THAMES RIVER BASIN
DUDLEY, MASSACHUSETTS

MERINO POND DAM
MA 00110

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

SEPTEMBER 1979

84 09 05 052
Merino Pond Dam

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

U.S. ARMY CORPS OF ENGINEERS
NEW ENGLAND DIVISION

DEPT. OF THE ARMY, CORPS OF ENGINEERS
NEW ENGLAND DIVISION, NEEDS
424 TUPLEO ROAD, WALTHAM, MA. 02254

REFERENCE ORGANIZATION NAME AND ADDRESS

INSPECTION REPORT

September 1979

65

UNCLASSIFIED

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

DEPT. OF THE ARMY, CORPS OF ENGINEERS
NEW ENGLAND DIVISION, NEEDS
424 TUPLEO ROAD, WALTHAM, MA. 02254

12. REPORT DATE

13. NUMBER OF PAGES

14. DISTRIBUTION STATEMENT (of this report)

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

15. SECURITY CLASS. (of this report)

16. DISTRIBUTION STATEMENT (of the document entered in Block 20, if different from Report)

17. DISTRIBUTION STATEMENT (of the document entered in Block 20, if different from Report)

18. DISTRIBUTION STATEMENT (of the document entered in Block 20, if different from Report)

19. SECURITY CLASS. (of this report)

UNCLASSIFIED

20. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY,

Thames River Basin
Dudley, Massachusetts

21. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Merino Pond Dam is approximately 285 feet long and has a maximum height of approximately 19.5 feet. It consists of an earth embankment with stone walls at the upstream and downstream faces and a loamed and seeded crest. Based on the size classification, small, and hazard potential, high, the selected spillway test flood was the 15% PMF.
Honorable Edward J. King
Governor of the Commonwealth of
Massachusetts
State House
Boston, Massachusetts 02133

Dear Governor King:

Inclosed is a copy of the Marico Pond Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Department of Environmental Quality Engineering, the cooperating agency for the Commonwealth of Massachusetts. In addition, a copy of the report has also been furnished the owner, Mr. Robert Javery, Plant Engineer, Stevens Associates, Box 220, Webster, Massachusetts 01570.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Quality Engineering for your cooperation in carrying out this program.

Sincerely,

Max R. Schneider
Colonel, Corps of Engineers
Division Engineer

[Signature]
MERINO POND DAM
MA 00110

THAMES RIVER BASIN
DUDLEY, MASSACHUSETTS

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

Identification: MA 00110
Name of Dam: MERINO POND DAM
Town: DUDLEY
County and State: WORCESTER COUNTY, MA
Stream: TRIBUTARY OF FRENCH RIVER
Date of Inspection: 13 AUGUST 1979

BRIEF ASSESSMENT

Merino Pond Dam is approximately 26 feet long and has a maximum height of approximately 19.5 feet. It consists of an earth embankment with stone walls at the upstream and downstream faces and a loamed and seeded crest. A swale to the north of the left abutment currently serves as an emergency overflow.

The facility is considered in poor condition. This classification is based on observed seepage in the area of the spillway and the left embankment, and apparent lateral movement of the left downstream masonry wall.

Based on the size classification, small, and hazard potential classification, high, in accordance with Corps of Engineers Guidelines, the selected spillway test flood was the 1/2 Probable Maximum Flood. Hydrologic analysis indicates that the spillway capacity with the water surface at the top of the dam is approximately 1,050 cfs, while the emergency overflow has a capacity under the same conditions of approximately 250 cfs. The total discharge capability with the water surface at the top of the dam is about 65 percent of the routed test flood outflow of 2,000 cfs. The estimated test flood stage is about 0.8 feet above the nominal top of the dam.

Investigations are recommended to determine the stability of the embankment, the effect of seepage, the method of dewatering the reservoir when necessary and the need and means of increasing the discharge capabilities at the facility. Recommended remedial measures include the cutting of vegetation, the reshaping of the dam crest, the repair of walls and spillway apron and the performing of maintenance work on the bridge over the spillway. The Owner should develop a formal maintenance program, operational procedure, and emergency procedures plan and should institute a program of annual technical inspections. The remedial measures and recommendations should be performed within one year of receipt of this report by the Owner.

CAMP DRESSER & MCKEE INC.

