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1. INTRODUCTION AND SUMMARY

This interim technlcal report describes research performed on the distri-
buted processing of sensor data for situation assessment in a distributed sensor
network (DSN). This research has been performed at Advanced Information &
Decision Systems under the contract entitled "Distributed Hypothesis Testing in

Distributed Sensor Networks”.

1.1 DSN PROBLEM DESCRIPTION

We assume a system structure as in Figure I-1. There is a system of distri-
buted sensor/processor nodes. Each node may have one or more scnsor types,
and the sensors from different nodes may have overlapping coverage. The sensors
collect data from the environment and pass them on to the processors {processing
nodes). The processing nodes process the sensor data and communicate with
other nodes through the communication network to obtain an assessment of the
state of the world. It is generally assumed that no slngle node possesses complete
information and each node may have a different world model. The processing
nodes can alsc control the sensors to improve on the performance of the overall

system.

A distributed sensor network can be used for many applications. W are
particuiarly interesied in a3 DSN which is used for the tracking and ciassification
of multiple targets. The target environment is assumed to be dense. so that
determining the origins of the measurements In a particular sensor report Is not
always e-sy. The problem Is further complicated by the presence of false alarms
and missing target reports. In such a network, tracking and eclassification is
highly dependent on Identifying the right data association hypotheses  Sinee the
nodes in general have access to different information, communication among the
nodes can greatly improve the performance of the system. The problem s thus

one of distributed hypothesis formation and evaluation, which we can abbreviate

1-1
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Figure 1-1: Distributed Sensor Network
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as distributed hypothesis testing.

In our previous DSN project we Initiated rescarch on the distributed track-
ing of multiple targets by the nodes of a distributed sensor network. [n the foi-

lowing we shall review a model of the processing node that has been proposed.

1.2 PROCESSING NODE MODEL

The processing nodes are the main informatlon processing units in the DSN.
Each processing node collects measurements from a set of sensors. Its function is
to process the local sensor data to form an assessment of the state of the world,
to combine the information obtained from other nodes with the local information
to update its assessment, to distribute Information to other nodes, and to per-
forms these functions effectively. These functions are performed in four separate
modules within each processing node (see Figure 2-2). In the following we shall

discuss the modules in more detall.

1.2.1 Generalized Tracker/Classifier

This module is responsible for the local data processing before any com-
munication with the other nodes takes place. Since the objective of the system
under consideration is the tracking and classification of multiple targets, this
modtule is a multitarget tracker. In the previous project, we have developed a
generai theory for multitarget tracking which is implemented in the form of the
Generaiized Tracker/Classifier (GTC). The GTC has the structure shown in
Figure 2-3 and itself consists of four modules. The hypothesis formation module
forms multiple hypotheses from the sensor data, each consisting of a collection of
tracks to explain the origins of the measurements in each data set. These
hypotheses are then evaluated by the hypothesis evaluation module with respect
to their probabilities of being true. The filtering and parameter estimation
module generates state estimates and classifications for each track. It Is essential
for hypothesis evaluation and can thus be viewed as a submodule. To stay
within the computational constraints of each node, the hypotheses are pruncd,

combined, clustered, ete, This takes place In the hypothesis management module.
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The result of this processing Is a set of hypotheses and their probabilities, a col-

lection of tracks corresponding to possible targets and the state distributions of .
these tracks. These quantities together constitute the information state for mul-
titarget tracking. |

1.2.2 Information Fusion

This module combines the local information with information obtained from
the other nodes to obtain a new situation assessment. The Information from the

local nodes consists of the information described above. The information from
other nodes is also similar. Information fusion then consists of the following steps
(see Figure 2-4):

‘e 1. Hypothests Formation - Given a set of hypotheses from other nodes, this
submodule generates new global hypotheses. Tracks from the
hypotheses of different nodes are associated in all possible ways, whether
they correspond to the same or different targets.

2. Hypothesis Evaluation - Each of the hypotheses formed above is then
evaluated with respect to its probability of being true. The statistics of
the tracks from different hypotheses are used in this evaluation. For
example, If two tracks are widely apart in their position or velocity dis-
tributions. they are more likely to have come from different targets than

the same target.

3. Hypothesis Management - This is again needed to make computation

feasible within the available resources.

e

1.2.3 Information Distribution

This module decides what Information is to be transmitted, who gets the
information. and when it should be communicated. It thus specifies the informa-

tion available 1o each node at any time, ie., the information structure of the
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system. Information distribution can be fixed a priort for simple systems, or it

can be highly adaptive to the information needs In the system.

1.2.4 Resource allocation

This module allocates the resources under the control of the processing node
to maintain or Improve the performance of the system. Some typical resources
include sensor resources andg processing resources. Both resource allocation and
information distribution car affect the information available in the network.

Thus thelr actlvities should be coordinated.

1.3 PROJECT GOALS

Many technical issues have to be addressed before DSNs can be designed,
built and operated to achicve their military potential. Such issues include the
representation and processing of hypotheses, information fusion, communication
strategies, resource allocation, adaptation, system architecture, etc. In our previ-
ous DSN project, we have successfully addressed some of these issues. The goal
of our current effort Is to further advance the state of the art In distributed
hypothesis testing techniques in DSNs. This will provide more Insight as to how
a DSN should be designed. Specifically, we Intend to accomplish the following

technology goals:

L. Deveisp intelligent distributed algorithms applicable to a wide range of
sitvatiocns such as different network conflgurations, sensor types, target
modgels, =uch algorithms should also be adaptive tc changing neiwork
conditions and make efficient use of sensor resources.

1. Evaluate and adapt these algorithms for real-time implementation.

1. Design experiments to test and evaluate the algorithms in a more realis-

tie seenario such as the Lincoln Laboratory test-bed.

In compamon to these technology goals, our plan is to develop a simulation
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environment to test the algorithms experimentally on different scenarios

1.4 PROJECT STATUS

There are two parts to our research effort. The first consists of develop-
ment of algorithms for a DSN and the other is concerned with the development
of a simulation environment to test the algorithms and to evaluate the perfor-
mance of the system experimentally. In the following we discuss their status

separately.

We have considered information infusion for DSNs with arbitrary communi-
cation patterns among the nodes. The key problems are the formation of possi-
ble (or meaningful} global hypotheses from a group of local hypotheses and the
evaluation of their probabiiities. A set of local hypotheses can be inconsistent so
that they cannot be fused to form a global hypothesis. The local probabilities of
the local hypotheses may depend on common information which needs to be
identified. In the previous project we developed fusion algorithms assuming
broadcast communication. In the current project we have obtalned fuslon algo-
rithms for arbitrary communication. The algorithms are based on modeling the
events in the DSN by means of an information graph. To use these algorithms,
the historles of the hypotheses and tracks have to be part of the information
communicated. Then each node can determine the fusability of the hypotheses
and tracks and the common information which has to be removed in evaluating
the hypotheses. Information distribution strategies have also been considered.
These include strategies which depend only on the loca! information state and

those which model the behavior of other nodes.

The theory of multitarget tracking has been extended to handle targets
with a structured state space and dissimlilar sensors which observe different com-
ponents Jn the target state. The resuiting GTC for processing of local sensor
data and the information fusion algorithms are very similar to the usual case.
However, a multlievel hypothesis formation and evaluation processing architec-
ture is often possible. Consider a network with two nodes. Each node would
form hypotheses based on the local measurements and the tracks would he

deseribed In the local festure space. Durlng the fusion process, knowledge on the

1-9
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relationship between the features would be used to generate higher ievel target
tracks from the local feature level tracks. Hypothesis evaluation would then be
carried out. As an example, consider the tracking of vehicles. Suppose one sen-
sor node measures only the track/whee! feature and the location. Feature tracks
from this node would consist of wheeled or tracked vehicles over time. Suppose
another sensor node measures only the location and whether the vehicle has gun
or no gun. Tracks generated would consist of gunned or gunless vehicles over
time. During fusion, one would use the fact that a vehicle with a gun and track
is a tank, a vehicle with neither gun nor track Is a truck, ete.

In the previous DSN project, we have concentrated on independent targets.
We have now investigated multitarget tracking on structured sets of targets.
These include targets which move in groups. One example would be planes flying
in formation. Another more complex example consists of military force struc-
tures. A division would consist of regiments each of which consists of battalions,
and so on. The tracking and identification of such structured targets is impor-
tant but no much systematic treatment Is avallable. The problem Is also
interesting In a distributed framework since the observations at different nodes
may be at different levels and targets are no longer independent. We have
developed models for structured sets of targets, and the notions of multilevel
tracks and hypotheses. They are generalizations of our previous work on multi-
target tracking which may be viewed as having a single level of targets. Central-
ized algorithms for evaluating multilevel hypotheses have been obtained. When
restricted to two levels with targets moving in Independent and identically distri-
buted groups, our results resemble those In single level tracking except the tar-
gets in the level are the groups themselves. The main difficuity in implementing
these algorithms Is in the combinatories, which becomes more severe with more
levels. Thus more practical methods for hypothesis evaluation have to be found.
Our future effort would also include finding distributed versions of the algo-

rithms.

The other part of our research effort Is concerned with the development of
the simulation environment. Since an analytic evaluation of the algorithms and
the system performance is difficult our approach is to perform simulation studies.
We have developed a simulation system consisting of four DSN nodes with com-

munication patterns which can be specifled arbitrarily. Some limited
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experimentation on this system has been performed. Our eventual goal for the
simulation environment s that it should allow rapld construction of scenarios and
rapid development of the DSN system design itself. Also, the environment
should be flexible enough to handle various types of processing within each DSN
node, including the Bayeslan analytic algorithms such as the GTC which have
been developed thus far as well as other Artificial Intelligence (AI) based algo-
rithms which would be developed for resource allocation and adaptation.
Towards this goal of improving our simulation testbed, we have chosen an Al
architecture, called Schemer as the basis of the environment. The baslc Idea
behind Schemer is to provide a computational environment in which a system
designer can incrementally build his application by specifying the components of
the system Including the representation of objects that must be known to the sys-
tem and the procedural rules that deflne the system's capabilities. To provide
this representation support, Schemer is equipped with a general frame representa-
tion language for expressing such knowledge. The implementation of this

language Is currently in progress.

We have investigated the representation of the DSN node within the simu-
lation. Various types of knowledge, such as static knowledge, situational
knowledge, planning knowledge, and control knowledge have to be represented.
Since the representation of the node In the simulation is a model of the DSN
node, we have also obtalned a candlidate architecture of the node in the actual
system. The architecture would be able to carry out both analytic and Al based

processing.

1.5 REPORT ORGANIZATION

The rest of this report is organized as follows. In Section 2, we present
information fusion algorithms assuming arbitrary communication among the
nodes. The algorithms are based on an information graph model of the DSN.
Scetion 3 contains results on tracking of structured targets. Both targets with
structured states and structured sets of targets are considered with the emphasis
on the latter type. In Section 4 we describe the design and simulation environ-
ment. The representation of knowledge in the system and its architecture are

discussed. Section 5 presents some simulation results with our current system.
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An appendix contains the proofs of the results In Section 2.
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2. INFORMATION FUSION FOR ARBITRARY COMMUNICATION

In this section we present algorithms used by each node to fuse the infor-
matlon recelved from the other nodes with the local Information to obtain an
updated situation assessment. In [1] fuslon algorithms for a broadcast communi-
cation pattern were presented. The results of this sectlon extend those algo-
rithms to arbitray communication patterns. In Section 2.1 we describe the infor-
mation fusion problem in the context of hypothesis formation and evaluation in
multitarget tracking. In Sectlon 2.2 a model for information fusion in terms of
an informatlon graph is given. Sectlon 2.3 describes the hypothesis formation

and evaluation algorithms assuming arbitrary communication.

2.1 THE INFORMATION FUSION PROBLEM

In the following we state the Information fusion problem faced by each
node in the DSN with emphasls on the relevant issues in multitarget tracking.
The formalism is based on the theory of multitarget tracking developed in the
previous DSN project [1} and [2].

2.1.1 Local processing

The basic unit of information in the DSN Is a sensor report z(t.s). This Is

the output of a sensor s at a time and is denoted as

((yj(t.s ))JN_L'_':"' ),N,,,(t ,8).t.8). The Index k=(t,s) identifies the sensor report (by
time and sensor) unliquely and is called the sensor report indez or data index.
N, (k) is the number of measurements in the report and (y,(k ))ﬁj:“ is the actual
measurement vector. At any glven time, let Z be the dala sel consisting of a set
of sensor reports and K be the assoclated data indez set, 1.e, the set of the indices
for all the sensor reports contained In Z. The measurement inder sel correspond-

ing to 7 is defined as




St . —— e

J = U {1..Nytk)}x{k}. (2.1)
kEK

Each element (3.k)=(j.t.s) In this set represents the }-th measurement gen-

erated at time ¢ by sensor s. The speclfic value of the measurement Is y,(f.s).

According to the system model Introduced in Section 1, each node processes the

sensor data as they arrive using the Generalized Tracker/Classifier (GTC). The

output of the GTC when the data 18 Z consists of the information state ¥(Z)

defined as

where

¥Z) = (TP (2 | .2 rers) HI) (P (A=X | Z)hens ) AK))

e T(J), the set of possible tracks defined on J. Each track ris a subset of

J, l.e., 7CJ and represents the measurement Iindices coming from a single
target. It Is usually assumed that a track cannot have two measurement
indices in the same sensor report, or the sensor resolution is such that
there are no split measurements. Such tracks are then sald to be poss:-
ble.

® p,(z | 7.Z) is the state distribution for a track. Given the track r, the set

of measurements in Z for a hypothesized target Is known. From this the
distribution of its state z (position, velocity, classification, etc.) at a time
t can be found and is a traditional estimation problem. Normally this
would be given In terms of a probabllity distributfon; but if the state can
be approximated by a Gaussian random vector, the distribution can be

expressed in terms of Its mean and covariance.

e H(J) is the set of possible data-to-data association hypotheses defined on

J. Each dala-to-data association hypothesis \ is a possible explanation
about the origins of all the measurements in Z. Each hypothesis consists
of a set of tracks, l.e., A = {r,.%,.....}. The number of tracks In X Is the
number of targets hypothesized to have been detected In the data set Z.
Each track 7 is the set of measurement indices from a hypothesized target
and any measurement Index not Included in the hypothesis Is
hypothesized to be a false alarm. We assume that the sensor resolution 1s

such that there are no merged measurements and thus there are no
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overlapping tracks In the same hypothesis. The set of hypotheses satisfy-
Ing this property Is sald to be possible. This represents all mutually
exclusive and collectively exhaustive explanations about the origins of the

measurements in Z.

e P(A=X|Z) Is the probability of that the true data assoclatlon A is a
hypothesis A given all the measurements in Z. Its computation is the key
operation In any multiple hypothesls approach to multitarget tracking

and recursive algorithms were given in [1] and [2].

o {K) Is the expected number of undetected targets up to and including
K. It is important for initiating new tracks. If {K) decreases, the likeli-
hood of any measurement coming from a previously undetected target

also decreases.

‘vhe information state deflned above constitutes a state for multitarget
tracking since It contains all the relevant information present in the cumulative
data set Z. As long as the information state ¥(Z) is known, the GTC can con-
tinue to process any new sensor report even though the actual data Z is no
longer avallable. In the GTC, the hypothesis formation module generates the
sets T(J) and H(J) while the hypothesls evaluation module computes the remain-
ing components in the information state. The hypothesis management module is

used to control the comblinatorics.

2.1.2 Information Fusion Problem

We assume that each node communicates the Information state to the other
nodes. Suppose a node recelves some messages from the other nodes. It has to
fuse or Integrate this information with the local information to improve on the
local estimate. There are many ways of performing fusion. In our work fusion is
based on the following philosophy. The ideal case with the highest performance
(but also the highest communication cost) is when the nodes communicate the
actual sensor data through the network Instead of the processes Information. In

this case a node would be able to generate an optimal information state based on
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all the data avallable. Since in a more realistlc DSN only the information states
are communlicated, an appropriate objective for fusion Is to reconstruct the
optimal Information state based on the information states received from the other
nodes. To facilitate further discussion, we call the data avallabie to each node
before communlcation takes place as local data and the maximum data set avali-
able after communlcation as global data. Local and global information states,

hypotheses, tracks, etc. are all deflned analogously.

There are thus two steps to the fusion process. The first step in the fuslion
process conslsts of generating the possible track and hypothesis sets based on the
global data from the local tracks and hypotheses. Since the local data are the
part of the global data availlable to the nodes at the given times, the global
tracks and hypotheses when restricted to the local data should give the local
tracks and hypotheses. This implies that a certain combination of local tracks
and hypotheses should not be fused, l.e., there may not exist global tracks and
hypotheses for given sets of local tracks and hypotheses. In Figure 2-1, the two
tracks 7, and 7, are two local tracks malntained at two different nodes. They
cannot be fused since the resulting global track would have two different meas-
urements in the same sensor report 1, thus violating the no split measurement
assumption. On the other hand, 7, and r; can be fused to yleld a global track
1,Ur,. The Interpretation of this global track is that the measurements in both
tracks 7, and r; come from the same target. Tracks r, and r, can also be fused.

However, they do not have to be and In that case the two tracks correspond to

two different targets. The fusabllity question also needs to be addressed at the
hypothesis level. Each local hypothesis is a possible explanation about the origins
of the local measurements. ‘Thus If the local hypotheses are incompatible, they
cannot be fused to obtain a global hypothesis. This is Illustrated in Figure 2-2
where each node ¢+ has two local hypotheses )\,f. 7 =12 derived from the two com-
mon hypotheses \7, 7=1,2. Since \' and \? are mutually exclusive, the local

hypotheses A\ ? and \,' are not fusable.

The second step In the fusion process consists in generating the state distri-
butions of the global tracks and the probabilities of the global hypotheses using
the local distributlons and probabilities. If the nodes communicated in the past,
the local statistics would not be Independent. A key problem in fusion is to iden-

tify the common information shared by the nodes and make sure it 1s not used
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Figure 2-1: Fusability of tracks

Figure 2-2: Fusability of hypotheses
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more than once in generating the global statistlcs.

2.2 INFORMATION GRAPH

In performing Information fuslon, it Is necessary to identify the Information
avallable to the nodes in the network at various times and how the information
of one node at one time Is related to that of another node at a different time.
For example, whenever two nodes communicate some common Information is
shared between the nodes. The existence of this shared information would have
to be recognized in any future Information fusion. Specifically, before any global
hypothesis can be generated, the fusabllity of the local hypotheses have to be
checked based on their histories. Furthermore, when the probabillitles of the
hypotheses are to be evaluated, the common Information should only be used

once. This necessitates tracking the historles of the communication and can be
accomplished conveniently using the information graph. The information graph
introduced below can also be viewed as an abstract model for a DSN.

2.2.1 Information graph model

We assume that there is a set of processing nodes called N. Each node n in
N recelves data from a set of sensors called S, such that S, MS,’=@ for n#n’,

l.e., each sensor s only reports to one processing node. Let 8= UNS,, be the set
ng

of all sensors. If a sensor s generates a report at time ¢t with value z, the report

is denoted as (z,t.s) or simply z(t,s). Each sensor report Is the basic unit of

information and the set of all such reports Is denoted by Z called the fotal infor-
mation or data set. Each sensor report Is indexed by & =(t,s), l.e., the time ¢
when it is generated and the sensor s responsible for its generation. The set of
all such indices is called the total data indez set and denoted as

K={(t.s)|(z.t,8)EZ for some z} (2.2)

At any one time, a node's information may consist of only a subset Z of Z. Such
a Z Is called a partial information set or partial data set, or simply information

sel or data set. For each Z there I1s a K correponding to the data indices In Z.




The sensors send the data Intantaneously to the nodes as soon as they are 1
generated. The communication among the nodes can be characterized by the
communicalion schedule C which is a subset of TXTXNXN. An element
(¢.t’.,n,n’) means that the communication transmitted at time ¢ by node n is

recelved at time ¢’ by node n’.

The Information at each sensor or node in the DSN Is aftected by four types
of events. The nature of the events, the times at which they occur and the nodes

affected are glven below:
1. Sensor observation and transmission — Igr = K X {ST}
2. Sensor data received at node - Igp = K X {SR}

3. Transmission of communication by node --
Icr = {(n.,t,CT)|(t,t'.,n,n")eEC}

4. Receptlion of communication by node --
ICR = ((n N4 .CR ) ( (t ',t .n',n )EC}

Let I be deflned as
I=1Igr Ulgg Ulgr Uler (2.3)

I constitutes all the significant events in the network and forms the set of infor-
mation nodes (not DSN nodes) in the information graph. To represent the rela-
tion between these nodes, we define an antisymmetric, reflexive and transitive
binary relation < on I as follows: for any ¢ and ¢/ In I, 1 <{' if t=1¢' or there s a
communication path from ¢ to i’. The information graph on the system is then
the ordered set (I,<). By using the graph we can determine how the information
in the system flows. In particular, it is easy to find the history of the information
at a certain node. As we shall see later, this is useful for the purpose of informa-

tion fusion.
Figure 2-3 show the Informatlon graph for broadcast communication. At a

given time all the nodes communlcate to each another so that they all have the
same Informatjon after that. Figure 2-4 shows the Information graph for a cyclic
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communlcation system. The system consists of three nodes N=-{1,2,3} collecting
data from the three sensors S={1,2,3}, respectively at the times ....tgp.tep +{4......
The nodes transmit to the other nodes periodically according to the pattern
shown In Flgure 2-4 at times ...tcr.ter +¢;... and the messages are recelved at

the times ....top top +4 .- It Is assumed that gy <ter <lep-

For each information node ¢ In the Information graph, the maximum
amount of information avallable is the sensor data that weuld be received if they
had been communicated In the network. Thus associated with each node ¢ the
(mazimum) data indez set K; and the (mazimum) information set Z; are defined

as follows:
K, = {keK | (k.ST)<i} (2.4)
Z, = {(z.k)EZ | kEK;}. (2.5)

As stated before, our philosophy Is to assume that each node tries to reconstruct
the best estimate as if all sensor data are transmitted. Thus from now on the

information avallable at each node ¢ is assumed to be Z; with the data index set
K;.

