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1.0 INTRODUCTION

The principal objective of this research effort is to investigate

the feasibility of calculating the roll-up of the endwall boundary layers

and subsequent formation of the blade leading edge horseshoe vortices that

form at the hub and shroud of a turbine cascade. This investigation is the

continuation of a numerical study of the viscous aerodynamics of an annular

NASA core turbine cascade described in Reference 1.

The previous viscous aerodynamics cascade study was conducted with

the VANS blade-to-blade computer code (Ref. 2). The subsonic turbine

cascade flow field was generated in blade-to-blade surfaces. Calculated

blade pressures at the hub, mid and tip radii of the cascade agreed with

corresponding measurements. However, endwall effects were not included

in the blade-to-blade analysis.

Based on the blade-to-blade flow field as the previous approximation, a

new meridional computer code was developed to compute endwall effects. The

meridional computer code development started from an external aerodynamics

code (Ref. 3). This computer code (VANS/MD) numerically solves the equations of

motion in a meridional plane which simultaneously intercepts the hub, shroud,

and blade of the cascade. Thus, the flow fields at the junctions of the hub

and blade and shroud and blade are within the scope of the VANS/MD computer

code.

Two important numerical issues are addressed in this report.

1. Applicability of the VANS/MD meridional finite difference equations

to unsteady flow.

2. Mass conservation in meridional numerical computation.

The first issue arose because the horseshoe vortices calculated at the blade
4

leading edge wre periodic in nature, rather than steady. The second

issue deals with the turning of the flow in the meridional computational plane

from axial at the upstream boundary to angular at the blade leading edge.
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In addition to the above numerical issues, background on endwall

effects is presented and turbulence modelling is addressed for computation

of vortical endwall flow fields. Computations were made for laminar

flow and turbulent flow in the NASA core turbine cascade.

Finally, the endwall calculations are presented for the NASA core

axial annular turbine cascade. Figure 1 shows top and front views of

the NASA core turbine vane annular cascade (Ref. 1). The axial chord is

1.505", there are 36 vanes and the pitch is .174 radians. Flow conditions

for the cascade are as follows:

1. (V/Vcr)i=.231

2. (V/Vcr)e-.778

3. i .3305 slugs/sec

The author wishes to acknowledge the important contributions of

four government scientists. Messrs. Curtis L. Walker and John Acurio of

the Army Propulsion Laboratory provided many helpful suggestions and

discussions in the course of this research effort. Dr. Louis A. Povinelli

of NASA Lewis posed some probing questions relating to the VANS numerical

method. These queries led to the important conclusion that the VANS

method was applicable to unsteady flows. Mr. Kestutis C. Civinskas of

the Army Propulsion Laboratory was very helpful during many discussions

in the course of this work and made the suggestion that oil trace data

of NASA could be compared to calculated velocity vectors. This permitted

an experimental-numerical comparison.
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2.0 SYMBOLS

A Area

C Perimeter of closed curve

C Axial chorda

C Heat capacity at constant pressure
p

C Heat capacity at constant volume ... --- 1 -
!

E Specific internal energy

H Thermodynamic heat function or enthalpy - - "

h Metric 6f transformation ... Jx

h Metric of transformation
y --

h Metric of transformation -"
£

i Unit vector of curvilinear coordinate x

i Unit vector of rotating cartesian coordinate of X,

i Unit vector of rotating cartesian coordinate of
2 X

. i Unit vector of rotating cartesian coordinate of X
3 3

* ~Unit vector of curvilinear coordinate y

j Index specifying streamlike-lines on a blade-to-blade or meridional surface

k Index specifying potential-like lines on a blade-to-blade or meridional surface

k Unit vector of curvilinear coordinate z

M Momentwr

d~ Mass flux

n Time index for finite difference equation

P Pressure

- S r,R Radial coordinate which together with X3 form a cylindrical coordinate system

- S Grid velocity component along x direction

S Grid velocity component along y direction
y

3



I.7
T Period

t Time or time-like-variable

u Velocity component along x direction

U Velocity vector

U3  Speed of march along z direction

v Velocity component along y direction

V Volume

V Critical velocity ratio
Vcr
w Velocity component along z direction

wLw-U Velooity along z on a Galilean Frame which moves with a constantZ speed Uz along z with respect to the laboratory frame

x Curvilinear coordinate along Azimuthal direction

X Coordinate axes of rotating Cartesian coordinate which rotate aboutaxial axis X with spoed W'-

X2  Coordinate axes of rotating Cartesian coordinate which rotate aboutaxial axis X3 with speed CO

X Axial coordinate

y Curvilinear coordinate along streamwise direction (from inlet to discharge)

z Curvilinear coordinate in marching direction

Heat capacity ratio C p/C :

6 Boundary layer thickness

E Eddy viscosity

* ,4A Molecular viscosity coefficient

L/ Kinematic viscosity coefficient

Rotation velocity of impeller

* Total stress tensor

- Reynolds stress tensor

o* Angle of attack

I Local flow angle between vane pressure surface and meridional plane

4



.-Density

t Characteristic time

'rj Shearing stress at wall

e Azimuthal coordinate angle, together with r and X form cylindrical
coordinate system

, t) Curvilinear coordinates

( ) Inlet conditions to cascade

( )e Exit conditions of cascade

(N Reference condition

* ( ) Previous approximation property

.. o
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* 3.*0 BACKGROUN4D ONI ENDWALL EFFECTS

The endwall flow in a turbine cascade is highly three-dimensional

and viscous. Langston (Ref. 4) has developed a physical explanation of

this endwall phenomenon from measurements. A schematic of the vortical

endwall flow, developed by Langston, is shown in Figure 2. At the endwall

of the cascade the inlet boundary layer separates and forms a horseshoe (or

leading edge) vortex, with one leg of the vortex in one 4rfoil passage and

the other leg in the adjacent passage. A brief description of Langston's

physical interpretation of the horseshoe vortex follows.

