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Rayleigh-Taylor Instability in Compressible Media 

David L. Book 

Laboratory for Computational Physics 

Naval Research Laboratory 

Washington, D.C. 20375 

Introduction 

The Rayleigh-Taylor instability1-2 occurs when a fluid supports a denser 

fluid against gravity, whereupon the two tend to interchange positions.  It 

is encountered frequently in nature and in the laboratory.  For example, 

inertial confinement fusion experiments, in which an ablatively driven medium 

implodes, compressing the material ahead of the ablation front to high 

densities, can exhibit Rayleigh-Taylor instabilities in the ablative region, 

at the compression front, or (in the case of a layered target) at an 

interface between layers of different density. 

When the time scale associated with the growth of the instability is 

short compared with the time (kc )-1 for sound to traverse a wavelength 2^/k, 

one should expect to have to include the finite compressibility of the fluid 

in calculating instability growth rates.  It is not obvious a priori whether 

finite compressibility acts to increase or decrease growth rates.  For 

example, compression absorbs some energy that might otherwise go into fluid 

motion.  On the other hand, a compressible system exhibits more modes of 

propagation than an incompressible one, so the most unstable one might 
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possibly have a faster growth rate then the most unstable mode in an 

incompressible medium.  Moreover, Bernstein et al. 3 have shown that in a 

broad class of general compressible hydromagnetic systems, the unstable modes 

with lowest threshold are associated with incompressible perturbations.  It 

is thus conceivable that compressible and incompressible systems might 

display the same Rayleigh-Taylor growth rate. 

Theoretical research into the Rayleigh-Taylor instability can be divided 

into analytical and computational approaches.  Some of the early analytical 

work done on Rayleigh-Taylor instability in compressible fluids was 

inconclusive or erroneous.  Vandervoort ** and Plesset and Hsieh5 both analyzed 

the instability at the interface between two polytropic media.  Recently 

Shivamoggi6 pointed out that these two papers disagree with one another. 

Replying to his comment, Plesset and Prosperetti7 attributed the 

contradiction to an error in Vandervoort's analysis which invalidates the 

latter1s treatment except when y  = 1.  They went on to derive in a simple 

manner a general dispersion relation for an arbitrary equation of state. 

This derivation, however, itself makes use of an identity which is strictly 

true only for Y= 1, namely the statement that the ratio of the perturbed 

pressure to the perturbed density is equal to the square of the unperturbed • 

sound speed. 

Blake8 wrote down without derivation a dispersion relation for Rayleigh- 

Taylor instability in compressible fluids which in fact is correct for the 

interface between two isothermal (uniform-temperature) fluids satisfying an 

isothermal (Y= 1) equation of state, and argued that compressibility effects 

are negligible except in the long-wavelength limit. 



Matthews and Blumenthal derived the same "isothermal-isothermal" formula 

2 
with the inclusion of volume radiation forces (a  p ).  [The formally 

identical dispersion relation for waves propagating in a medium consisting of 

two stably stratified isothermal layers is well known to atmospheric 

scientists;  e.g., Tolstoy derives it in his review article10 for the case in 

which the fluids have an (identical) arbitrary y and analyzes the different 

waves which arise.]  McCrory et al.11 made the physically plausible argument 

that pressure differences cannot be transmitted across the mode structure on 

a time scale shorter than (kc ) , so that compressibility effects must limit 

growth rates to values ^ kc .  Takabe and Mima12 wrote down a variational 

form for the growth rate in the presence of both compressibility and thermal 

conduction, but neglected to state clearly the assumptions they employed. 

Scannapieco13 investigated the stability of a slab of ideal polytropic gas 

with an exponentially increasing or decreasing density profile confined 

between two rigid horizontal walls separated by a distance d and found that 

growth rates are enhanced by compressibility.  However, in analyzing the 

limit in which the scale height H satisfies H >> d, he allowed the density to 

vary while treating the sound speed as a constant, which is inconsistent 

unless the density decreases in the upward direction.  Baker14 solved the 

Blake8 dispersion relation numerically for the ratio of the square of the 

calculated growth rate to the incompressible value as a function of Atwood 

2 2 number A = (p - P1)/(p„ + p.), the ratio c /c of the squares of the sound 

2 
speeds, and the nondimensionalized wavelength g/2kc .  Because of the 

assumptions implicit in the "isothermal-isothermal" model, however, the first 



2 2 two parameters are not independent: c /c = p /p = (1 + A)/(l - A).  His 

conclusion that finite compressibility is sometimes stabilizing and sometimes 

destabilizing is therefore called into question. 

On the whole, the problem with the analytical approach to studying 

compressibility effects on the Rayleigh-Taylor instability has most 

frequently been a failure to specify clearly the model being investigated. 

Many authors have attempted to derive model-independent dispersion relations, 

or at least formulas of wide applicability, which would not be restricted to 

a particular type of density profile.  For a medium to behave compressibly 

with respect to a mode of wavenumber k, however, the dimensionless wavenumber 

2 
must satisfy kc /g = kH < 1, where H is the equilibrium scale height.  But h, s "" 

the vertical scale of the perturbation, typically satisfies h ~ k  , so we 

must have h > H.  The mode samples the vertical variation of the equilibrium 

state and must therefore depend sensitively on it. 

It is actually quite easy to show for ideal polytropic media that 

compressibility destabilizes the Rayleigh-Taylor instability.15 The energy 

principle of Bernstein et al.3 (an extension of the version given earlier by 

Chandrasekhar 16) predicts that polytropic media with finite adiabatic index y 

exhibit maximum growth rates which decrease with increasing y. 

Incompressible fluids, which are obtained in the limit y •*• <*>,   are thus more 

stable then compressible ones.  This has been confirmed experimentally by 

Asay (see Ref. 14). 

Most computational approaches to the problem strive so hard for realism 

that they treat too many physical processes simultaneously.  When something 

happens in a calculation it is hard to say which process is responsible, 



especially when all the parameters in the code have been chosen so as to 

simulate a particular laboratory experiment.  While such simulations are a 

major reason for computation, they are worthless unless every effect included 

in the model has been carefully validated against analytical theory or 

reliable measurements.  Failure to do this properly vitiated some early 

simulations of Rayleigh-Taylor instability in imploding pellets.  Another 

difficulty arose from the necessity of performing well-resolved 

multidimensional calculations in place of the one-dimensional ones used for 

studying unperturbed implosions. 