The following observations are quite obvious from the definitions:
1. K, = {keK | (k,SR)<t} for all ¢ in I.

2. K;CK,, iIf i1 <i¢’. (The information of a node always includes that of

any predecessor node.)

3. K, = Lé K,;, for all s+ In I. (The information at a node Is the union of
<

that of the predecessors.)

4. K;, = U K,  for all 1 In I, where ¢’~¢ means that {’ is the immediate

§
predecessor of 1. (One needs only to consider the immediate predeces-

sors of 1 In generating the Information available to 1.)
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Since there Is a one-to-one correspondence between K and Z, a simllar set

of observations can be made for Z.
1. Z, = {Z€Z|(Z,SR)<i} forall ¢ in L
2. 2,C2Z.1f 1 <1,

3. Z,’ = U Z"I forall ¢ inl.

i<

4. 72, = U Z, forall ¢ In L

;!
1)

—t

Consider an information node :,€Ilcg. This represents the event that com-
munication from other nodes Is received. Let I be the set of immedlate predeces-
sor nodes for i, The fusion problem is to find the Information state of s, using
the Informatlon states of the nodes in I (and those of other predecessor nodes of
I, if necessary). As mentioned before, it Is important to identify the common
information In the data represented by /. This turns out to be

nK,' == U K,'r (2.6)
i€l i'eC(l)

where
c)={i'el|i'<¢ for all s€l} (2.7)

iIs the set of common predecessors for all the nodes in /. Equatlon (2.8) states
that the common information shared by the nodes In / Is the unlon of the infor-
mation of the common predecessor nodes of /. In fact, based on the observation
(4) above, C(I) can be replaced by C,,.(/) which is the maximum set in C([)
with respect to the set-inclusion partial order whereby I,<I, when I,CI, and
1,<t, for all 1 €], and s,€/,. Then the unlon needs to be taken only over the set
C ma(!), Le., equation (2.8) becomes
NK, = U K. (2.8)
i€l 1V'E€C el )
If necessary, we can regard C,.(/) as I in equation (2.8) and repeat the process
to find the common information shared by all the nodes In C, (/). This would

be used In the following sectlon to develop distributed estimation algorithms.
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2.2.2 Distributed estimation

We now consider the distributed estimation problem to illustrate the use of
the information graph. Any uncertalnty in the origins of the measurements is
ignored for the time being. The results would be useful in the next subsection

when we consider distributed multitarget tracking.

The state to be estimated Is a random vector z. The a priort probability
density (or distribution) is p(z). The observation generated by a sensor s at
time ¢ is z(¢.s). The following additional assumptions are needed:

e Both the sensor schedule K and the communication schedule C are

Independent of the state z.

e Given z and K, each element in Z Is conditionally Independent from each
other and has an absolutely continuous transitional probability from state

z 1O measurement.

The distributed estimation problem is then to compute p(z | Z;) for each i€l
From the deflnition of I, this needs only to be carried out for the sets Iz and
Icr since the only actlvities at the other nodes Involve transmission. For an
Information node in Igz, we have a traditional Bayesian update problem where
the conditional probabllity is updated using the sensor report. We are primarily
interested In a problem involving Information nodes in I,;. Suppose the infor-
mation node of Interest is i, and that the immediate predecessors of ¢, form the

set I. Then

Z"0=U Z" (29)
Vel

The objective is the computation of p(z | UlZ,-) in terms of the predecessor pro-
i€

babllitles p(z | Z;.);:<;,. Ideally, one would like to use only the probabilities

defined on 7, but as we shall see, this Is not always possible.
In the appendix, we show that

pizlUZ)=¢c TT(IT pz| N Z)"' (2.10)
f==1 =1 NeN[ JEN
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where ¢ is a normalization constant and
N»={NC{t..n} | # (N)=1i} (2.11)

is the set of all subsets of {1,..n} with { elements. In equation (2.11), # (N)
denotes the number of elements In the set N. For n==2, this ylelds the fusion

formula for two nodes:

plz |Z|)p(z IZ':)

Pz 12,12y (2.12)

plz|Z,UZ,)=c

Equation (2.11) can be interpreted as follows. Since the probabilities p(z | Z,)
and p{z | Z,) both utilize the Information contained in Z,MNZ, the division by
p(z | Z,MNZ,) Is needed to remove the common information so that it is used only
once. Equatlon (2.10) is just a general form where the probablilities from multiple
nodes are to be fused. Unfortunately, in both (2.10) and (2.12) there are still
terms Involving itntersections of the Z;'s. If all these intersections are of the form
Zj for some Information node j or empty corresponding to the common a priori
information. then equation (2.10) or (2.12) serves as a fuslon algorithm. In this
algorithm, the conditional probability at the fusion node is a product and ratio of
the conditional probabilities deflned on a set of predecessor nodes. From the

definition of the information graph, all these probabilities can be communlcated.

If there is an intersection ﬂNZj which is not equal to Z;. for some j'€l,
j€

then by (2.68) the intersection can be expressed as the union of the information of

some information nodes again. Equation (2.10) can then be applied to evaluate

the probability p(z | _ﬂNZ,» ). The process can be repeated until all the probabili~
J€

tles are elther conditloned on the Information at the Individual information nodes
or the a priori Information. For notational convenlence, we represent the a priori
Information by adding an element 14 to the set I of all the Information nodes and
let T=IUU{ig}. Then the extended information graph (I,<) Is constructed by let-
ting 1y be the immedlate predecessor of all the minimum nodes In the original

information graph (I.<). Then we have Z, =K 0. With this definition it can

be shown In the appendix that

p(z1UZ) =C JLptz|Z)" (2.13)
el el

where T</ Is a subset of T, (n(T));-Er Is some Index tuple such that a{f) Is a
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nonzero integer for each t, and C Is the normalizing constant. The set T con-
talns all the iInformation nodes which are relevant to fusion at node f,. a(1)

decides whether the Information at node i1 should be added (a(7)==1) or removed

(a(?)=1).

To illustrate the use of this algorithm, let us first consider a broadcast com-
munication pattern of Flgure 2-3. For notational simplicity, we would suppress
the type of the node in naming the node. Consider the information node (tq; .n).
We have

"QNZ(tCT.n):Z(tCR —ty.n). (2.14)

Thus, the fusion algorithm for a node n at time ¢op ls

Z(tor 8
p(z | Z(tegp.n)) = CII p(z | Z(ter i)

Zlter 4. 2.15
‘ENP(IIZ(tC,{.gd',-))P(z' (ter la.n)) ( )

where C is a normalizing constant. Each term in the product is the new infor-

mation contained in the sensor report z ({gp.1).

For the cyclic communication system shown in Figure 2-4, consider node 1
at time tcz. The immediate predecessors of the information node (tcg.1) are
(ter.1) and (i{cr.2). Equation (2.12) can thus be used to find p(z | Z(tcg.1)).
From the Informatlon graph of Figure 2-4, the common predecessors of (tcr.1)

and (¢{cr.2) consist of the two nodes (tcr 2t4.1) and (tor ty4.2). Thus
Z(ter AN Z(ter .2) = Z(tor 28 .l)UZ(t(;T ty.2), (2.18)

and equation {2.12) can be used to find the probability of the right hand side

again. From the information graph,
Z(ter - 2t4 VN Z(Ler-44.2) = Z(ter 3t . VUZ(Ler 3t4.2) (2.17)
= Z(top 3ty.1).
Thus, the algorithm gives for general + =1,2,3

plz | Z(ter 1)) p(z | Z(tep i 1))
plz | Z(ter 2t3.0)) p(z | Z(teg tg.lt £ 1))

p(z | Z(tep4)) == C

Xplz | ZUHey 3tya) (2.18)
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where [1] Is + modulo 3.

This Is in the form of equation (2.13) with five nodes In the set . Thus, in
additlon to its current conditional probability p(z | Z(tcr.1)), and p(z | Z (L7 .2)
which comes from node 2, node 1 has to store three other probabilities. Note
that p(z | Z(tcrt4.2)) Is avallable to node 1 from earlier communications. This
Indicates that in a distributed sensor network, knowing the most recent estimate
may not be sufficlent If one wants to recover the globally optimal estimate.

Our discussion above assumes the fusion algorithm for each node is pro-
vided by a system designer based on the information graph. Alternatively, we
may assume that the information graph Is known to all the DSN processing nodes
who then compute the algorithms in a distributed manner. Still another possibil-
ity Is for each message to contain a history of the nodes and times that it has
passed through. Then a fuslon node can use the historles of the messages
received to construct a partial informatfon graph so that fusion can be per-
formed. This phtlosophy would be useful for fusion when the communication
pattern 1s not fixed a priori, such as when nodes can vary thelr communiation
strateglies or have to adapt to system fallures.

2.3 FUSION IN MULTITARGET TRACKING

In this sectlon we conslder the fusion algorithm for multitarget tracking
assuming arbitary communication pattern. The algorithm is based on the theory
of multitarget tracking developed under the previous project (1] and the concept
of the information graph. In the previous project [1], the information fusion In
multitarget tracking was Investigated primarily for broadcast type communica-
tlon pattern. In thls sectlon, we treat the same subject assuming an arbitrary
communication pattern which is defined in terms of an information graph.
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2.3.1 Problem formulation

In Section 2.1 we introduced the fusion problem In general terms. We now
state it more formally in terms of an information graph. Given the communica-
tion pattern of the network, an information graph is defined. For each informa-
tion node i in the graph, there is a data index set K; and an Informatlon set or
data set Z; as deflned before. Since we are now Interested in multitarget track-
Ing, we have to deal with measurement Index sets on which tracks and
hypotheses are defined. A measurement index set J; at an information node 1 is

deflned as
J; = {(;.k)eJ | kEK;}.

The actlivities in a DSN can be represented by the expansion of the nodes in the
information graph. Two types of nodes, namely those In Ig7 and I,r, involve
only communication. For the other two types, namely the ones in Ig; and I.p,
information processing is Involved. At a node in Igs, the data received from the
local sensors are processed by each node using the GTC, producing an informa-
tion state for the node. For a node i,El.,;, messages are recelved from other
nodes in the DSN and fusion takes place. Let / be the set of Immedlate prede-
cessor nodes of i1, For any node 1 in [, assume the possible tracks T(J;) and the
possible hypotheses H(J;) are known. In addition to these, the local probabilities
of the tracks and hypotheses are also given. From the information graph, the
measurement index set for the information node ¢, Is J='_L_EJ’.I,~. The two specific
subproblems In information fusion are then the following:

e (Hypothesis formation) How should node 1, construct the possible (global)
track set T(J) and the possible (global) hypothesis set H(J) ?

e (Hypothesis evaluation) Suppose the global sets of tracks and hypotheses
are formed. How can we evaluate the probability of ecach hypothesis
using the probabilities of the predecessor nodes? Also, how should the

state distributions of the tracks be computed?

The two problems wotld now be discussed separately.
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2.3.2 Hypothesis formation

As we discussed before in Sectlon 2.1, not all local tracks and hypotheses
can be fused to form meaningful global tracks and hypotheses. Our philosophy
behind information fuslon is to reconstruct the information state ¥(Z) starting
from the Information states X(Z;). This means that two tracks can only be fused
If there exists a global track which is consistent with them. This Is also the Idea
behind the fusion of hypotheses. The following are some definitions needed to

formalize this concept.

Consider any two measurement Index sets J, and J, with J,CJ,. For each
track 7 In T(J,) the restriction of the track r on J, Is defined as N J,, l.e., the
track consisting of only those measurement indices in J,. We usually say that
the track 7 is a successor of its restriction r(J, or conversely, 7\ J, Is the prede-
cessor track of r. Similarly, for each hypothesis A in H(J,), the restriction of the

hypothesis A on J, is deflned to be
N J = {tNJ | rex}\ {8} (2.19)

le., 2 hypothesis whose tracks are those of )\ restricted to J,. The concepts of

predecessor and successor hypotheses can be defined as in tracks.

Let (J;);¢; be an arbitrary tuple of measurement index sets where [ Is an
arbitrary nonempty set. I does not have to be related to the Information graph
at all. Then any tuple (r;);¢; of tracks In I'I,T(J,-) Is sald to be fusable if there

i€

exists a track rin TY UIJ‘) such that
i€
MJ, =, (2.20)

for all s€l. 7ls a track obtalned by fusing the tracks In the tuple. Similarly any
tuple (\;);e; of hypotheses in II'H(J.-) is sald to be fusable If there exists a
1€

hypothesis \ in H( _UIJ,-) such that
i€
M=\ (2.21)

for all 1€/. Fusabllity of tracks thus means that there exists a possible global
track such that each of the local tracks represents a restriction of the global track

to the local mcasurement indices. Similarly the fusabllity of the hypotheses
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means there exists a global hypothesls such that each local hypothesis is a restric-
tion of the global hypothesis to the local measurement index set, or more
specifically, the nonempty restrictlons of the tracks in the global hypothesis are

the local hypotheses.

If the measurement index sets (J;);¢; do not intersect, fusability of tracks
and hypotheses is trivially assured. When the measurement index sets do over-
lap, we have to be concerned about the consistency In the tracks and hypotheses.
The following rather intuitive conditions for checking fusability are proved in the

appendix.

1. Any track tuple (r;);¢; In ‘HGIT(J,-) is fusable If and only if ‘
NG NG =« (W N ) (2.22)
for all (¢,.6,)€l X 1.
2. Any hypothesis tuple (\;);¢; in 'IE]IH(.I,~) is fusable if and only if
X, N = N (BN (2.23)

for all (s,,d )€l XI.

These two conditions state that a tuple of tracks (or hypotheses) Is fusable If and
only If they share common predecessors (in tracks or hypotheses) in the overlap-

ping measurement index set
T = U{J;,NJ;, | (5,.3)0€I X T such that i 71} (2.24)

To check the conditions described by (2.23) or (2.24), we need to have tracks and
hypotheses defined on the set J. In general, these are not directly avallable since

G

there may not be any information node with J as Its measurement Index set.
However, by using the decomposition algorithm of equation (2.6), we can express
the set J as the unlon of the measurement Index sets of some predecessor nodes
in the Information graph. The two fusability conditlions of equations (2.22) and
(2.23) can be further reduced to the following.
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Let i, be a communication recelving node and I be the set of all the
immediate predecessors of it. For each (i,,i,)€I X1, let T(i,.1,) be a set of infor-
mation nodes i1 such that 1 <i, and 1 <t,, l.e., thelr common predecessor nodes.

Then., we have

1. a necessary and sufficient condiilon for any track tuple (r, ),-E,GHIT(J,-)
i€

to be fusable is that, for any (¢,.s,)€l XI,
r;lﬂ Jo= T,'gn I (2.25)

for any 1€I(i,,i,), and

2. a necessary condition for any hypothesis tuple (), )ieIGH,H( J;) to be fus-
1€

able is that, for any (i,,1,)€I XI,

M [ o=, |7 (2.26)

) 9

for any 1€7(i,,1,).

In general, for any two distinct nodes ¢, and t,, thelr common predecessor
set 1(i,.f,) may not be unique. However, to use the above conditions to test the
fusabllity, we need only to consider the set of all the maximum elements in the
set {1€l|7 <i,andf <i,}, le.,, the maximum common predecessor set. Thus In
the cyclic communication example of Figure 2-4, a track from the node (igp.1)
and one from the node ({;;.2) are fusable If and only If they have the same

predecessor (or restriction) tracks in both the nodes (t¢;r -2,1) and (tor 1.2).

The test deflned by (2.25) provides a necessary and sufficient condition for
track fusabllity but equation (2.268) only provides a necessary condition for
hypothesis fusability. This Is due to the fact that a fusable tuple of tracks pro-
duces only one fused track but a fusable tuple of hypotheses may produce more
than one hypotheses. The counterexample in Figure 2-5 shows that (2.26) Is not
a sufficlent condition for the hypothesis fusablility. In this example, the two
hypotheses (\,.\,) are to be fused. The common predecessors of the nodes 1 and
2 are nodes 3 and 4. It Is obvious that X\, | J,=X\,| J, and also X\, | J,; =X\, | /.
thus satisfying the necessary condlition of (2.28) for hypothesis fusability. In fact,
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A3={Tq, 7y} )‘]:{TaUTd,Tb.Tc‘
3 1

4 2

A= {7, 74} A2 ={,TpU T, 74}

Figure 2-5: Counterexample

this Is true since both X\, and )\, are the results of fusing X\, and \,. However,

slnce
M IsNTF#EN | TN, (2.27)

the hypothesis fusabllity condition of (2.23) Is violated. This is agaln obvious
since A\, and )\, are mutually exclusive. X\, hypothesizes that r, and 74 are from
the same target whereas A\, hypothesizes that r, and r4 are from different targets.

Although it is not sufficient to determine hypothesis fusability by consider-
Ing only the predecessors of the hypotheses in the predecessor nodes, the condi-
tion (2.28) can be used to eliminate hypotheses for further consideration If they
do not have the same predecessor hypothesis in a common predecessor node.
Furthermore, the following equivalence condition, proved in the appendix, relates
hypotheslis fusability to track fusabllity.
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Hypothesis Fusability Condition. Let (J;),, be any tuple of measurement index
sets and J———_UIJ‘-. Then, any (k‘);e,GHIH(J;) Is fusable with fused hypothesis
1€ V€

A€H(J) If and only If

1. for any 7in X, there exists a fusable track tuple (r;);G,E_HI()\,- M {08}) such
€

that r=UJr;, and
i€l

2. for all s € and for all r; €X;, there exists a unlque 7in X such that r, Cr.

Condition 1 states that every track 7 In the hypothesis A\ is formed by taking the
union of the fusable tracks in the local hypotheses. Condition 2 states that every

7; belongs to a unique global track in any given global hypothesis.
Hypothesls formation thus consists of the following steps:

1. Use the necessary condition of (2.26) to reduce the candidates for fus-

able hypothesis tuples

2. Use the track fusability condition of (2.25) to further determine
hypothesls fusability

3. Exhaust all possible fusable hypothesis tuples, and for each fusable
hypothesis tuple, generate all possible fused hypotheses.

The last step Is concerned with the actual hypothesis formation and consists of a
two-level procedure. The first level performs hypothesis-to-hypothesis assocla-
tion. The second level carrles out the actual track-to-track assoclation to form

global tracks from the fusable track tuples.
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2.3.3 Hypothesis evaluation

Given the global hypotheses and global tracks constructed from the local
hypotheses and local tracks, the objective of hypothesis evaluation Is to compute
their probabilities and state distributions using the communicated local informa-
tion. In terms of the information graph, the problem is as follows. lLet
i, (L.n,CR) be a communication recelving node in I,; and I be the set of all

the immediate predecessors of 1,. Let Z:UIZ,- with K and J be the assoclated
(€

index set and measurement index set. We need to compute the probabilites of all
hypotheses. (P{A=X|Z)seny» the state distributions of the tracks,

(pe(z | Z. N1y and the expected number {K ) of undetected targets.

We make the standard assumptlions on the target and sensor models (see {I]
or {2]). In particular, the target models are assumed to the independent and
identically distributed Markov processes and the number of targets is Polsson dis-
tributed. The sensor measurements generated by sensors at different times are
conditionally independent given the target state. In addition to these, we also
make the special assumption that the target state is either static or bidirection-
ally deterministic (which makes it equivalent to a static process). This assump-
tion is needed to make the algorithm more implementable. Later in thls section,
we would briefly discuss how this assumption can be relaxed. The target state is
in a hybrid variable with a continuous part to model geolocation type variables
and a discrete part to model classification type information. For convenlence, we
define a hybrid measure p on the state space to be the direct product of a con-
tinuous measure and a discrete measure. Then any integral with respect to this

hybrid measure 1s a sum of integrals over the continuous part of the state space.

With these assumptions, the following hypothesls evaluation results are
derived In the appendix. Let (7.,a) be the pair which satisfles the condition (2.13)
of Section 2.2.2. Suppose for each i€, the probability p(\| Z-)} for each
hypothesis X in H(J;). the track state distribution p(z |Z|—.T) for each track r in
T(J;), and 1 K;). the expected number of undetected targets are all known. Then
for every hypothesis AéH(J), the probability of the hypothesis being true is given
by
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PUAL=XZ)=C ' TLPO )| Z)"T T1 L(riZzey)  (2:28)
el €(N]| J)
where C is a normalization constant, and
LiriZoyer) = [ I b (= | Z:.0 )t (2.29)

is the likelihood of the global track r. The expected number of undetected tar-

gets Is given by

wK) = LOZ)er) = [ I btz | 7.0 ucde) (2.30)
where
p(z | Zr=p(z | Zr. K", (2.31)
1 ir N JS=»0
€r(n) = {0 otherwise (2.32)
The state distribution of the track r can be updated by
pzinZ)=c ' Ilrt | (r1 ), 20 (2.33)

where ¢ is a normalization constant.