One leg merges with and becomes part of the passage vortex. Thus in

a cascade flow, that part of the secondary flow that is called the passage

vortex is an amalgamation of one leg of the horseshoe vortex (and hence

part of the inlet boundary layer), the crossflow from the endwall boundary

layer formed within the cascade, and entrained fluid from the mainstream

flow in the cascade passage.

As shown in Fig. 2, the other leg of the horseshoe vortex, which has

been labeled the counter vortex, remains in the suction surface endwall

corner. The counter vortex has a sense of rotation opposite to the passage

vortex. It is much smaller than the passage vortex and may be dissipated by

viscosity.

The ribbon arrow representation of both vortices in Fig. 2 has been

drawn to exaggerate the vortex rotation, in order that the sense of rotation

of each vortex would be clearly shown. The core of the passage vortex studied

approximated a Rankine vortex. A Rankine vortex consists of a circular cylindrical

vortex with its axis vertical in a liquid which moves under the action of gravity.

The upper surface of this vortex is exposed to atmospheric pressure. A particle

of fluid that was near the viscous-inviscid interface of the Rankine vortex would

actually have a total gross rotation of one or two revolutions about the center

line of the passage vortex, as it passed through the cascade passage.

6
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Briley and McDonald (Ref. 5) numerically computed the interaction

of a 2-D wall boundary layer with a single elliptic strut mounted normal

to a flat surface. The flow considered was laminar at very low Mach number,

and resulted in the calculation of a horseshoe-type-vortex. Fig. 3 shows the

strut geometry, coordinate system and representative grid. The equations of

motion were solved in an elliptic-cylindrical coordinate system which fits

all solid surfaces. Planes at constant curvilinear coordinate I (see Fig. 3)

were rotated from the leading edge of the system to the minor axis of the

ellipse. At the symmetry plane of the system these planes are like meridional

planes to the flow, while at the outflow station they become like cross-

sectional planes to the flow. Interactive boundary conditions,derived from

incompressible potential theory and boundary layer theory, were employed along

the inflow elliptical surface. The pressure gradient in the t direction, which

- is the driving force for the computation, was derived from potential theory.

-. Briley and McDonald solved for the flow field for angle-of-attack at of

0 degrees and 5 degrees, respectively. A saddle-point type of flow separation,

i.e., horseshoe vortex, originated upstream of the leading edge and, in the

case of & -5°, toward the high pressure surface of the ellipse. These

results are encouraging, in that a marching method, similar to what is

proposed herein, can compute a horseshoe vortex. However, the vortex was

confined to the iIediate vicinity of the elliptic surface due to the single

strut configuration.

7
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Gaugler and Russell (Ref. 6) conducted a large scale test of the

NASA core axial annular turbine cascade. From endwall oil traces and

streakline flow visualization, the roll-up of the boundary layer and

development of the horseshoe vortex was observed. These experiments were

conducted over the same Reynolds number range as the small scale axial

annular cascade test (Ref. 1); however, the incoming critical velocity

ratio of the large scale model was lower than that of the small scale

model. Thus, in the leading edge region, where the velocities are small,

the simulation between the large and small scale model is good. However,

the expansion critical velocity ratio will differ. The endwall oil

traces in Fig. 4 show the horseshoe vortex emanating from the pressure

surface (Ref. 6).

Finally, NASA has obtained detailed laser velocity measurements for the

small scale axial annular turbine cascade model (Ref. 7). These measurements

were made at an exit critical velocity ratio of .78. Velocity and flow

angles in the blade-to-blade plane were obtained at every 10 percent of axial

chord within the passage and at one-half axial chord downstream of the vanes

for radial positions near the hub, mean, and tip.

Therefore, the detailed measurements of references 1, 6 and 7 can be

*. employed to evaluate the accuracy of the VANS/MD computations. On the

*" basis of both the experimental and numerical data, the principal fluid

mechanics of the endwalls of the system can be resolved. This would

-. represent a major achievement in the computational fluid mechanics of

turbomachines.

".8



4.0 THE VANS MERIDIONAL COMPUTER CODE

The VANS numerical method (Refs. 2, 8, 9) for turbine cascade flows

marches in two alternating directions through the domain of computation. In the

blade-to-blade mode of marching (VANS/BB), flow separations along the vane sur-

faces are computed. The meridional mode of marching (VANS/MD) will calculate

hub and shroud effects, including the formation of the horseshoe vortices at the

leading edge near the tip and hub endwalls. In addition, VANS/MD can calculate

the propagation of the vortex as it moves from the pressure to the suction surface.