Signed:
Roger H. Wood
Vice President
This Phase I Inspection Report on Marino Pond Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval.

Joseph W. Finegan
Joseph W. Finegan, Jr., Member
Water Control Branch
Engineering Division

Garnet M. Terzian
Garnet M. Terzian, Member
Design Branch
Engineering Division

Joseph A. McElroy
Joseph A. McElroy, Chairman
Chief, NED Materials Testing Lab.
Foundations & Materials Branch
Engineering Division

APPROVAL RECOMMENDED:

Joe B. Fryar
Joe B. Fryar
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I Investigations are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the test flood is based on the estimated "probable maximum flood" for the region (greatest reasonably possible storm runoff), or a fraction thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td>i</td>
</tr>
<tr>
<td>Brief Assessment</td>
<td></td>
</tr>
<tr>
<td>Review Board Page</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td></td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii & iii</td>
</tr>
<tr>
<td>Overview Photo</td>
<td>iv</td>
</tr>
<tr>
<td>Location Map</td>
<td>v</td>
</tr>
</tbody>
</table>

REPORT

1. PROJECT INFORMATION

1.1 General
 a. Authority 1-1
 b. Purpose of Inspection 1-1

1.2 Description of Project
 a. Location 1-2
 b. Description of Dam and Appurtenances 1-2
 c. Size Classification 1-2
 d. Hazard Classification 1-3
 e. Ownership 1-3
 f. Operator 1-3
 g. Purpose of Dam 1-3
 h. Design and Construction History 1-3
 i. Normal Operational Procedures 1-3

1.3 Pertinent Data 1-4

2. ENGINEERING DATA

2.1 Design 2-1
2.2 Construction 2-1
2.3 Operation 2-1
2.4 Evaluation 2-1

3. VISUAL INSPECTION

3.1 Findings
 a. General 3-1
 b. Dam 3-1
 c. Appurtenant Structures 3-2
 d. Reservoir Area 3-2
 e. Downstream Channel 3-2

3.2 Evaluation 3-3

4. OPERATIONAL PROCEDURES

4.1 Procedures 4-1
4.2 Maintenance of Dam 4-1
4.3 Maintenance of Operating Facilities 4-1
4.4 Description of any Warning System in Effect 4-1
4.5 Evaluation 4-1
Table of Contents (Cont'd)

5. Hydraulic/Hydrologic

5.1 Evaluation of Features
 a. General
 b. Design Data
 c. Experience Data
 d. Visual Observations
 e. Test Flood Analysis
 f. Dam Failure Analysis

6. Structural Stability

6.1 Evaluation of Structural Stability
 a. Visual Observation
 b. Design and Construction Data
 c. Operating Records
 d. Post-Construction Changes
 e. Seismic Stability

7. Assessment, Recommendations and Remedial Measures

7.1 Dam Assessment
 a. Condition
 b. Adequacy of Information
 c. Urgency
 d. Need for Additional Investigation

7.2 Recommendations

7.3 Remedial Measures
 a. Operation and Maintenance Procedures

7.4 Alternatives

Appendixes

- Appendix A - Inspection Checklist
- Appendix B - Engineering Data
- Appendix C - Photographs
- Appendix D - Hydrologic and Hydraulic Computations
- Appendix E - Information as Contained in the National Inventory of Dams
1. OVERVIEW OF DOWNSTREAM FACE OF DAM AND SPILLWAY.

2. OVERVIEW OF UPSTREAM FACE OF DAM FROM LEFT ABUTMENT AREA.
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT

MERINO POND DAM
MA 00110

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority - Public Law 92-367, 8 August 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region.

Camp Dresser & McKee Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Massachusetts. Authorization and notice to proceed was issued to Camp Dresser & McKee Inc. under a letter of 27 March 1979, from Colonel John P. Chandler, Corps of Engineers. Contract No. DACW 33-79-C-0053 has been assigned by the Corps of Engineers for this work. Haley and Aldrich, Inc. has been retained by Camp Dresser & McKee Inc. for the soils and geological portions of the work.

b. Purpose - The primary purpose of the investigation is to:

1. Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-federal interests.