We note first of all that hypothesis evaluation depends only on the statis-
tics at the information nodes in the set I. This is the same set used in distri-
buted estimation and represents the nodes which are relevant for fusion. The
function a determines whether the information at a node should be added or sub-
stracted. The hypothesls evaluation formula of (2.28) has a two-level structure.
At the higher level, the product of the local hypothesis probabillities evaluates the
probability of assoclating the given set of local hypotheses. The next level con-
sists of the likelihoods of the individual tracks.

Each L(r.(Z;);c7) Is a track-to-track assoclation likelthood, l.e., the likell-
hood of associating all the tracks in the local track tuple (r(J;);.r with one tar-
get represented by the global track 7 which is thelr union. Its evaluation depends
on the state distributions of the local tracks. If the tracks have simllar state
descriptions then the integrand in equation (2.29) will be large, thus resulting In a
high likelihood. On the other hand, If the local tracks have state descriptions
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which are very different, the Integrand in (2.29) will be small, resulting In a low
likelihood. In equatlon (2.29), the function p(z | Z;.7) Is identical to p(zr | Z;.7),
the state distribution for track r, when the track r has a nonempty restriction at
the node 1. When this is not the case, L.e., the track r has not been detected yet
at t, the function p Is scaled by the expected number of undetected targets and
is no longer a probabllity distribution. It represents some kind of density for

undetected targets.

Equation (2.30) computes the expected number of undetected targets by
fusing the local track state distributions of the undetected targets. Equation
(2.33) is the fusion formula for the global track state distribution. Note that it
has the same form as (2.13). This is not at all surprising since given a particular
track, computing the state distribution of the target is the usual estimation prob-
lem. Thus the fusion algorithm for distribution estimation Is an integral part of

fusion for multitarget tracking.

2.4 CONCLUSION

In this section, we have described the results of our research on information
fusion for multitarget tracking. We have identified two main problems in infor-
mation fuslion assuming arbitrary communication. The first is how to generate
meaningful tracks and hypotheses starting from a set of local tracks and
hypotheses. The second is how to compute the statistics on these tracks and
hypotheses when the local quantities may contain common Information due to

past communication.

We have developed an abstract model of the DSN in terms of the informa-
tion graph. Using this graph, algorithms for Information fusion have been
developed. The two problems of hypothesis formation and evaluation all require
keeping around historles of the tracks and hypotheses in the system. Using thls
history, the fusablility of tracks and hypotheses can be determined. At the same
time, any common information shared by their statistics can be Identifled so that
it would not be double-counted. When speclalized to broadcast communlcation,
we can show that the general fuslon algorithms for arbitrary communication

reduce to those developed In the previous project.
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The hypothesis formation algorithms for fuslon do not depend on the target
models. For hypothesis evaluation, we have assumed that the targets are static
or that their motions may be approximated by "deterministic” process models.
When the target models are assumed to be general Markov processes, the
hypothesis evaluatlon algorithms have the same form as in (2.28) to (2.33). How-
ever, the state of a track would have to be a trajectory sampled at various times
and computing its probability distribution would be difficult. Thus the difficulty
of extending the results to treat general Markov models is more related to imple-
mentation Issues. On the other hand, as long as the target motion is falrly regu-

lar, the deterministic process models we have assumed may be quite adequate.
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3. TRACKING AND CLASSIFYING STRUCTURED TARGETS

This section covers our algorithm development efforts on so-cailed struc-
tured targets as discussed in the proposal. The treatment of dissimilar sensors is

related to this task and is partially discussed in this section.

3.1 INTRODUCTION

By structured targets, we may mean two different concepts in multitarget

tracking:

(1) targets with structured states, and

(2} structured sets of targets.

Since each individual target may be represented on an individual target space,
the above concept (2) is one-level higher than (1). In a model based on the above
concept (1), targets are still treated as individual objects although correlation
among them can be considered and targets may be governed by a common state
as a group of targets. This kind of models is necessary, when a multilevel
identification process for each target Is used or when a target has structured
features. Such issues are related tc the problem of treating dissimilar sensors
which generate measurements corresponding to different levels of the strucrured

target state sapace

On the other hand, the concept (2) is essentlal when targets are In fact
organized and structured in units at varlous levels. A vypleal example can be
found in military units such as army — division - regiment — battalion -+ com-
pany. ete., in the military hierarchy. In such a case, the number of targets is
typically very large and. if they are treated as independent objects, we may not
be able to assess a global sltuation based ou the outputs from any reasonably

Ffunetioning target tracking system, ‘This Is g0 beeause, sinee grouped tarpots o

3-1




usually closely spaced, the data-to-data assocfation {or scan-to-scan correlation;
may become very difficult with limited computational resources. This difficulty
may be overcome only when the unit structure of targets is understood and taken
into account In a tracking system. Moreover, the global assessment of all the

targets as a single structured object Is Itself an important task in many applica-

tions.

Al least at ithe conceptual level, there is no difficulty in treating targets
with structured states and dissimilar sensors in the sense that the general theory
of multitarget tracking already developed through this project provides an
integrated treatment of these subjects. Therefore, In the following subsections,
we will mostly discuss structured sets of targets. Our emphasis is the develop-
ment of a general theory upon which we may produce effective algorithms in
many different applications. This should serve also as a basis for developing dis-
tributed aigorithms. Sectlon 3.2 discusses the different and the common aspects
of the two different concepts, (1) and (2). In Sections 3.3 and 3.4, we will present
our first-cut analysis on structured sets of targets. An algorithm is derived for
two-level structured targets, t.e., tracking groups of targets. The future direction
of our algorithm development effort will be discussed in the concluding section

3.5.

3.2 STRUCTURED TARGETS

As mentlonea before, structured targets may connote two different con-

cepts, each of which is discussed in the following two subsection.

3.2.1 Targets with Structured States

A typical example of a target with a structured state space may be seen in
an ocean survelllance problem in which target classiflication is included in the
tracking task. In such a case, cach target ¢ may be represented by state (r,",f,“");
r” is the continuous part representing its geolocation attributes such as position,
veloceity, ete. r,“ Is the diserete component for its elasstfleation.  The space for

component f," is structured and Is typleally represented by means of an
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arborescent (tree-like) ordered set of nodes with different levels. A typlcal set of
such levels conslsts of motion group — nationallty — category — type — class —
Identiftcation, as lllustrated in Figure 3-1. In Flgure 3-1, the classification tree is
only partially shown and there are presumably many subtrees which are not
shown. The a priort and a posterior: probabllity distributions on a classification
tree arc those on terminal nodes. The probabllity of an intermediate node n can
be defined as the sum of all the terminal nodes which are successors of n. For
any level { In the classification tree, there Is a unique predecessor node given a
terminal node. Therefore it Is very straightforward to treat sensors with meas-
urements at different levels. Namely each sensor observing level | nodes in the
target state tree can be characterized by two transitions, l.e., one from a terminal
node to a node at level | and the other from a node level { to a measurement.
The first one is always with probabllity one while the second can be specified by

the sensor characteristics.

Therefore there is no theoretical difficulty to treat targets with structured
states and dissimilar sensors with measurement at different levels. In practice,
however, classification trees such as the one illustrated in Figure 3-1, may be
very complicated and the number of terminal nodes may be simply too many to
handle In a straightforward way. In such a case, we need additional tools to
effectively store and update the probability distributions on the entire terminal
nodes. In [3] and {4], a set of procedures to solve such problems is shown by
means of an example of ocean surveillance. Many of hypothesls management
procedures devised for controlling data-to-data hypotheses (e.g., those described
in {3] and being developed in the current project) can be extended to provide use-
fui tools, e.g., hvpothesis pruning, hypothesis combining and clustering. Further-
more effective representation of probability distributions must be developed ir
order for such management systems to work effectively. ¥or example, track state
distributions of tracks may have different representations depending on their
status. Distributed processing on different levels may also be an effective pro-
cedure. For such a procedure. the theory on the distributed multitarget tracking

desceribed in earlier seetions is direetiy applicable.

As seen In Flgure 3-1, in some classifieation trees, all the terminal nodes are
the fdentifl atlon (namet of each target, In other words, the fdentifteation of cach

targe! is kncewn o oa prionr o and the ultimate goal of cnch elassiffeation gt
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determine each ldentification.  This indicates that targets are in theory oot
independent from each other. For example, suppose it s known that there are
only two types of targets, A and B, and that there are 10 type-A targets and 5
tvpe-B targets. Then any hypothesis indicating more than 10 type-A targets is
impossible and, if a hypothesis has fifteen tracks five of which are classified as
type B, the remalning ten tracks must originate from type-A targets. However,
in many cases, tracking and classification of targets can be performed quite
effectively with independence assumptions and some external manipulation to
take care of the dependence among targets. On the other hand, If the total
number of targets of interest is small and ecach of them is identified a priort, the
problem formulation based on targets with a prior: identification, i.e., an algo-
rithm with a prior: tracks and hypotheses, may be more appropriate than that

based on targets without a priori identification.

3.2.2 Structured Sets of Targets

A typical exampie of a structured set of targets is shown in Figure 3-2 in
which a dlvision In an army Is shown in a simplified way. Depending on the type
of the division, the composition and the number of subordinates, i.e., battalions
have a certain pattern. The same kind of dependence Is also present in the rela-
tionship between the subsequently lower levels. This kind of structure produces
another dimension to the multitarget tracking problems. There arc only very few
theoreticai results on tracking and classification of structured sets of targets.
Beslides a few documents referred in (5], we can only refer 1o a couple of techniea!l
references. 16! and [7], both of which are concerned with two-level tracking, i.c..
tracking of groups of targets, but treat lssues pertaining multiple groups in a
rather ambiguous manner. On the other hand, Al (Artificial Intelligenee) -ty pe
approaches were used in much more complicated environments in [8] and {9
which are concerned with ocean surveillance and battlefleld unit identification,
respectively {8) uses a single-hypothesis  propagation combined with 2
backtracking-like recovery scheme while (9] adopts a multi-hy pothesis approach.
The systems deseribed in {®] and [9] may be viewed as hierarchical systems which
may bhe illustrated as in Figure 3-3. The procedurcs represented by upward
arrows are often called bottom-up or induction processes and those represented by

downward arrows top down or deduction processes.
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While the decomposition illustrated by Flgure 3-3 is certainly a key to suc-
cessful implementation of the systems described in (8] and [9], each hypothesis
evaluation cannot be performed independently in general. For example, in track-

ing groups of targets, we must hypothesize possible group formation from input

data while, at the same time, the states as a group must be determined and then
the estimation of the states affects the evaluation of lower level hypotheses. Even
if the bottom-up/top-down updating is clearly defined, iterations may be neces-
sary for such processes to converge. Moreover, in some cases, a simple bottom-up
type process may easily be overwhelmed by combinatorics. Therefore, at least
for the few lower levels, we may need an Integrated approach rather than a
decomposition approach taken in [8] and [9]. In the subsequent subsections, we
will try to establish a first-cut analysis which treats the whole structure of targets

in an Integrated manner.

3.3 PROBLEM FORMULATION

This subsection deflnes a formalism for the tracking of structured sets of
targets with an arbitrary number of levels. As a first-cut analysis, we will pro-

pose a rather simplistic view.

3.3.1 A Model for Structured Sets of Targets

When we focus on each node in Figure 3-2 and its Immedlate successors
rather than the whole picture, we notice the tree is composed of building blocks
each of which has the same structure. Such a building block can be identified
with a structure of a state representing a group of targets, as shown in Figure 3-
4a. In tracking and classifying a group of targets, the totality of targets can be
represented by (1) {level 1] the total number of targets plus a common target
state component for the group, and (2) [level 0] the states of individual targets.
(1) is one-level higher than (2) since (2) cannot be deflned unless the number of
targets Is given by {1). This structure can be extended to the cases where multl-
ple groups of targets are present. Such a case may be represented by a tree
which may be illustrated in FKFilgure 3-4b. Each level of nodes in Figure 3-4b

represents: (1) [level 2] the total number of groups plus a common state
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Figure 3-4: Single-l.eval and Two-Level Targets




component for all the groups, (2) [level 1] the states of individual groups includ-
Ing, for each group, the number of targets in the group and a common state com-
ponent for all the targets in the group, and (3) {level 0] the states of individual

targets In each group.

This approach can be extended to an arbitrary level { of structures. We
! call such a structure a level-l target structure or simply a level-l target. As seen
in Figure 3-4, when a tree represents a level-/ target structure, the nodes in the
tree can be labeled as level 0, level 1, ...... ., level . There Is always only one node
at the highest level, Le., level {. The nodes at the lowest level, l.e., level 0,
represents the set of all the targets which we may call level-0 targets. In a formal
description, we define a level-l’ state for a level-l’ larget ¢ as

[l II Il [I_‘ (Il‘_‘
" = (N0 Y 'z:‘N."")) (3.1)

where N;!!" Is the number of the level-(i’-1) targets in the level-1’ target i, z,\!"

is the state component common to all the level-(/’—1) targets contained in level-{’
target ¢, and each z.-}""” is the state of the j-th level-({’—1) target. Unless I'=1

H. in (3.1), every z,-}‘”‘” is defined similarly with !’ being replaced by {’~1. When
' 1'=l, there }s no need to use index ¢ in (3.1). Each level-/’ target when {'<! Is

therefore indexed as

1= (il—l' ..... 'il') . (3.2)

According to an alternative view of this approach, we are first given a set of
targets, then a partition of the targets into multiple groups, then a partition of
the groups Into multiple super-groups, and so forth. In other words, a level-{’
target is an element of a partition of the set of all the level-({’—1) targets. The
partition is a trivial one when [’={. In typical battlefleld units as shown In Fig-
ure 3-5, each unit has its headquarter (division command post (DCP), regiment
headquarter (RH), battalion headquarter (BH), etc.) besides its subordinates (R =

a regiment, B = a battalion, C = a company, etc.). These headquarters may be

considered either (1) as a part of the common state of each level-l’ target or (2)
as special targets which do not have any subordinate. When we adopt the latter
! consideration, we may simply extend each headquarter node to the lowest level,
l.e., level 0. As mentioned before, as a flrst-cut analysis, we fgnore such prob-
lems. There will be no problem In rectifying the formulation to treat headquar-

ters In appropriate ways In the future.
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3.3.2 Sensor Models and Multi-Level Tracks and Hypotheses

We can extend our target-sensor model for multitarget tracking from
single-level cases to multi-level cases in a rather straightforward way as follows:
Let S be a finite set of sensors which observe the targets. For each sensor s, the
measurement value space Y, in which measurements from sensor s take values is
assumed to be a hybrid space. Each output from sensor s is a dala sel

(Yyereene Ym .m .0 .8) which is an element of

U U (Y™ x{m } X [te.00) X {5 }

m=0 s €S

and represents m measurements, y,,......y, ,» generated by sensor s at time t. (¢,
is the time before which no sensor outputs any data set.} A collection of data sets
available up to a certain time is called a cumulative data set. We assume that all

the data sets are indexed by positive integers as z(1),z(2)....... . where

Ny k)
2(k) = ((y;(k); 2 Nyg ()t 8 ) (3.3)
for each positive & such that ¢, <t,. whenever k <k’. A cumulative measurement

set up to k is defined as

k
JE — kpl {1 Ny (B} x{k'} (3.4)

For the sake of simplicity, we assume that possible origins of measurements
in any data set are only level-O targets. Let Iy be the set of level-O0 target
Indices. For each data set k, we assume an asstignment function A, defined on a
subset of the level-O target index set [ taking values in J(k) 2 {1...Ny(k)}.
When j =A,(t_,......t,). we say level-0 target (i,_,, ..., 1,) Is detected by sensor
s, at time ., and generates the j-th measurement, or the j-th measurement ori-
ginates from level-O target (3;_,, ..., t,). With the no-split/no-merged measure-
ment assumption, such an A, Is a well-defined one-to-one function. Then, given
a cumulative data sct, we can define the trace of a level-I’ target in it in the form
of a subset of the cumulative measurement index or a collection of such subsets
at the given level. We call any possible realizatlon of such a trace a leveli’
track. Thus a subset of the measurement index set Is a level-0 track if it contains
at most one measurement index set for each data set. A level-l’ track Is a collee-

tion of nonoverlapping level-(I'-1) tracks. A level-l' hypothesis 1s then a
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collection of nonoverlapping nonempty level-1’ tracks and hypothesizes all the set
of measurements originating from level-1/ targets. According to this definition, a
level-1 track Is also a level-0 hypothesis, and vice versa, although Its Interpreta-

tion as a track Is completely different from that as a hypothesis.

Multi-level hypotheses defined above may be illustrated in Figure 3-6 in
which I-=3 and a level-2 hypothesis Is represented by a tree depicted by solid
lines. In Figure 3-8, the level-2 hypothesis consists of two level-2 tracks each of
which hypothesizes a group of detected groups of targets, {{r,.r.}.{r,.7,}} or
{{7.}.{rs.7=}}, where 7, to 7, are level-0 tracks each of which hypothesizes a
detected fevel-0 target. Given such a hypothesis, we must further hypothesize
the existence of undetected targets and the overall structure, as shown in Figure
3-8 by broken lines. The process to group given level-O tracks 7, to 7. in a level-0
hypothesis into a level-1 hypothesis and then into a level-2 hypothesis can be
viewed as a bottom-up procedure. While the process to add hidden targets and to
complete the overall structure can be viewed as a top-down procedure. The
evaluation of hypotheses may not be, however, decomposed in such a manner.
The discussion of hypothesis evaluation in a general level-l case may be very
complicated. Therefore. in the following sections, we will restrict ourselves to the

cases where [ =2, i.e., where tracking of multiple groups of targets is concerned.

Remark: In the above discussion, we only considered the cases where each
measurement from each sensor is based on a level-0 target. The definitions of
tracks and the hypotheses may be altered so that measurements from different
levels may be treated. At this moment, however, the exact form of the appropri-

ate modification is not very clear.

3.4 EVALUATION OF TWO-LEVEL HYPOTHESES

In this subsection, we will extend our general theory of multitarget tracking
from single-ievel cases to two-level cases, l.e., tracking multiple groups of targets.
The issues pertaining to implementation will be briefly discussed in terms of an

example.
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3.4.1 Two-Level Multitarget Tracking

When the target structure level Is two, l.e., { =2, the overall target state

can be written as

7 = (Ng.ZgZyueeennZy,,) (3.5)

where N; Is the total number of groups, z, Is the state component common to all
the groups. and each z, is the 1-th group's individual state. Each z; is therefore

in form of
z; = (N,~,I,A0,z,~,,.‘...,z,~Nl) (3.6)

where N; is the number of (level-0) targets in group 1, z;, is the state component
common to all the targets in group ¢, and z;; Is the individual states of the j-th

target In group i. Let the level-1 target index set be I;={1....Ns;} and the
Ng

level-0 track index set be U {i}X{1....N;}. Then the trace of level-0 target
1 =1

(1,.1,). Le.. the i,th target in the i ,-th group, In a cumulative data set up to k is
TO% 40) = {(F.6") ] §=Ap(8, i1 <k'<k} . (3.7)
The trace of level-1 target ¢, is then
T (1,) = {Tds i) [ 1<io<N; } . (3.8)
Then a level-0 hypothesls Is a possible realization of
A = (T i) | T 8 0)7#0.(5 i )E T } (3.9)
and a level-1 hypothesis is a possible realization of
AV = TG | TG )#{0)e €l ) . (3.10)

We can extend the concept of {arget-to-track hypothesis from single-level tracking
to two-level tracking as follows: A level-1 target-to-track hypothesis s a possible

realization of a one-to-one random function from A{" to I; defined by
V(T M) = o (3.11)

and a level-0 target-to-track hypothesis \s a possible realization of a one-to-one
function from T,''(¢) to {1....N;} (given T,'"(i)) defined by
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Q8 Tk(m‘,i|vi());Tk(l)(i|)) =1, . {3.12)

As in the theory of single-level multitarget tracking, whenever we must distin-

guish a realization of A{'" from that of 01{'’, we call the former data-to-data

hypothests.

3.4.2 General Results

We will derive a recursive formula for calculating each level-1 hypothesis.
The results are an extension of the single-level tracking results. For the rest of
this section, we make the standard set of assumptions: (1) Targets are inter-
changeable a priort. (2) The data sets are conditionally independent given the
target states. (3) The assignment functions are totally random. The first step ls

a stralghtforward recursive formula

PZO AN 2 VAN

(1) (k -1}
P(z®) |z vy P ZE Y (3.13)

P(Ak(”E Zlk)) —

The numerater on the RHS of (3.13) can be expanded In a way similar to that
used for the single-level tracking (as described in [1] and {2]) and yields

P(AM 271
P(Zlk )’ Zlk*l))

PAM Z%) = (3.14)
(NG —# (A

P(N; A“).Z‘k n)
No=# ot (Ng —# (A)) o [ A

5 an.'“’f:-# o
Lk

r T P(}V(r' l N('v 'Qli”d\/i”.Z‘k l}) Ilk(z(k 3 l /"k“\v(i ,Z,k H)
Noexi N e # 0) LA

where

N = (N;.N,.....Ny,) (3.15)

and

NI."‘ (k )!

W (3.16)

Ly (z(k)A N | 25 )
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Pl (k)| 2(4 WNC) Pldet ) | NC 2% V)
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and P(N; | A{".Z'*") can be derived in a similar way.

3.4.3 LI.D.-Poisson Groups

In single-level tracking, an approprlate set of Independence assumptlons
enables us to reduce a general form into a more implementable form. We will
repeat such a process for two-level multitarget tracking. The additlonal assump-
tlons are as follows:

[1] Given the number N, of groups, the group states tuple (z; );N;’l is a sys-
tem of independent Markov processes which share common joint pro-
babilitites. Thus the state component z, common to all the groups is
ignored. ‘The number N; of groups has a P isson distribution with

inean v,

[2) Each z, =(z;0.2,......2;x, ), glven N, Is a stochastic process such that

N
(z,,);~, 18 a system of Interchangeable Markov processcs.