The blade-to-blade flow field is employed to evaluate source terms in the VANS/MD

computer code. Thus, the VANS/BB field is called the previous approximation.

This section addresses three topics:

1. Analogy between the VANS equations and the unsteady equations of

motion.

2. Mass conservation for the VANS meridional computer code.

3. Technical approach for computation of endwall effects.

4.1 Analogy Between the VANS Equations and the Unsteady Equations of Motion

An important issue of this study was whether or not the VANS

meridional equations were capable of computing unsteady flow. It has been

found that in the limit as the angular velocity, Uz, approaches zero, the VANS

meridional continuity equation approaches the time-dependent, three-dimensional

continuity equation in the meridional plane. A proof of this property of the

VANS continuity equation is presented in Appendix A. It follows from the

results of Appendix A that the VANS meridional equations reduce to an unsteady

set as U approaches zero..z

4.2 Mass Conservation for the VANS Meridional Computer Code

Figure 5 shows the intersection of a meridional plane with the leading

edge. In the case where the flow field is steady, the mass flux entering

the upstream boundary must balance the mass flux leaving the face of the

9



meridional plane. No mass can pass through the hub, shroud or blade leading

edge.

The continuity equation for a closed curve C of area A in the meridional

plane of Figure 5 is as follows (Ref. 2):

chi( +y 1f ) dC-CWAhIC 1

where:

-- Unit normal to closed curve C

In the case where the curve C corresponds to the meridional boundaries of

Figure 5, the second and third terms on the lefthand side of Equation (1) must

equal the term of the righthand side of the equation. This follows from the

fact that: () the flow field is steady; Cb) as U approaches zero, the VANS

continuity Equation (1) approaches the 3-D, time-dependent continuity equation

(Appendix A); and (c) only inflow occurs on the boundary C. The pressure

*gradients of the previous approximation (blade-to-blade solution) were revised

to produce a previous approximation angular velocity field which globally

preserves continuity (Appendix B). This is similar to global continuity

preservation in Spalding's method (Ref. 10). The mass conservative VANS

meridional code was then used to run the cascade problem.

For the case of periodically fluctuating conditions, the righthand side of

Equation (1) will equal the sum of the second and third terms on the lefthand

side after a time average over one period. Thus, this analysis is approximate

for periodically fluctuating flow.

10
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4.3 Technical Approach for Computation of Endwall Effects

The technical approach for computation of endwall effects, including

periodic fluctuations in the flow field, is composed of a blade-to-blade mode

of marching followed by a meridional mode of marching. The initial field from

which all computation commences is the inviscid MERIDL flow field (Ref. 11).

In the blade-to-blade mode of marching, the computation takes place on a

blade-to-blade surface which is normal to the meridional planes of the

machine, extends from inlet to exit, and moves from the hub to the shroud.

The blade-to-blade method of marching is illustrated in the

blade passage schematic shown in Figure 6. The xI, x2 , and x3 coordinates

of Figure 6 represent a left-handed, rotating, Cartesian coordinate system

and coordinates (x, y, z) represent a left-handed, rotating, orthogonal,

curvilinear coordinate system. The z-direction is the marching direction

with the calculation taking place in the (x,y) blade-to-blade surfaces.

The (x,y) blade-to-blade surfaces move from the hub to the shroud of the

cascade. The blade-to-blade surface is first coincident with the hub.

The velocity Uz is set near zero, i.e., Uz  .20 fps, and the calculation

is continued until a steady-state is reached. For the blade-to-blade mode

of computation the inlet boundary layer is not present; hence, vortices

are not produced. After stabilization at the hub, the blade-to-blade surface

is moved to another nearby station; i.e., Uz  100 fps during the process

of going from the initial station to the nearby station. The field is then

run to a steady-state in the nearby blade-to-blade surface (Uz = .20 fps).

This process is repeated until the entire passage is filled with stabilized

* blade-to-blade surfaces. For practical purposes approximately ten stabilized

blade-to-blade surfaces are desired. This solution represents the first 7.

approximation for the meridional mode of computation.

:ii 11



In the meridional mode of marching, the meridional plane is first

coincident with the vane leading edge. Fram this position, the plane is then

rotated in an angular direction until it intercepts the next vane's suction

surface trailing edge. A schematic of two adjacent vane passages with

the meridional plane indicated is presented in Fig. 7. The z-direction

is now the angular direction. The meridional plane is first coincident

with the vane leading edge at its pressure surface (Fig. 5). The angular

velocity Uz is set near zero (Uz = .20 rad/sec) and the calculation

is continued until a periodic state has occurred. It is anticipated

that at least two periods must be computed in this periodic state. After the

periodic flow field is obtained at the first station, the meridional plane is moved

to a nearby station. The angular velocity is increased to about 100 radians/sec

for this purpose. The field is then run to a periodic steady-state in this

nearby station. The process is repeated until the entire passage is filled

with meridional planes. For practical purposes, approximately ten periodic

meridional surfaces are desired.

The blade-to-blade and meridional modes of marching contrast in the

boundary conditions that are applied. For the blade-to-blade mode of computation

the same boundary conditions are applied throughout the computational process

(Ref. 2). However, for the meridional mode of computation the boundary -

conditions vary (see Section 5.1.3).

