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ABSTRACT deg

e
-~ Based on arbitrarily rightgtensored observations from a

probability density function £, the existence and uniqueness of
the maximum penalized likelihood estimator (MPLE) of f ii}*//
of a

proven. In particular, théi“first MPLE of Good and Gasgkins
density defined on [0,®) 1s shown to exist and to be unique

under arbitrary right-censorship, Furthermore, the MPLE is in
the form of an exponential gpline with knots at the observed cen-

sored and uncensored data points. ¢

———

’I.- {'.Tr‘*/ ¥
1. INTRODUCTION

The problem of nonparametric probability density estimation
has been studied for many years. Summaries of results for com-
plete (uncensored) random samples have been listed by Tapia and
Thompson (1978), Wertz and Schneider (1979), and Bean and Tsokos

(1980), for example. Also, & review of results for censored
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samples has been given by Padgett and McNichols (1984), In addi-
tion to its importance in theoretical statistics, nonparametric
density estimation has been used in hazard analysis, life testing,
snd reliability, as well as in the areas of nonparametric discrim- .
ination and high energy physics (Good and Gaskins, 1971). .
One approach to estimating & density function nonparametri-
cally is that of maximum likelihood, Nonparametric maximum like-
1ihood estimates of a probability density function do not exist in
general. That is, the likelihood function for a complete sample

is unbounded over the class of all possible densities, However,

v »’..
£ 6 1w

by suitably restricting the class of densities, a nonparametric

; maximum likelihood estimator (MLE) may be found within the restric-
1 ted class., For complete samples, the maximum likelihood estimator
2 of & density g was given by Barlow, Bartholomew, Bremner and

) Brunk (1972) if g was assumed to be either decreasing (nonin-
creasing) or unimodal with known mode. Wegman (1970a,b) assumed
unimodality with unknown mode and found the MLE of the density and

TLTL,PMP Y Y e .
s .0 .

studied its properties for complete samples. McNichols and Padgett
" (1982) studied the nonparametric MLE of monotonic or unimodal den- .-
- eities based on arbitrarily right-censored observations. Even

within the class of decreasing (or unimodal) density functions,

s AP T e 7P
. »

however, when the largest observation was censored, McNichols and
Padgett (1982) had to restrict their estimator to a finite interval
[0,T] where T was an arbitrarily large positive poumber, greater
than the largest observation.

: Another approach to the problem of nonparametric maximum

. - e e
AR AN .

. likelihood estimation of a density from complete samples was pro-
posed by Good and Gaskins (1971). This method allowed any smooth
integrable function on the interval of interest (a,b) (which may g
be finite or infinite) as a possible estimator, but added a B
"penalty function" to the likelihood. The penalty function pensl~ i
ized a density for its lack of smoothness, so that a very “rough" X
density would have a smaller likelihood than a "smooth" density,
and hence, would not be admissible. De Montricher, Tapia, and .
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Thompson (1975) showed that the patural mathematical setting for
the solution of the maximum penalized likelihood estimation (MPLE)
problem of Good and Gaskins (1971) was provided by the Sobolev

subspaces of the Hilbert space LZ(R)’ the square-integrable func-
tions on the real line R. They proved existence and uniqueness
results for the MPLE. Later, Klonias (1982) obtained the strong
consistency of the MPLE of the density function in appropriate
norms. He also derived the "first MPLE of Good and Gaskins" for
the case that the density g has support only on the half line,
esseritially by reflecting g around zero and using results for

g having support R,

In this paper we obtain existence and uniqueness results for
the nonparametric MPLE of a density g based on arbitrarily
right-censored observations from g. General results are first
obtained for densities with support §i ¢ R and penalty function
¢ and then the problem of "Good and Gaskins' first MPLE" is con-
sidered for arbitrarily right-censored data observed on R. The
existence and uniqueness results are then obtained for demnsities
g with only positive support by using a symmetry argument, re-
flecting g about zero, and then utilizing the gemeral results
for support R. It is also shown that the MPLE ie an exponential
spline with knots at the data points.