A way around this difficulty was found using so-called "piggyback" 

codes. 17 The linearized equations of motion are analyzed into a 

superposition of angular (e.g., spherical) harmonics, and the equations for 

the radius-dependent amplitudes corresponding to one or more such modes are 

advanced in time together with the zeroth-order quantities.  This technique, 

also successfully employed in connection with incompressible cylindrical 

liner implosions,18 eliminates the numerical resolution problem.  The work of 

Shiau et al 17 clearly showed for the first time that flow of plasma across an 

interface (a process which can only occur in compressible media), while 

stabilizing, is not by itself able to completely suppress the Rayleigh-Taylor 

instability.  Subsequently, improvements in computational methods and 

techniques of code validation have enabled fully nonlinear two-dimensional 

calculations to be carried out which predict the linear and nonlinear 

evolution of the Rayleigh-Taylor instability with high accuracy.19_2° 

Stimulated partly by experiment and partly by code results, quite 

comprehensive theories have now been developed which take into account such 



diverse effects as vortex shedding, compressibility, thermal conduction, and 

ablation.21 In the remainder of this paper I will not be saying anything 

further about the use of numerical simulations to study the Rayleigh-Taylor 

instability. 

A different question, which I not will also not be considering here, 

involves the time required to establish a state as a result of an initial 

localized disturbance.  This process, which is instantaneous in an 

incompressible fluid, lasts a time equal to that required for a sound wave to 

propagate a few times back and forth across the entire system.  Instead, I 

will consider linear eigenmodes, which by definition are initiated in 

"prepared" states involving the entire system.  Finding the eigenmodes in 

compressible fluids presents enough analytical difficulty to dissuade one 

from seeking the solution of the general initial value problem.  Relatively 

few papers have been written on this topic. 

This paper is organized as follows.  A simple version of an argument 

originally employed by Schwarzschild (see, e.g., Landau and Lifshitz22) in 

discussing hydrodynamic interchange is used to derive threshold criteria for 

the Rayleigh-Taylor and convective instabilities in arbitrary stratified 

media.  Then the energy principle is used to show that compressibility is 

always destabilizing, and Newcomb's extension of this result to higher 

eigenmodes of the system is presented.23 Next, the exact dispersion relation 

for the Rayleigh-Taylor instability at the interface between two ideal 

polytropic fluids with different adiabatic indices, each fluid having uniform 

temperature, is derived following Bernstein and Book,214 and various limiting 

cases of this result are discussed.  The extension to an arbitary piecewise 

isothermal equilibrium is sketched, concluding the portion of the paper 

dealing with stability of static equilibria. 



The only nonstationary fluid states in which the Rayleigh-Taylor 

instability can be treated analytically are self-similar expansions or 

contractions for which the velocity is proportional to the distance from the 

center of symmetry (uniform self-similar motions).25 Following a summary of 

the formalism used to discuss stability of such states, examples are given, 

first for implosions and then for expansions. A final section summarizes the 

main results and attempts to draw them together by pointing out the common 

themes that run through all of these examples. 



Physical Basis of Gravitational Interchange Instabilities 

Suppose a fluid with vertical density and pressure profiles p(y), p(y) 

is in hydrostatic equilibrium: 

•f+Pg-0, (1) 

where g is the constant gravitational acceleration.  Note that p(y) must 

decrease monotonically as a function of y, but p(y) need not.  We assume that 

the adiabatic index (ratio of specific heats) y  is constant. 

Now consider an element of fluid with differential volume AV at some 

arbitrary height y.  It contains mass Am = pAV and internal energy pAV/(y-l). 

Assume that it is displaced adiabatically to a new position y', where it 

occupies a new volume AV' at a new density p' and pressure p'.  By 

conservation of mass, 

p' AV - pAV = Am; (2) 

by adiabatic invariance (entropy conservation), 

p'(AV)Y= p( AV)Y. (3) 

To make room for the displaced parcel of fluid, a second differential 

volume ~AV with initial density p and pressure p is displaced from location y 

= y' to the first location y' = y.  We assume that y - y = h > 0, i.e., the 

first location is above the second (possibly by a finite distance). 

Evidently the second parcel of fluid after displacement has density p' and 

pressure p' satisfying 

p' AV = pAV = Am, (4) 

?'(~AV')Y = p(~AVY). (5) 



Since the displacements are adiabatic, the total change in internal 

energy is 

<5W = (p*lV - pAV + "p'"AV' - p~AV)/( Y-l). (6) 

This is accompanied by a total net change in gravitational energy given by 

(SJG = Am g(y' - y) + "5n g(y' - y) = (Tin - Am)gh. (7) 

If after the interchange the displaced fluids are in equilibrium with their 

surroundings but the total change in energy is negative (i.e., energy is 

reduced), 

6W = <5WT + fiw < 0, (8) 

the interchange is energetically favored, and the configuration is therefore 

unstable. 

There are two conditions for a displaced differential volume to be in 

equilibrium with its surroundings: a kinematic condition, that it "fill the 

hole" left by its counterpart, and a dynamic conditions, that it be in 

pressure balance.  For the first parcel, these requirements imply 

(9) 

and 

for the second, they imply 

and 

AV = AV 

,  - (10) p» . p. 

AV = AV (11) 

P' = p. (12) 

Equations (3) and (5) now both reduce to a relation connecting AV and AV: 



p (AV)T= p (AV)T. (13) 

If we calculate the energy in each parcel of fluid as it undergoes 

displacement we see that the work done on the first one by the surrounding 

fluid exactly equals the expansion work done by the second.  Thus 

and so 

m1 = o, (14) 

5W = 5WG = pAVgh [p/p)(p/p) /T-1]. (15) 

We consider three cases of interest. 

Case I:  Discontinuous change in density.  Here we can take y and y to be on 

opposite sides of the discontinuity, but contiguous, so that h is very 

small.  Since the pressure is continuous, AV = AV, and Eq. (15) reduces to 

<5W = ("p - p) AVgh. (16) 

The system is thus unstable if p > "p.  This is the usual criterion for the 

Rayleigh-Taylor instability. 