2. Encourage and assist the States to initiate quickly effective dam safety programs for non-Federal dams.

3. Update, verify and complete the National Inventory of Dams.
1.2 Description of Project

a. Location - Merino Pond Dam is located at the southeast end of Merino Pond, separating it from Low Pond in the Town of Dudley, Massachusetts, as shown on the report's Location Map. Discharge from the dam flows to the French River, a distance of approximately 2,000 feet downstream. The coordinates for the dam are 71 degrees - 53.6 minutes longitude and 42 degrees - 03.0 minutes latitude.

b. Description of Dam and Appurtenances - Merino Pond Dam consists of a retained earth embankment with a paved spillway across the crest. An abandoned outlet pipe extends through the embankment to a mill building along the right embankment of the dam. A sketch plan of the dam and appurtenances is included in Appendix C-1.

The dam has an overall length of about 285 ft. and a maximum height of about 19.5 ft. The portion of the embankment located to the left of the spillway is formed by near vertical stone retaining walls upstream and downstream. The crest elevation at the upstream face is about 3 ft. higher than at the downstream face.

The dam embankment to the right of the spillway and adjacent to the mill widens, becomes nearly level and grades into natural ground in the right abutment area. The foundation wall of the mill building retains the right end of the abutment on the downstream side.

The 30 ft. wide spillway, located near the center of the dam, consists of a concrete slab invert and stone masonry training walls, which taper from 5.3 feet high at the upstream end, to a 3.3 ft. height at the downstream end. Six metal supports are present on the crest of the spillway about 5.5 ft. in from the upstream face of the dam. The supports provide for 7 days of flashboards having a maximum height of 3.5 ft. A 4 ft. wide walkway spans the spillway above the flashboards. Approximately 20 ft. beyond the left abutment of the dam is a depressed area about 20 ft. wide with an invert elevation 2.8 ft. lower than the top of the dam. This depressed area would act as an emergency overflow during major flooding events.

The outlet works for the dam have been abandoned and there is presently no means of dewatering the pond. A 3 ft. by 8.5 ft. rectangular concrete wet well is located on the dam crest about 60 ft. to the right of the spillway. The intake to the well consists of a box conduit of unknown dimensions having an intake invert approximately 9.5 ft. below the top of dam and a wooden trash rack on the upstream face. Water is withdrawn from the well via a 10-in. C.I. pipe by a pump located within the mill.

c. Size Classification - The maximum height of the dam is approximately 19.5 feet and the estimated total storage capacity at the
top of the dam is 762 acre-feet. According to guidelines established by the Corps of Engineers, the dam is classified in the "small" category based on both storage capacity and height.

d. Hazard Classification - The results of the Merino Pond Dam Failure analysis indicate that Low Pond dam will be overtopped and affect several homes by high velocity sheet flow. The Stevens Linen mill would be affected as well as several other houses and commercial structures in that densely developed area before the dam failure outflow discharges to the French River. The potential loss of life would be more than a few persons. Consequently, the dam is classified in the "high" hazard category.

e. Ownership - The dam is owned by Stevens Linen Associates. The owner is represented by Mr. Robert Javery, Plant Engineer, Stevens Associates, Box 220, Webster, MA 01570 (Phone: 617/943-0600).

f. Operator - Mr. Robert Javery is assigned responsibility for operation of the dam.

g. Purpose of the Dam - Merino Pond Dam provides for water storage and provides process water for the down stream mills. In addition, it is used for recreation by adjacent residents. At one time, Merino Pond was used to generate power at the dam site. However, the associated electrical equipment is now abandoned.

h. Design and Construction History - The date of the actual construction of the dam is unknown. There are no plans, specifications or computations available from the Owner, County, or State offices concerning the design or construction of the dam. Due to the type of construction utilized, it is estimated that the dam was constructed prior to 1900. A review of prior State and County inspection reports dating back to January 1925 together with correspondence records and a Proposed Plan of Repairs dated June 23, 1932, indicate that repair work has been performed on the dam. In a letter dated 12 December 1931 the County recommended that a reinforced concrete core wall, one foot higher than the existing stone wall, be poured against the upstream wall; that the walkway spanning the spillway be raised 18 inches; that self-releasing flashboards be employed; and that the embankment be raised to the new height of core wall. A plan titled "Proposed Repairs to Dam" dated June 1932 proposes that the upstream stone wall be taken down and relayed in cement mortar to an elevation 1 foot higher than the existing stone wall. The plan also calls for widening the spillway by 10 feet and to extend the bridge and flashboards across the proposed 30 ft. wide spillway. A letter from the County dated 7 Feb. 1933 indicates that repairs were made. An October 1938 County inspection report indicates that spillway repairs were made in 1937 and an October 1963 inspection report states that "the
flood gate is inoperable. This gate was leaking so the owners piled up gravel in front of the gate." No records were found pertaining to the installation of a wet well within the crest of the dam.

