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ABSTRACT

An Experimental Study of Jet Impingement on e
Circular Cylinder. (August 1984)
Dennis Wayne Potts, bE.S., Texas A&N University
Chairman of Advisory Committee: Dr. Jose L.F. Porteiro

/
- >~” 4 round turbulent jet was impinged@ normally upon e

circular cylinder and the resulting flow field was studied.
The investigation was conducted using a jet which issued
from & nozzle with an 11/16 inch diameter. The cylinder had
a diameter of QJS/B inches. The jet impinged upon the
cylinder &t nozéle distances of 7, 15, and 30 nozzle

/
diameters, and &t velocities of 400 and 500 ft/s. The free JP‘f.i

S

2 ~

jet was studieé and found to be(&g&picafgrby comparing it to s~
earlier studies done with round turﬁulent jets. Surface

flow visuaslization teste were performed to determine the
direction of the flow. The well jet about the cylinder,
resuiting from the impinging jet, was studied. Neasurements
of the velocity profilee and turbulence intensities were
made. These results were coupereé to the same information
obtained for flat pletes and found to be similar for the
nozzle distance of 7 diameters. At nozzle distences of 15
and 30 diameters the date was no longer similar. From the™
velocity measurements, the spread rates and decay rates of

the wall jet were determined. These results were compared ',




Cor T
/

—>-t0 similar studies done for flat plates. &beszgcay rates

-

were found to be less than that of flet plates and theé —
spread rates were greater than that of flat plates,
especially ebout the circumference of the cylinder.tf;g”—-\\
attempt was made to nondimensionalize the wall jet velocity
profiles with the same similarity parameters used for flat
plates whichk proved to be unsuccessful. The wall jet was
found to separate from the cylinder at about 120 to 160
degrees from the stagnation point. The relationship between
the radius of the cylinder and the radius of the nozzie was

found to be & very significant parameter.
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ABSTRACT

An Experimental Study of Jet Impingement on a
Circular Cylinder. (August 1984)
Dennis Wayne Potts, B.S., Texas A&M University

Chairman of Advisory Committee: Dr. Jose L.F. Porteiro

A round turbulent jet was impinged normally upon a
circular cylinder and the resulting flow field was studied.

The investigation was conducted using a jet which issued

from a nozzle with an 11/16 inch diameter. The cylinder had
a diameter of 6 5/8 inches. The jet was impinged upon the
cylinder at nozzle distances of 7, 15, and 30 nozzle
diameters, and at velocities of 400 and 500 ft/s. The free
jet was studied and found to be "typical" by comparing it to
earlier studies done with round turbulent jets. Surface
flow visualization tests were performed to determine the
direction of the flow. The wall jet about the cylinder,
resulting from the impinging jet, was studied. Measurements
of the velocity profiles and turbulence intensities were
made. These results were compared to the same information
obtained for flat plates and found to be similar for the
nozzle distance of 7 diameters. At nozzle distances of 15
and 30 diameters the data was no longer similar. PFrom the
velocity neasurements, the spread rates and decay rates of

the wall jet were determined. These results were compared
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to similar studies done for flat plates. The decay rates
were found to be less than that of flat plates and the
spread rates were greater than that of flat plates,
especially about the circumference of the cylinder. An
attempt was made to nondimensionalize the wall jet velocity
profiles with the same siuilarity parameters used for flat
plates which proved to be unsuccessful. The wall jet was
found to separate from the cylinder at about 120 to 160
degrees from the stagnation point. The relationship between
the radius of the cylinder and the radius of the nozzle was

found to be a very significant parameter.
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Symbols

xviii

NOMENCLATURE
Meaning

distance from nozzle along axis of jet,
Fig. 9

nozzle diameter, Fig. 9
radial diatance from center of jet, Fig. 9

radial distance from center of jet to point
where the velocity is 1/2 the maximum velo-
city at the jet center, Pig. 9

radial distance from surface of cylinder,
Figs. 29 amd 30

radial distance from surface of cylinder to
to point where vleocity of wall jet is 1/2
the maximum velocity, Figs. 29 and 30

distance parallel the axis of cylinder from
the stagnation point of the impinging jet,
Fig. 29

distance along clyfnder surface in the cir-
cunferential direction from the stagnation
point of the impinging jet, Fig. 30

angle in circumferential direction from the
impingement -point relative to the cylinder's
surface (i.e. @ = S/Rcyl), Fig. 30

local mean velocity in the direction of
flow, Figs. 9, 29 and 30

exit velocity of jet from nozzle, Fig. 9

reference velocity (i.e. the maximum
velocity of either the impinging jet or the
wall jet), Figs. 9, 29 and 30




xix
Symbols Meaning
u' the root-mean-square of the perturbation
velocity
R! the radial distance outward from impingement

point along the surface of the cylinder,
Fig. 38




CHAPTER I
INTRODUCTION

The study of free jets and jet impingement has been
going on for many years. This research dates back to the
fundamenta;s and theory presented by Torricelli in his "De
[fotu Gravium Naturaliter Accelerato", in 1643 and
Bernoulli's "Hydrodynamica", in 1738. 1In fact, there are
hundreds of reports and studies into the theory and appli-
cations of jets and the task of preparing a complete list
of examples is of itself a major undertaking. For a brief
review of some of the more prominent studies, the reader is
referred to Krzywoblocki [1].

Interest in free jets, jet impingement, and the result-
ing wall jet has been motivated by a number of engineering
problems. Jets issuing from hydraulic outlet works, weirs,
verticle take-off aircraft, various spraying devices, and
the cooling of turbine blades are examples of such
problems. It should be noted, however, that none of these
studies look into the phemomenom of a jet impinging on a
circular cylinder. There are two basic reasons for this
apparent lack of interest. PFirst, the absence of complete

symmetry and the highly three-dimensional nature of the

The ATAA Journal is the model for this thesis.




wall jet makes data taking tedious and theoretical analysis
almost impossible. Secondly, there has been no apparent
need for such a study.