12
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5.0 ENDWALL FLOWFIELD CALCULATIONS FOR THE NASA CORE TURBINE CASCADE

In this section the results are presented for turbulent flow in the NASA

core turbine cascade. The previous approximation is discussed, as well as

meshes, boundary conditions and initial conditions. In addition, the unsteady

nature of the vortical flow is described.

5.1 Previous Approximation, Meshes, Boundary Conditions, and Initial Conditions

The calculation completed was that of st4bilizing the flow field

in the meridional plane intersecting the pressure vane surface at its leading

edge (Fig. 5). To this end the angular velocity of the meridional plane UZ

was set to the small value of .20 radians/sec for most of the computation.

5.1.1 Previous Approximation

Fig. 8 shows a meridional plane and a blade-to-blade surface.

The (x,y) curvilinear coordinate system is shown with the z coordinate being

the angular direction. We interpolate the blade-to-blade flow field data (Ref. 2)

onto the meridional plane. Each blade-to-blade surface contributes one line

of data to each meridional plane. The result is a set of meridional planes

containing the blade-to-blade solution. This field becomes the previous

* approximation to the VANS/MD code, as discussed in Section 4.0.

5.1.2 Finite Difference Meshes

The finite difference mesh on a meridional plane intersecting

the pressure vane surface is shown in Fig. 9. The hub, shroud, upstream

boundary and cascade vane leading edge are shown. There are 50 vertical lines

RL and 35 horizontal lines. Spacing is fine near the surfaces of the system and

. coarse away from surfaces. Grid spacing is fine enough to provide about three

points in the hub boundary layer at the upstream boundary and seven points in

the corresponding shroud boundary layer.

13
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5.1.3 Boundary Conditions

The upstream boundary is located 89 percent of an axial

chord upstream of the vanes (Fig. 9). The velocity, density and specific

internal energy from the blade-to-blade solution are imposed at the upstream

boundary. Measured boundary layer velocity profiles are superimposed on

the blade-to-blade velocities at the upstream boundary. At the shroud the

boundary layer thickness is seven percent of the radial distance between hub

and shroud, while on the hub the boundary layer thickness is two percent.

It is noted that the boundary layer measurements were taken at an axial chord

upstream of the blading; however, they are being employed at the 89 percent

chord station for this problem.

A no-slip condition is imposed on the hub, shroud and vane

leading edge (Fig. 9).

5.1.4 Initial Conditions and Early Stages of Computation

The interpolated blade-to-blade data (Ref. 2) on the -

. meridional plane intersecting the pressure surface leading edge (Fig. 5) were

used as the initial conditions.

The initial angular coordinate was z = -.17453 radians. This

angular coordinate will rotate through two pitches, i.e., .348 radians

*. before the solution is completed through the passage.

Figure 10 shows the initial meridional component of the velocity

* field at a z coordinate of -.17453 radians. The imposed upstream hub and shroud

boundary layers are indicated in the figure.

Based on the meridional component of the velocity field

of Fig. 10 as the initial conditionthe VANS computation coiwenced at

* an angular velocity Uz of two radians per second. After 200 cycles*

-of computation the axial velocity components became erratic near

, the vane leading edge. This behavior was traced to the turbulence

o * A cycle of computation updates all the dependent variables on the mesh in

one meridional plane. 14
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model. The Cebeci-Smith mixing length theory (Ref. 12) is not applicable

near a stagnation point flow. The turbulence model was gradually shut off

starting from 4.4 percent of an axial chord upstream of the vane leading

edge. The erratic behavior in the axial velocity field then ceased. The

calculation was then run 2400 cycles. The angular coordinate increased by

.00237 radians at an angular velocity of two radians per second.

Fig. 11 shows the velocity field after 2400 cycles of computa-

tion. Stagnation point flow is indicated at the blade leading edge. In ,

addition, a vortex is seen at the junction of the hub and vane leading edge.

However, the rotation of the vortical flow is not correct. The vortex is

rotating counterclockwise and should be rotating clockwise (Ref. 4). The

problems were traced to the fact that the VANS meridional code was only

approximately conserving the passage mass flux. This issue is addressed in

Section 4.2 and Appendix B. The VANS/MD computer code was revised to conserve

the passage mass flux and the computation commenced with the revised computer

code.

5.2 Calculations of Endwall Boundary Layer Roll-up and Vortex Formation.

The VANS mass conservative meridional code was then rerun, in an

attempt to stabilize the flow field in the meridional plane intersecting the

pressure blade surface leading edge. The meridional plane was initially moved

at Uz of two radians per second and then slowed to U of .20 radians/sec.
z Z

The angular coordinate z increased from z - -.1745330 radians to z = -.1660508

radians; i.e., a change of .0085 radians. The meridional plane was moved

4.9 percent of the angular vane pitch.

To define stabilization, the z coordinates were converted to time

units, t, through division by the angular velocity Uz . The time variables

were then compared to a characteristic time for this problem. The characteristic

15



time is defined as the time it takes a mid-plane freestream particle to go

from the upstream boundary to the vane leading edge. This characteristic

time, to, was determined to be .55 ms. A non-dimensional parameter r was then

defined as:

r =t (2)
tc

For the axial cascade problemle went from zero to 5.44.