1. Normal Operating Procedure - There is no established procedure for the operation of the dam. The condition of the dam and spillway indicate little maintenance is performed on a routine basis. The normal level of the flashboards is based on the needs of both the Owner and adjacent home owners. Flashboards are reportedly removed in anticipation of high run-off.

1.3 Pertinent Data - There are no known elevations previously established at the dam site. Consequently, the water surface elevation of 485 shown on the USGS Quadrangle, Webster, MA-COMN., 1969, was adopted as spillway crest elevation. All other elevations given in this report pertaining to the dam site were estimated from the assumed spillway crest elevation.

a. Drainage Area - The drainage area tributary to the dam is approximately 4.4 square miles of flat terrain at about 1 percent slope. Approximately 9 percent of the watershed is ponded water with additional small marshy areas. There is considerable storage potential upstream of Merino Pond. Plerpont Meadow Pond, located at the northern edge of the watershed, at one time drained naturally to both the Merino Pond and the Buffumville Reservoir watersheds. Now, an earthen dam has been constructed along the southern edge of Plerpont Meadow Pond, causing it to drain strictly to Buffumville Reservoir. There is scattered development throughout the Merino Pond drainage area with dense development along the western and southern banks of Merino Pond.

b. Discharge at Dam Site - There are no records of discharges at the dam site.

(1) Outlet works:..None

(2) Maximum known flood at damsite..................Unknown

(3) Ungated spillway capacity at top of dam:

1,050 cfs @ 490.3 elev. (The swale to the north of the dam has an estimated additional capacity of 250 cfs)

(4) Ungated spillway capacity at test flood elevation:

1,300 cfs @ 491.1 elev.

(5) Gated spillway capacity at normal pool elevation: N/A

(6) Gated spillway capacity at test flood elevation: N/A
Total spillway capacity at test flood elevation:
1,300 cfs @ 491.1 elev.

Total Project discharge at test flood elevation:
2,000 cfs @ 491.1 elev.

c. Elevation (ft. above NGVD)

1	Streambed at centerline of dam	470.8
2	Test flood tailwater	475.0
3	Upstream portal invert diversion tunnel	N/A
4	Normal pool	485.0
5	Full flood control pool	N/A
6	Spillway crest	485.0
7	Design surcharge (Original Design)	Unknown
8	Top of dam	490.3 (Nominal)
9	Test flood surcharge	491.1

d. Reservoir

1	Length of test flood pool	0.6 miles
2	Length of normal pool	0.6 miles
3	Length of flood control pool	N/A

e. Storage (acre-feet)

1	Normal pool	305
2	Flood control pool	N/A
3	Spillway crest pool	305
4	Top of dam	762
5	Test flood pool	850

f. Reservoir Surface (acres)

1	Normal pool	76
2	Flood-control pool	N/A
3	Spillway Crest	76
(4) Test flood pool.................. 101
(5) Top of dam.......................... 99

g. Dam Embankment

(1) Type........................ Retained earth embankment
(2) Length.......................... Approx. 285 ft
(3) Height.......................... Approx. 19.5 ft
(4) Top width and Elevation........ Approx. 25 ft at elev. 490.3
(5) Side slopes................ Vertical stone retaining walls U/S and D/S
(6) Zoning.......................... Unknown
(7) Impervious Core.................. Unknown
(8) Cutoff.......................... Unknown
(9) Grout Curtain.................. Probably None

h. Diversion and Regulating Tunnel

None

i. Spillway

(1) Type.................. 30 ft. wide by 5 ft. high rectangular channel with provisions for 3.5 ft. of flashboards
(2) Length of weir.................. 30 ft
(3) Crest elevation.................. 485
(4) Gates.......................... None
(5) U/S Channel.................. Merino Pond
(6) D/S Channel.................. Low Pond

j. Regulating Outlets - There are no regulating outlets at this dam.
SECTION 2: ENGINEERING DATA

2.1 Design Records - No design records were located for the original dam at Merino Pond. Design data in the form of a plan for modifications to the dam crest and spillway dated June 1932 was located and is included in Appendix B.