Recent problems discovered during the launch of the
Space Shuttle have made it necessary to explore the
phenomena of jet impingement upon cylinders. An integral
part of the Space Shuttle is the External Tank (ET). This
large cylindrical tank holds the liquid fuels used to power
the orbiter's main engines and these fuels are cryogenic.
Several hours prior to launch, these fuels are loaded into
the ET. Ice forms on the surface of the ET and, as a
result of the violent vibration which occurs during the
launch, the ice breaks off and has been known to damage the
Thermal Protection System tiles on the orbiter. These
fragile tiles are necessary to the safe return of the
orbiter and their possible damage is a primary concern. In
order to prevent this problem; NASA, in conjunction with
the U. S. Air Force, has proposed a system to prevent the
ice formation by using the exhausts of turbojet engines
mounted in the proximity of the ET surface [2]. The jet
exhausts would be arranged in such a way that they would
generate a temperture and velocity field, about the surface
of the ET, which would produce a heat transfer coefficient
adequate enough to prevent the ice from forming. At the

present time, there is no comprehensive flow field or heat




transfer data on jet impingement on circular cylinders.

The rate of heat transfer depends upon the heat
transfer coefficient, and this coefficient is affected by
the characteristics of the flow field in which the heat
flux is taking place. To provide an accurate estimate of
this coefficient, some basic properties of the flow field
must be known. Very little of the properties or character-
istics of the flow field generated by a jet impinging upon
8 cylinder is known, hence very little is known about the
resulting heat transfer coefficient.

It is the purpose of this research to study, experi-
mentally, the effects of a turbulent jet impinging normally
on a circular cylinder in order to provide the basis upon
which future studies into the heat transfer resulting from
this impingement can be made. This information could aid
in making decisions concerning the ice supression systenm
for the Space Shuttle. The characteristics of the
impinging jet will be presented in this monograph and will
include the velocity profiles and turbulence intensities of
the free jet. 1In order to insure that the jet itself
behaves as expected, it will be compared to data based upon
the work done previously in the area of free jets.

Other possible applications of this research include
using jets to cool reactor cores, to transfer heat to or

from cylindrical cooling or heating elements, and to initi-




ate research into the area of jet impingement upon non=-

symmetrical bodies.




CHAPTER II
LITERATURE REVIEW

In order to accurately describe the flow field of an
impinging turbulent jet it can be divided into several
zones as proposed by Poreh, et al. [3,4]. In general, the
literature about jets which is relevant to this research
can be divided into three areas: First, studies of the
free jet; second, studies of the impinging jet; and third,
studies of the wall jet. Obviously, these areas overlap
greatly and many reports cover all three. The review of
literature in this report will be divided, as much as

possible, into these three areas.

A. The Turbulent Free Jet

The turbulent free jet has been extensively studied
and there are numerous cases from which comparisons of
experimental data can be made. Since a circular jet was
used in this research project, this review will be limited
to jets of that nature. Numerous experimental studies of
the characteristics of circular or axially symmetric jets
have been made. Albertson et al. [5] provide an excellent
study of the diffusion of jets. This study includes
detailed discussions by Holdhusen, Citrini, Corrsin,

Baines, Streiff, Henry, Albertson, Dai, Jensen, and Rouse.




Wygnanski and Fielder [6], using hot wire probes, investi-
gated the self-preserving nature of the free jet. Sami et
al. [7], using a ceramic piezo-electric tube as well as hot
wires, studied the diffusion of the jet including measure-
ments of radial velocities and pressure fluctuations.
Gibson [8] studied the turbulent energy of a round free
jet. The static pressure distribution was investigated by
Miller and Comings [9]. Measurements of entrainment were
made by Ricou and Spalding [10]. Also, an extensive report
by Love et al. [11] makes several comparisons between
experimental and theoretical studies of the axisymmetrical
free jet. Donaldson et al. [12,13] made some excellent
studies into the structure of the turbulent axially symmet-
ric free jet. These papers provide excellent sources of
data for comparative purposes. Rajaratnam [14] provides an
excellent comparison of some of the above studies as well
as many others. In the above reports, the experimental
résults are generally compared to the predictions made by
theory. PFor theoretical considerations the reader is
referred to Abramovich [15] and Pai [16]. Hinze [17] and
Schlichting [18] present excellent summaries of several
theoretical analyses. In m;st cases, Tollmien's [19]
solution is used as a comparison. However, Kuethe [20] has
extended the solution to include the velocity distribution

near the nozzle of an axially symmetricel jet and for plane




jets in a moving streanm.

B. The Impinging Jet

As stated earlier, there have been no definitive
studies into the area of jet impingements on a circular
cylinder. However, extensive studies have been performed
in the area of jet impingements on flat plates. Donaldson
and Snedeker [12] have studied this as well as briefly
discussing other shapes such as hemispheres and cylindrical
cups. Similarly, several experimental studies on circular
impinging jets have been performed by Poreh and Cermak [3],
Tani and Komatsu [21], Poreh et al. [4], Beltaos and
Rajaratnam [22], Donaldson et al. [13], and Bradshaw and
Love [23]. Again, the'reader is referred to Rajaratnam
[24] for a detailed comparison of some of these reports.
Generally, the characteristics of the resulting wall jet
are compared to the predictions made by Glauert [25]. 1In
all of the above studies, flat or symmetrical shapes are
used and no consideration is given to circumstances where

the jet may separate from the wall.

C. The Wall Jet
Finally, the last zone of consideration is the wall
jet. Glauert [25] has presented the theorotical consider-

ations against which most experimental data is compared.