A set of velocity vector plots are now presented in terms of the

characteristic time parameter r * These plots depict the transient process of

boundary layer roll-up and formation of the horseshoe vortices on the hub

*and shroud of the system. The meridional component of velocity is plotted.

Figs. 12 to 17 show the velocity field as the characteristic time

parameter 1C goes from zero to 5.44. At a characteristic time C = .049 (Fig. 12)

a pressure wave is seen moving upstream of the blade leading edge. Fig. 13 *i-

at = .63, shows the origins of horseshoe vortex formation at the hub and

shroud. In addition, a few velocity vectors are parallel to the vane boundary

indicating stagnation point flow at the vane leading edge. Figs. 14 through 17

show the development of the hub and shroud horseshoe vortices. At Jr 5.44

these vortices are fully formed (Fig. 17).

Figs. 18, 19 and 20 show critical velocity ratio contour maps at

characteristic time parameters of 0.0, 1.93, and 5.44, respectively. In Fig. 20

vortices are indicated in the contour plots and there is a strong viscous flow

on the hub and shroud surfaces.

5.3 Unsteady Nature of Vortical Flow Field

The pressure field was inspected from = 0 to ' = 5.44, to ascertain

whether or not the flow field had stabilized. Table 1 below presents the

geometric locations of six points in the meridional plane whose time histories

were studied.

* * The meridional flow field breaks up into two paths

16



TABLE 1: GEOMETRIC PROPERTIES OF MESH POINTS WHOSE TIME HISTORIES WER STUDIED

Axial Position Radial Position
Point X3/Ca R/Ca Description

1 -.62 6.7 Near shroud up-
stream boundary

2 -.09 6.7 Near shroud vortex

3 -.62 6.2 Near mid-plane up-
stream boundary

4 -.09 6.2 Near mid-plane at
leading edge

5 -.62 5.7 Near hub upstream
boundary

6 -.09 5.7 Near hub vortex

The axial position and radial position are in units of axial chord C

a

A raster plot of pressure characteristic time histories is presented

in Fig. 21. The ordinate of Fig.21 corresponds to the lower curve

(X /C - -.62, R/c 6.7). Shifting of the ordinate by one-tick-mark makes
3 a a

it applicable to each of the remaining five time histories. On the basis of

these data of Fig.21 , it is difficult to determine whether or not the pressure

field has stabilized. In order to assess the transient nature of these pressure

traces, they were detrended and Fourier analyzed.

Fig. 22 shows raster plots of the mean pressure time histories.

A least-square cubic was employed to detrend each of the six pressure traces.

The pressure traces near the vortices (X3/C = -.09, R/C = 5.7 and
a a

X 3C = -.09,R/Ca = 6.7) have trends which change significantly; however, they

appear near stabilization at - 5.44. For points away from the vortical regions,

the trend of the data does not significantly change. On balance the trend of

* the data appears to stabilize for characteristic times greater than r = 3.0.

.17
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Raster plots of the fluctuating part of the pressure-time histories

are presented in Fig. 23. These curves are determined from the difference

between the instantaneous values of Fig. 21 and the detrended values of Fig. 22.

These fluctuating data of Fig. 23 are undersampled in the characteristic time

period of 0- t 4 5.44. Thus, it is difficult to determine whether or not

a single frequency persists.

The pressure fluctuations near the eye of the hub vortex have an

amplitude of approximately 100 psf (Fig. 23). This is approximately 5 percent

of the ambient pressure level. Under steady-state conditions this would imply

significant velocity fluctuations. However, due to the unsteadiness in the

* flow field, the stagnation enthalpy of the system is itself varying with time.

Thus the total pressure is time-dependent as well. This prevents the velocity

fluctuations from becoming large.

These data of Fig. 23 were Fourier analyzed to determine the power

spectral density in frequency space. Fig. 24 shows raster plots of the power

spectral density of the pressure fluctuations. Plots of spectral density in

2units of (PSFA) /Hz are presented versus logl 0 f. At a value of log1 0 f-3.55

there appears a consistent peak in the power spectral density of all pressure

fluctuations curves; although, the peak is more pronounced in some and less

pronounced in others.

Two numerical experiments were conducted to insure that this periodic

phenomena is not caused numerically. First the marching increment; i.e.,

timestep, was decreased by a factor of two. The VANS code was run 2000 cycles

at this reduced timestep with no change in the periodic nature of the flow field.

Second the angular speed Uz was decreased from two radians/sec to one radian/sec

and then to .20 radians per second. The periodic nature of the flow field was

still unchanged. However, these numerical experiments do not rule out numericdl
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problems. NASA Lewis Research Center will shortly conduct an experiment

with high frequency response transducers near the vane leading edge. These

measurements will ascertain whether or not the horseshoe vortices are periodic.

The power spectral density curve of Fig. 24 show a maximum level

near the eye of the hub vortex and a minimim level near the eye of the shroud

vortex. Thus, the hub vortex appears to be the source of the periodicity.

Fig. 25 presents plots of the location of the separation point for the hub

and shroud horseshoe vortices as a function of calculation time. The

amplitude of the hub vortex oscillations appears much greater than the shroud

vortex oscillation, although the oscillation frequency appears to be the same.