2, NOTATION AND BASIC DEFINITIONS

let Q c R be a finite or infinite interval and let £°

:! denote a probability density function with support in . Let
E: xg.....xg be n independent identically distributed random
;E variables with common density f°. Later, Xg, i=],...,n, will
E; be interpreted as the true survival times of n items or indi-
= ) viduals under observation, where £° will have support in [0,%).
:j Suppose that Ul.Uz....,Un is a sequence of constants or random
) variables which "censor" xi. i=1,,..,n, on the right. In sur-
vival analvsis or reliability studies, the Ui's represent
possible "loss" times of items or individuals from the test.
T T S D R A A S NSt 8
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The observed data are denoted by the pairs (xi,bi),
i=1,,...,n, where

l 1f X s Ui

oo

0
X, = ain{X_,U,}, A, =
i 11 i 0 4if X

17U
It is desired to obtain the MPLE of £° based on these observa-
tions,

In reliability or survival analysis, where fo' has support
in [0,®), the nature of the censoring depends on the Ui's.
(1) 1f Ul,....Un are fixed constants, the observations are
time truncated. If all Ui's are equal to the same constant,
then the case of Type I censoring results. (ii) If all
vi = x?r). the rth order statistic of xg.....xg, then the
situation is that of Type 1l censoring. (iii) 1If Ul""’Un
constitute & randox sample fror a distribution H (usually un-
known) and are independent of xg.....x:. then (xi.Ai), i=},...,n,
is called a randomly censored sample. See Gill (1980, Ch, 3 and
Ex. 4.,1.1) for further discussion., An observed value of (xi.Ai)
will be denoted by (xi,di).

By LIQQ) we will mean the space of functions v such that
IQ'V (t)[pdt <= with norm "v”p = [_fnlv(t)[1:’¢:!t'.:l:",P for p 21,
Let H() be a manifold in LI(Q).

Following motation similar to that of De Montricher, Tapia,
and Thompson (1975), let ¢ denote a functional ¢: H(Q) + R.
Given the arbitrarily right-censored sample (xi,di). i=1,2,...,n,

the ¢—penalized likelihood of v € H(Q) 4is defined by

n di l-d1
L) = T [v(x)] ! [1-v(x)] T exp(=(v)),
i=1

x
where V(xi)- [iv(t)dt denotes the cumulative distribution

o function with density v and ¢ is the penaity function. By
o the maximur penalized likelihood estimator (MPLE) of £° corres-
ponding to manifold H({}) and penalty function ¢, we will mean

[}
S e,

any solution to the problem:
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maximize L(v) subject to (2.1)
v e H(Q), IQ v(t)dt = 1, and
v(t) 2 0 for all t ¢ Q.

The function L(v) 1is the censored form of the penalized likeli-
hood of Good and Gaskins (1971).

When B(R) is & Hilbert space, a natural penalty function
to use is ¢(v) = "vl]z, vhere |/*|| is the norm on H(R). 1f
no reference is given to ¢ when we are considering the MPLE
corresponding to a Rilbert space H(Q), it is assumed that ¢ is
the square of the norm on H(). A Hilbert space innmer product
will be denoted by <+,*> so that <v,v> = "vllz. When H(Q) is
a Hilbert space, it is a reproducing kernel Hilbert space (RKHS)
if point evaluation is a continuous operation, that is, va +v
in H(R) implies that vn(t) + v(t) for all t e §i. See
Goffman and Pedrick (1965) for further details.

3. EXISTENCE AND UNIQUENESS OF AN MPLE

——

In this section we establish the existence and unigqueness of
a solution to prodlem (2.1) when H(R) 4is a RKES. The inner
product on H(]) 1is defined by <u,v> = IQ u(t)v(t)dt for
u,v € H(Q).

Theorexr 3.1. Assume that B(}) 4is a RKHS, integration over

is a continuous functional, and D is a clogsed convex subset of
{v € H(Q): V(xi) 2 0, i=1,...,0} with the property that D contains
at least one function which is positive at the data points
XiseoorX o Then the MPLE of £° corresponding to penalty
function ¢(v) = ||v||2 in (2.1) exists in D and is unique,

vhere |||l denotes the norm on E(R).