[3] The detection Is target-wise independent, l.e., the detection of target

{1, 1,) depends only (z, (.z; ;) and we have
Plpr(k) |z (4 Ny = (3.17)

I Pn (zn.n-:i,n,,! k)é('l"")(l - l’l)(zi,u'fili,,| k ))' BRGINY

ey

with a common detrclion probability function p),.

(4] Measurement errors are also target-wise tndependent, Le., the vahie of

a measurement originating frotn a target (1,.4,) Is correlated only to
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(Z, 02, i) The number of false alarms and their values are indepen-

dent of the targets and from data set to data set. Thus we have
PNy (k) Ipp (k)2 (4 )Ny == py, (Npg(k)—# (Ipp (k) | k) (3.18)

and

N,k N
Py (k0520 | A Ny (k) (4 )N ) = (3.19)

{ .. (k . I (), ] . . k
“]J_O)GII;IOM‘A‘[)PM‘.yAk(:,.u(.)( )Iz.,o(tk)x‘,.o(k)k))(je}r{mp“(y,(k)l )

with a number-of-false-alarm probability function py,, , a target-state-

to-measurement transition probability density function p,,, and a false-

alarm-value probability density function py, .

Under these assumptions, we can derive results which are very analogous to
those in single-level tracking (described in [1] and [2]) and are summarized as fol-

lows: (1) Given a level-1 target-to-track hypothesis, the posterlor distributions of
N,

the group states (z;);.f, are independent, (2) the posterior distribution of

undetected groups becomes Poisson, and (3) the hypothesis evaluation can be

reduced to the evaluation of level-1 track-to-measurement likelihood as

P(Igl—)l | Z(k)”) exp(vg ~vg )

P(A") 2% = P(ZF [ 2% D) Ny(k) (3.20)
Leg T1 L(p{r|k}| 25"
eaf"
where [y, s the false alarm likelihood,
y{rlk} = {y; (k)] (5.k)eUr} (3.21)

Is the set of measurcments assigned to level-1 track 7 and L(-|Z'% ") is the
level-1 track-to-measurement likelthood. The forms of the above likelthood fune-
tlons are very simiiar to that of the hypothesis evaluation formula for the single-

level tracking of dependent targets.
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3.4.4 An Example

A straight forward extension of single-level tracking to two-level tracking is
possible using the results shown in the previous two subsections. In two-level
tracking, however, the combinatorial problem Is even more severe, which may
make a straightforward extension of single-level trackers infeasible in many appli-
cations. For this reason, we may have to develop new techniques for overcoming
the additional combinatorial burden inherent to two-level tracking. In this sub-

section, we will discuss this aspect of the problem in terms of a simple example.

We conslder tracking of groups of ground vehicles moving on a road net-
work. By a two-step transformations to take care of (1) the route selection by
each group and (2) the curvature of each road segment, the problem can be
reduced to that of tracking groups of targets moving on a straight line. Let u, be
the 1-dimenslonal position of the lead vehicle of the i-th group and v; be its velo-
c¢ity. Then the position and the velocity of the j-th vehicle in group ¢ can be

modeled as
u; =u —(7-De;yp + &5 (3.22)
and

V; = 4 + iy (323)

where ¢; v; is the expected distance between two vehicles in group ¢, §,; and 7,;
represent randomness in position and velocity of each vehicle in the group. We
assume that the randomness can be modeled by independent gaussian random
variables. The group dynamics are then assumed to be a simple almost constant
velocity model with an appropriate white gaussian driving noise. ‘Thus we may
have a very simple target model in which the state component common to all the

targets in group 1t is

Trg == (U;.v;.0;) (3.21)

where a; Is a discrete variable representing the type of group 1. The individual

target state of the j-th target in group ¢ Is then simply its type a,;.
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For each possible type of group, we assume that we have a sufficient
number of templates of the group including composition of different types of vehi-

cles and thelr order when moving on the road. Each template can be represented

by

£ = (a,N,b,,....,bN) (325)

where a Is the type of a group, N is the number of vehicles in the group and b,
is the type of the i-th vehicle in the group. Therefore the level-1 track distribu-
tion, l.e.. the group state distribution, Is a distribution on (-00.00)*X E, where E

is the set of all the templates. In general, we may assume at least In an approxi-

mated sense the Iindependence of motion from the type component as
P (du .dv ,de )=P (du .dv )P (de ).

When a data set is received from a sensor, each group hypothesis is given a
set of measurements which may be associated to it. Then the set of measure-
ments is ordered linearly and, for each template, the level-1 track-to-
measurement likelihood is calculated after template-to-measurement matching as
shown in Figure 3-7. In such a process, we must use a very effective method for
determining a likely level-1 track-to-measurement assignment. For example, for
each template, we first estimate the most probable distance between targets
based on the velocity estimate and then spread the vehicles in the template
accordingly. Then, by an effective assignment algorithm, we can find a feasible
assighment between the given set of measurements and the vehicles In the tem-
plate. After determining the assingment, we can calculate the level-1 track-to-

measurement. likellhood.

3.4.5 Distributed Hypothesis Formation and Evaluation

As shown earller in this report, distributed hypothesis formation is a pro-
cess of creating a loglcally consistent set of hypotheses from a collection of loecal
sets of hypotheses. This process amounts to the consistency checking on the
overlapped pleces of information in the past. It Is also determined purely by the
definitions of tracks and hypotheses and Independent of their probabllistic
nature. Therefore it Is expected that we may extend the single-level tracking

results to the two-level or In general level-f tracking cases. The results may be g
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Figure 3-7: Template-to-Measurement Matching
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similar type of consistency checking on the predecessors of tracks and hypotheses.
However, although the final results are falrly simple in single-level tracking cases,
complicated steps were necessary to derive implementable results. It Is hence
expected that the logical arguments involved in two-level tracks and hypotheses

may well be very complicated.

On the other hand, distributed hypothesis evaluation involves the distri-
buted estimation and is highly dependent on the structure of the global
hypothesis evaluation formula. In the single-level tracking cases (with the lL.i.d.
Poisson assumption), as shown In the appendix, the hypothesis evaluation equa-
tion is, In essence, a product of track likellhoods and each track likelihood is an
integration of a product of state-to-measurement transition probability densities.
Thus each track likelihood can be decomposed using distributed estimation
theory. In two-level tracking cases, however, the level-1 track-to-measurement
likelihood involves summation over many possible numbers of targets in each
group, which may cause difficulty In decomposing the track likelihood into the
independent components. We may well need a kind of aggregation of tracks and
hypotheses in order to produce a workable algorithm for distributed hypothesis
evaluation for the two-level tracking. The dynamic behavior of groups may also

complicate the discussions.

3.5 CONCLUSION

A first-cut analysis on multitarget tracking concerning structured targets
were discussed in this section. The discussions in this section are summarized as
follows: (1)} The treatment of targets with structured state spaces is at least
theoretically straightforward. (2} The treatment of such targets in practice may,
however. need several additional consideration and more aggressive hypothesis
management strategies. (3) The same arguments as in (1) and (2) are also valid
when dissimilar sensors with measurements at different levels are concerned. (4)
Structured sets of targets may be treated In an integrated form and concepts of
tracks and hypotheses can be extended from the single-level cases In a straight-
forward way. (5) Two-level multitarget tracking hypothesis cvaluation can be
done by extending the single-level tracking results. (8) Practieal methods for

impiementing two-level hyvpothesis  evaluation needs  however  further
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investigation. (7) Distributed hypothesis formatlon and evaluation for two-level
tracks and hypotheses may be possible by extending the single-level results but
we need more time to clear this problem. The future efforts pertaining to the
toples covered in this section may include: (1) eflective implementation of single-
level tracking with correlation among targets, (2) Implementation of two-level
multitarget tracking algorithms, and (3) development of distributed level-1

hypothesis formation/evaluation algorithms,
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4. TOWARD A DSN DESIGN TESTBED

In this sectlon we describe an architecture for a general testbed environ-
ment within which a DSN sytem may be designed, prototyped, and its perfor-
mance capabillities tested on a simulation of the task domain. The major aspects
of this architecture, called Schemer, have been implemented and used for the
development of distributed systems similar to that of a DSN [1}. Judging from
the success we have had with early versions of Schemer for distributed system
development support we belleve that a complete Schemer system can provide a
development environment within which the structure of a DSN system can be
evolved and the performance abilities of alternative techniques for sensor and
other forms of Information processing (such as the Bayestan tracking and
classification algorithm belng Investigated in this project) can be "empirically”
evaluated. Moreover, since Schemer Is an extension of techniques for Al expert
system construction, it also provides direct support for augmenting non-Al
approaches to signal processing, Information fusion (both slgnal and message
level), resource allocation, control, etc. by combining these non-Al alogorithms
with powerful Al heuristic methods for problem solving, planning, and other

forms of intelligent reasoning.

Before going Into detalls, iet us glve an overview of some of the important
assumptions and concepts that underlie the approach being taken with Schemer.
The Schemer based approach to be described In more detali below capitalizes on
the notion that a distributed system like a2 DSN may be viewed as a kind of dis-
tributed decision making (DDM) system. That is, each node (an individual pro-
cessing element) in a DSN system may be viewed as a more or less independent
“decision maker” reaching conclusions on the basis of Its own privately acquired
information and information shared with other nodes in the overall system. This
"cognitive' top level view Is consistent with other work we have done using Sche-
mer as the basis of a distributed system model [11]. In general then the Schemer
system must provide a context within which to model all the following aspects of

DSN system structure and function, as well as the target task domatn:

4-1




1. The event stream of the task domaln to which the overall system s
exposed, and the part of that overall event space to which each node in
the distributed system will be indlvidually exposed;

2. The structural relations that obtain among the nodes of the DSN sys-
tem, including the communication relations among the nodes and the
authority or control relations among these same nodes; and

3. The performance and declision making abilities of each node;

4. The criteria according to which system performance should be judged,
including specification of the global "goals” and task requirements of the
DSN system and other performance criteria that constrain how these

global goals should be met.

More should be sald about the metaphor of each DSN node as a participat-
ing decision maker in the overall distributed system. The technology of Al
Ezpert System (AI/ES) constructlon has evolved precisely in response to the
need to provide computational models that incorporate expertise for performance
and decision making in some task domain. In this sense each node of the DSN
system can be thought of as a participating ES armed with its own local expertise
for carrying out its particular functions in the network and for cooperating with
other nodes with which this node can be In contact. Furthermore, this viewpoint
exposes the importance of the idea that we should where possible incorporate
avallable human expertise Iin the capabllities of a DSN node to augment other
non-Al methods like GTC. Thus, the metaphor of a DSN as a network of deci-
sion making participants leads to the view of a DSN as a cooperative distributed

expert system.

The central principles of the Schemer design to be presented below derive
from the need to provide a testbed environment in which to explore new
approaches to the design of knowledge based Expert Systems (ESs). The various
alternative ES architectures that have been developed by the Al community pro-
vide suitable computational models of human expertise for performance and deci-
slon making in a wide range of domalns {12]. Schemer therefore is intended to
provide a framework for constructing a system out of some combinuation of these
Al architectural techniques In combination with non-Al capabilities.  Further-
more, the basle Schemer framework has been developed with an eye toward con-

struction of distributed Frpert System networks.
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In the following discussion we will briefly sketch the requirements on
testbed design, and then present our ideas for an architecture Intended to meet
these requirements. As noted above, thls architecture can be viewed as a kind of
framework for designing and protoyping distributed, cooperative expert systems

that can be configured for a wide range of application domains.

4.1 REQUIREMENTS FOR A DESIGN TESTBED

The primary categories of actlvities that require support are DSN system
design development, rapid prototyping of the DSN design, and prototype evalua-
tion. Let us briefly review these activities and the requirements that each

tmposes on a system intended to support a designer engaged in each of them.

The support of design development involves two principal issues. One of
these is support for specifying some candidate design for the DSN system. The
other Is the specification of the tasks to be performed by the DSN system and its

constituent elements and a task environment in which the system will operate.

As noted above, we view the problem of specifying a DSN systemn design as
essentlally the same as that of constructing a model of a distributed expert sys-
tem. To review this claim, the designer models the individual elements or parti-
cipants in the DSN network by defining each as a particular expert system struc-
ture. Thus, each expert system Is constructed to "model” the decision making
and other capabilities that a DSN node must be able to provide in response to
specific task conditions that may arise as the entire system performs its overall
activities. The designer's speclifications for the capabilities required of an element

are modeled as the expertise of the expert system representing that DSN element.

In addition to modeling the elements of the system, the designer must also
model the relationships that obtain among these elements. The principal types of
relations among system elements that must be modeled are the communication
relations and the control (l.e., authority) relations that exist among nodes. There
are various approaches being developed by the Al community for modeling com-

munication and control relations in a distributed system of (potentially)
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intelligent agents. In other work completed at Al&DS [10), we have reviewed
some of the major Issues that must be addressed In dealing with these problems
of distributed system communicatlon and control. Schemer's distributed Al/ES
approach Is, prima facle, an excellent path modelling such applications such as a
DSN. However, we note as we did earller that the modeling capablities of a
design support environment should also support the modeling of other "unintelli-

gent” types of system elements (e.g., a remote sensor or senor system).

The task context In which the DSN system operates must be modeled if the
designer Is to expllclitly consider the relationship between candidate design and
that task context. In order to support the DSN system designer in specifying the
task requirements and task environment the DSN design testbed must contain
tools for modeling the objects and events to be encountered by the DSN system
as it performs its tasks, and also descriptions of the performance expected of the
DSN system f{tself. The design testbed must provide a means of expressing
scenarios and event streams that can be fed to the DSN system model for simula-

tion, the next major capability to be provided in the design testbed.

Therefore, using the expert system model of a DSN system for simulation is
the approach we propose for prototyping a candidate design. Furthermore, in
order to promote rapid prototyping, it is desirable to allow the designer to con-
duct simulations while aspects of the total system design are incompletely or
generically specified. This approach to the prototyping task requires a testbed
environment which contains methods for using the models of the task context
and the system itself to simulate the performance of the Intended system. More-
over, it should be possible to abstractly or generically specify subsystems of the
complete system and still perform at least limited simulations of system perfor-

mance.

The final major aspect of our design methodology has to do with the prob-
lem of design evaluation. Deslgns for systems of the compiexity of DSN systems
do not readily vield to analytical methods. Thus, a primary value {n providing
the kind of simulation and rapid prototyping capability Just discussed s so that
methods for empirical analysis can be used where analytical approaches to design
evatuation are not available. Furthermore, it Is intended that these observational

techniques be used as early as possible In the design development process to
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promote rapid convergence on a satisfactory design. The tmplication of these
remarks is that the design methodology we seek to instantiate should provide a
mixed approach including analytic verificational techniques for those types of sys-
tem and subsystem designs that admit such analyses, and observation based
methods of evaluation for designs sufficiently complex that no known analytical

evaluation method applies.

We can now look at the specific Schemer architecture as an approach to the
construction of a DSN design testbed that meets the design support requirements
just reviewed. In the next section we will present the general approach to
knowledge representation provided in Schemer to handle both DSN system and
task context modeling. Following that discussion we will present a description of
the design of the Schemer testbed architecture and consider the kinds of tools
needed to construct a DSN protoptype, run simulations with it, and evaluate its

performance in terms of task specifications.

4.2 KNOWLEDGE REPRESENTATION IN THE DESIGN TESTBED

Our discussion of knowledge representation will proceed in parallel with the
discussion of testbed requirements above. First, let us consider an approach to
modeling a single DSN node. This will first focus on how a designer may
represent, the knowledge held by a node that allows it to perform {ts function.
This will also require that we show how this node Is controlled in some general
framework. To this end we will next present a generic expert system architecture
within which the capabilitles of a specific DSN compcnent may be modeled.
Finally, we will look at the relationships among nodes specifically considering

how communications and authority relations among nodes can be expressed.

After considering how to represent an indlvidual node, we will then discuss
how the task environment may be represented in the design testbed. As we will
see, the representational requirements for this aspect of modeling will largely be
another application of the techniques that we have developed for representing the

individual DSN system nodes’ internal structure.




We will defer discussion of design tools and their representation until after
we have looked at the overall architecture of the design testbed. This we will do

in the next section.

4.2.1 Node representation in a DSN system

We begin now by discussing our approach to modeling a node. Consider
first the knowledge that may be held by a node. We need to consider the follow-

ing four categorles:
a. Static (l.e., relatively permanent) knowledge;
b. Situational (current context) knowledge;
c. Planning knowledge; and

d. Control knowledge.

4.2.1.1 Static knowledge

Static knowledge refers to the relatively unchanging knowledge that a node
has of the objects and events In the task domain. This will Include other nodes
in the DSN system as well as objects external to the system. In this project and
in previous research and development efforts at AI&DS, we have considered some
of the basic Issues that are Involved In representing the types of knowledge that
must be held by 8 node. The design conclusion that we have reached on the
basis of this analysis is simple to state. We have determined that an expanded
frame representation language [13] is best suited to provide the representational
power and flexibility needed for modeling the static knowledge of a DSN node.
(In fact our use of a frame representation is even more pervasive, but we hold

further elaboration of this point until later.)
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A node’s knowledge of a type of object (e.g., a particuiar type of missile) is
represented as a structured combination of attributes and, optionally, restrictions
on the values of those atiributes that may be held by an instance of that object
type. Figure 4-1 exemplifles this types of representation. In the figure we sce
that the object category "Backfire_bomber” Is identified In terms of specific attri-
butes such as wingspan, top speed, etc. Each of these attributes is likely to have
a specific value or a range of values (expressed as a construct known as a "con-
straint”) which must be satisfled for any object to count as an Instance of that
class. It is also possible that the value of an attribute can be a complex struc-
ture. For example, certain types of alrcraft are distinguishable in terms of their
tail assembly configuration. Thus, the frame representation could contain an
attribute called "Talil_conflguration” which is itself another frame description
whose attributes are the components of the tail assembly, their descriptors, and

the relationships among these components.

Another important aspect of a frame representation such as the type we are
considering here has to do with the notion of "inheritance”. This refers to the
way that the information described in one frame may be accessed as part of the
description available in another related frame. The frame descriptlon of the
figure has an attribute called "A_kind_of” that relates this frame to another,
more general, frame for the more general class bombers. In that latter frame
there are contained a number of descriptors such as "Bomb_payload: greater than
0" which serve to more generically define the features of that class. In Figure 4-1

that attribute has been "inherited” and has been given a more specific restriction,

Thus, the attributes of a frame description determine the descriptive pro-
perties of a particular class. and additlonally can specify the relationship of that
class to other classes. These interclass relationships provide the basis for using
the knowledge represented in one frame to augment the definition/description

provided by another frame.

In addition to representing objects such as aireraft, sensors, ships, ete., the
representation language must also depict a node’s knowledge of events. In order
to do thls we have borrowed some ldeas from the work of Schank and Abelson
[14] and combined them with our frame based approach. In particular, an event

Is represented as a frame in which the deseriptive attributes of the event (if there

A



FRAME: Backfire bomber

A kind of: Bomber
Top speed: = =  —~—mmmmmmmmee
Cruising speed:  ~——cmceeemmewean

Wingspan: = = =  —e——mmmmeee——o

Length: -

Bomb payload: =  —m=-e—me—ee—ee

Range: -

etc.

Figure 4-1: A Frame Representation Example




are any) are represented in the attribute value notatlon just discussed. In addi-
tion, the event frame also deplcts a sort of "script” that portrays a set of simpler
events that comprise the structure of this event. The sequencing relation among
the component event such as sequential ordering, parallel occurence, conditional
occurence, etc. are expressed {n our representation system by use of a set of

primitives called a "strategy representation language” (SRL).

Figure 4-2 is a simplified example of an event representation. Note that in
the script for the event, exemplified reference Is made to other event representa-
tions called “sensor_not_detecting” and "sensor_detecting_object”. These two
component events are themselves composites that are described in terms of sim-
ple events, and so on untll a set of basic “primitive events” are reached in various
event representations. This provides another kind of relationship among
representations, namely that one event representation can provide a “high level”
description of the flow of an event and yet the system can break this high level
description down into a more detalled description by tracing the subevent
descriptions. The notation "SEQ" in the figure Is the relational operator from
our SRL which represents that the component events occur one after the other.
The constraint indicates that there is no overlap. Finally, we note that the
representation of time is based on time Intervals rather than point. The notation
"NIL"” in an Interval representation means that a value need not be specified in
an instance. (The notion of a time interval assumes that the first polnt does not

follow the second.)

The approach to a representation of objects and events just sketched is a
potentially quite powerful one. It borrows many of its ideas from carlier work in
Al on knowledge represcntation with specific modifications and extensions that

we have adopted to meet the needs of our distributed system applications.

