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ABSTRACT

\

N

“) A commonly occurring problem is that of minimizing least
squares expressions subject to restrictions on the solution.
/ “w

Dykstra (1983) has given a simple algorithm for solving these types
of problems when the constraint region can be expressed as a finite
intersection of closed, convex cones. Here it is shown that this
algorithm must still work correctly even when each cone is allowed
to be arbitrarily translated (as long as the intersection is non-

empty). This allows the algorithm to be avplied to a much larger

-
collection of problems than previously indicated. C -~
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An Algorithm for Least Squares Projections

onto the Intersection of Shifted Convex Cones

Richard L. Dykstra

1. TIntroduction.

The problem of obtaining least squares projections subject to
various constraints is a frequently occurring problem in many areas.

For example, the area of isotonic regression usually is concerned with
obtaining least squares vectors which must satisfy certain partial order
restrictions (see Barlow, Bartholomew, Bremmer and Brunk (1972) and
Robertson and Wright (1981)). Another example concerns finding the
closest {least squares) convex. (concave) function through a set of
points in the plane (see Hildreth (1954) and Wu (1982)).

Many times, the constraint region can be written as a finite inter-
section of simpler constraint regions. This raises the possibility of
using iterative schemes based upon the projections onto the simpler
regions for solving the overall problem.

John Von Neumann (1950) has shown that if the constraint region
is an intersection of two subspaces, cyclic iterative projections onto
the individual subspaces must converge to the desired projection.
Norbert Weiner (1955) independently proved a version of this theorem

in a slightly different setting.




Dykstra and Robertson (1982) have developed an iterative vrocedure

for finding projections of rectangular arrays onto the class of arrays

with nondecreasing rows and columns based only upon one-dimensional
smoothings. Later, Dykstra (1983) extended this approach to the general
framework of projections onto the intersection of closed convex cones.
This procedure is based upon finding projections onto the individual cones,
and reduces to Von Neumann's and Weiner's method when the cones are ﬂ
also subspaces. |
It is the purpose of this paper to show that Dykstra's (1983) {
algorithm can be extended to work for projections onto & finite non-
empty intersection of shifted (translated) closed, convex cones. In

particular, this means that least squares projections under general
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n
linear constraints of the form Z a %, < (=) b can be handled by
1
Dykstra's algorithm even when b # O. This clearly follows by writing

n
{x: Jax, <bl as
i1 -
1
n
{x: } a,x, <0} - (-b/al,o,...,O).
1
Constraints of the form
vs g_xi 5-21’ i=1,...,n

where y and 2z are fixed vectors fall into the translated cone

framework by writing




ized to translated cone constraints.

2. Notation and Setting.

and y (with respect to w) is given by

i=1

The corresponding inner product norm of
1 4
2 2
(2.1) lxll = (x,x)° = ( ] x5w,)
] i

closed, convex cone K 1is defined as

K** = K.

X

1
2

cone if x,y € K; a,b >0 implies ax + by € K.

({x: x, > 0} - (-yl,—yz,...,—yn)) N ({x: X, < 0} - (_Zl’_z2""’-zn))'

Other examples of cone constraints given in Dykstra (1983) can be general-

We denote n-dimensional real coordinate space by Rn, and let

g and w(wi >0) be'fixed points in R". The inner product of x

n
(x,y) = } AN

is defined as

A closed (in the metric) subset X of Rn is a closed convex

n
(2.2) K* = {y €R"; (y,x) = Y y.x.w, <0 Vx € K.
1 1 11—

Of course K* 1is also a closed, convex cone with the property that

The dual cone of a




A commonly occurring problem is to find the x which will

(2.3) Minimize ||g - x|
x€C

where C 1is a closed, convex set (x,y €C implies ax + (1-a) €C
Vac [0,11). A vector g* €C achieves the minimal value in (2.3)

iff

(2.4) (g-g*,g*-f) > 0 for all f GC.

If ¢ 1is actually a closed, convex cone, we may replace (2.L) by

i) (g-g*,g*) = 0, and
(2.5)
ii) (g-g*,f) < 0 for all f €C.