Therefore, the horizontal motion of the hub vortex seems to be the driver

for the vortical system.

The meridional flow field was averaged over two periods of the

frequer-y; i.e., T-1.286 msec. A velocity vector plot, a critical velocity
Y

ratio contour map, and a vorticity ratio contour plot were made of the time-

averaged flow field.

Fig. 26 shows the time-averaged velocity field. Boundary layers

are present along the hub and shroud. A stagnation point flow is also

indicated along the blade leading edge. In addition the vortices do not

appear to be the same size. The hub vortex takes up about 16 percent of the

radial distance between hub and shroud, while the shroud vortex takes up about

12 percent of this radial distance.

Contours of the critical velocity ratio of the time-average flow

field are shown in Fig. 27. Deceleration of the flow from V_o f .23 to
Vcr

V u^ 0.0 is clearly seen. In addition the boundary layers and vortices are
Vcr
indicated. Contours similar to this plot, generated downstream of the vane leading

edge, can be used to compare with the laser anemometer data of Gldman (Ref. 7).
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In order to get a more accurate geometric picture of the calculated

vortices, contour maps of the vorticity ratio were made in the meridional plane.

The vorticity ratio 1 is defined as:

~ (3)

where is a normalization parameter equal to7( - j ) , and

where (. is the velocity at the upstream boundary, S is the hub boundary
N

layer thickness and J is the shroud boundary layer thickness. The parameter

" -69200 radians/sec.

Fig.28 shows vorticity ratio contour plots of the time-averaged

meridional flow field. The hub vortex has negative vorticity, while the shroud

vortex has positive vorticity. Vorticity at the eye of each vortex is about

the same; i.e. 2.0. However, the vortical shapes are different. The

shroud vortex is an oval shape and the hub vortex is more circular. The

dividing streamline of the flow between the two vortical regions occurs at a

radial position of approximately Rt .81 feet; i.e.L0.O at R ,-.81.

Calculated time-averaged velocity vectors along the hub (axial and

angular components) are compared with a photograph of hub endwall oil traces

(Ref. 13) in Fig. 29. The vectors in the calculated separation region are not

shown in the figure; i.e., they appear as dots. Since the oil traces show only

streamline direction, the calculated vectors have been normalized by their

magnitudes. Thus, only vector directions emanating from their tails are rele-

vent. The separation point in the figure represents the point at which the

meridional vector goes to zero. Upstream of the separation region the calculated

vectors are pointed in a direction parallel to the oil trace streamline, and in

fact rapidly change direction in the same place as the oil traces. The ratio of

the separation point axial distance upstream of the vane to the pitch of the vanes

is .267. This compares favorably with the size of the endwall separation region

in the oil trace photograph.

20

.. . ..L. . . . . . . . . . . . ... .. . . . . . . . I IH 1I . . . I



-. 7 -. 7

6.0 TUMULENCE MODELLING AND UNSTEADY VORTICAL FLOW

As was discussed in Section 5.3, the calculated vortical flow field was

periodic in nature with a frequency of 3600 Hz. Furthermore, it was found

that the Cebeci-Smith turbulence model (Ref. 12) had to be revised in the

neighborhood of the blade leading edge (see Section 5.1.4). Thus, an

important issue arose, whether or not the turbulence model was the cause of

the observed unsteadiness in the calculated flow field.

It was suggested by representatives of NASA Lewis (Ref. 14) that the

problem be rerun with the turbulent eddy viscosity set to zero. This calcula-

tion is purely a numerical exercise, in that the flow conditions being employed

correspond to that of turbulent flow and the turbulence is not included in the

calculation. If under these pseudo-laminar conditions unsteadiness still

occurred, at least it could not be attributed to the turbulence model employed.

In order to minimize the computational time required for this exercise,

it was decided to start the pseudo-laminar computation at a time of 2.42 msec

after the start of the turbulent computation. Fig. 30 shows a velocity vector

plot of the turbulent meridional flow field at a time of 2.42 msec after the

start of computation. This corresponds to a characteristic time of c of 4.4.

This field became the initial conditions for the pseudo-laminar calculation.

The eddy viscosity e was set to zero throughout the flow field and the calculation

was continued. The pseudo-laminar computation was carried 8000 cycles or to a

characteristic time c of 2.8.

6.1 Pseudo-Laminar Flow Field Structure.

Evolution of the turbulent field of Fig. 30 to a pseudo-laminar

field is presented in the velocity vector plots of Figs. 31 to 33. At v - .346

(Fig. 31) the vortices are starting to get longer and flatter. Fig. 32 (C-1.55)

and Fig. 33 ( -2.05) clearly show chat the vortex pattern has changed shape.
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A comparison of turbulent and laminar vortical shapes is presented

in the vorticity contour ratio plots of Figs. 34 and 35. At r =.17 (Fig. 34)

the flow is essentially turbulent, since the eddy viscosity was just shut off.

* At -2.09 (Fig. 35) the effects of -0 are quite pronounced. The longer and

flatter vortical shapes are clearly indicated.

6.2 Unsteady Nature of Pseudo-Laminar Flow Field

Pressure characteristic time histories were examined at the same .-

six geometric locations employed previously (Table 1).

