the endwall
vortices were computed at the vane leading edge.

2. The calculated vortical flow field was in a periodic state.

3. The calculated location of the separation point upstream of the vane
leading edge for the hub horseshoe vortex was 27 percent of the pitch between
vanes which checked closely with endwall oil trace data.

4. The turbulence model has little effect on the periodic nature of
the calculated vortical flow field.

It is recommended that the calculation be completed for the NASA core
axial annular turbine cascade and the numerical results be compared to existing

laser velocimeter data.
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APPENDIX A

ANALOGY BETWEEN THE VANS EQUATIONS AND THE UNSTEADY EQUATIONS OF MOTION

The VANS meridional computer code equations reduce to the unsteady
equations in a fixed meridional plane as the angular speed of the meridional
plane approaches zero. 1In this appendix a proof is given for the continuity
equation.

The derivation is developed for the case of a Cartesian coordinate
system (X,y,2). Consider the Eulerian, Cartesian coordinate system shown in
Fig. 40. Let I? be a curve in (x,y) plane-l and let A. be the area

1

enclosed.

The three-dimensional, unsteady conservation of mass equation is applied

to the area A, in (x,y) plane-l. In partial differential form the continuity
relation is:

o X A,

&

+ ACU) 4 (V) + a’gﬁz—‘/) =0 O

Inteqgration of (1) over the area A1 yields:

f/A.CM %[ﬁyu 3’-25’9.]4»4 +i/n.ewdn =0

Based on the Gauss Theorem Egn. (2) can be written as follows:

where:

?: u_t_.+ V;J:

——

N = normal to curve /? within (x,y) plane-l.

Eqn. (3) can be solved as a function of time in the (x,y) plane, provided

-
the term on the righthand side is known. Let E? and yW represent the
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density and z-component of velocities, respectively,from a previous approximatior.

Then Egn. (3) can be written as:

Zfeth e fegod--gf gidn

Egn. (4) represents the continuity equation for the area A; in (x,y) plane-l.
We now consider steady flow for the area Ay in (x,y) plane-l. The

continuity equation is as follows:

JU) + JRY) =
5J£§E?L) T é;;r "é; © (5)

U

Let: w=w + 2 (6)
2 = Uz 't‘ (7)

where Uz is a constant and ? is a pseudo time-variable. Substitution of

(6) and (7) into (5) yields:

V)= — ! (8)
i‘g + d(ﬁy) ¥ déc(g,) Oﬁ(qw)

Integration of (8) with respect to A and use of the Gauss Theorem yields:

#f s [egaare-gf ewen

o
Egn. (9) can be solved based on the variables c and W' from the previous

approximation

Ndr=-4( g w
,/d m(dﬂ +[{“ ( i’ u e w dA (10)

9 where: w= Ww- UE- (11)
b

The lefthand side of Egn. (10) is identical to the lefthand side of Egn. (4).
) . However, the righthand side terms differ. The righthand side terms of Egn. (10)
4 o

: represents the change in j; e w / dA over the interval Az’ between

'
{(x,y) plane-1 and (x,y) plane-2 in Fig. 40.
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We now consider the righthand term of Egn. (10) and take the limit as
" -3
U, approaches zero for a constant At ; i.e., A% = Ui 4t approaches

zero as Uz appraoches zero. The righthand side of (10) can be written as:

[ -l dn = AR Rl

Vs &€

(12)

-y
where Al and A2 are defined in Fig. 40. Let us assume that ‘é‘ and W are

linear functions of the coordinate z.

€ = Q. ¥ dp (2-Tv)

- (13)
W = Wr+ ﬂw(a"%v)
where: ( )r represents a reference value andaae and ﬂu) represent the constant

- -
slopes ‘5—2-? and 0:7% , respectively.

-y )
The product ( w becomes

EW = a W, + chaw C%-Z‘v)z.}(ﬂ(:wr'*ﬂwa‘)(z'?“’) (14)

Based on Eqnh. (14) the term ‘L L -
[-éw - ? Ut]L—[e;/V—-CU*‘]'.’ UE [l(ﬁtodt ﬂ( ~+
P —— “ o
Uz [;z(& -3 ) At Ae#w* W,.nebtf-g, JwAz‘:J (15)
Now, if it is assumed that the area A is identical to the area A,, then the
righthand side of Eqn. (12) can be written for a small area element An

as follows:

{(ew-el) - [ew AN T fUé“(»d(»/uAEiﬂca?)
(b oF y

+ Uz (1 (2-23) 4t Aodw + W Ae At # a"w‘éj(@z’

(16)
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Taking the limit of Eqn. (16) as v, — 0 yields:

.
: Jisr J(gw-Ru), - [ W~ AR [4( (Wr +4, (-3
g V0 Us AT AR (17)
& +“4W(<!‘ +Ae(zl-2r>) :
.‘} : .:1
’ Based on Egn. (13) the final result becomes: - -
Ly [(BR-Cul - [T -EUL} oA . [ﬂcwn 2 ("} ]
' Os—>0 Ue 4€ e “‘f . o
YCAGIK |
. Integration of (18) over the area Al yields: - b
I [-gf Ewdn]=-L cwdn ., ‘
Us—>0 o A ogs Hl C -
where differentiation and integration have been reversed. ) 1
3
Therefore, on the basis of Egh, (19), the VANS continuity equation
reduces to the unsteady Eqn. (4) in the limit as Uz approaches zero. --4
=
-
\
1
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APPENDIX B

MASS CONSERVATION FOR THE MERIDIONAL COMPUTER CODE

In order to preserve continuity the VANS meridional finite difference
equations were revised. The analysis is presented herein.