2.2 Construction Records - No records of the original construction or modifications were located.

2.3 Operation Records - No operation records other than inspection reports on the facility were located.

2.4 Evaluation

 a. Availability - Documents described above are included in Appendix B.

 b. Validity - There are no known design, construction or operating records. The drawings of modifications to the dam crest and spillway were in good agreement with conditions observed during the site examination.

 c. Adequacy - The absence of known records of the original design and construction requires that the evaluation of the dam during this investigation be based primarily on the visual examination described in the following section and the modification drawing.
SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General - The Phase I visual examination of Merino Pond Dam was conducted on 13 August 1979.

In general, the facility was observed to be in poor condition. This classification is primarily based on observed seepage in the area of the spillway and apparent lateral movement of the left downstream masonry wall. The reservoir level at the time of the site examination was 2.0 feet above the spillway crest.

Visual inspection checklists for the site visit are included in Appendix A and selected photographs are given in Appendix C.

b. Dam - Merino Pond Dam, shown in Photos 1 and 2, is in generally poor condition. The dam is basically an earth fill dam retained by stone masonry walls with a spillway located approximately at the center of the dam crest. Apparent lateral movement and some seepage were noted at the downstream retaining wall, and local depressions were observed at the dam crest. The following specific items were noted:

(1) Apparent lateral movement and possible settlement was observed at the left downstream retaining wall which may have been the cause of some dislodged stones also noted at this location. (See Photo 7)

(2) Seepage was observed at the downstream face at two locations:

 (a) There was active seepage with rust staining at the toe of the downstream retaining wall to the right of the spillway. (See Photo 8)

 (b) Seepage was noted just below the spillway apron at the downstream retaining wall as shown in Photo 5. Directly beneath this seepage exit, as shown in Photo 6, an accumulation of light brown coarse sand and small gravel was noted at the bottom of the spillway which suggests that some embankment fill has washed through the retaining wall. Active movement of soil particles was not evident.

(3) There was brush growing from the downstream retaining wall and the spillway training walls. A heavy growth of brush and trees was observed at the base of the downstream retaining wall.

(4) The crest was covered with grass and weeds as shown in Photo 3. Depressions in the crest were noted behind and all along the left spillway training wall and behind the
upstream retaining wall, to the right of the spillway. No evidence of movement was noticed at these locations.

(5) There was an accumulation of debris observed at the bottom of the abandoned outlet located at the downstream retaining wall to the right of the spillway cascade.

(6) Two cracks were observed in the spillway concrete apron. One crack intersects a 12 in. by 3 in. hole (indicated in Photo 4) in the slab. The spillway training walls have mortar missing from the joints at the upstream ends of the walls adjacent to the flashboards.

c. Appurtenant Structures

(1) Outlet Works - The outlet works appeared to consist of an upstream net which opened to a metal conduit which, in turn, discharged into a channel beneath the linen mill building located at the dam right abutment. The outlet works was observed to be abandoned and inoperative. There was no evidence of any other means of dewatering the pond.

(2) Footbridge - A footbridge spans the spillway at the upstream side of the dam crest, as shown in Photo 4, and is seated on the spillway training walls. The bridge consisted of two 12 in. deep steel channels which support a wood plank deck and metal pipe handrails. The downstream handrail was noted to be slightly loose. Minor rusting of the channels and the handrails and minor spalling of the left training wall bridge seat were observed.