Poreh et al. [4] and Bakke [26] present thorough studies of
radial wall jets. In fact, this is the area of research
which presents the most difficulty in obtaining data which
can be compared to the wall jet on the cylinder. All
experimental data to date deals with either radial or two-
dimensional jets. The wall jet resulting from jet impinge-
ment on a cylinder is neither two dimensional nor purely
radial, and there is the problem of adverse pressure
gradients and jet separation from the wall. Although
Gartshore and Newman [27] treat the problem of pressure
gradient and separation, their experiments were performed
with a two dimensional jet in a nonquiescent medium. The
theory cannot be of real use to the problem studied in this
research. Dvorak [28] has made some analysis of a wall jet
over curved surfaces but this information is also limited

to two-dimensional wall jets.




CHAPTER III
PROPOSED RESEARCH

From the previous chapters it is obvious that a poten-
tial area for research exists. The developement of the Ice
Suppression System for the Space Shuttle poses the unique
problem of a jet impinging on a circular cylinder. As
indicated in Chapter II, no known literature exists which
describes any facet of this phenomenon, hence no previous
information on this subject is available. In this
research, basic data about the flow field which developes
as a result of the impinging jet was gathered and pre-
sented. To gather this information, a round turbulent jet
was impinged normally on & circular cylinder and the char-
acteristics of the resulting wall jet were measured. The
research was divided into three areas or phases of study.

Phase One was a study of the characteristics of the
free jet. Since so many studies into the nature of free
jets have been done, and since axially symmetric jets have
been well documented, no new studies were performed here.
The characteristics of the jet used in this study, however,
were measured and conpared to those studies already done.
This was necessary in order to validate the jet and detect
any unusual characteristics.

Phase Two dealt with surface flow visualization.
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Unlike jets impinging on flat plates or symmetric objects,
the usual assumptions about the symmetry of the wall jet
cannot be made and some indication of the surface flow
direction must be known. The flow visualization should
give a better understanding of how the jet progresses about
the cylinder. This phase is also intended to provide
information which will aid in the positioning of the hot
film sensor used in the final phase of study.

In Phase Three, the characteristics of the wall jet
were measured to include velocity profiles and turbulence
levels. As shown, no known information, theoretical or
experimental, is availible. Therefore, only comparisons
to exsisting results of the work done previously can be
nade. It is hoped that this information can provide the
basis for further studies into deriving some possible

models to describe this flow field.




CHAPTER IV
EXPERIMENTAL APPARATUS

Previous experimental studies of the Ice Suppression
System (ISS) have been performed using a two percent model
of the Space Shuttle and its launch complex [2]. To make
the information obtained for this report compatible with
the work already accomplished, it was decided to use an
experimental set up which would represent a two percent
model of the ET. Therefore, a five foot section of PVC
pipe with an outer diameter of 6 5/8 inches was used to
simulate the ET. To insure minimum effects on the wall jet
due to the cylinder surface, the PVC pipe was sanded to a
smooth, uniform surface. This surface was then painted
with several coats of white lacquer. The lacquer was
chosen because of the glossy smooth finish it supplies and
to contrast the flow visualization method used.

The nozzle was manufactured from a 5 inch section of
brass rod. The solid rod was drilled out along its axis
using an 11/16 inch (0.69 inch) bit. To create a favorable
pressure gradient, the opening was gradually widened so
that the upstream diameter was 0.89 inch. This end was
then threaded, in turn, into a bell reducer and a 1.4 inch
diemeter pipe. The transition from the 1.4 inch pipe

through the bell reducer to the nozzle was made as smooth

11
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as possible so that the overall effect was that of a con~
verging nozzle. To align the flow in the nozzle and to
minimize undesired effects a four foot section of straight
pipe immediately preceeded the nozzle. This section of
pipe shall be referred to as the aligning pipe. PFig. 1
shows a schematic of the nozzle and aligning pipe. PFig. 2
is a photograph of the nozzle set-up. This size (11/16
inches) constitutes a two percent model of the actual
nozzle proposed for the ISS.

The nozzle assembly was attached to a traveling mount
so that the nozzle could be moved to the desired distance
from the cylinder. The range of movement for the nozzle
was from seven nozzle diameters to 40 nozzle diameters from
the surface of the cylinder (see Fig. 3).

The working medium was air which was supplied from a
very large tank. Using a compressor, the tank could be
repressurized to 100 psi as necessary. Because of the
supply tank's large size, it provided a sufficient mass
flow and maintained very stable flow conditions.

Velocities were monitored by a total pressure probe
mounted in the aligning pipe at the end farthest from the
nozzle and were controlled by a pressure regulator mounted
upstream from the aligning pipe. The total pressure was

measured using a Validyne pressure transducer rated at five
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psi. The transducer was calibrated to give the velocity of
the flow at the nozzle. During the tests the output of
this transducer was continuously monitored to insure a
constant nozzle velocity. The velocities in the free jet
and in the wall jet about the cylinder were measured using
a Thermal Systems Inc. (TSI) model 1050 constant tempera-
ture anemometer with a model 1051 linearizer.

A potentiometer was attached to the traversing mecha~
nism which moved the hot film probe through the free and
wall jets. A constant voltage was applied across the
potentiometer which was calibrated in such a way that the
change in resistance, hence change in voltage, corresponded
to the distance moved by the probe. The "zero" voltage was
obtained by bringing a sensor in contact with the surface
of the cylinder and recording that value. This value was
found not to vary perceptably in the circumferential
direction about the cylinder. It did vary a maximum of
0.02 inches in the axial direction along the cylinder.

This variation could be compensated for by adjusting the
input voltage. Allowing for this disparity, errors in
distances are within 0.01 inch.

The data was collected and reduced using a microcom-
puter. Fig. 4 gives a schematic of the instruments used in

these tests.
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CHAPTER V
FXPFERIMENTAL PROCFDURF

A. Phase One -- Pree Jet Studies

The mean velocity was measured with a single hot film
perpendicular to the axis of the flow. Measurements were
taken for two different velocities (400 ft/s and 550 ft/s)
and at nozzle distances (x/d) of one diameter spacing from
O to 7 nozzle diameters and at 10, 15, 20, 25 and 30
diameters. These distances were chosen for several
reasons; to establish the potential core region, to provide
a uniform spacing of the data points, and to coincide with
the projected impingement points used later in the tests.