Proof: Since H(R) 4is a RKHS, by the continuity property,
for each 4=1,2,...,0n there exists & constant xi such that
lvix,)] s K/[Jlvl]. It follows that

i i d

l-d
n
L(v) = T [v(x,)] ' nvapr et vl
=]
AR R A A VT W T g 0 ey Ay T
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% o d1 2
s 0Ok vl ® expt- fIv]|®)
S i=]
k 2, 2
- vl e Py n k),
i=1
7 n
- where k = 2 di i{s the number of uncensgred observations, The
<o i-
e function Q(l% = Ak exp(-Az), A > 0, 1is bounded above so that
;f L(v) s C, where C 1is a constant.
{ j Let M = sup{L(v): v € D}. From the hypothesis of the
. theorez, M > 0, There exists a sequence {vj} € D such that
ji L(vj) *M as ]+ Also, since Q(A) + 0 as A+ = and L(v)
0 is bounded, |iv.|| s C, for all j, wvhere C, is a constant.
.; Now, the set {v ¢ B(): |v]| = Cl} is weakly compact, so {vj}
ﬂ; contains a weakly convergent subsequence also denoted by {vJ},
if Let v* denote the weak limit of {vj}. Since H(%) i1is a RKHS,
ﬁf vj(xi) -+ v*(xi) for each i=1,2,...,n. The norm is a continuous
{ convex functional and, hence, is weakly lower semicontinuous.
- Thus, lim inf "vjll 2 |lv]| . Since integration is a continuous
S, functional by hypothesis,
s *4 Xy
- Vix) = [ o vi(e)de > [ O va(e)de = VA(x))
v for all xi. i=1,...,n. Therefore,
- n dy 1-4, 2
‘- i I [v,(x)] " [1-v,x)D] * expC= flv, 115
- = =
SN n d 1-d
® s T [vr(x)] M1-va(x)) texp(- vrl|2) =L(om),
- i=1
;:: Thus, M < L(v*), Since D 1is closed and convex, it is weakly
;; closed, s0 that v* € D. Therefore, a maximizer of L(v) exists
]‘ . in D.
Since M >0, ve can consider maximizing J(v) over D,
vhere

J(v) = 1ln L(v)

n n
- 1§1d1 In v(x,) + 1Zlu-ainnu-wxi)] - <v,v>,

v
® 4
*
>
"o
2
S
¢
. *, ‘
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! :J
v
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( The first Fréchet derivative of J(v) is (Tapia, 1971)
- n dn(x,) n vix,)
. 174 i
. J' (v - ———— - - —— -
- (v)(n) 121 oW 1.{‘1(1 d nlx,) [I-V(xi)] 2¢v,n>,
and the second Fréchet derivative is
; 2
> :Xx dinz(xi) tzx ‘9 1-V(x v (x,)
. J"(v)((n,n) = - =} (1=4)n"(x)) _ 2
z =1 vixp am P U] QVeD
W
{ - 2<n,n>, :
g Since J"(v) 1is negative definite, J dis& strictly concave by ;j
Proposition 16, page 157 of Tapia and Thompson (1978) and, hence, ?
can have at most one maximizer on a convex set, Therefore, there S
.g exists a unique solution to (2.1) in D, /1] '
N We note that the constraints in (2.1) define a closed convex X
A subset of {v e B(M): v(x,) 20, 1=1,...,n}. Also, let (a,b) be .
{ a finite interval., For each integer s 2 1, let B:(a,b) denote y
g the Sobolev space of functions on [a,b] whose s8-1 derivatives ‘%
- are absolutely continuous and vanish at & and b and whose sth i
! derivative is in Lz(a,b). The inner product on B;(a,b) is :
- .
defined by j
= '
“ <u,v> = ]: u(s)(t)v(s)(t)dt, :
= where u(S) denotes the sth derivative. It is well known that E
4 Hz(a,b) is a REKHS with the above inner product and integration \
%" over (a,b) 1s a continuous operation (Lemma 2.1 of §
% De Montricher, Tapia, and Thompson, 1975), _
% Corollary 3.1. The MPLE corresponding to B;(a,b) vith ¢(v) = R
R <v,v> = "vllz exists and is unique. ]
N As a special case of Corollary 3.1, we can consider the MPLE ;
i of a 1lifetime density £° over a finite interval [0,T) for o
e very large T > 0 based on an arbitrarily right-censored sample X
. )
7 from f°. The MPLE exists and is unique in B;(O.T) with :
< X
> .
b
<
4 )
Sui
.
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T
( penalty function ¢(v) = IO v (t)]zdt. The extension to [0,=)