There is yet another type of knowledge that must be represented in a node,
and that is properly considered part of the node’s static knowledge. We refer to
the procedural knowledge held by that node. That s, in addition to knowledge
in the form of descriptions of the objects and events that comprise the node's
understanding of the task domain, the node must also have “skills”. In the
manner that is common to most work on expert systems, we represent these sktlls

as knowledge in the form of sftuation-action catitfes we will eall "knowledge
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EVENT: New_sensor_detection

A kind_of: Observation
Components: Set of:

Observations_device: Sensor
Observor: Node

Script:
Subevents: Get of:
Sub_event 1:
description: sensor_not_detecting
time_interval (NIL, T1);
Sub_event_2:
description: sensor detecting object
time_interval: (T2, NIL)
Script_program:
Sub_event 1 SEQ Sub_event 2
Constraints:
TIC T2

Figure 4-2: An Event Representation Example




-

sources” (KSs). More specifically, a KS )s a representation of some actlon that is
to be taken by the node as a response to the occurence of a particular condition,
that we will call the "trigger condition™ for the KS. There are a wide variety of
ways to represent such situation-action entitles. For now the reader may think
of a KS as a kind of "if-then” rule in which the trigger condition Is the "if part”
of the rule and the action is specified by the "then part” of the rule. (We will

modify this oversimplified presentation in a moment.)

Thus, a node's procedural knowledge, represented as these KSs, represents
that node’s ablility to take actions in the domain and to solve problems or make
decisions. The abilitles of a DSN system node to participate in performing opera-
tlons on the system's task will be modeled by the KSs held by that node. This
includes the knowledge that thee node has for reacting to inputs from other sys-
tem elements such as sensors, for using new and old information to make deci-
sions. to combine Information from various sources and pass a composite descrip-

tion along to yet other system elements, etc.

Figure 4-3 exemplifies more accurately the design of a KS. Note that this
representation is also a frame description. However, there are certain attributes
in this frame description whose value are so-called "attached proceures”. In a
KS, these attached procedures are executable code that embodles the actions that
the KS will take when executed. Let us discuss a little more carefully the struc-

ture of the KS representation and how a KS is executed.

Recall from our earlier discussion that the basic notion a KS embodies is
that of a “situation-action™ rule. The KS represents some action that is to be
undertaken under the condition that a particular condition or situation is true.
The sltuation s represenied by some pattern (l.e., frame description), or combl-
nation of patterns, in the system’'s knowledge base. The trigger of the KS
describes this pattern. 1If the trigger pattern Is ever asserted in the system's
knowledge base, then the appropriate code Is handed to the node's top level
interpreter for execution. This code is the part of the "actlon™ attribute called

"code”.

There Is one more detall to discuss regarding the execution of a KS. There

is an attribute In the KS frame called the "precondition”™ which affeets whether or
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KNOWLEDGE_SOURCE NAME:

Priority:
Trigger:
Precondition:

Action:
Description:

Code:

Failure act:
Description:

Code:

Knowledge space:

Figure 4-3: Structure for a Simple Knowledge Source




not a KS action Is ever executed even though it has been triggered. Specifically,
when a KS is ready to be exccuted by the top level interpreter, the precondition
is checked. If it is not true then the code that is executed is that contained in
the "failure_act” attribute. This code can represent a range of capabilitites such {
as test for data needed by the KS to perform its actions, checks to see whether
other KS actions that are prerequisite to this KS's acttons have been performed,
specification of how to suspend the call to execute this KS action and (optionally)
how and when to resume it later, etc. We have heretofore been informally
describing the KS as a kind of "if-then” rule. With the addition of the precondi-
tion and the precondition fallure_act the more proper description of a KS is as an

"if-then-else” type of rule.

There are some additonal features of a KS that need to be discussed. First,
both the "action” and the "fallure_act” attributes of a KS contain another entry
besides the code. This entry is called a "description”. It is important to under-

stand that the code entry for an "actlon” or "fallure_act” is intended to be exe-

cutable code. In order for the node to "know” about what a particular KS does,
some symbolic description must be provided that can be Interpreted. For exam-
| ple, suppose that the node has established a goal to accomplish some actlon.
[ Then that node must be able to examine its KSs to see If the actions described
by any of them accomplish the desired goal. Some goal seeking KS must read
the descriptions of other KSs until one (or some combination) Is found that
: describe actlons that achieve the goal. Suppose that some such KS is found
| whose action description matches the goal. Then the next step In goal seeking is

to try to ensure that the trigger and precondition patterns for that KS are

asserted. Therefore, these trigger and precondition patterns now become
subgoals; if they can be asserted then a chaln of actions that lead to the goal can
be executed. This exemplifies how goal directed inference s achievable by a node

due to the descriptive component of a KS.

Note next the slot called "knowledge_space” in the KS frame. This is

intended to model the need that certain procedural elements have for saving

information between exccutions. For example, suppose that a KS is intended to
be a counter which keeps track of the number of occurences of some event and

reports when some number of occurences has taken place. One way to represent

this is with a KS that s triggered by occurences of that event and which
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increments a local datum and then "goes to sleep” untll triggered again. When

the KS internal count reaches the requlsite number on some activation the report

will be made.

The local data space attribute of a KS thus allows it to keep local state
information. Actually, the design we have chosen also provides for separate KSs
to share portions of their knowledge_space with each other (but without making
this data globally accessible). This provides a fundamental way that procedural
elements can communicate state information with each ther. There are other
advantages to allowing a KS to have a local data space. Howcver, we will defer

discussing these for a few moments.

The final KS attribute to mention is the "priority”. This is intended to be
a very low resolution representation of the importance that this KS has when it is
triggered in comparison with the other KSs in the system. As we shall see when
we discuss the top level control structure for a node, this priority is really
intended to be used as only a very rough estimate of urgency. The actual way
that the node orders triggered KSs for execution relies on other mechanisms that

can operate in a more context specific way.

We have not yet mentioned one very Important aspect of the KS represen-
tation used In our system. We have restricted the discussion of a KS action to
being a single piece of code that is directly executed when the KS is triggered. It
is also possible for a KS to be a representation of a composite action by making
use of the local knowledge_space in a KS and the script language we discussed in
our consideration of event representations. In the case of a composite KS, the
code (for either the actlon or the fallure_act) can be a simple action that executes
an entire group of actions in some order. The representation of these actions is
located in the KS's knowledge_space. These actions are organized in a control
structure in terms of the strategy representation language (SRL) discussed carller.

Thus, the code acts like a local interpreter of a script for composite action.

l.et us summarize the basic features of a KS as a model of procedural
knowledge. It Is an if-then-clse construct which provides for important. capablli-
ties such as synchronization, type checking, etc. to be experssed. [t provides for

event directed execution by its trigger-action basie structure, and for goal




directed execution by having descriptions of the outcome of its execution. This
type of model for a procedural element in a system gives generality to the kinds
of inference that a system can do using this KS structure as the format for
expressing Its procedural knowledge. Finally, the KS provides for local data
storage so that both computational and data state can be saved between exccu-
tions. One very lmportant way that this local data space construct is used is In
the representation of composite KS actions. In thls case the script for a compo-
site action Is found In the KS's knowledge_space and the code Is an Interpreter
that executes this script. Thus, the KS model we have chosen Is also suffictently
general to represent very powerful computational constructs such as object-

oriented code [15].

We have now discussed the baslc concepts used in the design of a node for
representing static knowledge. Let us summarize this discussion. A node’s static
knowledge is represented Iin a frame description language that portrays a concept
as a structured representation of attributes and the values or ranges of values
that each attribute may have in any Instance of the concept. In addition, events
are represented as frames which contain a script depicting the ordering of simpler
events In additlon to the descriptive attribtes of the event representation.
Finally, KSs are represented as frames with attached code that may be executed
to enact the procedural knowledge that the KS represents. KSs may be simple,
meaning that the action to be carried out is one unlnterruptable activity, or they
may be composite. In a composite KS the code Is a (usually trivial) interpreter
that executes a set of actions described in the KS's local knowledge_space by a

script.

4.2.1.2 Situational knowledge

Now we should consider the node's representation of situational knowledge.
This type of knowledge refers to the node’s hypotheses regarding the existence of
objects, events, constraints, goals to be met, cte. in the task context, One tech-

nique we have devised for representing such hypotheses Is depieted in Figure 4--1.

In that figure one may sec that each hypothesis is represented as some pat-

tern of underlying assertions or observations.  One may think of this as a




€

(EVENT-1)

T,
CONTEXT
¢
A\ (MYPOTHESIS-1) "

e e
em k 1
EXAMPLE EXAMPLE
HYPOTHESIS EVENTS

‘1: 2 TARGETS DETECTED e1: OBSERVATIONS IN SET

A FROM SAME TARGET

€2: OBSERVATIONS IN SET
B FROM SAME TARGET

Figure 4-4: Format for Hypothesis Representation




represetation In which the hypothesis Is a claim that some compound event has
occured (or is occuring), and the underlying observatons are the evidence that
supports the hypothesis. The individual pieces of evidence may simultaneously
support more than one hyothesis. Each piece of evidence can have some valuc
attached to it that represents the plausibility of that piece of evidence, and the
association of a piece of evidence to the hypothesls is weighted. The plausibility
of the overall hypothesis is a function of the plausibilities of the supporting evi-
dence modulo the weight of association for each piece. Finally, hypotheses are
organized in clusters that represent mutually competing hypotheses for interpret-
ing a set of observations or other assertions. In this way groups of hypotheses
that represent conjectures about unrelated sets of data are partitloned from each
other so as to simplify the process of hypothesis management. The techniques of

hypothesis representation and management have been discussed in the report [1].

Figure 4-5 outlines the essentia’ notions that enter Into the process of
hypothesis management. For the most part the notions presented there are quite
obvious. However, there are actually a number of alternative methods for accom-
plishing many of these functions. For example, the task of propagating the plau-
sibllity of supporting evidence to the plausibility of the hypothesis that it sup-
ports may be handled in a variety of ways (e.g., using a Bayesian approach,
Dempster-Schaffer theory, fuzzy logie, etc.). In turn, the pruning rule for elim-
inating hypostheses when their plausibility falls too low may be one of a large
number of alternatives. We have not yet determined which, if any, of the alter-
native computationa! theories for combining evidence is the best; however, the
representational calculus exemplified in figure 4-4 provides a structure within

which any of these alternatives can be applied.

4.2.1.3 Planning knowledge

The next issue to be discussed in the representation of a DSN system node's
knowledge has to do with the potential need for a node to engage in planning,
such as resource allocation, adaption, ete. Although it will not be a requirement
for all nodes Lo have planning ability, we nevertheless must provide this capapbil-
itly if we are to usc one general model of a DSN system element as a template

with which to model the various individual system elements, some of which will
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indeed be capable of planning.

Actually, the planning capability of a node is representable In terms of

' three constructs that we have already introduced. The first of these is the

representation of events, which a node may use to represent goals that are to be

achieved. The second iIs the SRL used to describe the ordering of activity in
composite events and in composite actlons. These two devices provide the means
to a node to represent plans for a series of actions to achieve goals. The third
mechanism is to provide a node with a specific set of "planning” KSs. These KSs
will include KSs to post goals to be achieved, KSs to divide goals into groups of
subgoals, KSs to construct action scripts to achieve goals or subgoals, KSs to exe-
cute a plan once constructed, KSs to monitor plan execution so as to provide for
replanning capability when conditions that were part of the assumptions of a

plan have changed, etc.

4.2.1.4 Control knowledge

The last major type of knowledge that we promised to discuss Is so-called
control knowledge. This refers to the knowledge that the node has for how to
organlze the actlons that it must undertake. If we are to model nodes in 2 DSN
system that are intelligent we must provide for a control structure that Is flexible
and context sensitive. Thus, in addition to providing KSs in a node model that
can carry out actions in the task domalin, we also need to provide the node with
KSs that can resolve conflicts If more than one KS Is relevant to a situation and
KSs that are able te alter the queue of pending actions that that node must exe-
cute In response to a sudden change of conditions. The approach we take to this
i1s to apply the planning capability just discussed to the control of the node own
computational processes. Thus, our approach to control is to view it as a plan-
ning and problem solving domaln for which we supply a set of control KSs that
arc triggered by the structure of actions that are pending and that are ongoing in
that node. This approach Is an alternative to providing a single complex controt

structure at the top fevel in a node.
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Of course, the topic of control ralses the issue of the general framework for
top level control that Is to be provided for a DSN node representation. Figure 4-8
depicts this framework. The general structure of the architecture is divided into
the two components of the CONTROLLER and the BLACKBOARD. This archi-
tecture is an intellectual descendant of the type of expert system known as a
blackboard architecture [18]. In representing a DSN node in this way, the
entirety of the node's knowledge is stored on that node's blackboard. As Is
shown in the figure, this includes an area for the statlc knowledge held by the
node as well as an area for the node’s hypotheses. Specifically, the blackboard
contains the representations of the node's KSs that represent the actions that
that node is able to perferm. Finally, there is an area (shown at the top of the
blackboard) that represents the node’s notation about its current state of execu-
tion, called the AGENDA SPACE. In this latter area is a representation, called
the AGENDA, of the set of KSs that have already been triggered but have not
yet been executed by the CONTROLLER. There is also in this space a HIS-
TORY structure which Is a kind of audit trail of KSs executions that have

already occured.

The other major component of the framework is the CONTROLLER. This
is the algorithm that controls the general execution of the node model. It is
divided into four stages. These are the INTERPRETER, the BLACKBOARD
MANAGER. the EVENT DETECTOR, and the PRIORITIZER. The baslc loop
repeated by this CONTROLLER is essentlally the following.

First, it i1s the responsibility of the INTERPRETER to select the first KS
on the agenda, check the KS precondition, and execute the action or the failure
action for that KS. Then the BLACKBOARD MANAGER fllters the output of
the code run by the INTERPRETER and posts any changes to the BLACK-
BOARD that have been created. Next the EVENT DETECTOR checks the con-
tents of the blackboard to see if there Is a pattern of assertlons which match the
trigger pattern for any KS. The list of KSs that are triggered are passed up to
the PRIORITIZEER which Inserts the newly triggered KSs into the remaining
AGENDA, ordering them on the basis of their priority. The K& that was at the
front of the list of the AGENDA is removed and Is added to the
HISTORY_LIST. Then the cycle is repeated agaln,
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There are a number of efliclencies that we have included in the actual
design Just sketched. First, note that the way the INTERPRETER executes a
KS action requires only that the code for that actlon be passed off to the underly-
ing cpu of the system in which this system is implemented. That is, when a KS
code is executed the INTERPRETER lIs not performing translation from a sym-
bolic sturcture to an executable one. The executable structure Is already present
in the code attribute of the KS, and the INTERPRETER merely passes this exe-
cutable structure on to the underlylng system as a process. In additlon, the step
of determining what new KSs have been triggered is embodied in an algorithm
that we have developed that involves almost no search. Thus, triggering Is very
fast (and in fact, our algorlithm provides for triggering on deletions as well as
additions to the blackboard and for use of full generalizations in the trigger pat-

terns that may be used).

In the discussion of knowledge representation above we pointed out how a
composite KS can represent a complex algorithm. Coupled with the top level
architecture just sketched, this provides an architectural template that can be
used to model a simple fixed control system as easily as we may use this
approach to model a complex, Intelligent node. A simple node can be represented
by a model with only one KS in which the code for that KS is the fixed algorithm
that the node performs. (Note that there is almost no overhead to pay in using
the CONTROLLER to run that KS.) The blackboard for that simple node
would probably contaln very little additional knowledge. On the other hand, a
complex intelligent agent could be modeled by a version of this template contalin-
ing knowledge representations of all the types discussed above, including a
number of simple and composite KSs representing the decislon making and prob-
lem solving abilities of that intelligent node. We have used this facility in a
Schemer application in which we constructed a distributed computation system
with distributed performance management and performance diagnosis abllities

(10).

This completes the discussion of the features provided in our testhed design
that arc to be used for modeling a partieipant, a node, in a DSN system. The
DSN systemn designer Is provided with techniques for modeling the capabilities of
even intelligent participants In a DSN system by belng provided with the expert

system framework depleted In flgure 4-6, plus the representation language for




describing that node’s knowledge of objects, events, rules and other procedures,
as well as hypotheses about the task context and techniques (l.e., KSs) for
managing these hypotheses. We agaln should note that, although the modeling
facilities just described are especially intended for the modeling of intelligent
DSN system elements, these facilities are quite well suited for modeling simpler
elements of a DSN system. In particular, the minimal amount of structure pro-
vided in the top level controller for a node model minimizes the computational
overhead., and the computation modeling assumptions, that are implicit in the

use of the exert system framework just described as a model of a DSN system ele-

ment.

4.2.2 Node relations in the DSN system

Now we must conslider how the designer of the DSN system is to model the
relationships that obtain among the elements of the DSN system and the opera-
tional context within which the system is to perform its functions. The basic
concept for how we propose to accomplish this is really quite simple. First, we
need to provide a modeling framwork within which the models of the various
nodes, constructed as discussed above, can be embedded. It is within this larger
modeling coniext that the relations among nodes and the characteristics of the
task domaln are to be modeled. Second, within this larger modeling context the
relations among the system nodes and the objects and events of the task domain

will be represented.

et us review the critical relations among system nodes that must be
modeled. There are two fundamental types of internode relatiouns that must be
represented in a IDSN system design, the modeling of the communieations rela-
tions among the DSN system nodes and the modeling of the control or authority

relations that obtain among the system clements.

The modeling of communication relations among nodes invoives the follow-
ing baslc notions. Suppose, for example, that we wish to model a speeific com-
munication between two nodes, say Node_A and Node_B. Each of these nodes
is, of course, represented by a structure ltke that of figure 4-6. A communication

from Node_A to Node_IV ean be modeled ax an outpat of some action of the first
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node that is represented in the larger modeling framework in which the two node
models are embedded. This communications output from the first node can serve
as input to a structure that models the communications medium through which
the message from Node_A travels. The message Is processed by the communica-
tions medium model whose output is the input to Node_B’s message receiving

procedures.

The communications medium model will be constructed so as to model
some specific mechanism for dealing with a particular type of message transmis-
sion such as, for example, a packet radio network. The model of such a commun-
ications medium can be constructed using the same approach as that used to
model a system node. This model of a communications medium will contain pro-
cedural elements (KSs) that represent operations of the communication medium

in receiving a message, processing it, and then passing it on. In addition, the 1

communications medium model can also include KSs and other elements that
represent the effects of noise or other perturbations on the message passing pro-

cess. Finally, the communications medium model passes on the results of its pro-

cessing to the receiving node by producing output in a form that represents
proper input for the message receiving KSs of the intended recipient node. (This
is, of course, only true provided that the message has not been "blocked” in its

transmission as a result of processes of nolse or other interference being modeled).

This approach to modeling the communications that occur among DSN sys-
tem elements requires no general modeling facllities beyond those already pro-
vided for modeling the decision making elements of the DSN system. It has the

advantage of providing the system designer a way tc independently model the

four primary components of internode communications These are; message cormn- ‘
position and sending. message transmission, transmission interference, and mes-
sage reception and interpretation. Using thls approach it is possible to model in
great detall a variety of communications methods being sfinuitaneously used in a

DSN system.

The other fundamental Internode relation Lo discuss here is that of control

or authority relations among system nodes.  The modeling techniques  just

: deseribed for depleiting communications relations ean be extended slightly to

handle this modeling chore. In other words, control by one node over the actions
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of another may be modeled as a type of communication plus "rules” held by each
node regarding the bounds of authority. In particular, a "command™ from one
node to another can be a communication that, when processed as input by the
second node, Is the trigger condition for some specific action (KS) of the recipient

node.

4.2.3 Task context modeling and simulation

Let us now conslder how we may use the same modeling approach just
described to model the task environment in which the DSN system will operate.
By now the reader should be able to anticipate the gist of this discussion. The
functional elements of the task domain are modelable by the same means that
are used to model the DSN system nodes. That is, each functional element is a
modeled as a structure that produces output representing the effects of that ele-
ment on the DSN system and on other elements of the task context. For exam-
ple. suppose that the DSN system s engaged in a task of using sensors to watch
the activity of vehicles along a road network. Consider a model of a specific
object that is "moving” along a particular road. This object movement can be
represented by a computational element that produces as output an update of its
position over time. This output can be used as Input by a particular sensor
model that is constructed so as to be able to "observe” objects in an area occu-
pied by the vehicle (model). This Input to the sensor can, In turn, cause that
model to produce an output (say, in the form of a commmunication) that is
taken as input by one or more nodes which process information from this particu-
far sensor. Thus, the maodel of the vehicle has caused a chain of activity that cul-
minates in some set of decision making nodes of the DSN system in being called

to respond to that domaln object’s activity.

In general then, each functional object In the task environment can be
modeled by an instantiation of the architectural framework of Figure 4-6 contain-
ing data and other procedures specific to the functional properties of that objeet.
The actions of this objecet produce outputs that are suitable Inputs to speeifie
DSN system components that are intended to "percefve” and respond to that
object’s activity. This modeling of cause and effeet Is very stintlar to the way in

which communleation relations among DSN system nodes are to be modeled.
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The general testbed enviroment will, therefore, be required to provide a context
for representation in which the specific models of the DSN system nodes, the
communications media, and the task environment's functional entities can all be
modeled. The activities of all these models are recorded In the testbed's data
base as outputs such that each output can be discerned by all and only those
models that are intended to be able to react to the activity represented by that
output. The testbed data base holding the representations of all these actions of
system and context elements, must be organized so that the output from any par-

ticular element will qualify as an input for only those other elements that are

appropriate.

4.3 AN ARCHITECURE FOR THE DESIGN TESTBED

In the preceding discussion we have presented some ideas on how to model
the elements of a DSN system. The modeling approach we have offered is to use
a generalized expert system architecture as the basic "template” for designing a
node in a DSN system. In addition, we have suggested that this same set of tech-
niques can be used for representing the functonal elements of the task domain as
well as for depicting the command and communication relatlons that obtain
among the DSN nodes. We have not yet dealt with how a deslgn environment
might be provided as the framework within which to do this design consiruction,

rapid prototyping, and evaluation.