Case II: Continuous density variation, p > "p.  Now y and y" need not be 

contiguous.  Since p > p always holds, <5W is again negative if p > p.  The 
G 

limit as h +0 yields the criterion for Rayleigh-Taylor instability in a 

smoothly stratified medium, 

Vp'^p < 0. (17) 

10 



Case III: Continuous density variation, p < p. 

Even if the density decreases monotonically in the upward direction, it is 

still possible to satisfy 5W < 0, provided that 

p77Y > p/pY. (18) 

This is the criterion for convective instability.22 

We thus see that in certain circumstances a fluid stratified under 

gravitational acceleration can be unstable to overturning, or interchange. 

When the instability is driven by a density inversion (dense fluid lying 

above less dense), the name "Rayleigh-Taylor instability" is used.  By means 

of the energy principle, these ideas can be carried a step further to exhibit 

the manner in which the degree of compressibility affects stability. 

11 



Energy Principle 

The equations describing the evolution of a small perturbation about a 

specific equilibrium state are linear in the perturbed fluid variables.  They 

can be reduced to a single homogeneous differential equation in terms of one 

dependent variable, e.g., the perturbed pressure or displacement.  If we 

assume time dependence ~ exp (-iot), where <JJ is the frequency, an ordinary 

differential equation, usually of second order, results for the spatial 

dependence.  The quantity u (or w2) appears as an eigenvalue, determined by 

solving the equation subject to appropriate boundary conditions.  If this 

eigenvalue problem is of Sturm-Liouville form, a number of rigorous theorems 

apply.  The most important of these says that u) can be found from a 

variational principle, i.e., by looking for the extremal (usually minimum) 

value of some functional over a class of these functions which satisfy the 

boundary conditions and other physical constraints.  In hydrodynamic 

stability problems, the variational principle has a natural interpretation 

in terms of energies. 

Assuming an adiabatic equation of state, the potential energy W 

associated with a general small perturbation £(x) about an allowed 

equilibrium of the ideal magnetohydrodynamic equations can be expressed in 

the form3 

W - W.+ y I dh.  p (V.Q2, (19) 

where W is a quadratic functional of £ which is independent of y«  If the 

eigenvalues resulting from solution of the Sturm-Liouville problem 

determining 5 are ordered by magnitude according to 

,Ji0   < "l < X2   < "" (20) 

12 



then the lowest (most unstable) eigenvalue is determined by a variational 

principle 

0)2 = min (W/K), (21) 

where K is a second (nonnegative) quadratic functional and the minimum is 

taken over all 5 satisfying the boundary conditions.  By (19), W/K is an 

increasing function of y for any fixed ?, so that to2 is also an increasing 

function of the adiabatic index y.  An incompressible medium (y •*•  •) is thus 

more stable than any with finite y. 

Newcomb2^ has shown how this result can be extended to the higher modes 

of the system.  If E is the subspace spanned by £., £,, ..., K    ,, the 

eigenvectors corresponding to UJ
2
, u>2 ..., u2 , then the energy principle 

for the next eigenvalue takes the form 

u)2 = min (W/K), (22) 
n  \  e C(En) «w    n 

where C( Z) is the orthogonal complement of E.  Let 

F (E) = min(W/K), (23) 
\  e C( E) 

so that u)2 = F( E ).  The subspace E is distinguished from all others of 
n     n n 

dimension n as that which maximizes the function F (because it is spanned by 

the eigenvectors with the n lowest eigenvalues).  Hence 

to2 =   max      min   (W/K), (24) 
dim( E) = n \  e c( Z) 

mm* 

from which it follows that to2 is an increasing function of y for all n • 1, 
n 

<-1 • • • 

13 



We saw (in the preceding section) that the degree of compressibility 

plays no role in determining the threshold for instability.  The present 

result implies that, of two otherwise identical unstably stratified fluid 

systems, the more compressible one has the larger growth rate.  In the sequel 

we illustrate this conclusion by calculating growth rates in some situations 

where analytic solutions are possible. 

14 



Rayleigh-Taylor Instability at the Interface between Two Isothermal Layers 

An ideal polytropic fluid in a constant gravitational field evolves in 

time according to the system of equations 

-^+V.pv=0; (25) 

p(-^+ v-7v) + 7p + pg = 0; (26) 

"ajr + v«Vp + TpV'v = 0. (27) 

The condition for a stationary equilibrium (v = 0) is expressed by Eq. (1). 

Let us leave p and p otherwise unspecified for a moment and suppose that this 

state is subjected to an infinitesimal perturbation defined by the local 

displacement £(x,y,z,t) of an element of fluid.  Using the subscript 1 to 

distinguish perturbed quantities, we have for the velocity 

vr ^, (28) 

so that the perturbed density satisfies 

3pl H 
= - V-pv, - --£- V(pS), (29) at     ~i   9t 

whence p, is given by 

P. - - V-(pS) (30) 
1       •* 

plus a time-independent quantity which can be set equal to zero.  Likewise, 

the perturbed adiabatic law 

8p1 
-r— + v -Vp + "YpV-v. = 0 (31) 
dt    w»l *»*1 

has the solution 

pl = "TPV'JL~ JL'^' (32) 

Substitution of (30) and (32) in the perturbed momentum equation 

P -£?+  ^P : + Pjg, = 0 (33) 

yields 

P4£-   
V(TP7'5 + C'Vp) - gV-(pO = 0. (34) 

15 



Assuming that the perturbed quantities vary sinusoidally with frequency to as 

functions of time, we can rewrite (34) in the form 

-w2E + (Y-l)go - -? 7a + 7(g-E) = 0, (35) 

where a = 7*5.  It is this equation which must be solved, subject to boundary 
MM 

conditions, in order to determine the eigenvalues w2 and the spatial 

dependence of the eigenvectors E. 