Conisider the finite difference mesh of Fig. Y. The horizontal lines are
labelled by the coordinate k and the vertical lines are labelled by the
coordinate j. Since no slip flow is imposed at the hub, shroud and blade
leading edge of the system, the mass flux entering at the upstream boundary
must equal the change in mass within the meridional plane plus the mass flux
leaving the face of the meridional plane. Under steady state conditions the
mass does not change within the meridional plane; thus, the incoming mass
flux must equal the mass flux leaving the meridional plane face.

Eqn. (1) of Section 4.2 can be expressed in finite difference form for
the entire mesh. The relation is as follows:

-1 - -
sMASST"- sMAss1 = ~smusTPR ? corERM™ Y (1)

At

At

where: SMASSI is the sum of the masses of all the zones of the mesh

SMSTPT is the mass transort through the boundaries of the system
(in this case only the incoming flux).

CCTERM is the mass flux passing through the meridional plane face
(based on conditions from the previous iteration).

n is the cycle count corresponding to the time t".

n-1l is the cycle count corresponding to the time tn-l

The parameter CCTERM can be written as a summation of individual fluxes

as follows: .
Ae v

cerER ™ - Z Z crerus™™ (3, (2)
‘4‘1 I J‘l

where:




The expression CTERMS (j,k) can be wntten as follows:

CTERMS -;f},/b) 4(],__ [ [Z A"l ‘;. (Vs -W ],4

- &, Vu[ Z i e b - W) §

(3)

where: ( ) represents a previous approximate variable
f [ ] represents a summation over a single zone of the mesh of
Y
Fig. 9.
-
We now let the angular velocities W; be defined as follows:

W = W. + We (4)

[

where: Wc is independent of the particular zone in gquestion.

Combining (3) and (4) yields:

CTERMS (Jk)-.ﬂk_{fv [244’.“/((){.- )J‘),L
~dif " G [é A l"’JJAWC‘ fff%zﬁ(s,

I1f we substitute Eqn. (5) into Eqn. (1) and set the righthand side of

Egn. (1} to zero, we can solve for ch. The expression for ch is as follows:

l Lad
W:— iM)\C.S")_- VSWgH'ZJ( e .,\ 6)
Us ZMASS
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where: }t J;.

h-& U NP
DEWBAL. =UHSMCTPT - L f Z Vs [ﬁ by by (Ve ") iy

n-!  n- w) - =S p-!
_ gﬁr%{-) glbf ’ [(}Z,__W(h) ,

»zr i A" n $ » )"
?.MASSn" f Z I%L [é Aﬁd‘f, YA

4= 9= )

A do 07 p) 5 )k
2mpss”” = g z Cu Vi [2 }7:.'4‘7;‘

=1 V)

~

=)

~

Therefore, we have found a velocity wcn at each cycle n for which the
mass flux about the exterior boundaries of the mesh of Fig. 9 will equal the
total mass flux leaving the face of the system. The angular pressure gradient
in the z momentum equation is adjusted to produce the angular velocity increment
wcn at each cycle of computation. Thus, the mass flux globally entering the
system at its upstream boundary is equal to that leaving the face of the
meridional plane. It is noted that the velocity ch turns out to be a small
fraction of the angular velocity i::’ calculatéd from the 2z momentum equation.

For the case of periodic steady-state conditions, the righthand side of
Eqn. (1) will be zero after a time average over one period. Thus, for the

case of periodic steady flow the analysis herein is approximate.

32




APPENDIX C

i BOUNDARY CONDITIONS FOR MERIDIONAL MODE OF MARCHING

In this section the boundary conditions are described as the meridional

i plane rotates through a blade passage. The rotation phase of the computation will
be conducted in a future effort.

The hub blade-to~blade surface is shown in Fig. 41. The domain of
i computation starts approximately 90 percent of an axial chord upstream
of the blade leading edge. Locations for eleven calculational meridional planes
are shown in Fig. 41. The viscous flow field on meridional calculational
plane "1" has already been computed (see Section 5.1.3 for boundary conditions).

Boundary conditions appropriate to the eleven meridional calculational

planes of Fig. 41 are described. Boundary conditions for planes 2 to 6 are
identical to those of plane 1. Plane 6' is divided into two parts. The upstream
part has boundary conditions similar to plane 6. A no slip flow boundary
condition is applied on the boundaries of the downstream part of calculational
plane 6' and plane 7. No slip flow is imposed on the upstream boundary, hub
and shroud of meridional calculation planes 8 and 9, while periodic conditions
are specified at the downstream boundary of these planes. Meridional calculational

planes 10 and 11 maintain no slip flow at their upstream boundaries, hub, and

shroud. A pressure boundary condition is imposed at the downstream boundary of

these meridional planes. It is noted that near the vane trailing edge the g

meridional calculational planes of Fig. 41 define the cross-sectional flow field

more accurately than a set of cross—sectional surfaces normal to the axis.
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rigure 24. Power spectra of the pressure fluctation at points on the hub, mid-
plane and shroud of the cascade
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Figure 30. Velocity vector plot of the turbulent meridional flow field at z = -.1661652

radians; time after start of computation 2.42 ms.
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Figure 36. Raster plot of the static pressures at points on the hub, mid-
plane and shroud of the cascade; laminar flow calculation,
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T Figure 38. gpaster plot of the static pressure fluctuation at points on the
hub, mid-plane and shroud of the cascade; laminar flow calculation.
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Fiqure 39. Power spectra of the pressure fluctation at points on the hubd,
mid-plane and shroud of the cascade; laminar flow calculation.
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