We will now present an architecture that provides a context for the
development of the types of structures just discussed along with facilitles for
using these structures to simulate the performance of the DSN system they are
intended to model. Since the approach we have proposed relles upon an tmplicit
analogy between expert system construction and DSN system design, we will offer
as our general solution a framework that Is essentlally an expanded verslon of an
expert system bullding environment. We present the design of an Al architecture
for expert system construction called Schemer as vhe basis of a testbed environ-
ment In which to construct, evaluate, and run stinulations of a DSN design. The
basic ideas In Schemer are ones that we have had a great deal of experience with,
having used a shimpler version of thls system than that presented here as an

expert system development environment for construction of a number of expert
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system applications. However, in order to deal with the problem of modeling a
distributed system, and a system in which many of the elements are themselves
intelligent decision making agents, we have found It necessary to greatly extend

our original ideas.

The basic idea behind Schemer Is to provide a computational environment
in which an expert system designer can incrementally build his application by
specifying the components of his system including the representation of objects
that must be known to the expert system, and the procedural rules that define
the system’s capabilities for taking actions to carry out its intended tasks. Thus,
the expert system development framework must provide the developer with a
knowledge representation language to encode the expert system's knowledge of
essential objects and events in the task domaln and a general format for express-

ing the procedural elements of the expert system, its knowledge sources.

To provide this representational support Schemer is equipped with a gen-
eral frame representation language for expressing such knowledge, and a special
format for representing procedural knowledge. Not surprisingly, the approach we
have chosen for knowledge representation has already been discussed in the previ-
ous section. The representation language approach discussed there for represent-
ing the knowledge of a DSN system node is precisely the type of language that
we have used in Schemer, and the KS definition of Figure 4-3 is exactly the for-
mat used for representing the procedural elements of an expert system within the

Schemer development environment.

In addition to constructing the clements of his expert system using the
representational facilities just described, the developer must be able to run early
versions of his system on test problems to determine whether the design to that
point is achieving expected behavior. Similar to the ideas in the previous section
we found that the basic representation facilitles for constructing the expert sys-
tem lItself could also be profitably used to bulld a kind of simulation environment
(i.c.., a set of test cases) agalnst which various versions of the system design could
be tested. In fact, our approach to providing a simulation bascd, rapid prototyp-
Ing environment 1s motivated by the experience that we have ad in using the
modeling capablilities of our expert system development environment to construct

models of task situatlons against which that system conld be tested, This also
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means, of course, that the combined expert system model and task domalin model
would need to be able to be put in a form that could be executed. Hence, Sche-
mer was required to be a context for controlling the execution of such design pro-

totypes in the context of specific models of the task domain.

Figure 4-7 deplcts the way that we designed Schemer to provide this sup-
port for both expert system design and prototyping. Essentially, the idea we pur-
sued was to take the basic blackboard architecture for representing an expert sys-
tem such as the type shown In Figure 4-8, and then to add some additonal levels
of control to the architecture tc support design constructlon, scenario context
construction, and control of execution of the expert system on the model of the
task domain. The structure of the blackboard in the figure is divided (for pur-
poses of presentation) into a left half on which varlous levels of knowledge
representations are written, and right half on which the procedural KSs are
stored. Vertically we have depicted four basic levels of representation. At the
lowest level there are the knowledge representation structures and the KSs of the
expert system model itself. This level is the part constructed by the developer
that will eventually stand alone as the expert system application. Above this
level is the representation of the simulation environment for testing the expert
system design. For the most part the task model is represented by KSs that pro-
vide simulated events as input to the expert system KSs. These task domin KSs
do this by posting their output on the part of the board labeled "Task Domain
Event Reps.” These event representatlons serve as triggers for the expert system
KSs at the level below. This approach provides a way of simulating the interac-

tion between the expert system and events in the task domain. ]

The upper two levels of the blackboard in figure 4-7 represent the way we
have provided automated tools in the original Schemer development environment.
The third level from the bottom represents the presence of some evaluation tools,
encoded as KSs, and the representation of the results of evaluation on the left.
The level immediately above this is the set of KSs that can be used to control the

use of the system for various activitles. For example, control KSs at thls level i
can take the elements of a scenarlo and cause the domaln model to post events of
actlvity that, In turn, trigger the actlons of the expert system In response. Also,
we have used control KSs at this level to trigger speclal analyses to be performed

on the expert system’s activities upon detection of a particular event that has
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occured during execution of the simulation. Other forms of these control KSs
that we have used Include a KS that effectlvely “slngle steps” the execution of
the expert system being evaluated and control KSs for displaying the data struc-

tures that "cause” triggering of the expert system KSs as these occur.

The top level control structure of the Schemer architecture Is essentlally the
same as that we have described In the previous section. User Interaction with the
development environment Is accomplished by having user post input events on
the control biackboard which trigger appropriate actions by Schemer. Thus, this
system can be operated interactively as well as In the fully automated manner

that Is assumed for this general type of architecture.

There remaln a number of limitaions to the current version of Schemer as
a DSN development environment. First, little or no work has been done on the
development of explicit evaluation tools beyond those tools to support the empiri-
cal observation and summarization of the expert system's performance on specific
scenarios. Second. nothing is provided in the way of “library” facilities that con-
tain frequently used control and structures that can be employed for a specific
application [17]. Third, and perhaps most important, the expert system pro-
cedural components that can be modeled in the orliginal version of Schemer arc
elther simple condition-action rules or composite rules in which the action part is
some algorithm for combining simpler actions. There is no provision made in this
earlier version of Schemer for allowing a KS to be an entire expert system arch!-
tecture of its own as we discussed In the previous section. Finally, we have ye!
to integrate non-Al algorithms and systems such as GTC into a particular Sche-

mer application.

In Section 4.2 we discussed a set of representation and modeling techniques
that we belleve explicitly address the requirements of a DSN deslgn testbed. In
addition to these facllities we are condsidering some additional extenslons to the
previous version of the Schemer architecture. Along with the analysis of represen-
tation from section 4.2 we have devised the changes depicted In Figures 4-8 and

4-9 to address the limitations of the original Schemer development environinent

for use as a DSN system testbed.
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In Figure 4-8 we see flve levels of the testbed blackboard. The jowest level
corresponds to the modeling of the DSN system and the task context of that sys-
tem. The level above that Is used for knowledge about the state of the simula-
tion (on the left of the diagram) and KSs that are used to control the execution
of a simulation from a script or other description of that scenarilo provided in the
space to the left. Thesc areas generally correspond to facilities that were also
available in the earlier Schemer design, although the system facilities for simula-
tion control are now separate from those for design. The third level from the
bottom of the figure refers to tools for, and knowledge about, evaluation of a test
of a design on a scenario. In other sections of this report we have discussed tech-
niques for evaluating some portion of a design analytically. Certainly these tech-
niques should be incorporated as evaluation tools that can be called to use by the
DSN system developer for analysing or verifying the construction of his system.
However, the complexity of a DSN system precludes the use of such analytic
techniques in many cases. Therefore, another approach is called for. There are a
number of statistical and other technlques that can be applied to the evaluation
of a system’s performance by analyzing that system’s performance data and com-
paring it to some standard. For example, suppose the expert system being
developed Is intended to construct hypotheses that explain the sensor data. A set
of evaluation tools that might be provided could be some to compare the asser-
tions being hypothesized by the expert system with the "ground truth”
represented in the scenario description that is driving the simulation of that
expert system's task performance. We believe that this simulation based
approach 1o a design methodology can fruitfully employ a great number of such
statistica! tools since these tools vield uselul descriptions of such things as the

effectiveness or accuracy of system behavior.

The next level up in the figure represents the prescence of libraries that can
provide templates of types of structures that are likely to be useful In a wide
variety of design situations. This can Include templates that describe commonly
used forms of DSN system components, templates for specific types of communi-
cations relations among nodes, or command structure templates. Additionally, it
would be extremely useful to have a library of standard test cases that could be
used by system designers developing DSN systems for well known classes of appli-
cation. The testbed could provide assistance in the form of template "instantia-

tors” that can be called into use by the designer to Insert a speciallzed form of
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some template into his design.

Finally, the next level of the system provides for a set of tools to explicitly
aid the designer of a DSN system in both the construction and test of his design.
We have done some experimenting with this notion in our work on Schemer by
looking at ways to simplify and automate the more repetitive aspects of the sys-
tem designer's task. For example, we have developed a format for constructing
new KSs in the system which structures the organization of the KS definition for
the designer by providing a template for KS definition. When fllled out this tem-
plate Is automatically used by a design tool to construct the actual KS and its
underlying code object. Other tool we are experimenting with include check-
pointing facilities and tracing facilities for examining the conditions that lead to a
particular action by thc expert system. An important aspect of this topic of
design support is that of explanation [18]. Tools to provide natural language
descriptions of the performance of a complex system like a DSN system are sorely
needed. As a starting point existing Al techniques for producing explanations of

system performance would be an important addition to the design testbed.

There Is one more limitation of the earlier version of Schemer that we have
yet to address. This Is the need for modeling elements In a DSN system that
have the complexity and sophisticatlon of intelligent agents. In Section 4.2 we
described the general model that Is to be used to accomplish this modeling. This
general model, shown in Figure 4-6, is jtself a complete Al knowledge based
expert system architecture. The problem then ls to expand Schemer so that such
a model can be embedded in a larger expert system framework. We have pro-
vided for this by expanding the definition of a knowledge scurce to that it can he
instantiaved as a complete blackboard subsystem with its own blackboard and its
own Internal KSs. Flgure 4-9 exemplifies this type of KS. The example of Figure
4-9 indicates that the code of the KS can be a blackboard CONTROLLER and
the data space slot of that KS can be an entire internal biackboard. We wili
refer to this type of KS as a "snbsystem KS" (SSKS). This simpie move provides
an enormous Increase In the modeling capabilities of the Schemer system. The
overall blackbaord framework of the Schemer architecture itself can now contaln
embedded models of bilackboard systems. These embedded expert system archi-
tectures can more fully model the complex intelligent agents in a DSN system.

There are, however, two polnts that should be clarified in order to understand
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how such a complex KS can be used in the encompassing biackboard framework.

First, the so-called "local” blackboard of an embedded SSKS can in fact he
a shared area of an encompassing blackboard. That Is, the content of the SSKS's
blackboard can be a pointer to data actually external to that SSKS. This tech-
nique is needed to provide for the sharing of information that might be called for
in some models. It could also presumably be a way of modeling how specific
events that are external to an SSKS could trigger specific actions within that

complex system,

The second point to be clarified has to do with the way that such an
embedded architecture is controlled by the top level of Schemer. As with any
other type of KS a SSKS Is initlally called into actlon by occurence of the event
described in its TRIGGER slot. When actually executed the CONTROLLER (in
the code slot of the SSKS) iIs used in place of the top level CONTROLLER. If
the SSKS halts (i.e., its AGENDA becomes empty) then that KS execution can
terminate just as simpler KSs do and the top level CONTROLLER resumes its
operation. Under certain conditions, however, it may be necessary to be able to
interrupt the operation of the SSKS in order to perform some special operation.
An example of this would be the use of some evaluation KS that interrogates the
knowledge base of the SSKS periodically to obtaln, say, performance statistics on
that SSKS. In order to provide for this type of control, the top level CON-
TROLLER can insert some annotations in the controller of the SSKS that causes
that embedded interpreter to suspend periodically. When the SSKS suspends the
top level can check for the occurence of assertions on the blackboard of the whole
system that could trigger high priority KS to perform some action and, if
appropriate, even cause the suspended SSKS to be aboried rather than resumed.
This latter type of control would be needed if. for example, the designer had
inserted a control KS that waited for the object being modeled by the SSKS to
achleve some special state and then halt the execution of the simulatlon of which

the SSKS was a part.
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4.4 SUMMARY AND DISCUSSION

Let us summarize the dlscussion of the testbed arhitecture just presented.
We have capltalized upon the analogy of expert systems to decision makers by
proposing a design methodology that treats the deslgn of a DSN system as identi-
cal to the problem of designing a system of distributed, cooperative expert sys-
tems. The architecture we have developed and Implemented In a prellminary
form provides a very powerful and general computational model within which to

devise the broadest class of DSN system structures.

This approach to a design methodology Is quite radical In its emphasis upon
techniques of empirical observation of system behavior as a means of evaluating
system design. Becuase of this emphasis on performance observation and
analysls, a major requirement of the testbed Is that it supports the construction
of test scenarios that can be used to ellcit such performance from the system.
Thus, the abllity of this testbed archltecture to support rapid construction of
such scenarios Is almost as significant as the rapid development of the DSN

design itself.

However, as central as we hold the empirical, rapld prototyping approach,
we do not adhere to this approach to the excluslon of the use of other more ana-
lIytic techniques of deslgn evaluation. It Is a strength of this approach that such
techniques can be readlly incorporated in the testbed as specific tools for evalua-
tlon that can be used in conjunction with the simulation and observational facili-

ties of the vestbed.

For the present project we are focusing on the deveiopment of the applica-
tion of our testbed concept 0 the design of DSN systems that are built upon the
use of the GTC and the informatlon fuslon algorithm as the fundamental node
capabllity. As noted above, we have been fortunate in having been able to galn a
great deal of experience with this concept by actually implementing partial ver-
ston of such a testbed for use in the development of varlous expert system appli-
cations. However, the type of testbed architecture plus the full range of capabili-
ties we have presented here has yet to be implemented. We see this additional
effort as an important next step in assessing the validity of our concepts for DSN

system development and for thelr value In assessing other technologles such as
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the Generalized Tracker/Classifier (GTC) or other more analytic algorithms.
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5. SIMULATION EXAMPLES

b 5.1 INTRODUCTION

A simulation of a distributed sensor network was performed to test and
evaluate algorithms and to explore varlous technical Issues experimentally. The
current simulation focuses on the processing within each node and a perfect com-
munication model is assumed. Each node in the network Is equipped with a GTC
(Generalized Tracker/Classifler) which processes the local sensor data and an
Information fusion module which fuses the information sent from the other nodes
with the local information. The present status of the simulation effort iIs as fol-

lows:

- The communication pattern Is arbitrary. Any communication between

any two nodes can be set up.

- The maximum number of nodes in the network Is four. There is no con-
ceptual difficulty in increasing the limit on the number of nodes but simu-
lation time will Increase substantlally since a single computer Is used to

simulate a distributed system.

- The processing of the local sensor data is by means of the GTC developed
In the previous project [1]. Information fusion is based on algorithms for
hypothesis formation and evaluation described in Section 2.

- The language for the simulation is Lisp. Lisp has been chosen because of
the data structure and the plan of converting the simulation to run under

the archltecture of Section 4.
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In order to handle arbitrary communication patterns among the nodes, the
Information fusion algorithm includes mechanisms to trace the historles of the
tracks and hypotheses In the Information graph. Without any loss of generality,
information fusion from multiple nodes Is carrled out sequentially in a binary
form, l.e, to fuse the Information from node A, B and C, we first fuse that of A
and B, and then the result Is fused with the Information from C. This simplifies
the implementation of the fusion algorithm considerably.

In this section, some simulation results for two-node and four-node sensor
networks are presented to Illustrate the performance of the DSN fuslon algo-
rithm. For both examples, a simple discrete-state road network scenario was
chosen and the target dynamics were assumed to be Markov with the road-
segments as states. The malin reason for using the simple target dynamics and
scenario was to minimize any unnecessary numerical complexity due to target
motlon and to concentrate more on lIssues resulting from arbitrary communica-
tion pattern. The simulation program, however, Is capable of handling more
complicated scenarios If the appropriate algorithms are Included.

The underlying models In the scenario are:

a. Targets are moving along the road network with discretized straight-line

segments,

b. The target dynamics are Markov with a given transition matrix.

c. Each sensor measures position (segment number) along the road with
some uncertainty due to the bearing and range measurement noilse.

Each sensor also has certaln masked regions which it cannot observe.

d. The probability of detection of a target In each road-segment by a sen-
sor Is a function of sensor masking and the relative sensor locatlion.

In addition to this, independent and ldentically distributed target models have
also been assumed in the current simulatlon.
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5.2 TWO-NODE COMMUNICATION NETWORK

First we conslder the two-node case, assuming each node has only one sen-
sor. The sensors observe the same road network although they have different
flelds-of-view. The road network and the locatlon of the sensors are shown in
Flgure 5-1.

5.2.1 Scenario

Each individual target position Is represented by the segment number and
its evolution Is assumed to be a Markov process. The target state at any time Is
thus characterized by a probability distribution on the road segment. Because of
the terrain, the two sensors have different masked reglons (see Flgures 5-2 and 5-
3). Each sensor generates a measurement in the following way. The detection of
a target at state z; by a sensor depends on the detection probability which is 0
whenever the target Is In a masked reglon relative to the sensor. For any
detected target located at r, the measurement y, which Is also a segment
number, Is generated according to the following conditional probability distribu-
tion function: (see Figure 5-4)

ply |z)~ L",Jai(yf)z/(y;) (5.1)

where

7 max( ¥ W9, )
aw)= [ [ 90 |7(2)940)%z))drd0 (5.2)
7 mtnl ¥y Wenol ¥, )
U(y;) I1s a unlform functlon on segment y; with unity value and g, (r | ¥(z)) and
T CA &z )) are sensor characteristics corresponding to the the measurement uncer-
talnty in range and bearing given the average range and bearing of a particular
target locatlon z. False alarms are also added according to the sensor model.

The total number of targets is constant but unknown and its a priorl distri-
bution Is Poisson with mean v,. The number of false alarms in each scan Is also
Polisson with mean vy, for each sensor. The target positions are independent
and identically distributed with the a priorl distribution uniform over the road
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Figure 5-1: A Two-node Scenarlo
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Figure 5-4: Conditional Probability Distribution p(y|z)

network states, and targets are expected to move Into the field-of-vlew from the

edges at any time.

5.2.2 Communication Schemes
Three types of communication schemes were examined:

a. Broadcast communlication: the two nodes share and fuse thelr informa-

tlon every third scan.

b. One-way communication: node 1 sends informatlon to node 2 every
third scan but node 1 gets nothing from node 2

¢. Decentralized: the nodes do not share any information




If sensor data are broadcasted every third scan, then the broadcast case can
be regarded as a centralized scheme where the central node recetves all the meas-
urements periodically. In the case when only tracks and hypotheses are commun-
lcated, the processing lIs essentlally hlerarchical with intermediate results avall-
able at each node between periodic instants. The decentrallzed case is the other
extreme situation. In each case, all the hypotheses at each node are communi-
cated. The parameters used in the simulations are given in table 5-1.

In each simulation, all the hypotheses were examined and compared to the
true trajectories of targets according to the measurement-to-target assoclation
historles. The hypothesls best matched to the ground truth is defined as a true
hypothesis. The most llkely hypothesis (highest probabllity) Is called the best

hypothesls.
Expected number of targets Y, 4
Expected number of false alarm Via 1/scan
Probability of detection Pp max 0.9
range o, 0.5 (km)
Measurement error bearlng gy 0.2 (radlus)
radlal velocity| o, 0.1 (km/min)
Pruning threshold € 0.05

Table 5-1 Simulation Parameters
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5.2.3 Simulation Results

In the following we present the results of some sample runs. More extenslve
simulation results will be performed when the development of the test bed is

completed.

The target scenarlo (ground truth) and the probabilities of detection are
given in Flgures 5-5 ,5-8 and 5-7. As shown In Figure 5-5, two targets A and B
move from left to right on the road network, where the subscript on each target
represents the corresponding time index. Note that in Figures 5-6 and 5-7, the
detectlon probabilities are lower on the roads which are almost orthogonal to the
sensors’ lines of sight. This can be used to approximate the effect of the velocity

Doppler on a MTI radar.

Figures 5-8 to 5-13 show the probabllities of the best hypothesls versus the
true hypothesis at each scan for two nodes under different communication
schemes. The results of the decentralized case are shown in Figure 5-12 and Fig-
ure 5-13 for node 1 and node 2. As can be seen from the figures, the performance
of each node is quite poor. The probability of the true hypothesis only
approaches that of the best hypothesis during the last four scans of node 1. For
node 2, the probabllity of true hypothesis Is never higher than 0.2 as ean be seen
in Figure 5-13. This Is so because in the decentralized case, each node only
processes. Its own local observations which are quite sparse with the given masked

regions.

Flgures 5-10 and Figures 5-11 present the results with one-way communica-
tion. Obviously. node 2 has better performance than node 1 reflecting the fact
that node 2 recelves more information than node 1 due to the communication
pattern. Note here that the behavior at node 1 Is exactly the same as in the
decentralized case (see Figure 5-10 and 5-12). This Is obvious because as in the
decentralized case, node 1 does not recelve any information from node 2. Simi-
larly, during the first two scans, the results of node 2 are the same as in the
decentralized case since no information has been received yet (see Figure 5-11 and
5-13). From scan 3 on, because the informatlon from node 1 begins to arrive via
communication, the probabllity of the true hypothesis increases and reaches 0.8

in a few scans.




The results of the distributed case glven in Flgure 5-8 and 5-9 for node 1
and node 2 clearly show Iits superior performance. Almost all the best hypotheses
are the true hypotheses as can be seen In Figure §-8 and 5-9. Comparing Figure
5-8 and 5-9 we can see that node 1 and node 2 have the same performance at the
communication times, this is true because both nodes share the exactly same

information when broadcast communlcation takes place.

5.3 FOUR-NODE COMMUNICATION NETWORK

There are now four nodes each with only one sensor observing the same

road network.