Evidently the simplest choice of the basic state is isothermal, 

p/p E c2 = const, (36) 

which leads to an equation for E all of whose coefficients are constant.  If 

g is directed downward, i.e., in the negative y direction, we then have 

p(y) = p exp (-gy/c2). (37) 

As will be seen, the specification (36)-(37) for the basic state results 

in eigenfunctions which are likewise exponential in y, and yields an 

algebraic dispersion relation.  Any other choice gives rise to transcendental 

functions which must be evaluated at ordinary (nonsingular) points when the 

boundary conditions are imposed, greatly complicating the form of the 

dispersion relation. 

For our present purposes it suffices to consider a piecewise isothermal 

state with just two regions (Fig. 1).  We take the interface separating them 

to be at y = 0, i.e., coinciding with the x-z plane.  To distinguish between 

the regions we will label all quantities belonging to the lower one with 

bars.  For the sake of generality we allow the adiabatic exponent to vary, 

~Y * y. 

16 
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With this choice, the coefficients of Eq. (35) become constants. 

Assuming harmonic dependence in the transverse plane, with the x axis chosen 

parallel to the wave vector k, we can look for solutions which are 

exponentials in y: 

5(x,y,t) = (e A + e B) exp[i(kx-ut) - ny], (38) »»»•        <wx  *»y 

A,   B,   and   u constant.     Thus   (35)  becomes 

-u>2A - ikc2(ikA -   uB)  + ikgB =  0, (39) 

-u)2B + (Y-l)g(ikA -   uB)   -   yc2(ikA -   uB)   -   ugB =   0. (40) 

Setting the determinant of (39)-(40) equal to zero yields a quadratic for u. 

The condition that the solution be well behaved as y + +«• selects the root 

u- {--yg + [ y2g2 - 4w2yc2 + 4y2k2clt - 4 Y( Y-Dg2^ 2/CO2] 1/2}(2 TC 2)~ !.    (Al) 

Similarly we obtain a quadratic for "u in the lower half-plane; the condition 

that the eigenfunctions vanish at y = -» yields 

"5 = {-lg - ["V - 4w2lE"2 + 4~2k2c"H - 4Kl-l)g2k2c"2/a)2] 1/2}(2"YC 2)" l. (42) 

The kinematic boundary condition at the interface reduces to continuity 

of the vertical component of J^, i.e. , 

A - A. (43) 

The dynamic boundary condition requires that p, + £*7p be continuous at 

y = 0, whence by Eq. (32) 

18 



Yp(0) a = yp(O) a (44) 

Since p(0) = p(0), we can combine (43) and (44) as 

y(ikA - uB)/A = "y (ikA - "uB)/A. (45) 

Substituting B/A from (39) or (40) and writing p in terms of w2 by means of 

(41), and performing the analogous operations with the barred counterparts of 

these equations, we find from (45) a relation determing ID
2
. When y • y it 

becomes formally identical with the wave dispersion relation given by 

Tolstoy10, and for the special case y = y = 1 it reduces to the one given by 

Blake.8 

The treatment can, however, be carried a step further.  Using the 

interactive symbolic manipulation system MACSYMA, we can transform this 

equation into an algebraic equation in Z = u>2/kg.  This is done by squaring 

the equation twice to eliminate the square roots appearing in Eqs. (41) and 

(42) and factoring the result.  The physical root is found24 to satisfy the 

quartic 

D' 2 Z4 - 2DD'SZ3 + (D2S2 + 2DD' - D* 2)Z2 - 2 D2(S - S' )Z - D4 = 0,  (46) 

where 

D = k(c2 - c2)g_1; (47) 

S = k(c2 + c2)g_1; (48) 

D'= k(c2/y - c2/y)g-1; (49) 

S«- k(c2/Y - c2/Y)g_1; (50) 

Evidently Eq. (46) always has one negative root, which for D < 0 is found 

numerically to satisfy Eq. (45).  This solution can be exhibited by applying 

the general procedure for solving a quartic, but the result is far too 

cumbersome to be useful.  Instead we look at some limits and special cases of 

physical interest. 
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First let y = Y» so that both regions contain fluids with the same 

compressibility properties.  Then Eq. (46) becomes 

Z4 - 2YSZ3+ (Y2S2+ 2T- 1)Z2- 2Y(Y" 1)SZ - Y2D2 =0.    (51) 

In the limit y •*• <*>, the solution of Eq. (51) associated with the instability 

satisfies 

S2Z2 - 2SZ - D2 = 0, (52) 

whose negative root is given by 

Z = [1 ± (1 + D2) 1/2]S_1. (53) 

For negative values of D the lower sign in Eq. (53) yields a solution of Eq. 

(45), as confirmed by numerical evaluation.  When we take kc2 » g, kc2 » g 

(wavelength short compared with both scale heights), we recover the usual 

dispersion relation for the Rayleigh-Taylor instability at an interface 

between two uniform incompressible media, viz., 

.^ = £i^la   . (54) 
kg   P0 + 

_P0 

At long wavelengths (k + 0), Eq. (53) goes over to 

2(c2 + c2) 2^T^ (55) 

displaying the effect of the spatial dependence of the unperturbed state.  We 

thus recover the incompressible result, as expected.  Figure 2 illustrates 

the approach to this limit.  It shows plots of u2/kg as functions of k 

obtained by solving Eq. (46) numerically for various choices of y  between 1 

and <*>,   assuming the unperturbed states shown in Fig. 1.  As can be seen, 

finite compressibility increases the growth rates, the relative effect being 
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greatest at long wavelengths.  When k • 0 then S, D, S' and D' all become 

small and Eq. (46) reduces for finite y,   y  to 

D'(2D - D')Z2 - 2D2(S - S')Z - D4 = 0, (56) 

whence to is proportional to k.  For y = y Eq. (56) yields 

Z = 2^h"«Y-l)S " tC Y-D 2 + (2Y-DD2] 1/2}. (57) 

When Y = 1 this becomes 

w2 = k2(c2 - c"2). (58) 

This is to be compared with the corresponding incompressible result given in 

Eq. (55).  On the other hand, for short-wavelength perturbations (k -• °°), 

Eq. (46) reduces to 

S2Z2 - D2 = 0, (59) 

whose solution is identical with Eq. (54). 