The turbulence levels were calculated from the root-
mean-square (rms) of the perturbation velocity in the axial
direction and assuming the flow within the jet to be
isotropic. Gibson [8] has shown that this assumption is
not unreasonable. His measurements have shown that the
'radial and circumferential perturbation velocities are very
nearly equal to the axial components at least until the
mean velocity is half the maximum velocity at the jet
center. Beyond that point, the axial component dominates
the spectrum and even then the turbulent measurements,
although high, will still give a reasonable indication of
the turbulence intensity. Miller and Comings [9] also made
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similar assumptions in their measurements of a two-dimen-
sional free turbulent jet noting only that measured
velocities are in error for low velocity-high turbulence
areas (i.e. toward the edge of the jet). Sami et al. [7]
also made measuremnents of a free jet using the same
assumptions as previously stated, then compared this data
with data taken using an "X" wire probe and also found that
the asumptions were valid except at the outer edge of the
jet for the same reasons. Wygnanski and Fiedler [6] also
compared single hot wire to "X" wire data and found them to
be indentical for turbulence measurements; but they found
the circumferential and radial components to be somewhat
less then those of Gibson, although the axial components
agreed completely. In any case, the axial component either
equals or dominates the radial and circumferential compo-

nents so that the assumptions made here are within reason.

B. Phase Two -~ Surface Flow Visualization

The jet was impinged perpendicularly upon the circular
cylinder. 1In order to measure the resulting wall jet using
hot film anemometry, its direction must be known, and this
is determined through surface flow visualization. The
problem is in finding an adequate substance which will give

a good indication of the surface flow patterns without




affecting the flow itself. In earlier studies done on the
ISS by Porteiro et al. {2], a combination of kerosene and
black tempra paint proved to be very effective. As the
flow moves along the surface, the mixture leaves "streaks"
parallel to the flow direction. The kerosene then evapo-
rates leaving the tempra powder hehind indicating the
surface flow patterns. The surface of the cylinder was
painted with white lacquer because the lacquer will not
react with the kerosene and the white glossy surface
provides the best contrast from the black tempra.

In order to recreate the surface flow directions
during the wall jet measurement phase and then accurately
keep track of the measurements, a surface coordinate system
was employed. For each nozzle distance and velocity to be
recorded, a flow visualization was performed by "painting"
the cylinder with the kerosene-tempra mixture and impinging
the jet onto the cylinder until the flow field was well
developed and the kerosene had sufficiently evaporated.
After the tempra was allowed to dry completely, the
cylinder was wraped in tracing paper which had been marked
with a grid representing degrees circumferentially around
the cylinder and inches axially along the cylinder. The
origin of this coordinate system was designated as the

stagnation point of the impinging jet. Fig. 5 indicates

20




the major points of this coordinate system. Fig. 6 shows
the cylinder wraped with the "grid" paper. Using this
coordinate system, the measurements at any point can be
reproduced for any nozzle distance at any velocity. From
the flow visualization the surface flow direction was
marked on the grid every 10° and every 1/2 inch. From
this information, the proper hot film orientation could be

maintained.

C. Phase Three -~ Wall Jet Studies

Using the grids described, the wall jets were then
measured at predetermined points by orienting the hot film
probe in the proper direction as indicated by the flow
visualization and traversing the wall jet in a radial
direction relative to the center on the cylinder. The
traversing mechanism was mounted on top of the cylinder in
such a way that the axis of the hot film probe remained
perpendicular to the cylinder's surface. The entire mecha-
nism could be rotated about the cylinder's axis insuring
the hot film traveled in a radial direction relative to the
cylinder's axis. PFig. 7 is a photograph of the traversing
mechanism and Fig. 8 shows the position of the hot film
relative to the cylinder's surface.

Again the mean velocities and turbulence levels were

21
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Fig. 6

Photograp. of the cylinder with "grid".

23




Fig. 7 Photograph of the wall jet traversing apparatus.
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determined as well as areas where the jet separated from
the wall. The turbulence intensities were determined using
the same assunptions described for the free jet. The
validity of these assumptions as applied to the wall jet
will be discussed in Chapter VI. No correction has been
made to compensate for the high turbulent levels in the
wall jet. The effect of this error depends upon the inten-
8ity levels of turbulence. For the mean velocity measure-
ménts, errors of about two percent in the mean velocity at
a 25 percent turbulence level is generally the considered
value. At turbulence levels of 30 percent or higher, the
possibility of flow reversal becomes distinct and measure-~
ments within these regions should considered only as
indications of the probable flow velocities. The major
source of error is in measuring the turbulence intensity
itself. The amount of error may be as much as 20 percent
at a turbulence intensity of 20 to 25 percent.

These sources of error must be kept in mind when
reviewing the data. The mean velocities obtained should be
reasonalbly accurate but the levels of turbulence could

have a tendency to be high.

D. Data Acquisition and Reduction

The data was acquired by the Vector Computer using an
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analog to digital converter. The computer read 500 voltage
outputs from the anemometer over approxiamtely a one-half
second period. Prom these 500 readings a mean voltage and
root-mean-square (rms) voltage was calculated. The volt-
ages were then converted to velocities using a calibration
equation obtained from the calibration curve for the hot
film. This gives a mean velocity (U) and a standard
deviation or rms of the perturbation velocities (u'). The
turbulence level is simply the ratio of the rms velocity to
the mean velocity (u'/U).

The hot film was calibrated at the nozzle exit within
the potential core of the jet where turbulence intensities

were measured at less than one percent.

E. Accuracy of Experimental Procedures

The accuracy of many of the procedures used in acquir-
ing data have already been indicated. The most significant
of these being the errors encountered in making hot film
measurements in turbulent flow. Based upon the repeat-
ability of the hot film measurements, errors were less than
five percent in both the free jet studies and the wall jet
studies.