5.3.1 Scenario

The sensor locations and thelr flelds-of-view with respect to the road-
network are shown in Flgure 5-14. The target scenarlo Is the same as In the
two-node case. Because of the terrain, the masked reglons for the sensors are
different. The probability of detectlon for each sensor is shown in Flgure 5-15 to
Figure 5-18.

5.3.2 Communication Schemes

A hlerarchlcal type of communication scheme was tested:

1. Every odd scan node 1 sends information to node 2, and node 3 sends

informatlion to node 4.
2. Every even scan node 4 sends information to node 2.
l.e, node 1 and node 3 only transmit Information to other nodes, node 4 is an
intermediate recelver/processor/transmitter and ail information Is thus collected

by node 2 with communication delays. The communication pattern and the
information graph are shown In Flgure 5-19 and Figure 5-20.
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A,- : Location of Target A at scan l

B,- : Location of Target B atscan 1t

Figure 5-5: Target Scenarlo
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Figure 5-6: Probability of Detectlon of Sensor 1

Figure 5-7: Probability of Detection of Sensor 2
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5.3.3 Simulation Results

The same simulation parameters as In the previous example were used.
Figure 5-21 to Flgure 5-24 show the probabllities of the best hypotheses versus
true hypotheses at every scan for each node. From the results we can see that
node 2 and node 4 have better performance than node 1 and node 3. This is so

since they have more Information.

The true hypotheses of node 1 and node 3 are never higher than 0.3 (see
Figure 5-21 and Flgure 5-23), similar to the previous examples, this is because
they only process their own local data which iIs not very good and never recelve
information from the other nodes to confirm or correct their hypotheses. Node 4
does not recelve any information from node 1 or node 2, however, node 4 does
recelve information from node 3, which gives it fairly good sensor coverage and
detections (see Figure 5-14, 5-17 and 5-18), resulting in reasonably good perfor-
mance (see Figure 5-24).

From the results of node 2 (Figure 5-22), wee can see that the probabllity of
true hypothesis approaches that of the best hypothesis after 2 scans. It Is not
clear from thls sample run how much better the performance of node 2 compares
to that of node 4. However, It is obvious that node 2 and node 4 perform better
than node 1 and node 3 because of the communicatlon structure.

5.4 CONCLUSION

The Information fuslion algorithms developed in Sectlon 3 have been tested
via simulations using discrete-state road network examples. Various communica-
tion schemes with different number of nodes have been examined. The simula-
tion results have shown that the algorithms produce the expected performance.

More extensive simulations using other scenarios will be conducted after the
development of the simulation environment is completed. The simulation
environment itself Is being enhanced to improve its flexibillty and efficiency.
When this development of the simulation environment Is complete, we should be

able to perform more extensive simulatlons using other scenarios. In particular,
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we Intend to use other target and sensor models and study the effect of varying
parameters such as hypothesis pruning threshold, detection probability, false

alarm rate and measurement errors.

Various ways of speeding up the processing of each node as better
hypothesis management, as well as ways of improving the overall system perfor-
mance, such as better communication strategies, sensor control, etc. would also

be Investigated using this simulation environment.
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Appendix: Distributed Estimation and
Multitarget Tracking

This appendix summarizes all the formal arguments concerning distributed
estimation and distributed multitarget tracking In the distributed sensor network

context.

1. Formal Definition of Distributed Sensor Netwoark

We first formalize the concept of the distributed sensor network in terms of
an information graph. Let N be a nonempty finlte set of information processing
nodes (simply nodes or estimation agents) and S be a nonempty finite set of sen-
sors (or information sources). A nonempty set Y,, called sensor format space {(or
information format space). iIs given for each s In §. For cach n in N, aset S, of
private sensors is given. Each S, is a subset of §. Then, for a given Interval

T =(t,t,], a subset Z of the set

.LerY’ XTx{s}

is called the total information (obtained in T). Each element (z.t,s) in total
Information Z is called a data set (or sensor report) generated by sensor s at lime
t Any subset Z of Z is cailed partial information set or simply information sel.

Glven the total Information Z, the set

¥=={it,s)»&T XS |(z.,t.5)EZ for some =}

is called tota! indez set for Z. Any subset of K of K Is called partial indez sel or

simply indez sel.

A subset Cof TXT XN XN is called communication schedule. An element
(t.t'.n.n’') In C represents the transmission of a message by node n at time
!

which Is received by node n’ at time 1. We call any clement of




I =T Uy Uler U Ly 1

an information node, where
Jer = K X {8T}
Igp =K X {SR}
Ier = {(t.n,CT)|(t.t'.n,n")EC}, and

Icp = {(t,n,CR)|(t'.t,n".n)EC}.

We call an information node in Igr (Igp, Iy or I, respectively) a sensor
transmitting node (sensor recetving node, communication transmitling node, com-
munication receiving rode, reps.). An information structure is a binary relation
< on I, which s reflexive and antlsymmetric. ¢ <i’ means : <1’ but 134i’.
1 |= 1’ means ¢t is an Immedlate predecessor of 1/. The ordered set (I.<) is called

an information graph.

Let us deflne
K'"'={(t.s)eK|s€S,}.
P =K"'x{ST}. I{#'=K"'x{SR}.
% = {(t.n.CT)Elop | LET).
I¢h' = {(tt.n .CRYEL .y, | teT), and

L UL UG

Then the following assumptions are made on the network:

Basic Assumplions

JALL (No Sensor Sharing. S, M 807 B for all (n.n )¢ N X N such that n#n’.
(A2} (Finlteness) Z and C are both finite.

iA3l (No Indexing Confusion) 7 is isomorphic to K.

(A (Information Sources) Each ok ST 1in 1o 1= mintmum in T and has only one




successor so that (kST ) b (k SR j( €l )

[A5] (Information Exchanges) (t,n.,CT)p+ (' n'.CR) If and only |If
(t.t'.n.n"EC.

[A8] (Causallty 1} (m.¢t.)<im'.t'.!l") implies t <¢".

[A7] {Causality 2) The blnary relation < Is transitlve.

{A8] (Total Order) For cach n in N, (I'"', <) is totally ordered.

Remarks:

(1) [A1] to [A5] are more or less standard assumptlons.

(2) [A4] implies no delay in sensor reporting.

(3) [A5] allows us to model communlcation delays.

(4) [AS6] prohibits any negative time delay.

(5) {A7] prohlbits any cycle in (I.<).

(6) [A8] implies sequential data processing (and implicitly perfect memory) for

each node.

Given an information grapt (I.<), we can assign a maximum amount of

information to each information node : €l. More precisely, for each : €],

K" = {k€K | (k.ST)<i} (1)

is called the mazitmum indez set at node i. Similarly

—~
L]
—

Z'") = {(z .k)EZ | kEK')

is called the marimum nformation set at ¢. Then the following observations {oi-

low immediately from the definitions:

Proposition 1:

(1) K" -~ {keK |k, SR\<?} for alli im 1.
(2) K"W'CR" " of i <,
(3) K L K" for all i in1.

{4) K UK for all 1 in 1.

[N

The proof 1s obvious.
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Remark: The converse of the (2) of Proposition I Is not necessarily true as can

been seen from the following counterexample:

K" =K"" but neither i,<i, or i,<i,.
Due to the isomorphism between Z and K, all the K 's In Proposition 1 can

be replaced by Z's, l.e., we have

Proposition 2:

(1Y 7' {(z.k)EZ | (k.SRYLi} for all i in 1.
(2) Z2''CZ" if i <av.

3) 72 = '_giZ"" foralli in L

(4 2= U Z" foralli inL
Vit

In the following, we describe two leinmas which are direct consequences of

the defintions and are used in the following sections.

fLemma [: For any set { of information nodes, we have

f,/(“" = U K" | i< for all i€l)
1€

Proof: Suppose ke[ iK"'. Then by definition i'=k SRI<s for all :€l. or
X}

k€K and 1/<i for all t€l. The converse is obvlous, Q.I.D.

According to this lemma, glven a set [ of Information nodes, the Intersee-

tion of the maximum index sets, or cquivalently common information contained

in @ solleetlon of the maximum Information obtalned in a set of Information
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nodes, is characterized as the unjon of maximum index sets on the set of common

predecessor Information nodes. A stronger version of l.emma 1 is the following:

Lemma 2. Suppose 1., be a set of information nodes such that
0 7

(1) # g -
Yy MV K # 0, and
vl

[+

(3) there s no pair (1.1 el,x 1, such that v <<1’.
Then,

I - {ilel('T | 1, <1, for all "(IEIH}

s nol empty and we have

m K({l U l\'(l'l (5)

el i€l

Proof: I, implies U K''i--0. Thercfore it suffices to prove (5). As in Lemma

vel,

1, it follows directly from the definitions that U' K'''is a subset of ﬂl K"
i€l 1€l

To prove the other inclusion, suppose k€ () K" or (k,.SR)<y, for all
. 0

i€l
i€, Let k=(s.t)€S, X T where nE€N Is the node uniquely (Assumption [A1])
determined by k. Since I'"'Is totally ordered (Assumption [A8]), assumptions (1}
and (3) guarantee existence of an ¢ In I1,NI"" for some n'€N such that n’'s£n.
Hence, there exists a transmission node 1’ which belongs to n, i.e., t’€1¢%, such

that
(kK ,SR)Y <1/ < ¢” (6}

for some t” in [, Let ¢ be the smallest element i In 1/ which satlsiles (6) with

some 1 in /.

oor any set AL (A s s cardinadity, or the number of its clements

A |




Then. for any 1,€/,\I'"’ we must have t <i, because (k SR ) must be con-
nected through a communication link which includes v. If 1,&/,I'" we must

also have 1< 1, because I'"' is totally ordered and i,<1 contradicts with assump-

tion {3). Q.ED.

2. Distributed Estimation Problems

This section discusses the distributed estimation problems with arbltrary

information graphs.

2.1 Static Estimation Problems The object to be estimated is modeled
as a random element z (called state-of-the-world or simply state) taking values in
a measurable space {X,B} where X is a locally compact Hausdorfl space satisfying
the second axlom of countabllity' and B is the o-field of Borei sets in X. Let u
be a o-finite measure on (X,B) and call the measure space (X.B.p) stale space.
Implicitly we are assuming an underlylng probability space (1.F.Prob)} but we

rarely must refer to it.

In parallel, for each sensor s€S, Y, 1Is a locally compact Hausdorfl space
satisfying the second axiom of countability and the sensor format space ls
redefined as the measure space (Y, B, .u, ) where B, is the o-field of Borel sets In
Y, and g, Is a o-finite measure on (Y, .B,). All the sets defined in the previous
section are then redeflned as random sets. For each sample, we assume that all
the assumptions [Al] - [A8] are satisfled (at least with probability ene). Accord-
ing to the common custom. we will abuse the notations p( ) and p¢ -1} to the full

extent. We will list our assumptions below:
Assumptions’

{B1] (Absolute Continulty) Random variable r has an absoluteiy contlnuous dis-

£ DS I~ ondy neeessars beceaase we can ase candittonal probabiliies and thelr densdties cte freely, without

(4 N
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tributlion.

USRI

[B2] (Independence) Random sets K and C and random ordered set (I1.<) are

independent of state z.

(B3] (Conditional Independence and Absolute Continuity) Glven z and K, each
element in Z is conditionally independent from each other and has an abso-

lutely continuous conditional distribution.

To obtain a general result with an arbitrary informatlon graph, we need a couple

of lemmas.

Lemma 8: Let m be a positive integer and let (a;){_ E(~00.00)™ . For any
subset M of M={1,...m }, define a [0]=0 and, 1f M #0,

alM]= 2 a,.
meEM
E Then, for any positive integer n and for any n subsets, M, -- - M,, of M, we
" have
F
a(UM]= D0 X a0 M;1) (9)
t=1 1=1 NeN" JEN
where
N'={NC{i..n}|# (N)=1} {10)

Proof: We will use the mathematlcal induction. When n -=1, the statement is

clearly true. When n =2, (9) is

aiM, UM, = aiM,) + a[M, - a MM, (11)

T TN ETT v e TR TR T TR R T T TR e

which is also obviously true for any two subsets Af, and A, of M. Suppose the

statement of the lemma s true for n 1t when n o ~2. Then, using (11), we have

|
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n n i

n )
a'UMi=a UM+ aiM,)-alUMNM,)
- t -t

t=1

+ X (X e NMI+ X el N MHNM,))
: NeN, ; €N JEN'

=200 " (X alNM)
i=1 NENM JEN

which proves (9) for n. Q.E.D.

For any information index k& in K, by 2z, we mean the random element in

Y, such that (z; .k)=(z, .s.t)E€Z is uniquely determined by k.

Lemma 4: For any partial information set 7 whose indez set ts K, we have

Pz |Z2)p(Z |K)=(IL p(z |2)) p(2) (12)

The proof of this lemma Is a direct consequence of Assumptions [B1] - [B3]. In
order to avold complication, we will assume that any term in (12) is strictly posi-

tive (at least in an appropriate a.e. notion).

The following two theorems are the main results of distributed estimation

for fusing the estlmates at various nodes to obtain a global estimate.

Theorem 1: For every positive integer n and for any n partial informations

sets, Z,....... Z, ., we have
pxtUzZ)y~c I (I par| Nz (13)
g FTONENS N
where
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e =pUz UK TTCTT (02 DK 0" (14)
= 1= 7

1=1 NEN/" JEN

Proof: For any partial information set Z with index set K, we define

aZ,- Ilpiz |z} Then Lemma 4 implies
kch

alZ)=p(Z)pz|Z)p(z)' (15)

Using the product version of Lemma 3 and applying (15) for each Z;, we have

Uz = TICIT a0z ™

=1 1=1 NeN/ JEN

:nu]pﬂ4|ﬂkww

1 =1 f\leNn JE
n

HHIMHHZWW

{=1 NeNS

TLCIL pa)

=1 NeN?

. n
The last term becomes p(z)"' since 2(_1)-4 (':] = 1. Applyving (15) to U Z;.
1=1

we have (13) and {14). Q.E.D.

Unfortunately, this theorem is not sufficient to describe a general informa-
tion fusion algorithm since (13) may contaln probability densities conditioned by
interscctions of Z,'s. However, these Intersections can be decomposed further by
Lemma 2 in the previous section. The result can be stated in the following
theorem. For notational convenlence, we add an extra element 1y to the set I of
all the information nodes and let T=IU{+y}. Then (I.<) is constructed by letting

14 be the Immediate predecessor of all the minimum nodes in the original infor-

. S e (ry) By
mation graph (I.<i. Then we have Z''* -K'"*--0.
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Theorem 2: For any communication receiving node i, in 1, , there exists a
subset T of set T of extended information nodes such that T < 1, (This means

T <1, forall7 inT.) and

piz (U2 = e Ml pe (27 (16)

where | 1s the set of immediale predecessors of 1, (a(f))l-.d 18 some indezed tuple
such that a(t) 13 a nonzero integer for each 1, and ¢ ts the normalizing constant

defined by

c = p(Ule')l UK“_)) 1 I_I p(Z(r),K'r')n(?) (17)
€l el iel

Proof: 1t follows directly from Theorem I that

™o

) # /) ENIR T
piz |UZ=¢’ TI({ I p(z | N2ZY) (18)
el J&l, 7€J

m =1

where ¢’ Is an appropriate normalizing constant and I, ={JCI |# (J)=m}.

When some J In {18) iIs not a singleton, we have ﬁjZ‘f‘ = @ or Z"" for some i’
JE

in I, or otherwise, by Lemma 2. there exists a J'CI such that J'<J and

U 2V ﬂJZ'j . Then we can substitute this factor using Theorem 1. Repeat-
et j€

ing this process as necessary but finitely many times, each factor in the right
hand side of {18) can be reduced to factors each of which is conditioned by 2''"
for some 1'</J or @ (the a priori distribution). When we cancel the factors and

gather identlcal factors, we have (16) and (17). Q.E.D.

2.2 Dynamic Estimation Problems In dynamic estimation problems,
the object to be cstimated s a stochastic process. Thus we redeflne z as a sto-
chastic process (1,), .4 on state space (X.B.u). Since it is In general impossible to
estimate z ftself, as being customly In Mtering problems, we are interested In
estimating z, for a fixed time ¢t In T or (7 ...... 7, ) for a given tuple (4,)," ; of
times In T. We must alter the assumptions [B1] - [B3] according to this new

sitgation.  Although we may handle non-markovian processes, 1t seems =afe to
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l malntaln markovian properties to avold any unnecessary frregularity.

Assumptions:

[C1] (Absolute Continuity and Markovian Propertles) The stochastic process

(T )ier s 2 temporally homogenious Markov process with a state transition

probabllity,

Fy{E|z)= Prob({z,,,,€E} | z,=1) (19)

for any t€T, for any At >0 such that t +At€T and for any E€B. For
any given finlte set, {t,,...,¢, }, the Joint probability distribution of

(Zy,00enny) is absolutely continuous with respect to product measure u" .

[C2] (Independence) Random set K and random ordered set (I.<) are indepen-

dent of (z; )7

[C3] (Conditional Independence and Absolute Continuity) For each (f.s) In
T xS, we have a transition probability density function p(-|-) from the
state space to the information format space such that, for any partial infor-

mation Z with index set K, we have

P(Z | (2, )ker) = P(K)kI;IKP(Zk | z,) (20)

where (¢, .s)—k and (z .k ) Is the unique element in Z for each & in K.

If K Is known beforchand and If z In Sectlon 2.1 Is repiaced by (z, %k ",
Theorems 2 and 38 are stlll valld when z Is replaced by (z,). This, however,

requires the computation of a high dimensional probablllty distribution and is not
very realistic. Unfortunately, unless we have make a rather striet restrictions,
i.e., bi-directional determinisity, it may be impossible to have a formula which is

both general and applicable.

VoActundly, when fusing Information 7 - UZ. . (2‘,‘ )h K enough where K< the tuden ser for Z.
)
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Deterministic Processes:  We considered a special class of deterministic

processes with the following assumption:

Assumption [D] Stochastic process (z, )y is bi-directionally deterministic, l.e.,
there exists a one-parameter group of homeomorphlc operators on X, (¢, )% _ .,

such that

Prob ({z,€E } | z,,=z) = x(®,_Az):E) (21)

forall (¢.te€T X T (x(.;A) is the indicator function of set A .).

With this assumption, the stochastic process is deterministic in both direc-
tions of time. Therefore, when a set of data is accumulated in the past, we can
consider the present time as the Initial time. We also assume that extrapolation
of state probability density can be done in both directions freely. Then, we can

restate Theorems 1 and 2 in Section 2.1 as follows:

Theorem 8: Let i =(t.n,CR) be a communication receiving node in I p

and {i,,.....1p } be the set of all the timmediate predecessors of i. Then we have

M M
) Z 5 _— . ( l)"l'l 22
Pz | m\-il m/ =€ mlll((lg{l....llll}#(l)=m) Pz | QJZ’ ) (22)

(1}

where Z,, =2 and

M A M

f
€ = p.: u Z”l l U K"l) f n
m =1 m=1 m=1(JC{1.. . MbL# (Ji=m)

ZINOK N (23
p(]@! s LIVED (23)
with K, =K' Moreover, there exists a subset T of set T of extended informa-

tion nodes such that T <1 and
M - -
plz, | Ulzm) = d HTP(I, RARRE (24)
1¢

m—=

where (a(T)); 7 138 some indexed tuple such that a(t) is a nonzero integer for cach

1 and




B

M M ..
d - pcUZ, | UK, " TLp@™ | K")M (25)

m =1 m =1 v

167

Proof: In the proof of Theorem I, redefine a (7] as

alZ) == kI;IK plz | &, _,(7,)).

Then we can carry out the same proof as in Theorems 2 and 3. Q.E.D.
3. Distributed Multi-Target Tracking

In Appendix C of (1}, distributed multi-target tracking problems were for-
mulated assuming broadcasting-type communication. In this section, we general-
ize the results stated there to distributed multl-target tracking with an arbitrary

information graph.

3.1 Formalism of Multi-target Tracking Problems In multi-target track-
ing problems, we assume stochastic processes whose states include number-of-
target component and sensor data include number-of-measurement information.
For this purpose, we must reformulate the state space and the sensor format
spaces. In general, by a hybrid space, we mean a direct product of a2 measurable
set (called continuous part) in a Euclidean space and a finite set {called discrete
part). Let X be a hybrid space and u be the direct product measure composed of
Lebesgue measure on the continuous part and the counting measure on the

discrete measure. Then we consider a_stochastic process on
== U X"X{n} (30)

n =0

where X" is a formal singleton. Thus, we write the stochastic process as

((z, (¢ )),{II,“ Np(E et

which Is actually a stochastle process on X which Is locally compact and metriz-

able with a o-finite measure constructed by (™), .
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For each sensor s in S, let Y, be a hybrid space and

Y, ="QO(Y,)"'X{m} (31)

where (Y, )" Is agaln a formal singleton. Let u, be the hybrid measure on Y, for
each s. Then every Y, Is locally compact and metrizable with a o-finite measure
composed of (u)>_,. Thus every element In every Y, has a form ((y;);=,.m) or
(6,0). The second element represents the number of measurements while the first

element is the vector of measurement values in Y,. For each k in K, we may

write an element in Z uniquely determined by k as ((y,-(k))JN_A_’:k).NM(k )k). We

also assume, for each £ in K, a random function A, whose domain is included in
{1.....N7} and whose range Is included in {1,....,Np(k)}. j=A, (i) means that the
t-th target is detected and creates the j-th measurement at k. This assumption
excludes split measurements. We also assume that there Is no merged measure-
ment. This means every A, is 1-to-1. We consider the following random sets

J = kLéJK {1eee Npg (KD} X {k } (32)
and .
A= {{(j.k)ET|i=A ()} i€{r...Np}}\ {0} (33)

We call any subset J of J a measurement index set. Then the no-spiit/no-
merged measurement assumption implies that, for any measurement Index set J,

the restriction of A on J defined by
AJ = {fNJ |r€ X} \ {08} (34)

satisfles the followlng condltions:

(1) Each member r of AlJ Is a subset of J and contains at most one point In
{1....Ny (k) x{k} for each k€K,

(2) Any two sets belonging to AlJ do not intersect.