is considered in the next section,

4. THE FIRST ESTIMATOR OF GOOD AND GASKINS UNDER CENSORING

v
88, 0 ¢ s

For complete samples, Good and Gaskins (1971) considered the
penalty function

-l
s

\ ' 2
% o) = o f7 DL g,
AN

for a > 0, which is equivalent to )
- 4
. ) R
= - dv(t)) 12 :
o) = 4o [7 [ERLD ]2 4, E
- De Montricher, Tapia, and Thompson (1975) indicated that the =
! underlying manifold for the MPLE with this penalty function should 1,
"o o
- be vli € Hl(dw,w), where Hl(-w,w) is the Sobolev space of func- :
Y tions f: R+ R such that the first derivative f' exists almost :
N everywhere and f,f' ¢ Lz(-w,¢) with inner product
{
X <f,g> = [0 g(t)g(t)de + [ £'(e)g"(t)dr.
2 letting u = vk, we have the penalty function

¢(u2) = 4O f:w [u'(t)]zdt, ue Hl(—“,ﬂ).
f This substitution avoids the nonnegativity constraint in problem
(2.1).
; For the data (xi'di)’ i=1,...,n, described in Section 2, we
% now would like to maximize
) B2, 94 e 2 1-dy 2
: Lu) = T {u“(x,)) 217 v’(t)ar]  ‘exp(~4a Jlu']|5).
i x 2
¥ i=1 i
|
. Since L(u) 2 0, maximizing L(u) 1is equivalent to maximizing
’ L(u) = [L(u)]k. Thus, we have the problem:
(1-4,)/2
2

i Maximize L(u) -1nl[u(x )] ’If’ u“(t)de] i exp(-2a "u']lz)
X subject to f:w u (t)dt - 1. (4.1)

d
«

......
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Letting J(u) = ln L{u), problem (4.1) is equivalent to:
D
Maximize J(u) = 121 d:l 1n u(xi)

n
+ 1 30-a)1alf7 wi(orae) - 20f° fur )1

i=1 i
(4.2)

subject to fj;yz(t)dt =1,
Theorem 4.1. Problem (4.2) has & unique solution in the set
S={uce Hl(-‘”,‘”): f: uz(t)dt =1},

Proof: Taking Fréchet derivatives of J(u) gives

. n(x,) D n(x, Ju(x,)
Fm = ] oeds - ] a-a) - - wfT, utemt (e,
274

ge1 Tu(x) 4y

where UZ(xi) = f: uz(t)dt, and
)
S U L RPN P
J"W(m,n) = - )} d, ——~ - (1-d )n"(x
j=1 i u(xi) io1 i i

UZ(xi) + uz(xi)
W, (x,))?

- 4af> n'()) %,

Since J"(u)(n,n) < 0 for n ¥ 0, J(u) is negative definite.
Bence, J 1s strictly concave, and by Theorem 2, page 160, of
Tapia and Thompson (1978), J(u) has at most one maximizer in
the set

S' = {u € B (~=,®): f: uz(t)dt s 1}.

If J(u) 41s continuous on S', by Theorem 4 on page 162 of
Tapia and Thompson (1978), J will have at least one maximizer
in S°.