(3) Wet Well - The wet well located to the right of the spillway on the dam crest, and the well inlet, which draws directly from the pond, were observed to be in generally good condition. The wooden trash rack at the well inlet, shown in Photo 10, has started to deteriorate.

d. Reservoir Area - While there is extensive development along the western and southern banks of the reservoir, the eastern bank of the pond has practically no development. Larner Pond is located about 400 feet upstream of Merino Pond. Side slopes to the pond are generally flat. No significant potential for landslides into the pond which would create waves that might overtop the dam were observed during the site examination. No conditions were noted which could result in a sudden increase in sediment load into the pond.
e. Downstream Channel - Merino Pond discharges through a rectangular spillway to Low Pond whose pool is 14 feet lower than the spillway crest of Merino Pond Dam. Low Pond discharges to a natural channel which runs through a masonry stone arch culvert and through the Steven's Linen Mill complex located about 700 feet downstream of Merino Pond Dam. The stone arch culvert upstream of the mill complex is small (about 35 square feet) and controls discharge through the mill complex so long as the water surface upstream of the culvert is at or below roadway elevation (about 19' above the invert of the culvert). The channel through the mill complex is winding and of variable geometry. It runs through the mill complex for about 200 feet before entering a 200 foot long concrete arch culvert, which discharges to the French River.

3.2 Evaluation - In view of the apparently satisfactory performance of the dam at present, the observed evidence of seepage and movement of the downstream stone masonry retaining wall are not considered cause for immediate concern. However, changes in the pattern or amount of seepage, or further movement of the wall could indicate the development of problems with the retained earth embankment. Furthermore, the absence of a means by which the pond can be dewatered is a condition that should be attended to.
SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures - In general, there is no formally established routine for the operation of the dam.

4.2 Maintenance of the Dam - The dam and spillway receive minimal maintenance. There is no established formal procedure for the maintenance of the dam.

4.3 Maintenance of Operating Facilities - Water is withdrawn from the pond as needed by the downstream mill by the process water pump through a 10-inch C.I. pipe. Maintenance of the outlet is performed on the basis of need.

4.4 Description of Any Warning System in Effect - There is no established warning system or emergency preparedness plan in effect for this structure.

4.5 Evaluation - Maintenance of the facility is being performed on the basis of need. There is currently no formal operational procedures in effect for Merino Pond Dam. Formal operational procedures, maintenance programs, warning system and emergency preparedness plans should be established.
SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. General - Merino Pond Dam is approximately 285 feet long with the spillway located near the center of the dam. A depressed area at the left abutment of the dam acts as an emergency overflow. The pond has a surface area of 76 acres and a storage capacity of 305 acre-feet at spillway crest elevation (485 National Geodetic Vertical Datum). Merino Pond Dam is basically a high surcharge low spillage project during minor flooding events. The 4.4 square mile area draining to Merino Pond is flat (about 1 percent slope) and about 9 percent ponded water which tends to attenuate major flooding events.

b. Design Data - There is no hydraulic/hydrologic design data available for this dam.

c. Experience Data - No records of past floods are available for this dam. A 1963 County Inspection Report mentions that the pond reportedly rose to within 6-in. of the top of dam during the 1955 flood.

d. Visual Observations - A visual inspection of the dam and reservoir area was made on 13 August 1979. At that time, there were 3 feet of flashboards in the spillway with provisions for a maximum of 3.5 feet. There was no flow through the spillway. The water surface elevation was about 1 foot below the top of flashboards (W.S. El. 487.0 NGVD). A 4-foot wide walkway spans the spillway crest.

e. Test Flood Analysis - Based on the Corps of Engineers Guidelines, the recommended test flood range for the size, small, and hazard potential, high, is 1/2 PMF (Probable Maximum Flood). The 1/2 PMF was adopted as the test flood for this project, as the dam is towards the lower portion of the size classification range. The magnitude of the test flood was determined using the Corps of Engineers Guidelines for Phase I Dam Safety Investigations. Based on the flat tributary drainage area of which 9 percent is ponded water, a 1/2 PMF inflow of 600 cfs per square mile was selected for the 4.4 square mile drainage area. The resulting peak test flood inflow for the project is approximately 2,650 cfs.