Fig. 36 shows the pressure characteristic time histories at the

six points of Table 1. The flow field appears unsteady; however, it is

difficult to tell.

The pressures of Fig. 36 were detrended with a least square cubic fit.

The detrended pressure characteristic time histories are shown in Fig. 37.

The trend appears to be approaching a constant at a characteristic time r of 2.8.

The principal issue is whether or not the pressure fluctuations from

the detrended values show a persistence of the oscillations. Fig. 38 shows

the pressure fluctuations with respect to the detrended values. The oscillations

clearly persist.

To demonstrate that a periodic state has occurred, we computed the

power spectral density of the pressure fluctuations of Fig. 38. The power

spectral density of the pressure fluctuations is shown in Fig. 39. It is clear

that a single frequency; i.e., f - 3900 Hz dominates the system. Thus, for the

pseudo-laminar case, a periodic state exists at a frequency approximately

300 Hz higher than the turbulent case. Unsteady flow did not attenuate for the

pseudo-laminar calculation.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

The VANS blade-to-blade and meridional computer codes have been

applied to calculate the endwall effects at the NASA core turbine cascade

vane leading edge.

The principal conclusions of this study are four-fold:

1. The initial boundary layer roll-up and formation of the endwall

vortices were computed at the vane leading edge.

2. The calculated vortical flow field was in a periodic state.

3. The calculated location of the separation point upstream of the vane

leading edge for the hub horseshoe vortex was 27 percent of the pitch between

vanes which checked closely with endwall oil trace data.

4. The turbulence model has little effect on the periodic nature of

the calculated vortical flow field.

It is recommended that the calculation be completed for the NASA core

axial annular turbine cascade and the numerical results be compared to existing

laser velocimeter data.

'.2
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APPENDIX A

ANALOGY BETWEEN THE VANS EQUATIONS AND THE UNSTEADY EQUATIONS OF MOTION

The VANS meridional computer code equations reduce to the unsteady " -

equations in a fixed meridional plane as the angular speed of the meridional

plane approaches zero. In this appendix a proof is given for the continuity

equation.

The derivation is developed for the case of a Cartesian coordinate

system (x,y,z). Consider the Eulerian, Cartesian coordinate system shown in

Fig. 40. Let P be a curve in (x,y) plane-1 and let A be the area

enclosed.

The three-dimensional, unsteady conservation of mass equation is applied

to the area Alin (x,y) plane-i. In partial differential form the continuity

relation is:

Integration of (1) over the area A, yields:

~jcd +JffJ~ ~~J4~ ~j WSI~- 0(2)

Based on the Gauss Theorem Eqn. (2) can be written as follows:

=' n / o CIA (3)

where:

-normal to curve within (x,y) plane-1.

Eqn. (3) can be solved as a function of time in the (x,y) plane, provided

the term on the righthand side is known. Let and represent the
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density and z-component of velocities, respectivelyfrom a previous approximatio,..

Then Eqn. (3) can be written as:

* ~jd1 4./ i-l/ - (4)

Eqn. (4) represents the continuity equation for the area A1 in (x,y) plane-i.

We now consider steady flow for the area A1 in (x,y) plane-i. The -
continuity equation is as follows:

L ) -A t .i dX._":

U
Let: w w' + z (6)

U "z z t (7)

where z is a constant and iis a pseudo time-variable. Substitution of

(6) and (7) into (5) yields:

-. !
4- "_ -- I (8)

Integration of (8) with respect to A, and use of the Gauss Theorem yields:1.

(9)

Eqn. (9) can be solved based on the variables and # from the previous

approximation

if (dP d A (10)

where: W . W" (11)

The lefthand side of Eqn. (10) is identical to the lefthand side of Eqn. (4).

However, the righthand side terms differ. The righthand side terms of Equ. (10)

represents the change in O f' d over the interval A between

(x,y) plane-1 and (x,y) plane-2 in Fig. 40.
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We now consider the righthand term of Eqn. (10) and take the limit as
approaches zero for a constantAt ; i.e., M = '- G: approaches

Uzero as z appraoches zero. The righthand side of (10) can be written as:

J#~q4W-Va-dA1 -4 ' e ~1- d AdA "0 (12)

where A1 and A2 are defined in Fig. 40. Let us assume that ^ and W are

linear functions of the coordinate z.

(13)

where: )r represents a reference value andO and represent the constant

slopes and , respectively.

The product W becomes

W r *4AOc4 (AiZ(4+-W(- (14)

Based on Eql. (14) the term
6^~

Now, if it is assumed that the area A, is identical to the area A2 , then the

righthand side of Eqn. (12) can be written for a small area element

as follows:

8(16)
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U
Taking the limit of Eqn. (16) as z OP 0 yields:

(17)

Based on Eqn. (13) the final result becomes:

Ue4~fW~)W +/~w(~j (18)

Integration of (18) over the area A yields:

where differentiation and integration have been reversed.

Therefore, on the basis of Eqrk. (19), the VANS continuity equation

reduces to the unsteady Eqn. (4) in the limit as Uz approaches zero.
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APPENDIX B

MASS CONSERVATION FOR THE MERIDIONAL COMPUTER CODE

In order to preserve continuity the VANS meridional finite difference

equations were revised. The analysis is presented herein.