Another interesting limit is that in which the density of the upper 

medium becomes infinite, so that c = 0.  One of the extraneous roots factors 

out of Eq. (46), which then reduces to a cubic, 

Z3+ (2^_ 1)z _^I!(Z2_ 1} = 0. (60) 

Equation (60) holds even if y *  » in such a way that yc2 (the square of the 

sound speed) remains finite.  If instead we assume that the density in the 

lower region vanishes (i.e., c2 • »), then the dispersion relation is even 

simpler, becoming 

Z = -1, (61) 

which coincides with the incompressible result.  This is consistent with the 

behavior shown in Fig. 2, which indicates that as pQ decreases (for fixed 

pQ), the difference between compressible and incompressible growth rates 

becomes less pronounced. 
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Figure 2 

Dimensionless squared growth rate -u)2/kg vs wavenumber k for the two 

basic states shown in Fig. 1, with the same choice of units.  The adiabatic 

index y in both regions is taken to be 1, 5/3 or °°, as indicated by the 

label.  Note that the curves asymptotically approach the value (p - ~p)/ 

(p + ~p)t   equal to 0.333 and 0.818, respectively. 
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If we assume 

PQT = "P0Y, (62) 

then D' vanishes identically and Eq. (46) simplifies to 

S2Z2 - 2(S - S')Z - D2 = 0, (63) 

whence 

S - S' - [(S - S')2 + D2S2]1/2 (64) Z =  j-,  

Finally, if 

P0 = "pQ , (65) 

so that c2 = c2 and D = 0, then even for Y * Y 

Z = 0, (66) 

i.e., the perturbations are marginally stable. 

23 



Use of Piecewise Isothermal Profile to Approximate an Arbitrary Equilibrium 

More generally, we can specify an equilibrium state consisting of N-l 

slabs of finite thickness sandwiched between two semi-infinite regions, with 

density profiles in the various regions of the form 

P. (y) = (^ exp (-gy/c?), (67) 

pressure profiles given by 

pj(y) = pj(y) cy (68) 

and adiabatic indices T,, J - 0, 1  I.  We take the interface separating 

layer j from layer j+1 to be at y - y., j = 0, 1, ..., N-l, with y = 0.  At 

each interface the changes discontinuously but the pressure is continuous, so 

that 

pjc exp (-gyi/c ) = pj+1cj+1exp (-gy^/c^), (69) 

j = 0, 1, ...» N-l.  Evidently such a piecewise isothermal state can be made 

to approximate an arbitrary ideal hydrostatic equilibrium state as closely as 

desired if the number of interfaces N is allowed to increase without bound. 

It is thus analogous to the piecewise isopycnic (constant-density) model used 

by Mikaelian2b to approximate an arbitrary incompressible equilibrium state. 

Following the treatment employed in the previous section, we seek a 

solution for the perturbed displacement in the form 

Jo = (SxA0 + ~yV exPU(kx-c*)-y0y], (70) 

-H.y -L - *±->^ 

•y 

L = I  C&X e "V + eB^'V) exp[i(kx-wt)], 

j = 1, 2, ... N-l, and 

(71) 
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4 •  <&J* +^yV wM**-*)  "  V1' (72) 

where 

p7 =   {-Y.g   *  [ Y2g 2 - 4ID
2
T.C? + 4y?k2c. 4 

3 j j 3   3 3       3 

- AY.CY.-Dg^^?/^2] 1/2}(2Yic?)~1  . (73) 

+       + 
Evidently Eqs.   (70)-(72)   introduce  AN unknown quantites A.,  B..     The 

boundary  conditions 

Ufe"Wj±yj  "   lA^e'Wj (74) 
+    3 +3+1 

and 

+ + 

r I (ikAJ - u^*).  Vi - r.+1I CikA^ - u^B^e  Vl'j  , (75) 

j = 0, 1, ..., N-l, provide 2N linear relations among these.  (Note that 

-   -   +   + ± ± 
A = B = A^ = B = 0.) We can eliminate the B. in favor of the A. using the 

analog of (39), 

-u)2 A* - ike2 (ikA7 - u. B.) + ikgB.+ = 0, (76) 
3 J    J   J  J       j 

leaving 2N linear homogeneous equations in the 2N quantities A..  The 

dispersion relation giving co2 as a function of k is then obtained by equating 

to zero the determinant of this system. 
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The resulting equation must be solved numerically.  It is found that the 

number of roots associated with gravity modes equals N-l, the number of 

interfaces.  For short wavelengths (k + «•), one mode is localized at each 

interface position y. and is stable or unstable according as (t  < cr  or 

pi  > pji.  At longer wavelengths the identity of various modes becomes 

obscure, and the distinction between Rayleigh-Taylor and convective 

instablity may be blurred. Many interesting limiting cases can be 

distinguished, e.g., y^ + °°, j = 0, 1, ... , N (incompressible fluid); 

0 N p, + oo (solid lower boundary); p -»• 0 (free upper surface), etc.  Of course, 

it might be argued that it is just as easy (in both incompressible and 

compressible cases) to approximate the differential equation for Z, by finite 

differences and obtain the spectrum using a standard eigenvalue-solving 

routine. 
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Uniform Self-Similar Implosions and Expansions: Formulation 

Many of the problems in which compressible fluids are subject to 

Rayleigh-Taylor instability involve nonsteady basic states (e.g., laser 

pellet implosions, the outward motion of gas following a stellar explosion). 

Usually in such problems even the unperturbed motion can only be treated by 

solving the fluid equations numerically using a code with one spatial 

variable.  To analyze perturbations with angular dependence requires a two- 

or three-dimensional code. A compromise approach involves linearizing the 

perturbed equations, expanding them in cylindrical or spherical harmonics, 

and advancing the perturbed radius-dependent amplitude functions in parallel 

with the variables describing the basic state.17 

However, there exists a class of nontrivial ideal compressible flows 

which are sufficiently symmetric that both the unperturbed and perturbed 

equations can be solved analytically.  These are the uniform self-similar 

solutions studied by Sedov.2^ They can readily be derived as follows.27 

We rewrite Eqs. (25)-(27) in the form 

p + pV«v = 0; (77) 

p^v + Vp = 0; (78) 

(PP~V = 0, (79) 

where the raised dot ( ) denotes a total time derivative.  In a system with 

planar, cylindrical, or spherical symmetry (v= 1, 2, 3, respectively), 

Eqs. (77)-(78) become 

D+ *  TR (R V>- (80) 