For each measurment index set J, define

T(J) = {+CJ | # (r]| k)<1} (35)
and
7, 7,==0 for any
H(J) = {)‘QT(‘”\{M (11, T)EXNX N such that r,;é‘r.z} (36)

In (35) and other subsequent equatlons, we use the notatfon

ik =10 ({1 Ny (K)}x{k})

for any set . We call any element In T(J) a trackon J and any element in H(J)
a hypothesis on J. According to these definitions, for any measurement index set
J. AlJ 1s in H(J) and each element in AlJ is In T(J).

3.2 Information Fusion Problems The distributed estimation problem in this
multl-target tracking environment Is to obtain (in a distributed way)

Prob { A|lJ'") | 2!’} for each information node ¢ in I where J'/ Is defined as

J9 = (5T | keKSy (37)

This problem actually consists of two problems:

(1) (Hypothesls Formation) Suppose i, Is a communlcation receiving node and
I is the set of its immediate predecessor information nodes. If every node
in / contalins all the set of tracks and hypotheses on J'*!, how can we con-
struct T(‘Lejl.l‘”) and H('L‘EJIJ“') ?

(2) (Hypothesis Evaluation) Suppose the above sets of tracks and hypotheses
are generated. How can we evaluate each hypothesis using the evaluation

made by the predecessor nodes ?
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We will discuss these problems separately in the following:

Hypothesis Formation: For each track r in T(J), each hypothesis X in H(J)
and each JCJ, we deflne the restriction of 7 on J and the restriction of X on J

by rMJ and

MNJ = {fNJ | rex}\ {8} . (38)

respectively. Each of these restriction operations defines a partlal order on T(J)
or H(J) which is arborescent (tree-like -- for each element, the set of its predeces-
sors Is totally ordered). Moreover, the restriction operations are commutative

with the Intersection operation in the sense that (- 1J,)NJ,=r(J,NJ,) and

()‘Ul)l"'.’:xl(Jan‘z) (39)

for any measurement index sets, J, and J,. (39) Is not quite obvious but can be

easily proved.

Let (J;);e; be an arbitrary tuple of measurement index sets where / Is an

arbitrary nonempty set. Then we call any tuple (7;);¢; of tracks In HIT(J;) fus-
i€

able If there exists a track 7in T(UIJ;) such that
1€

Ny =1 (40)

for all {€/. Similarly we call any tuple (\;);¢, of hypotheses in _I]IH(J;) fusable if
1€

there exists a hypothesis N 1n H( UIJ,-) such that
i€

AJ; ==\ (11)

for all 1€l. The following lemma glves a sufficient and necessary condition for

each of the above fusability definitions:

Lemma 5: Let (J,);; be an arbitrary tuple of measurement inder sets.
Then we have

(1) Any track tuple (7)), ; in III’I‘(.I, ) 12 fusable 1f and only of
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T{|ﬁ(.’.‘ln.],':) = T.‘zﬂ(-’-,nj.’..) (42)

Jor all (i,.1)€l X1
(2) Any hypothests tuple (\;);c; 1n Il/H( J;) 15 fusable if and only if
i€

Xl',l(']”m‘li,..) = xizl(‘]iln"i:) (43) i

Jor all (1 ,.1,0€l X 1.

Proof: (1) and (2) state that a tuple of tracks (or hypotheses) Is fusable If and
only if they share the common predecessors In the overlapping measurement

index set, l.e.,

T = U{J: NI, | (.)€ XT such that i34} (44)

In (1) and (2), the "only If” parts are obvious. To prove the "if" part of (1),
let r:UIr, and J=UI.I,~. Since every 7, is a subset of J,, rCJ. Let K be the
1€ 1€

Index set uniquely determined by J. Suppose there exists a k in K such that
#(rlk)>1. Then, since | < #(1]k) < %# (r; | k) and since each r; Is a track
on J;, there exists (i,.1,)€] XI such that # (r; | k)=# (i, | £)=1 and r,-';éri___. In
other words, 7, and 7, do not share a common predecessor on
{1....Nyy }x{k}CJ, MJ;,, which contradicts with the assumption. Therefore, we
must have # (7| k)<1 for all k in K, implying r€T(J).

Since every r, is included In r and In J;, we have r, Cr(J, for every ¢ in /.
Suppose there exists an i in I such that 7, C7(}J;, l.e., there exists (j.k)erNJ,
such that (j.k)¢r,. Then, since {7.k) is In 7, there must be 1/ in [ such that
t 71’ and (j.k)Er,,, which implies that 7, and 7,. do not share a common prede-
cessor on {1....Ny(k)}x{k} and contradicts the assumption. We must have

), =7, for all s In I, Le., (7;);¢c; s fusable.
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To prove the "if" part of (2), we assume # ([)==2. For # (I)>2, we can

prove it simllarly but need much more complicated notations and space. Suppose
(X,-l.)‘,»__)EH(J,-‘)XH(J,;_.) and (43) holds with /={r,i,}. Let X be the common
predecessor on 7.-',“.1,'ﬂ.l,-'__. Then, as shown In Lemma I of Appendix C of [t]. for

cach 7€X and for each ¢ In [, there exits a unique track 7, (7) which Is an exten-

sion of 7, i.e., 7,(ANJ =7 Let

x = (U

i€l

(@ | 7ex} U (U U n,00)
el <X

Then every 7 in X\ is a track on J and any two tracks in A do not Intersect.
Moreover, for every track rin )\, we have either 1\ J, =r, (s J) or N J; =0, l.e.,
MJ;=X; for all i in /. Hence the hypothesis pair (xil.x,-_._) is fusable. When
# (J)>-2, we must construct hypotheses similarly but we must start with the
common predecessor tracks in QIJ,» and repeat the process for all the Intersec-
tions with gradually fewer terms. Q.ED.

Remark: Since JCJ implies fNJET(J) for any track r€T(J), the restriction
operation (40) defined a mapping from T(UIJ;) to -I;I/T”‘ ). The definition of the
1€ t

fusability implies that the range of thls mapping is exactly the set of all the fus-
able tuples of tracks. Suppose rGT(U,J;) and rNJ;=r, for all 1 in I. Then,
i€

Ur, = U(rﬂJ,-)::rﬂ(UlJ‘-):r. Therefore, the unionization operation is indeed ,
t€l 1€! t< ¥
the inverse manping, and hence, the set of all the tracks on U/, te.. T A ts i

ie! el ;

] isomorphic to the set of ail the fusable tuples of tracks. Similarly JC.J tmplies

A\ | JYEH(J) for any hypothesis ;\EH(.U,J-')- Therefore the restriction operation
1€
(41) defines a surjective mapping from H(U/J‘) to the set of ali the fusable
(€

hypothesis tuples. This mapping, however, may not be bllective ‘one-to-one). A

counterexample was given in [1].

Lemma 5 provides us with ways of generating T(UIJ,-) and H(U,.I‘) from
1C 1¢

IAIIT(J,) and ﬂ/ll(.l, ). respectively. However, cheeking the conditions described
t¢ 1 (
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by (42) or (43) may not be directly conducted on the Information nodes which

precedes /. Nonetheless, by applying Lemma 2 In Section 1, we can transform
(42) and (43) Into a form by which predecessor-consistency tests are required only

on certaln predecessor nodes of /. The result Is stated as follows:

Theorem 4: Let i, be a communication recetving node and | be the set of
all the immediate predecessors of it. For each (i,.9,)€1 X1, let I(s,.1,) be a set of
information nodes t such thal ¥ <i, and v <i,. Then, we have

(1) @ necessary and sufficient condition for any track tuple (ri)ie,EHIT(J“") to be
3
fusable 1s that, for any (1,.4,)€I X1,

NI =1 NID (45)

for any1€T(i,.1,), and
(2) a necessary condition for any hypothesis tuple ()‘,-)ie,EHIH(J“") to be fusable
13

13 that, for any (i,.1,)€l XI,

Ny | I =, | D ' (46)

for any 1€T(1,.i,).

Proof: Suppose (1,.1,)6I XI. Then, by Lemma 2 of Section 1, we have

U J5 = Jn e (47)
ieTii.iy)

Therefore, If (45) hoids for all 1 In 7(1,.1,), (42) holds. Conversely. for any 7 In
(6,6, JOCI NI, and hence, (42) tmplies (45) and (43) Implles (46). Q.E.D.

Remarks:
(1) For each (¢,,4,)€] X I such that 1,51, a set I(i,.i,) of common predecessors
t such that ¥ <i, and 7 <{, may not be unique. When the above theorem 1s used

to test fusablilty, any Informatlon node ¢ tn T(i .f,) such that ¢« " with another
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1’ in I(1,.1,) can be excluded from I(i,.i,).

(2) The type of tests deflned by (45) or (48) provides a necessary and sufficient

condition for track fusability but only a necessary condition for hypothesls fusa-

bility. This is due to the fact that a fusable tuple of tracks produces only one

fused track but a fusable tuple of hypotheses may produce more than one
. hypotheses. Thus, (47) is not a sufficient condition for the hypothesis fusability

as shown below:

Counterexample:

This is an example of broadcasting type communication and we have
J“”zJ““’zJ“"U .I“""=J“.'iﬂ .I””. Let (X\.)\,) be an arbitrary pair of hypotheses
on J“" and J""‘). respectively, to be fused. They may share identlcal predecessors
x,el{(.l”’\) and X,.eH(J('.")) while predecessor \; on J“” of X\, may differs from the

predecessor A\, on J of X,. In such a case, )\, and X\, cannot be fused.

By the fact stated in (2) of the above remarks, we cannot determine the
fusabllity of hypothesis tuples by this theorem. However, part (1) of this theorem
can be used Indirectly to determine the fusabllity of hypothesls tuples according

to the theorem stated below. On the other hand, the above theorem ean be used
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to screen hypothesis tuples for candidates to be fused.

Theorem 5: Let (J;);¢; be any tuple of measurement index sets and

J:UIJ,-. Then, for any given NXCT(J)\ {0} and any given ()\,-),-E,EHIH(J, ), we
€ 1€
have \eH(J) and X | J, =X, for all i in ] if and only of
(1) for any r in X, there exists a fusable track tuple (r; );E,GI—II()\,- U{0}) such that
i€
r=Ur,, and
i€l

(2) for all i€l and and for all r;€X;, there exists a unique 7 in \ such that r, Cr.

Proof: [if] Assume (1) and (2) hold for given ACT(J)\{#} and (X;)ie,eﬂlﬂ(.l,-).
tC

To show A€H(J) it suffices to show A does not have any overlapping tracks. Sup-
pose there are overlapping tracks r, and 7, in X\, le., (r,7,)EXXX, 7,571, and
r,N7,7%0. Then by (1). for each [€{1,2} there exists a fusable track tuple
(r,,-),-e,eifeI'()\i U{®}) such that Tl:;LeJlT‘" Since r1,(M7,5#, there exists a
(i,.4)€I X I such that r,; M7, #0. For each 1€{1,2}, r; EN; because 7, 7%0. Since
X, €H(J;) for each !, i,=1i, implles 7,; =), . If we have 7; GC7, and 7,; C,, the
uniqueness part of (2) is violated. Therefore, we must have ¢,7#1,. On the other
hand, the fusability assumption in (1) implies r; =7, J; for each ({./)e{1,2}x[.

Hence we have

07, Ny =N )N )TN N, =7 N, Cry

which means 7,; "\, 5%0. Also the uniqueness part of (2) prohibits r, =7, .
This contradicts with k,‘EH(.lil), 7, EX;, and 7, €X; . Therefore. A must be a

hypothesis on J, or AeH(J).

Let ¢+€!. Suppose 7,€7,. There exists a r€X such that 7, Cr by (2). Then,
by (1). there exists a fusable track tuple (H,,),-.e,elll()\,-’U{ﬂ}) such that 7 U7,
i 'c vl

Then, for cach 1, the fusablity Implies @47, CrJ, 7, Since N\, ¢H(J), we
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must have v, =7, Le., . €X\J,. On the other hand, if 7, €\lJ,, Le. If 7 3£8 and
r(J, = 7., (1} and (2} similarly Imply 7, €\;. Hence we have \|J, == ), .

fonly if! Suppose XeH(J) and M|J, :=X\, for all {€/. For all 1€\ and for all
i€l, let 7, = r\J . Then, (1, )i¢; apparently satisfles the requirements of (1). (2}
follows directly from X/ =:X;,. X\ Is a hypothesls on J, and hence, does not have

any overlapping tracks. This proves the uniqueness part. Q.ED.

Remark: From the proof it Is clear that the condition, r;, C7in (2) of Theorem 5

can be replaced by r, ==-1J;.

Hypothesis Evaluation: In addition to Assumptions [Al] - [A8], [C1] - [C3]

and the assumptions made earlier in Section 3.2, we have to add the following:

{E1] (Poisson-i.1.d. Targets) The number Ny of targets Is constant over time

and has a Polsson distribution with mean y,>0. Given Ny >0, (z, (¢ )),N:", is
a system of independent Markov processes sharing the identical joint distri-
butions. Moreover, each process is bi-directionally deterministic having an
identical group (®,,)—_, of deterministic state transitions and an identi-

cal Initlal state distribution which has density ¢, (z (¢,)).

{E2] (Independent Detection} For each k =(s,t)cK, we have'

Prob (Dom (A (k) | (z, (¢ ;T Ny ) = (48)

Nr ) o
TT oy iz (0 KPP AN (7, ()| ko yimiseme ko
$ =g

{E3] (Random Assignment) For any k€K, given Ny (k) and Dom (A (k)), every
realization of A (k) iIs equally probable.

[E4] (False Alarm Number) For each k (s .t)EK, we have

I For any function / K-+ F . Dom (/] )~ tis domain and fm (f }is ts ranzes X E ) s the nndtea
tor funetion of ~et 1 e ;[’,') -1 ire C[’,‘ 0 otherwise,
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N
Prob (Nag(ky | A (k)(zo (), N = py, (N (k) — # (Im (A k) [ k) (49)

[E3] (Independent Measurement) For each k=(s.,t)cK and

N, (k
Z -.r((y,(k)),-._l_’.( )' stk ) k) €Z, we have

Prob ((y; (1)), 24" €(dy; )] LA (k). Nyg (k ()i Ty N ) = (50)

j=1

:‘el)EInM PM(!/A(.)I z; (t N, (dyAn)))( H k) Pra (y,~ Ik)#a(!/j))

where

Jea (k) = {1, Ny (K )\ I (A (k) (51)

For any track €T(J) and any Information set Z with index set K and
measurement index set J, define track ltkelihood of track r glveh Z by

HnZ)=v,c(1.Z2) (52)

where

cir 2 = f(kl;lh‘ g(yirikil e, (2 ).k)) @ (2 ldz) | {53)

with 7~-{(y,\ki) "Ny (ks ) | KEK ),

):'

{y,»(iﬂ W k)=(r] k)@

¢ olheruise

yirik, — (5:1)

and
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{pm(yir.k)pu(rlk) il y %0
g(y lz.k) = 1-pp(z 1 k) otherwise (55)
For any t&T. let the measure o, on X be defined by

odE)= [ qomdz) (56)

(@, ) ED

and let ¢,(-) be the density of o, with respect to p. Then we have the following

theorem:

Theorem 6: Let Z be any information set, and let K and J be the

corresponding index set and measurement index set. Then we have

(1)

Prob(AlJ | Z) = P(Z) " ezp(1(8.2)-1,) (57)
Npy (k)
kEK (WPN"‘(N“ k1 )jeﬂu: P4 (r; 16)) 'gu )

where Np, (k)=Ny(k)-# (U 7| k).
e/

(2)
UK) & E(Nr~# ) | AV.K) = 1(0.2) (58)
(3) For any {e€T,
NT NT
Prob {(z;(t)); 1\€(dz;), I, | O.Np A2} = (59)

(’!I\U p(Tgyn | .z il dz gy, l))( IT Pz | 0.2 )ie(dz; ))

1@ Im

where (1:A]J —I; 13 one of the equally probable 1-to-1 assignment functions from

tracks to target indices, and
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plz |nZ)=¢e(r.2)' (krrlka(yirlk]l%-,(r).k)) q(z) . (60)

Proof: Suppose K Is ordered arbitrarily as K —={k.k....... k,} such that ¢, <{, .

Then, according to Corollary to Theorem 2 1n Sectlon 5 of (2], we have (57) with

(n2) = vo T [otylri ki1 2 kpy (2 |10y Zi i) (61)

where J;, ={(7.k;)€J | 1'<1} and Z;={(¢.k;)€Z | i’<1}. By means of mathematl-

cal Induction, we can show

'Izllfg(y [rlkii ] z.kipy (z V700,02 )p(dz) (62)
= f{glg(y[fi ki) ‘t’z,'-t“(l’ ).ki)q, (2 )u(dz)

= fil;lng(y (r] k]| ¢'t,l-t(z )k )qe (2 )p(dz)

Thus Part (1) follows from (52) - (56) and (61) - (62).

According to Part [ii) of Theorem 2 in Section 5 of [2], with the same order-

ing of K as above, we have
Vg, = Vg | fg(()} z .k )pe (2 10.2;_pldz) . (63)
By repeatedly applying (63), we obtain Part (2). Part (3) then follows from
Lemma 2 and Part {i] of Theorem 2 of Section 5 in [2]. Q.E.D.
The distributed version of this theorem follows:

Theorem 7: Let i,—(t.n.CR) be a communication receiving node in Iy,

and | be the set of all the immediate predecessors of i,. Let Zr—U’Z“" with K
'C

and J be the assoctaling inder sel and mecasuremenl indez set. Lect (T.a) be the
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pair which satisfies the conditions (24) and (25) of Theorem 3. Then we have

(1)
Prob (Al | Z) = d J1 Prob(Al'") | 2707 TLL(r(ZT)zer) (64)
vel eV
where
d = P(2)" (IIP (25 T) exp(uK) - Da@uK™) (85)
1€ 1€
T(T'(Z(T')Tef) — (DTV(K(T))GT(T)Q(T)) :(T'(Z(T))TGT) (66)
1€
{1 it 1N J =0
€l = 0 otherwise ’ (67)
and
¢ 2% = [T itz [ GNIT).20pOpia) (68)
t€
(2
plz |7.2) = ¢ (2T )ep) ! I pe(z (1) JO),zEped (69)
t€
and
(3)

K)=1(0(2 ) 1) = KMy L2400 gy 0
wK) = TO2 %) = (MK ™r®) [T pita 10209 udz)  (70)

Proof: Let (I.a) be the palr which satisfles the conditlons (24) and (25). Then we

should first note that, by Lemma 8 and Theorems [ and 2, we have
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alk] & Mo =TI( 1T o) I (a)"" (71)

€K vel kek™ -’GT keR'™

for any (a; )yex such that a, >0 for all k€K. Also, as shown in the proof of
Theorem 1, If a; s constant, l.e., If a, =@ for all k€K, we have a{Ki=a. For

notational slmplicity, we abreviate notatlons as g, (z.7) = g(y|r| k}| ¢, o (z).k)

and

jea _ Nea(h)

= AT . (Y k
h Ny, (5)! PN (Npa (k) | k) )_EE(“PM (y;j (k)| k)

Then, it follows from Part (1) of Theorem 6 that
IT Prob (AT 27 (72)
t€

O(I)

I

II(P(Z“’) exn(1(0, z“’)-uu)( II :[‘)( n I(rZ‘ )
= (ITP 2y D) exp(Ta(T) (0.2 exp(~uy)
rel vel

(I I @) (I T11nz®)

el kek© ey
It follows from (71) that
aut=11 11 (A (73)
vel kexkt
and
(L g (.)a(2) = IT II (g (z.1)g,(2)) o (74)

On the other hand, it follows from (60) that

p(z | TNIDZO0D = (oI 2T T (g2 NI T)g(2)™ (75)
*GKU’

for each 1€7. Then It follows from (52), (53), (74) and (75) that
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———-———w——u-——-—.—.__..___________‘

1(rZ) - (I'Il(TnJ(T;‘Z(T))uu’))(fl'l’h(z | rm‘,l:l'z‘l-’)ulr)“(d: )) (76)
vel N3

Part (1) then follows from (72), (73) and (76). Parts (2) and (3) cab be proved
similarly. Q.E.D.

Remark: By the definition of v by (66) - (67), we can interpret 1 as track-to-
track likelthood of the tuple (1ﬂJ‘r’);€7 of tracks. This likelthood can also be

deflned as
T2y = [ ;EITE (2 | (1NIT), 24z -
where
7 oz 1 (NIN.20) = gk ETNID) 0 sy, 27y (78)

4. Conclusion

Solutions were given to distributed estimation problems and to distributed
multitarget tracking problems with arbitrary communication patterns defined by
information graphs In bl-directionally diterministic cases. It Is expected that the
results described In this appendix provide sufficlently functioning distributed
algorithms even without the bi-directional determinancy if the randomness in

state transition is small and the communication is reasonably frequent.
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