(See Theorem 7.8 of Barlow et al. (1972).)
Note that (2.5) implies that if C 1is a closed, convex cone and

g* solves (2.3), then g-g* G C*.

3. The Algorithm.

We wish to consider problems of the form

(3.1) Minipize |lg - x|
x€ E,(Ki-bi)




where K, is a closed, convex cone in Rn, bi‘G Rn,
r
K;~b, = {x-bi; x € Ki}’ and r](Ki-bi) # . We assume that we can

1
find the vector in Ki-bi which will

(3.2) Minimize |[f ~ x|
x€ K b,
ii
for any f and any i, and wish to use this ability to solve (3.1).
We note that if P(f|C) denotes the projection of f &R"

onto the closed, convex set C, then for a closed, convex cone K

(3.3) P(r | K;-b,) = P(f + b, | Ki) - b,

Thus

(3.4) £ - P(r]K~b,) = (f+ b,) - P(f + bi‘ K,) @k} for all f
by (2.5) ii).

We shall make extensive use of (3.L).
Our proposed algorithm is identical to that given in Dykstra (1983)
except that we allow projections onto shifted, closed, convex cones.
Our scheme can be succinctly stated with the aid of the following
notation:
i) For any positive integer n, we define n(mod r) =i if
n=%r+i for integers k and i where 1 <1i <r.

ii) 1Initislly, set n = 0, gy = &> and Ii =0 G&GR ,i=1,...,r.




—————

The iterative procedure is to

1) Set € 41 = P(gn -1 ), and

n{mod r) IKn(mod r) ~ Pn(mod r)

then update In(mod r) by resetting it equal to

(3.5)
- (gn - In(mod r))'

2) Replace n by n+l and go to 1).

3
n+l

We refer the reader to Dykstra (1983) for further elaboration on the

algorithm and its uses. This procedure requires only the ability to find
projections onto the Ky (see (3.3)). These individual projections are
often easy to program and quick to execute, and hence can be combined
to solve rather difficult optimization problems.

In particular, the algorithm applies to quadratic programming

n

problem with a finite number of constraints of the form z ax, < b.
1 trT

. Proof of the Algorithm.

To simplify the proof for n > 1, we will write g in (3.5)
as & 4 when n = (k-1)r + 1,1 <i <r. (In other words, gk,i is
the projection onto the ith shifted cone during the kth cycle. )
In similar fashion we depict

B~ (8 iy~ Teegy)s i 2sicr

(4.1) I

1" Bea,r~ g i B2 1

We will also have need of the following lemma, a proof of which is found ﬁ

in Dykstra (1983).




Lemma 4.,1. Suppose a sequence of nonnegative real numbers {an}

o
is such that Z 8’ < o, Then there exists a subsequence
1

n
- -]
{an } such that
J J=1
n
J

) ae +0 as Jo»o.
m=1 J

We now establish the fundamental result of the paper.

Theorem 4.1. The vectors g, defined in (3.5) converge to the

true solution, say g%, of the problem defined in (3.1) as n > =,

r
Proof. Since fl(Ki - bi) # @#, we may assume WLOG that
1l

T

g€ N (Ki - bi). Then bi¢€ Ki and the true solution g* exists
1

uniquely. Note from (4.1) that

g . =1 -1 , 1i=2,...,r, and

gn,i--l n,i n-1,1 n,i

(4.2)

- =1 -1
g & n-1,1

n~1,r n,l n,l’

Thus, in general (I 0), for i >2

0,i

2 2
- ok = - gk -
e, ;.1 - &*fl e, s -8® + (X ;-1
= 2 2
(k.3) = ”gn,i - g*ll + "In—l,i = In,i"
- - * -
+ 2(gn,i + o, In-l,i In,i) 2(g* + b, In-l,i In,i)'

Note that (gn 1 o I i) =0 (vy (2.5)).
’




Moreover, since g + b, € Ki and -I
E )

n—l,i‘e K; (by (3.4)), the

next to last term is nonnegative.
Similarly
2 2 2
- g > - g¥ + JII -I
g,y - e*® > llg, - e*l® + N, -1l
(b.1)
- * 4+ - .
2(g* + 21, Iy 4 = T o)
Repeated application of (4.3) and (L.4) together with addition and the

telescoping property of the last term yields

le - &#1” 2 e - o7+ 1 LWL, - 4,0
(4.5)

r
*
+2 g (g% + b, In,i) for all n.