P^-|-O. 
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For uniform self-similar flow there is a function f(t) such that for an 

arbitary fluid element whose position at t • 0 was r, the position R at time 

t satisfies 

R = rf(t), (82) 

with f(0) = 1 and f(0) = 0.  The continuity equation (80) then yields 

p(r,t) = pQ(r) f"
V, (83) 

and hence from the adiabatic law (79) 

p(r,t) = p0(r)f"
VT= s(r)P(Jf"

VT, (84) 

where we have introduced the entropy function s(r) = p p  .  If we specify 

an initial density profile Pn(r) on some interval r. < r < r , then 

substitution in Eq. (8) results in separation into a spatial part 

dp0       -2 
dT=±rV (85) 

which determines the pressure pn, and a time-dependent part 

f*1 f - +T~2 (86) 

where a= V(Y-1), determining f.  In Eqs. (85)-(86) x is a separation 

constant with units of time; the upper (lower) sign corresponds to implosion 

(expansion).  If the pressures on the inner and outer surfaces, p(rj,t) » 

— VY — VY 
pn(r.)f   and p(r ,t) = Pn(r )f   , are nonvanishing, they must be balanced 

by an equal pressure applied to the shell.  It is difficult to imagine how 

this might be realized in practice, so we will assume p-(r.) = 0 for 

implosions and Pn(r ) = 0 for expansions. 

A quadrature can be performed on (86), with the result 

x2f2 = +2tof (87) 
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when y • 1> and 

T2f2= *i (l-f_a) (88) 

otherwise.  When a = 2 (corresponding to Y = 3, 2, 5/3 for v = 1, 2, 3, 

respectively), Eq. (88) can be integrated directly to give 

f(t) -(IT t2/x2)1/2. (89) 

For other values of y, f is most conveniently found by numerical means.  In 

the case of implosions, f vanishes at a time t given by 

OL
1/2

   }      df « ,1/2 r(l/cc+ 1/2) to/T= (?     J ~~=s— 1/2= W     • (90) 2
    o (f a- i)1/2  2a    T(l/a+ 1) 

which decreases monotonically as a function of a. 

To study the stability of uniform self-similar flows under small 

perturbations, we must solve the linearized form of (78) for the first-order 

displacement £: 

P(C - C-V R) - RV .p? - V(ypV •?+ g.V p) = 0. f 
»W> **^ fr <WW v-*-* 

Note that (91) is identical with (34), except that g is replaced by -R.  Like 

the unperturbed momentum equation, (91) is separable in Lagrangian variables. 

Substituting 

C(r,t) = C(r)T(t), (92) 

we  have,   on writing   V =   V  , 

(X -  1)5 + (Y -  1)  ra ±  x2(YPn/pn)Va+  V(r-Q - 0 (93) 

[cf.  Eq.   (35)],   and 

2 fori-2T' =   ?XT> (94) 
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where X is the new separation constant, obtained as an eigenvalue in 

connection with the solution of Eq. (93).  Once X is known, (94) can be 

converted into a hypergeometric equation in the new variable x = 1 - f  and 

solved to give 

T(t) = T(0)F(a, b; 1/2; x) + TT(O) (+2x/a) l/2F(a + 1/2,-b + 1/2; 3/2; x) 
(95) 

where F  is   the  hypergeometric  function.28 Here 

a =  (a+2+ A)Ma,                                                      (96a) 

b =  (a+ 2  - A)/4a,                                                      (96b) 

with   A=   [a+  2)     -  8aX]1/2.     When   y + 1» Eq.   (95)  goes  over  to 

T(t)  = T(0)$(X/2;   1/2;   J!nf)   6   TT(0)(+2 tof)l/2 *( X/2 +  1/2;   3/2;   tof),     (97) 

where *(a; b; x) is the Kummer function.29 

Since T(t) is not exponential, we must decide what we mean by 

instability.  A perturbation is defined to be unstable if the associated 

time-dependent factor satisfies 

tH»- l1^) V*M = -. (98) 

and stable if the limit of this ratio is finite.  This is equivalent to 

saying that a perturbation is unstable if and only if its amplitude 

eventually becomes infinitely larger than the radius of the unperturbed 

state. 
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Stability of Uniform Self-Similar Implosions 

We begin by considering imploding systems.  As f + 0, both terms in Eq. 

(95) approach asymptotic forms containing terms proportional to 

f With the lower sign this expression diverges whenever 

a + 2 < A, i.e., X < 0.  Since the condition for A to be real is that X be no 

greater than (a+ 2)2/8a, whose minimum value as a function of a is unity, we 

see that X < 1 is always sufficient to make T/f diverge.  Thus X > 1 is the 

stability criterion for uniform self-similar implosions.  If A is imaginary, 

T/f still diverges when a < 2, i.e., y< 1 + 2/v.  Elsewhere30 I have 

presented a simple argument involving conservation of wave action to show 

that this describes sound wave amplification as a consequence of the 

geometric properties of the implosion. 

Taking the scalar product of (93) with £ and introducing notations for 

the transpose V£ and the curl u = Vx£, we can multiply through by pQ and 

integrate to obtain an energy principle:31 

I"2 X/dVpnS
2 = JdVpn[(y-l) a2 + V£: Vi+  - co2] + Y JdSp an-£,   (99) 

Vuv *"* ""* s  

where V is the volume and S the surface of the shell, and n is the unit 

vector defined so as to point away from the shell on both inner and outer 

surfaces.  The expression multiplying X and the first two terms in the volume 

integral on the right-hand side are manifestly nonnegative.  From this we see 

that relative instability (X < 1) can only result if w *  0 or if the surface 

integral is nonvanishing.  The latter is the case whenever a perturbation 

exists at a point where the density changes discontinuously, e.g., at r = r , 

r • r,», or an internal density jump.  The external pressure, which enters 
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the model as a boundary condition, produces an inward acceleration.  There is 

thus an effective gravity in the outward direction.  Hence we anticipate that 

a Rayleigh-Taylor instability should occur localized at the outer surface. 