Con3ider the finite difference mesh of Fig. 9. The horizontal lines are

labelled by the coordinate k and the vertical lines are labelled by the

coordinate J. Since no slip flow is imposed at the hub, shroud and blade

leading edge of the system, the mass flux entering at the upstream boundary

must equal the change in mass within the meridional plane plus the mass flux

leaving the face of the meridional plane. Under steady state conditions the

mass does not change within the meridional plane; thus, the incoming mass

flux must equal the mass flux leaving the meridional plane face.

Eqn. (1) of Section 4.2 can be expressed in finite difference form for

the entire mesh. The relation is as follows:

SMASSI n - SMASSI -SMSTi CCTERMn -  (1)

&t

where: SMASSI is the sum of the masses of all the zones of the mesh

SMSTPT is the mass transort through the boundaries of the system

(in this case only the incoming flux).

CCTERM is the mass flux passing through the meridional plane face

(based on conditions from the previous iteration).

n is the cycle count corresponding to the time tn.

n-1 is the cycle count corresponding to the time t
n -l

The parameter CCTERM can be written as a summation of individual fluxes

as follows:

CCTERW - A CTERMS nk(J,k) (2)J-- J-i
wheres
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* The expression CTERMIS (j,k) can be written as follows:

where: ( ) represents a previous approximate variable

represents a suunation over a single zone of the mesh of

" Fig. 9.

We now let the angular velocities Wi be defined as follows:

S(4)

where: is independent of the particular zone in question.

Combining (3) and (4) yields:

W14

40 5)\ ,/., -

If we substitute Eqn. (5) into Eqn. (1) and set the righthand side of

n n.Eqn. (1) to zero, we can solve for W n The expression for W nis as follows:
c c

=; ... 6WViJ( (6)
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where: r41

' I

Therefore, we have found a velocity Wc at each cycle rn for which the

mass flux about the exterior boundaries of the mesh of Fig. 9 will equal the
total mass flux leaving the face of the system. The angular pressure gradient

in the z momentum equation is adjusted to produce the angular velocity increment

nc at each cycle of computation. Thus, the mass flux globally entering thec

system at its upstream boundary is equal to that leaving the face of the

meridional plane. It is noted that the velocity W n turns out to be a smallc
fraction of the angular velocity w- calculated from the z momentum equation.

For the case of periodic steady-state conditions, the righthand side of

Eqfl. (1) will be zero after a time average over one period. Thus, for the

case of periodic steady flow the analysis herein is approximate.
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APPENDIX C

BOUNDARY CONDITIONS FOR MERIDIONAL MODE OF MARCHING

In this section the boundary conditions are described as the meridional

plane rotates through a blade passage. The rotation phase of the computation will

be conducted in a future effort.

The hub blade-to-blade surface is shown in Fig. 41. The domain of

computation starts approximately 90 percent of an axial chord upstream

of the blade leading edge. Locations for eleven calculational meridional planes

are shown in Fig. 41. The viscous flow field on meridional calculational

plane "1" has already been computed (see Section 5.1.3 for boundary conditions).

Boundary conditions appropriate to the eleven meridional calculational

planes of Fig. 41 are described. Boundary conditions for planes 2 to 6 are

identical to those of plane 1. Plane 6' is divided into two parts. The upstream

part has boundary conditions similar to plane 6. A no slip flow boundary

condition is applied on the boundaries of the downstream part of calculational

plane 6' and plane 7. No slip flow is imposed on the upstream boundary, hub

and shroud of meridional calculation planes 8 and 9, while periodic conditions

are specified at the downstream boundary of these planes. Meridional calculational

planes 10 and 11 maintain no slip flow at their upstream boundaries, hub, and

shroud. A pressure boundary condition is imposed at the downstream boundary of

these meridional planes. It is noted that near the vane trailing edge the

meridional calculational planes of Fig. 41 define the cross-sectional flow field

more accurately than a set of cross-sectional surfaces normal to the axis.
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Figure 2 1.Raster plot of the static pressures at points on the hub, mid-plane

and shroud of the cascade
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FigurQ 22. Raster plot of the mean static pressure at points on the hub,

mid-plane and shroud of the cascade
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1 Figure 23. Raster plot of the static pressure fluctuation at points on the

' hub, mid-plane and shroud of the cascade.
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71 1

kr.gure 44. Power spectra of the pressure fluctation at points on the hub, mid-plane and shroud of the cascade
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Figure 26. Velocity vector plot of the time-averaged meridional flow field at
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Figure 36. Raster plot of the static pressures at points on thie hub, mid-
plane and shroud of the cascade; laminar flow calculation.
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Figure 37. Raster plot of the mean static pressure at points on the hub,
mid-plane and shroud of the cascade; laminar flow calculation.
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Figure 38. Raster plot of the static pressure fluctuation at points on the
hub, mid-plane and shroud of the cascade; laminar flow calculation.
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Fiqure 39. Power spectra of the pressure fluctation at points on the hu,

mid-plane and shroud of the cascade; laminar flow calculation.
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* Figue 40*Euleriari Cartesian Coordinate System (xy,z)
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