The instrumantation used is the primary source of

error. To prevent errors due to calibration drift, both




the pressure transducer and hot film anemometer were peri-
odically checked. The transducer was not found to vary,
although it was recalibrated during the experiments. The
accuracy of the transducer was considered to be about five
percent for both velocities. During the course of the
experiments it was necessary to replace the hot film sensor
several times. These replacements required the instrument
to be recalibrated each time. The variation between
calibrations was less than five percent.

The flow from the nozzle was controlled through a
regulator and monitored using the pressure transducer. The
flow velocity from the nozzle was not allowed to vary more
than five percent from the two established velocities (400
and 550 ft/s). TFrequent checks of the pressure transducer
showed the velocities to be within five percent of the

expected value.
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CHAPTER VI
EXPERIMENTAL RESULTS

A. Phase One -~ Free Jet Studies

Free jets have been studied extensively and there are
many reports which have been rendered on the subject. The
purpose of this phase of the research is not to explore any
new avenues but to compare the charateristics of the jet
used here with those of the numerous studies already done
to insure that this jet is similar (i.e. typical). Fig. 9
shows the geometry of the free jet and the different para-
meters used in describing the jet.

of prim%ry consideration when analyzing a jet is
whether a sidﬁrlity exists. Nondimensionalizing the velo-
city (U) against the maximum velocity (Uﬁ), and the
radial distance from the jet center (r) against the radius
of one-half velocity (b), plots such as Figs. 10 and 11 are
obtained. From these plots it can easily be seen that the
profiles for areas of fully developed flow are indeed
similar.

The velocity distrubutions in a circular turbulent jet
have been calculated by Tollmien [19] and Goertler [29]. It
is not the purpose of this report to derive these rela-
tionships, only the final results will be presented here.

The reader is referred to the individual papers or to
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Rajaratnam [14] for a more detailed presentation.

In the past, experimental data has been compared to
these predictions and there has been general agreement
between the two. In order to validate the jet used in this
research, the data obtained from this jet will be compared
to these theoretical predictions. If there is substantial
agreement between the two, the jet will then be considered
"typical". Again the reader is referred to Figs. 10 (p.
31) and 11 (p. 32) which compares the data for both
velocities to the Tollmien solution and the Goertler-type
solution. 1In both cases, there is substantial agreement;
and, based upon past experimental agreement, the jet is
considered to be validated.

Fig. 12 shows the decay characteristics for each of
the two velocities. Here, the maximum velocity at the
center of the jet (Um) is normalized against the exit
velocity at the noszzle (Uo), and the distance from the
nozzle is expressed in terms of nozzle diameters (x/d).

Letting the length of the potential core be defined as
the distance (x/d) where the maximum velocity is 95 percent
of the velocity at the nozzle, Fig. 12 (p. 34) indicates
the length to be about 6.2 diameters from the nozzle.
Doneldson and Snedeker [12] suggests lengths of 7.2 to 7.5

diameters at higher velocities. This is consistant with
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the existing data.

If the velocity decay is plotted as a velocity scale
(i.e. Ub/qn) it can be compared to the relationships
developed by earlier experimenters. Truple (see Abramovich
[15]) developed the earliest relationship for the velocity

scale where:

Um/Uo = 7.32/(x/d) (1)

Reichardt (see Schlichting [18]) developed this velocity

scale:

U,/U, = 5.75/(x/4) (2)

Hinze and Zijnen [30] from their experimental observations

suggested:

U /U, = 6.39/(x* + 0.6) (3)

where x* is x/d. The virtual origin, for their work, was
located 0.6d behind the nozzle. Because of the uncertainty
involved in predicting this distance, most cases locate the
virtual origin at the nozzle itself. From their experi-

ments, Albertson et al. [5] found:
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U, /U, = 6.2/(x/4) (4)

These equations for the velocity scale are presented
in Fig. 13 as well as the results from this experiment. The
current data appears to agree best with the results
obtained by Trupel. Rajaratnam [14] pointed out that the
results obtained by Hinze and Zijnen [30] and Albertson et
al. [5] appear to be between the extreme variations given
by Trupel and Reichardt and suggests the following equation

to describe the velocity scale:

U/, = 6.3/(x/a) (5)

The data obtained in this experiment falls slightly
outside the extreme suggested by Trupel but agrees
reasonably well with the jet decay observed by Donaldson
and Snedeker [12].

The difference between these experimental results can
be attributed to secondary effects described by Donaldson
and Snedeker [12] who pointed out that because of such
secondary effects, a jet issuing from a hole in a plane
surface exhibits a higher rate of decay and spread than

does one from the end of a long pipe. As noted, the jet
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used in this experiment issued from a long pipe, so
slightly lower rates of decay and spread are to be

expected. The data seems to bear out this assumption. It

can be seen from these varying results that the free jet is

very much subject to the secondary influences described by

Donaldson and Snedeker [12].

The rate of spread of a jet has also been studied by a

nunber of experts who have suggested several different
equations to predict this rate. From dimensional consid-

erations, the solution can have the form:

b = C,x (6)

where C1 is a constant determined experimentally.
Tollmien's [19] solution's suggests C1 = 0.082. The data
of Corrsin [31] indicates a value of 0.084 for C, -
Albertson et al. [5] found a value of 0.0965 worked best
and 0.094 for the data of Hinze and Zijnen [30]. Fig. 14
compares these different relationships with the data found
in this experiment. The current data shows a spread rate
less than those predicted by Alberson et al. [5] and Hinze
and Zijnen [30], but agrees well with Tollmien's [19]

gsolution and Corrsin's [31] data. This is as expected,

because the jet decay prediction of Trupel (see Fig. 13,

38
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p. 37) was based on Tollmien; therefore, data fitting one
prediction should be expected to fit the other. This
lesser spread rate can also be attributed to the secondary
effects described in the preceeding paragraph.