Since Bl(-‘b,w) is 8 RKHS, if u +u as m~+® in
B'(=w,=), then um(xi) -bu(xi) for each i=1,...,n, Also,
llug = ull +0 as m+ = implies, by definition of the norm in

(=,=), that [lu - u |[2 +0 and flu-u'll, +0 as m+ =,

2 2
Furthermore, for any fixed constant ¢, f: um(t)dt -> f: u (t)dt
as m-+ =, Hence, J: S' + R is continuous. Therefore, J(u)

»e . c W - . - - -
0 O TS N R A R B e N I S NP ST Y e e N - el
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has a unique maximizer u, in §°,

Next, suppose that fj; uf(t)dt <1, Since ui(t) + 0 as
t ~ =, then u,(t) and ul(t) both converge to zero as t -+ =,
Thus, there exists 8 number M such that ui(t) <1 for t> M,
Consider a function wv,(t) defined so that (1) ve(t) = u, (t)
for tSM, (11) v(t) > u(t) for t>M and [° vi(t)ar =1,
and (111)  [v3(t)]° < [ul(t)]1? for t > M. Then by (i) and
i), [Tvieriae = M1 and

f; [u;(t)]zdt 2 f:[v;(t)]zdt. Also, by (ii), for each X0

i=1,...,n, f: vi(t)dt > f: ui(t)dt. These results imply that
i i

J(u,) < J(v,), a contradiction, since u, 1is the unique maximizer
of J in S'. Therefore, ff; ui(t)dt = 1, completing the proof.
/11
Now, we assume that f° is a lifetime density on the half-
line R+ = (0,) and use a symmetry argument about zero to obtain
the results for £°, Thus, assume that the censored sample
(xi'Ai)’ i=1l,...,n, is such that xi > 0 with probability one,

Then the problem (4.1) becomes:
~ n d k(1-4,)
Maxizize L(w) = 1 [ux)) [ vP()ae) *
i=1 i

x expl[-20[3(u’ (1)) dr), (4.3)

where x, > 0, i=1,...,n, j:u2(t)dt=1, and u(t) 2 0,t > 0.

Let X_i - xi and d_i = di’ i=]l,...,n, and define

u(x) = u(}x|) for =x e R\{0} and u(0) = lim_ u(x). Then

define the following problem: =0
- n - di -2 k(l-di)
Maximize L(u) = | ? [u(xi)] [f: u (t)de]
i[=1 i
x expl-2af" (' (t))2ar), (4.4)

where f:b\.xz(t)dt = 2 and ;cﬂs E{genl(-n,-’),:g(x) =g(-x)).

Notice that L(u) = [L(u)]z. Also, Rs is equivalent to the
Sobolev space H (0,=),
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Prcposition 4.2. If u* solves (4.4), then u:_(t) = y*(t),
t 20, and u(t) = 0, t < 0, solves (4.3),

Proof: Suppose u* gpolves (4.4). Since L(u) = [L(\-.x)]‘5
and u* 45 symmetric about zero implies that f:[u*(t)lzdt =],
ut eolves (4.3). ///

From Proposition 4,2, the "first HPI..E of Good and Gaskins"
under arbitrary right-censorship will be given by (u:)z(t). Ve
next show that this solution exists and is unique,

Theorexr 4.3. Problem (4.3) has a unique solution,

Proof : Hs defines a closed convex subset of nl(_‘,’,).
Thus, by a proof similar to that of Theorem 4.1, problem (4.4)
has a unique solution. By Proposition 4.2, u_: is the unique
solution to problem (4.3). /17

The next theorem shows that the MPLE from (4,3) has the

general form of an exponential spline with knots at the observed

data points,

Theorer 4.4, The unique solution u* of problem (4.4) is an
exponential spline with knots at the observed values X

1=+1,+42,...,%n.