This case was first studied by Kidder32, who assumed y = 5/3.  It turns out 

we can solve for £ provided the perturbation wavelengths also expand or 

contract self-similarly in time, i.e., whenever they do not introduce a 

definite length scale into the problem.  This means that in spherical 

geometry (v = 3) there is no restriction on the form of the perturbation; in 

cylindrical geometry (v= 2), however, we must have k =0;  and no general 

solution is possible in planar geometry (v= 1). 

Operating on (93) with the divergence and with the curl, we get two 

equations: 

YP 
[\ +  v(y-l) + 1 ]o ± x V«(—- Va) + yr «Va = r 'VXCJ (100) 

P0 

and 

( X-l)u + rxVa ± x2ypA7(p"
1) x Va = 0. (101) 

Let us suppose that u = 0.  It follows from (100)-(101) that a also vanishes. 

If that happens, 

J> ?*, (102) 

where the potential ^satisfies Laplace's equation 

V2^ = 0. (103) 

The general solution of (103) is 

<«r,<» = (*+r
£ + *-r_£) e±H <104) 

in cylindrical coordinates (assuming -r— = 0), and 

«r,9, <(.) = (i>+r
Z+   tj)_ r"£-1) Y^C 9, *) (105) 

in spherical coordinates.  The ty.  are constants, and the Y.(8, <)>) are 
x Xm 
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spherical harmonics.  Evidently the first term in (104) and (105) corresponds 

to a solution localized at the outer surface of the shell, and the second to 

one localized at the inner surface, so we set \\>   =  0.     Substitution in 

Eq. (93) then yields 

(X-1K+ V(r«0 = V[(X-1)4)+ r«7i|>] = V[ ( A-l+Z) ib r£] = 0,        (106) 

whence 

X - -i + 1. (107) 

For I  = 0, X- 1 and Eq. (94) reduces to Eq. (86), showing that the 

perturbations are marginally stable. For all I > 0, the limiting form of T/f 

diverges as 

1 „f {oe2-[(«-2)2+8a£]l/2} (10g) 

when f + 0.  Evidently the magnitude of the exponent in (108) increases with 

both I  and a • v(y-l).  Thus, in contrast with the case of static equilibria 

considered previously, compressibility appears to be somewhat stabilizing. 

However, it must be noted from Eq. (86) that as a increases, the motion 

becomes increasingly stiff and so the effective gravity also increases, 

rendering comparisons difficult. 

The problem of perturbations with a> *  0 is treated elsewhere30-31; it is 

completely analogous to that in the case of expanding solutions to be 

discussed shortly.  Book and Bernstein33 and Han and Suydam31* have treated 

the stability of imploding cylindrical systems in detail. 
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Stability of Uniform Self-Similar Expansions 

Here we consider expanding systems, in which f + °».  (Sedov 

distinguishes a third class of trajectories in which f varies between 0 and » 

with no turning point; we do not treat them here.) 

Bernstein and Book35 and Han36, who found the general solutions for the 

time dependence of arbitrary perturbations in spherical and in cylindrical 

geometry, respectively, both assumed that the unperturbed states were 

homentropic (pp  independent of radius).  In both geometries the only 

instability was a Rayleigh-Taylor mode localized at the inner surface, 

where the driving pressure acts.  Here we analyze a class of states, 

parametrized by the adiabatic index and a shape parameter, which relax the 

requirement of uniform entropy distribution.37 

Suppose the initial density profile is given by: 

P0(r) = p(l-r2/rJ)K, (109) 

y and p constant.  Then from Eq. (85), 

where 

and 

P0 (r) = p(l-r2/r2)
K+1, (HO) 

p = fi:J/2(*fl)T% (111) 

s(r) = P0Pp
Y= (p/"PY)(l-r2/r2))

K+1 <Y. (112) 

The pressure vanishes at the outer radius of the shell, as does the density 

provided K  > 0.  At the inner radius the imposed (driving) pressure must have 

the form 

Pi = p(l-ri/rQ)   f  ', (113) 

unless r = 0.  In this model the temperature 0 = p/p always decreases 
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quadratically as a function of radius: 

9(r,t) = 9(l-r2/r2)f ^<Y 1)^ (1U) 

A   2 ,       2 
where 9 = r /2( K+1) it 

As in the implosion case, there is an incompressible irrotational 

perturbation mode satisfying Eqs. (102)-(103).  The solution (which is 

independent of the shapes of the density and pressure profiles) is given 

again by (104) or (105).  This time, though, it is the mode corresponding to 

ij> which is unstable, giving rise to eigenvalues X = Z +  1 (cylindrical 

geometry) or X = £ + 2 (spherical geometry).  Using standard formulas28 to 

evaluate hypergeometric functions of unit argument, we find from (95) that as 

f • «, 

T + rq/2) rq/cQ no) +       (2/a)1/2 1x3/2)  r(i/a)ff(o)   ,     . 
f   r(I+ (2+A)/4a) r[i + (2-A)/4 a]   r[| + (2+A)/4 a] r[| + (2- A)/4 a] 

Although this limit is finite, for large values of X (large £.) the constants 

are found from Stirling's formula to grow exponentially: 

T „, r(l/a)expKx/2a)^1     + P( 1/ a) exp \< X/2 a) 1 /2J   f 
f  2*1/2 (X/2a) <2-«)/4a       2(2*a) 1'2( V2 a)(2+a)/4 a 

Figure 3 displays the late-time asymptotic behavior of these solutions as a 

function of the eigenvalue X for a= 1, 2, 3, and ». 

To study the modes for which ^o *  0, we use Eqs. (100)-(101) with p and 

p given by (109)-(110).  Using the lower sign, specializing to v = 3, and 

using r to scale r, we get 

(X+ 3y- 2)o -  _,T,   [V«(l - r2)Va] + Y r-Va = r-Vxu     (117) 

and 

(X - l)u) = (-¥_- - 1) rxVa. (118) 
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Eliminating to between (117) and (118) and assuming separation of the angular 

and radial dependence of a by setting 

a(r)  = a(r) Y^C 0, $), (119) 

we obtain a second-order equation for the radial factor o(r), 

J_ [ll*£<j_  ^do .J^r2 ,u+1)a_ 2rdO] 
<+l) L r^ dr   dr    r^ dr J 2(<+l) 

(120) 

" V d7+ t (Y-D(K+1) 3Y- A+ 2J a= 0. 