An area of final consideration for the characteristics
of the free jet is that of turbulence. The turbulence
profiles for each velocity are given in Figs. 15 and 16.
Close to the nozzle exit, the turbulence intensities are
very low (less than one percent at the nozzle exit) and
gradually increase until about 25 nozzle diameters down
stream. At this point, the turbulence intensities stablize
at about 25 percent. According to Wygnanski and Fiedler
[6], this is an indication that the jet is becoming self-
preserving in nature. 1In fact, the data availible for
axisymmetric free jets show that for distances from the
nozzle of 30 diameters or greater, the turbulence profiles
should become similar with axial intensities about 30
percent [6,8,13,29]. The information in Figs. 15 (p. 41)
and 16 (p. 42) appears to be a little high when compared to
that from Donaldson et al. [13], but this can be attributed
to the fact that the data obtained in this study was not
corrected for turbulence. For areas of low turbulence
(i.e. x/d less than 10), this data agrees well with that
obtained by Semi et al. [7].
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The overall conculsion based on the results of the
above comparisons shows that the jet used in these
experiments performs as expected and should produce

reliable data in the subsequent tests.

B. Phase Two -- Surface Flow Visualization

Figs. 17 through 28 show the results of the flow
visualization tests. Only subtle differeneces can be seen
from the different nozzle distances and at the two velo-
cities. The most noticeable difference is in the stream-
lines from the stagnation point along the axis of the
cylinder (i.e. ©® = 0). When the nozzle is close to the
cylinder (x/d = 7), these streamlines are well developed
along the cylinder's axis; but at the further distances
(x/d = 15 and 30) they are less developed with a tendency
to "diverge" from the axis of the cylinder toward the axis

of the jet.

C. Phase Three -- Wall Jef Studies

The information available on impinging jets deals,
almost exclusively, with flat plates as the object of
impingement. Information on other shapes is limited, and
nonexistent for impingement upon cylinders. This means the
information presented in this chapter is entirely new; to

the best of the author's knowledge, there is no other known
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fig. 17 PFlow visualization for x/d = 7,
U, = 400 ft/s (front).
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Fig. 18 PFlow visualization for x/d = 7,
U, = 400 ft/s (back). Showing
areas of flow separation.

45




“ g % - g

Fig. 19 Flow visualization for x/d = 15,
Uo = 400 ft/s (front).
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Fig. 20 Flow visualization for x/d = 15,
U_ = 400 ft/s (back). Showing
afeas of flow separation.
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Fig. 21 Plow visualization for x/d = 30,
U, = 400 ft/s (front).
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Fig. 22 Flow visualization for x/d = 30,
U. = 400 ft/s (back). Showing
afeas of flow separation.
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Fig. 23 Flow visualization for x/d = 7,
U, = 550 ft/s (front).




Fig. 24 PFlow visualization for x/d = 7,
U_= 550 £ft/s (back). Showing
aPeas of flow separation.
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FPig. 25 Flow visualization for x/d = 15,
U, = 550 ft/s (front).




Fig. 26 TFlow visualization for x/d = 15,
U. = 550 £t/s (back). Showing
afeas of flow separation.
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Fig. 27 Flow visualization for x/d = 30,
U, = 550 ft/s (front).
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Fig. 28 Flow visualization for x/d = 30,
U_ = 550 f£t/s (back). Showing
afeas of flow separation.
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source of information about this type of flow.

To describe the wall jet, certain parameters must be
defined. Fig. 29 shows the geometry of the wall jet along
the axis of the cylinder and Fig. 30 shows the goemetry
about the circumference of the cylinder. A particular
problem in this portion of the research is how to present
the data in a meaningful manner. Fig. 31 indicates the
points were measurements were taken. Presenting each of
these points independently would be meaningless and
overwhelm the reader with information. If radials are
projected outward from the impingement point along the
surface of the cylinder, it is possible to study the
effects of the wall jet as it progresses along a particular
radial. The one limitation in using this method to
describe the wall jet lies in the fact that the wall jet is
not a truly radial jet. PFigs. 32 through 37 show the
direction of the flow along the surface of the cylinder as
indicated by the flow visualization method previously
discussed. PFrom these figures it can be seen that,
although the flow may not be radial, it is close enough to
at least approximate radial flow.

It should be noted, however, that unlike the radial
wall jets produced by a jet impinging on a flat plate, each
radial on the cylinder's surface will produce a different

wall jet. There is one area of symmetery for the wall jet
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Fig. 31 MHeasurement points about the surface of the

cylinder.
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Fig. 32 Syrface flow direction for U, = 400 f£t/s,
Xd=7.
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Fig. 33 Surface flow direction for U_ = 400 ft/s,
x/d = 15. °
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Fig. 34 Surface flow direction for U, = 400 ft/s,
x/d = 30.
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Fig. 35 Sl;rface flow direction for U, = 550 ft/s,
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Fig. 36 Sygface flow direction for U, = 550 ft/s,
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about the cylinder. If the surface of the cylinder is
divided into quadrants such that the impingement point is
at the intersection of the quadrants, it is necessary only
to describe the jet in one of the quadrants, the other
three being an image of the first. In other words, the wall

jet produced by a normally impinging jet on a cylinder is

symmetrical about the axis of the cylinder and about a
circumferential line through the impingement point. Based
upon this symmetry only the radials in one quadrant will be
explored allowing symmetry to account for the remaining
quadrants.

Even allowing for the limited symmetry of the wall jet
it is still very difficult to completely describe it
through radials. Because of the effects of the curvature
of the surface it would still take an unlimited number of
radials to completely characterize the wall jet. One can,
however, give some indications about the nature of the wall
jet through a limited number of radials. Based on the
previously choosen measurement points (Pig. 31, p. 59) five
radials can be projected from the impingemnt point to
intersect them. These radials are shown in Fig. 38. These
five radials along with the radials in the direction of the
axis of the cylinder (eaxial radial) and in the direction
along the circumferential axis (circumferential radial)

provide a total of seven radials in which to present the
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flow field data. The distance along each of the radials
will be labeled R'. In the subsequent presentation of
data, each of the plots will be along a particular radial
with each of the points given as both a distance along that
radial (R') and as a station number. This station number
is merely the coordinates of the point being measured
(circumferential coﬁrdinate--e, degrees/axial coordinate—-
Z, inches), as described in Chapter V (see Fig. 6, p. 22).
(Note, this station number is not a ratio of the two
nunbers ( ©/Z), it is just a method of determining where on
the cylinder's surface the measurement is being taken.)