Proof: For given A > 0 and a im (4.1), let ‘A(;) =

Zaf:[x-x'(t)]zdt + A&Gz(t)dt and consider the problem:
- n_ di - l;(l-di)
Maximize L,(3) = T [G(x)] “[f] §2(e)ar)
|1]=1 %

> e
.. LA

b YT
. v
. [ I R SR T S

RALRRLD
.

x exp[-¢, ()], (4.5)

PR
[N

subject to U € Hs and f:b Ez(t)dt = 2,

@
S

The inner product <u,v> = 2af u' (t)v'(t)dt + A[ u(r)v(t)dt
- -]

YRR

.‘_ ... l.. 1‘- l.- ". ".

defines a norm Ilﬁlli - ‘A(E) equivalent to the original porm on
B‘l(-ﬂ,v). Let vi
product of the continuous linear functional given by point evalu-
ation at X that is <vi,n>)‘-n(xi) for all n ¢ Hl(-‘.").

.l$

denote the representer in the oa-inner

@

4 %

)
PLEL PP

!’5 "4

--------

“&&&&2}}}&}1}'&
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Let S = {ve Hg: vix,) 2 0}. Then S 1s closed and convex.
Letting J, = ln L,, ve have the first and second Fréchet
_ ::: derivatives, -
-3 _ o dn(x,) a u(x,) -
£y J(n) = —:_l_—i— -1 (1=4,)n(x,) U_(x_i) - 2<u,n>,
1]=1 U(Xi) 11]=1 271

;;:I. n di<vi’n>l n u(xi)<v1’n>A -
& -] =—=-] (1-4) —F oy - 20,0,
B lilel u(x)) dtf=1 2'74

oY -

i vhere U,(x,) = fc t2(v)dt, and

. *1 ,
- - n  d nx)Inx,) |
i @ = - e

. 1]=1 u"(x,)

35 1 )

s n U, (x, )45 (x,)
.2 - I Q-a)nxInx) - 2<n, 1>,

. i i i 2 A

= |i]=1 U (x,)

- Thus, due to the nonnegativity of the functioms, -JY 2 2 ||n|l2A

W

= 8o that -J'): is uniformly positive definite relative to S. This
implies that 'JA is uniformly convex on S. Therefore, if we
can show that JA is continuous on S, by Theorem 6, page 162

:::: of Tapia and Thompscn (1978), Jk will have a unique maximizer

. in S. A
2 By an argument similar to that in the proof of Theorem 4.1,
'- if ;m +u -in Es as m -+ =, then ;m(xi) -+ i:(xi)- for each

::; x  and "‘-‘m‘“”;‘ +0 as m-+®, Thus ||um-u”2 +0 as

'-"- m + o and as before, for any fixed constant ¢,

_ f: ;i(t)dt - f: Gz(t)dt as m + «, In particular, for c = X

Z:: this convergence holds. Therefore, JA is continuous on §, and X
. has a unique maximizer \-l)‘ in S. 4
® Now, at the solution ;A' we must have the gradient of J, '
::: vanish, that is, ;
o - n d,v n u, (x,)v ;
2 147=1 8, (x,) (1[=1 n*y

’ vhere U, (x.,) = fc 52(:)d: Hence

2274 x, A ¢ '

s .
L

A

s,

\. 1‘.* -'\f._"..v'.. '''''' :‘,.J‘ "* --..;.-. . '. "o -‘.--.. ’.- f ...‘ ' '. "‘\‘:‘ \, - .‘~ %y’ « CER) -‘;..' \:_~|‘ _'>5;.~’ . \,"
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t - 1 n div1 D u)‘(x:l)v1
™ i3 { —= . } Q-¢) 55 | - (4.6)
[1f=1 ux(xi) {1]=1 227
In order to obtain the form of vy in (4.6), from
‘._f. <vi.n>)\ - ﬂ(xi). we have .
= 2af7, vi(OIn'(e)dt + A[__ v, (£)n(t)dt = n(x,) . (4.7

Integrating the left-hand side of (4,7) by parts (in the distri-
bution sense) gives

-,

2 =20 n(e)vi(e)de + A[_ v, (t)n(e)dt = n(x,)