Rewriting this by means of the substitution a = r y  and x = r2, we obtain 

the hypergeometric equation 

x (1 - x) y'• + [c - (a+b+1) x] y' - aby = 0, (121) 

where 

*} . I   {K+   4 + 1  ±   [(|C+   1 + 1)2 _  4K]l/2}> (I22a,b) 

c =   £ + 3/2. (122c) 

Here 

( K +  2) £      JC +   1 £ ( I +  1)( K +  1  -   <y) 
K - 2 +    2y       [X       2 +  3T (X-  1)(K+ 1)        ]* (123) 

The general solution of (121) is 28 

y = C F(a, b; c; x) + c2
xl~C F(a - c + 1, b - c + 1; 2 - c; x),   (124) 

where C., C~ are constants.  If r. • 0, the shell goes over to a gas sphere 

expanding under its own pressure.  In this case only the first term in Eq. 

(124) is finite at the origin and we must set C2 = 0. 

The boundary conditions are found from the requirement that the 

perturbed pressure vanish at both surfaces of the shell.  At the inner suface 

this implies a = 0 or 
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CjFU, b; c; r^/rj) + tyr^)1"0 

(125) 

•F(a - c + 1, b - c + 1; 2 - c; r2/r2) • 0. 

Since the unperturbed pressure vanishes at the outer surface, it is only 

necessary that y be finite at x = 1.  The linear connection formulas28 of 

both terms of (124) contain a term that diverges as (1 - x)      unless a or 

b is a nonpositive integer.  Thus we must have 

-i {< + ft + 5/2 - [(< + A + 5/2)2 - 4 K] 1/2} = -n, (126) 

n = 0, 1, 2,... From (123) it follows that X decreases with n.  Hence the 

fastest growth (largest positive X) corresponds to n = 0, which implies K • 

0.  Solving for X, we finally obtain the dispersion relation 

i       i            yU< + 2)  +  (<+  1)(3Y -   1) 
A " 1 2(<+  1) 

(127) 

±   {[T&(K:+   2)   +  (<+   1)(3Y-   1)12+  4&( £ +   !)(<+   1   -   ICT)}
1/2 

2(<+ 1) 

For the upper branch, X > 1 for all Z  > 0, provided that 

K <   l/(y - 1). (128) 

From (112), we see that this is just the condition that s'(r) < 0, i.e., that 

s(r) decrease in the "upward" direction, that directed opposite to the 

effective gravitational acceleration -R.  This is identical with the 
MM 

Schwarzchild criterion (18) derived for the convective instability in static 

media.  Indeed, an interchange argument along the lines of that used to 

obtain (18) has been employed37 to show that such a uniformly expanding fluid 

system should be convectively unstable whenever s'(r) < 0 holds. 

For the y = 1 case we can redo all the analysis in terms of confluent 

hypergeometric functions29 instead of hypergeometric functions, or we can 
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reach the same results by formally letting y * 1 in the equations above.  The 

solutions are qualitatively similar to those for y  > 1 except that now (128) 

always holds. 

Motivated by experiments investigating the use of imploding cylindrical 

liquid metal liners to compress and heat plasma38, Book and Bernstein33 

studied the Rayleigh-Taylor instability on the inner surface of a liner 

during both the implosion and rebound phases, assuming y= 1»  Since both 

terms in Eq. (97) diverge the same way at large t, it is useful to introduce 

in their place two new solutions which have asymptotically like f, the 

standard confluent hypergeometric function of the second kind:29 

P*( t}( = HC, :i+*)/2; 1/2; tof] ? -±±-Z-±L    xf*(i+V2; 3/2; tof).  (129a,b) 
(T(t)J r[(l+A)/2) 

For large arguments (t •*•+<*>),  we have 

P*(t) ~ (tof)'U+1)/2 (130a) 

Q*(t) ~f(fcif)*/2. (130b) 

Thus defined, 0 (t) has the property of increasing monotonically for all t, 

_oo < t < °°; at turnaround (the instant t = 0 when f = 1), 0(0) = 1 also. 

The only perturbations which are unstable both before and after turnaround 

are those whose time dependence is proportional to 0 (t).  Figure A compares 

the behavior of Q (t) for l • 1 and % • 10 with that of f. 
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10.0 

Figure 4 

Q (t) [defined by Eq. (129b)] for I  = 1 and i=   10, obtained by numerical 

solution of Eq. (94) for a= 0 and X = i +  1, with f plotted for comparison. 
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Conclusions 

In the theory of compressible fluids, the Rayleigh-Taylor instability at 

a density jump, the Rayleigh-Taylor instability in a continuously stratified 

medium, and the convective instability are close relatives.  All are 

gravitational interchange modes.  One can easily generate a series of 

examples which display a continuous transition from one mode to the next. 

The energy principle applied to polytropic media shows that, by itself, 

compressiblity increases instability. For only a handful of specific 

compressible states, however, is it possible to actually calculate growth 

rates in closed form.  The only tractable equilibrium states involve 

contiguous isothermal layers of fluid satisfying the adiabatic law with 

constant y.  In the limit where the density of the lower layer vanishes, the 

growth rate reduces to the classical result found for incompressible fluids. 

Closely related is the problem of the stability of uniformly imploding 

or expanding shells driven by pressure applied at a vacuum-material boundary. 

The unstable modes are incompressible and (if one allows for the 

nonexponential time dependence) the growth rates are given by the same 

classical incompressible fluid formula as in the static case. 

Because the unstable eigenmodes are localized near a density jump within 

distances of order k  , one expects the growth rates not to change very much 

when the basic state is not isothermal, particularly at short wavelengths. 

Thus dispersion relation (46) is at least qualitatively correct most of the 

time in static situations. 
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To determine growth rates with precision for any but the simplest 

piecewise isothermal unperturbed states or to study the effects of thermal 

conduction, flow through the interface, nonlinearity, etc., one must resort 

to computational means.  Nevertheless, numerical solutions present their own 

difficulties.  Validation against nontrivial analytical solutions such as 

those discussed in this review is indispensable in the development of any 

code. 
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