If the circumferential axis is designated the refer-
ence axis for measuring the angle of the radials as well as
the flow direction (see Fig. 38, p. 67) the difference
between the two angles (radial and flow direction) can
easily be shown in Table 1.

The first area of concern in presenting the wall jet
is to look at the velocity profiles of the wall jet. Only
the circumferential and axiel radials, and radials 2 and 4
intersect enough points to make a thorough presentation of
the velocity profiles possible. FPFigs. 39 through 46 (pp.
85=92) show the velocity profiles for the two nozzle exit
velocities at a distance of 7 nozzle diameters. Figs. 47
through 54 (pp. 93-100) are for 15 nozzle diameters and
Figs. 55 through 62 (pp. 101-108) are for 30 diameters.
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Flow angles and radial angles relative to the
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The profiles along the axis of the cylinder show the usual
characteristics of a wall jet except there is a tendency
for the profile to "flatten out" rather quickly. Along the
circumference of the cylinder, a well developed wall jet
can be detected when the nozzle is close to the cylinder
(Figs. 39, p. 85; 43, p. 89; 47, p. 93; and 51, p. 97) but
the profiles break down at further distances (Figs. 55, p.
101 and 59, p. 105). The profiles along radials 2 and 4
are variations on the two extremes with radial 2 favoring
the circumferential radial and radial 4 favoring the axial
radial.

The next area of consideration is the turbulence
intensities of the wall jet. Poreh et al. [4] made some
studies of the turbulence profiles of a wall jet resulting
from a circular jet impinging upon a flat plate. They
found intensities (u'/U) near 0.5 close to the surface
which decreased to a minimum of about 0.35 within the wall
jet near the maximun velocity (Uh) and then increased
again as the edge of the jet was approached. These
turbulence profiles were independent of the distance from
the impingement point.

Figs. 63 through 86 (pp. 109-132) show the turbulence
profiles for each of the two velocities and different
nozzle distances along each radial. Except in areas where

the wall jet is not fully developed (i.e. close to the
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1

impingement point), the turbulence profiles are similar to
those shown by Poreh et al. [4]. The profiles in the axial
direction appear to agree with that of Poreh et al. [4]. In
the circumferential radial the semblance tends to break
down, particularly as the nozzle distance is increased. At
7 nozzle diameters, all the radials are in agreement with
each other. At 15 diameters the agreement is somewhat
less, and at 30 diameters there is significant disagree-~
ment. At 30 nozzle diameters the turbulence profiles along
the axial radial show an increase in the scatter of the
data but the intensities remain about the same. Along the
circumferential radial, there is a notable difference when
compared to the axial radial. The turbulence intensities
are considerably less.

Another area of consideration is the rate of spread of
the wall jet. Since the axial radial approxiamates a flat
plate, the rate of spread in the axial direction will be
compared to the data avaible for flat plates. The axial
and flat plate spread rates will then be compared to the
rate of spread along the remaining radials.

Poreh et al. [4] have shown that the spread of the
wall jet along a flat plate is linear and this relationship

can be described by the equation:

B = 0.087R* (7)
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where R¥ is the radial distance from the impingement point.
Pig. 87 (p. 133) compares the spread rate along the axial
radial for each of the runs with the data obtained by Poreh
et al. [4]. The obvious conculsion is that the rate of
spread along the axis is very similar to that of a flat
plate, although the rate is slightly higher.

In Pigs. 88 through 93 (pp. 134~139) the spread rates
of the remaining radials for each run is compared with that
of a flat plate. It can easily be seen that the rate of
spread increases as one moves from the axial radial towards
the circumferential radial. The differences between the
spread rates also increase with increasing nozzle distance.
The spread rate being rather substantial in the circumfer-
ential direction for x/d = 30.

Based on the work done by Poreh et al. [4] and
Bradshaw and Love [23], it has been shown that the decay of
the wall jet can be expressed linearly, as a velocity

scale, by the relationship:

U /U, = (R¥/d)/1.03 . (8)

where R¥*¥ is the radial distance from the impingement point.
Fig. 94 (p. 140) compares the velocity scale, along

the axial radial, of each of the runs with the relationship
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given by Eq. (8). Pigs. 95 through 100 (pp. 141-146) then
compare the axial radials with the remaining radials. For
close nozzle distances (x/d = 7) the velcoity scale are
similar and the wall jet decays uniformly along each of the
radials (much like a flat plate). At greater distances
(x/d = 15 and 30), the similarity breaks down with the jet
in the circumferential direction decaying at a much slower
rate than in the axial direction.

A final consideration in presenting the wall jet data
is to determine if the velocity profiles are similar. The
conventional manner to determine similarity is to plot
U/Uﬁ versus R/B. Figs. 101 through 124 (pp. 147-170)
show the nondimensional plots for each radial and for each
run. Except in areas closed to the impingement point, where
the wall jet is not yet fully developed, there appears to
be a strong indication of similarity. The similarity seems
to break down in the circumferential direction at certain
distances from the impingement point. This failure of
gsimilarity could be used as an indication of flow
separation from the wall.