. or

L

|~ " - " -

: T2 v (8) = 20v7(e) In(t)de = [7 8 (£)n(e)de, (4.8)
Ejf: wvhere 61(1:) - Go(t-xi) and 60 denotes the Dirac delta function,
that is, f:DGo(t)n(t)dt = n(0). Equation (4.8) is equivalent to
”-' the differential equation

,‘ Av, (£) = 2avi(t) = &, (¢) (4.9)
', ’\-', which, for {=0, has the solution

P

'4. l

\ vo(t) - (200\)-;5 exp[-(a)kltll, t ¢0.,

-:::j Now, vi(t) = vo(t-xi) + vo(tﬂi) solves (4.9), Substituting

::':: v, iato (4.6) gives the unique golution ;A in the form of an
-,N exponential spline,

. - 0% § %4 X

e u, (t) = 277 (2a0) 1 = [exp(-(A/20) ¥|t-x, |)

o 111=1 v, (x,)

o

" + exp('()\/Za)’slt-Pxil)]

{~ o (1-d,)u,(x,)

Y S S [ i

oA - exp(=(A/2a) lt-x l)

- 117-1 U (xg) 1

+ m(-(l/Za)kltﬂil)l } . (4.10)

Now, notice that over the constraints in problem (4.4),
problems (4.4) and (4.5) have the same solution for any A > 0

LAY [ NP

‘. \ %
’ . e -
I N AT I A

..";f."{.:{.:,-_;.’,".-_',- .~_.-'..-'\.'\-:_'-'~-..-.‘q .'.. Y \-\-.~ ‘ SLET S VI - -~ T.‘ _ -' ’ - . b




since f:; ﬁz(t)dt is constant. We need to show that the unique

solution to (4,4), 3*, is alsc an exponential spline,

Let g(@) = J°_ 5%(t)dt and
n n

- - 1
G(u) = { d, 1n u(x,) + { =(1-d )1n U, (x,)
11T=1 i i 11T=1 2 i 274
- Zafja(;'(t)]zdt.
Then fromw Lagrange multipliers, there exists A 8o that u*
satisfies the equation
G'(u) - Ag'(u) = 0 and g(u) = 2,
n dn(x,) = d)""‘i’;"&)
117=1 & i ; R LA T
= u(xi) {il=1 ‘2 i
- 2xf__ u(t)n(t) = 0. (4.11)

- 4af_G'(t)n'(t)de

Using L2 gradients in the sense of distributions, (4.11) is
equivsalent to
n di (1-d1)u(xi)
¢ U,(x,)
271

. - ] + 4ou" - 22u = 0
I11=1 u(xi)
and g(u) = 2, (4.12)

Since (4.4) has a unique solution, (4.12) must also have a unique

solution in Hg, namely u*,
Now, if A s 0, then any solution of the first equation in

(4.12) would necessarily be a sum of trigonometric functions and
would not satisfy the constraint g(u) = 2 since the integral
g(u) would not exist. Thus, A > 0. Also G(u) - Ag(u) =
JA(G), so that u* must solve (4.5) for this A and therefore
has the desired form, an exponential spline with knots at the
data points. Hence, the proof is complete. /1]

The unique solution to problem (4.3) is then i:(t) = u%(t),
t >0, from (4.10). Hence, the "first MPLE of Good and Gaskins"

is (3:)2.
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S. CONCLUSION

In this paper we have shown the existence and uniqueness of
ey the MPLE of a density function in an appropriate general mathe-
'n% matical setting, based on arbitrarily right-censored observations
from that density, For the first penalty function of Good and
Gaskins (1971), the existence snd uniqueness of the MPLE of the

=

LIET density function on (0,) was also shown for this type of data.
o This "first MPLE of Good and Gaskins" under arbitrary right-cen-
(h;' soring was shown to be in the form of an exponential spline with
5} knots at the observed censored and uncensored values. These

f?il results are analogous to the complete sample case, except that the
55? form of the penalized likelihood, and therefore, the MPLE, 1is

i;: complicated by the terms involving the survival functionm,

j:f Statistical properties of the MPLE under censoring have not
é:f been considered here. The consistency and other statistical re-
j?{ sults will be investigated in a later paper.
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