Since the last sum is nonnegative (g* + bi_ﬁ K> —In i,G K;), we know
]

© r
2

(4.6) z X ”I T ” < ®

k=1 %=1 K-1,% k.2 >
and hence

NTpg,e = Tn,oll = Meg oy = &y Ml (222) ena
(L.7)

” n—l’l - In,l” = ”gn-l,r - gn’lll > 0 as n -+ ®,




W that (L. . : 4 - =1 + ...+
e note that (L.5) implies that Bh,p NG BB L n,l

are uniformly bounded.

Next we show, that there exists a subsequence {n,} such that

J

L.8 1i T + T + ...+ T -f) <o Vr
({ ) 1Tfun ( " 0 L2 nor’ Byl ) <

To see this, note that

I + e 4+ -
( n,1 In’ 8 1 f)
r
L. = -f- .+ b, ince(T_ .,g . +D,!
(h-9) izl(In,i’ gn,l f (gn,l bl))(SInce( n,i®n,1 i
r T
=) (1 - )+ (-1 ., f+0v.).
i£2 n,i” &1 7 Eni izl n,i’ i

The last sum is nonpositive since f + b, c K, and -I G K?.

n,i

For the first part, we use the Cauchy-Schwarz Inequality to say

al
3

i= n,i
r n r

< izz (mzllllm + ~ Tnep il )(lzglgn’g_l - )
9 r r

- (mzl 122 1Ty = Toas H)(RZQHgn,,l_1 8y o 1D
n

= g aman




10

T r
. _ _ - - b7)).
" where & ggglgn,l—l gn,l', QEJ‘IH;Q In—l,J} (see (4.7))
|
4 Since
2 r-2 T 2
an <2 QZZ ”In,l In—l,l” i
T 2
(4.6) implies that ) a_ < . Thus lemma (4.1) can be employed to
=]

yvield (4.8). Moreover, since the g, . B&re uniformly bounded, we may

b

assume that we have chosen a subsequence such that (4.8) holds and

g converges, say to h. Note that (L4.7) insures that g
nj’r n.,l

also converges to h for every &, and hence that

r
h € r\(Ki - bi) (the K, are closed). In addition, since the
1

~ 8= o+ i
& v g In 1 In - are uniformly bounded and converge

J
to h-g, we may use (2.4) to argue h = g¥,

Finally, in a manner similar to (L.5), we can show

n r

2 2 2
- ok = - g¥* + I ~ 1
Al L R T PSR
(L.10)
n T
+2 +b,) - (g*+1b,), I -1 ).
m=£3+1 2:1((gm=2 2) (g 2)’ m-1,% M,l)

We may write the last sum as

n r
(y.11) 2 ) } (g , +b,, )
m=n.+1 2=1 m,% 2’ "m-1,%
J
I 1
(h.12) -2 ( +b,, I )
m=nJ+l 2=1 gm,n 2 m,L




Fach term of (4.11) is nonnegative (gm .

’

- _ G K*).

oy EKyy =Ty g XD

lach term of (4.12) is zero by (2.5). FEach term of (4.13) is nonnegative
for the same reason as (4.11).

Finally, we can write (L.1L) as

r r
-2 (g*, 221 Inj,l) * gzl(bl’ Inj,l)]
r r
= -2[(§i2 ; 3ot 121Inj’2) ' nzl(bl, Inj’z)l
r Ir
> -2[;3\: [(gnj,l, lzllnj,z) + 121 (bg,lnj,g)]
r

by taking f to be 0O in L.9. This clearly equals zero by the

o

way {nj} was chosen. Then noting that the left side of (k.10)
1

goes to zero as J +9, it easily follows that gn r > g*¥ as n -+ o,
k]

This clearly is good enough by (4.7).
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