Pinding the exact point where the wall jet separates
from the surface based upon velocity measurements proved to
very difficult. Gartshore and Newman [27] proposed
typical velocity profiles for a wall jet in an adverse

pressure gradient, but the profiles measured in this
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experiment did not, in any way, agree with the ones they
proposed. In fact, none of the velocity profiles measured
showed the usual indication of separated flow. Even the
profiles at 120 degrees from the impingement point where
the flow is assumed to have separated showed none of the
indications expected. The turbulence profiles were also
inconclusive in determining areas where the jet may have
separated from the wall. As stated earlier, only the
similarity profiles give any indication of possible flow
separation and this is based on the, as yet unproven,
assumption that deviations from similarity indicate flow
separation.

An alternative way of estimating flow separation is
through the flow visualization method. Areas of possible
flow separation are usually indicated by an accumulation of
the substance used in determining the flow visualization
(kerosene-tempra mixture in this experiment). The reader
is referred to Figs. 17 through 28 (pp. 44-55) where these
areas of éccumulation can easily be seen.

The flow visualization method indicated areas of
separated flow occuring much later than would have been
expected. The anticipated area of separation is usually in
the vicinity of @ = 90 degrees; about 80 to 100 degrees
from the stagnation point. For the impinging jet, however,

separation did not occur until 130 to 160 degrees from the




impingement point, depending upon nozzle distance and flow

velocity. For U, = 400 ft/s, these areas are indicated
in Fig. 125 (p. 171) and for U, = 550 ft/s in Fig. 126
(p. 172).
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

The effects of a round turbulent jet impinging nor-
mally on a circular cylinder have been investigated. The
experiments were conducted at nozzle exit velocities of
400 and 550 feet per second. The jet was impinged upon
the cylinder at distances of 7, 15, and 30 nozzle
diameters.

The following are the major results of this
experiment:

1. The free jet was validated and found to agree
very well with both theoretical predictions and previous
experimental work. |

2. The velocity profiles about the cylinder were
found to be similar to those found on flat plate for
nozzle distances close to the cylinder (x/d = 7) but
became significantly different at farther nozzle distances
(x/d = 15, 30). At these distances the profiles along the
cylinder's axis became very "flat" and in the circum-
ferential direction they showed very little similarity to
that of a flat plate.

3. The spread rate of the wall jet about the
cylinder was much greater than that found on a flat plate.

Increasing both with farther nozzle distances and as the




circunferential axis is approached.

4. The velocity of the wall jet was found to decay
much slower than that of a flat plate, particularly about
the circumference of the cylinder.

5. The turbulence profiles of the wall jet were
found to be similar to those of a wall jet on a flat plate
except at x/d = 30 were the turbulence in the
circumferential direction decreased substantially.

6. An attempt was made to nondimensionalize the wall
jet velocity profiles using the standard similarity
parameters for a flat plate. The results were
inconclusive with the profiles being similar in some cases
but varying in others. There is a possiblity that the
break down of the similarity profiles could be tied to the
areas of possible jet separation from the surface of the
cylinder.

7. An attempt was also made to determine the areas
where the wall jet may have separated from the surface by
analyzing the velocity and turbulence profiles of the wall
jet. This analysis proved to be inconclusive so flow
visualiztion was used to determine wall jet separation.
Based on this data, it was found that the wall jet may
have remained attached to the surface until about 120 to

160 degrees from the impingement point, depending upon the

T7




78

flow velocity and nozzle distance.

From the above results a major conclusion that can be
drawn is; there appears to be a significant relationship
between the radius of the nozzle and the radius of the
cylinder. At the farthest nozzle distance the effective
radius of the impinging jet becomes large when compared to
the radius of the cylinder. If the effective radius is
defined as the radius where the velocity of the jet is
one-half that of the maximum velocity, b (see Fig. 9, p.
30), then a comparison between this radius and the
cylinder's radius can be made. At seven nozzle diameters
the effective radius is 0.45 inches or 14 percent of the
cylinder's radius. At 15 nozzle diameters, b = 0.83
inches or 25 percent of the cylinder's radius. At 30
nozzle diamters the effective radius becomes b = 1.75
inches or 53 percent of the cylinder's radius. At this
point, the curvature becomes so great that there is very
little surface upon which the wall jet can form.

The following recommendation are suggested:

1. TUse a split film sensor or similar method to
determine areas of flow reversal, thus locating areas of
flow separation.

2. Use a mutli-directional sensor (i.e. cross-wire

sengor) to determine the the turbulence intensities and




velocity components not parallel to the flow. This will

have three benefits:

a. determine if the flow remains in the direc-
tion indicated by the surface flow visualization.

b. enable measurements of the turbulent shear
stresses in the flow.

¢. allow for corrections due to the high levels
of turbulence.

As with most experimental work, the data raised more

questions then it answered. But light has been shed into

the nature of this complex and unique flow field.
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Pig. 125 Possible areas where the wall jet separates
from the surface of the cylinder for
U, = 400 f£t/s.




AXIAL COORDINATE (INCHES)

12

—— , ;
—_——— .,
~
T + + \> . + -T-
\\\
10 + + -+ * T
x/d =1
T + + + + +
8 |- + +. <+ + T
+ + + + + + \ + +
\
6 - + + + + + + T
+ + + + + + 4+ ¢
4 + + + + + + T
T + + + + + + T
2 r + + + + + + T
T + + + + + + +

0o L Ll L |
0 60 80 100 120 140 160 180
CIRCUMFERENTIRL COORDINATE (DEGREES)

Fig. 126 Possible areas where the wall jet separates
from the surface of the cylinder for

U, = 550 ft/s.
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Dennis Wayne Potts was born on October 16, 1953 in
Massillon, Ohio. He is the son of Glenn E. and Martha L.
Potts. His family lived in Ohio and Michigan before moving
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the University of Maryland from July, 1978 until December,
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April 22, 1983, he received a commission as a Second
Lieutenant through the USAF Officers Training School.
Dennis can be reached through his father-in-law, Lt. Col.
Darel E. Peacock, USAF (Ret.) at 5711 Venetian Blvd. NE.,
St. Petersburg, Florida 33703. Dennis is a member of Tau
Beta Pi, Phi Kappa Phi and Sigma Gamma Tau.
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