Surcharge storage routing of the test flood inflow under the condition of no flashboards resulted in a routed test flood outflow of 2,000 cfs at a stage of 491.1 feet. The spillway capacity at top of dam is 1,050 cfs while the swale to the north of the dam has a capacity of approximately 250 cfs under the same conditions. The total discharge capabilities at the top of the dam is, therefore, 65 percent of the routed test flood outflow. The routed test flood outflow would overtop the dam by about 0.8 feet.
f. Dam Failure Analysis - Based on Corps of Engineers Guidelines for Estimating Dam Failure Hydrographs, and assuming that a failure would occur along 40 percent of the mid-height length (150 ft) of the dam with water surface at the top of dam (elev. 490.3), the peak failure outflow would be approximately 8,700 cfs. As a result of a dam failure, a densely populated section of the Town of Dudley, located in the vicinity of the Stevens Linen Mill Complex, would be affected. Most of the dam failure impact area would experience low depth - high velocity sheet flow, although some areas in the vicinity of the natural channel would be impacted by high depth flooding. Several homes, industrial and commercial buildings, and roads, including State Routes 12 and 197 as well as the Stevens Linen Mill Complex would be affected. In addition, the dam at Low Pond would be overtopped by greater than 2 feet, causing possible damage to the dam. Accordingly, Merino Pond Dam is classified as having a "high" hazard potential.
SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations - The left downstream stone retaining wall shows evidence of displacement. Evidence of seepage was noted at the face and toe of the downstream retaining walls. These conditions are considered indicative of the need for repairs, although urgent remedial action is not necessary. It is expected that the safety factor with respect to the stability of the downstream retaining wall may be less than conventional limits.

b. Design and Construction Data - The drawing obtained from the County of Worcester, Massachusetts shows the basic plan and elevation view of the dam. However, there is no information concerning the lateral dimensions of the stone retaining walls and no data on the engineering properties of the fill material in the dam, nor how it was placed. In absence of this data and in view of the apparent displacement of the downstream wall, a theoretical analysis of the structural stability of the dam is not possible. Furthermore, it cannot be assumed that the safety factor for static stability resulting from such an analysis is greater than the minimum acceptable value of safety recommended by the Guidelines.

c. Operating Records - No operating records other than inspection reports by the State and County were located.

d. Post-Construction Changes - Modification to the crest of the dam, the upstream face, and the spillway are recommended in available documents dated 1931. The visual examination of the facility indicated that, in general, the proposed modifications to the crest and spillway were accomplished. Further documentation indicates that the upstream stone wall was also modified in 1933, although not in the manner suggested in the 1931 recommendations.

e. Seismic Stability - Merino Pond Dam is located along the boundary of a Seismic Zone No. 1 and 2. It cannot be assumed that the dam would be stable under seismic loading due to the condition of the downstream face even though it is a low risk area. Since pertinent data needed for a theoretical analysis of seismic stability is not available, the seismic stability of the dam is unknown.
SECTION 7: ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition - Based on the results of the visual examination, the dam embankment is considered to be in poor condition. Although some repairs are needed, no conditions which would warrant urgent remedial action were noted.

b. Adequacy of Information - The evaluation of the dam embankment has been based primarily on the visual examination, consideration of available records and past performance and application of engineering judgment. Generally, the information available or obtained was adequate for the purposes of the Phase I assessment. However, it is recommended that additional Information relative to embankment stability be obtained as outlined in Section 7.2.

c. Urgency - The recommendations for additional investigations and remedial measures, outlined in Sections 7.2 and 7.3 respectively, should be undertaken and completed by the Owner within one year after receipt of this report by the Owner.

d. Need for Additional Investigations - Additional investigations should be performed by the Owner as outlined in Section 7.2.

7.2 Recommendations

It is recommended that the Owner arrange for the following investigations to be undertaken by a registered professional engineer:

1. Evaluate the long-term stability of the embankment, including consideration of seepage conditions at the spillway and the right embankment, engineering properties of embankment materials, the seismic stability of the embankment and the need for repair or modification of the downstream stone retaining wall. Consideration should be given to the potential for and the effects of changes in seepage conditions and further lateral displacement of the downstream retaining wall.

2. A detailed hydrologic-hydraulic investigation to determine the need and means of increasing the discharge capacity at the dam. The investigation should also consider the need and means of providing erosion protection at the emergency overflow swale if the use of this swale is to be continued.

3. An investigation to determine the required repairs, modifications or new construction necessary to provide a method of lowering the reservoir water surface in times of emergency.

The Owner should implement corrective measures as required, based on the above engineering evaluations.
7.3 Remedial Measures

a. Operation and Maintenance Procedures - The following remedial work should be undertaken by the Owner:

1. Reshape the crest to fill depressions and provide a uniform crest elevation. The crest should be mowed regularly to permit visual examination.

2. Cut and remove brush and weeds from the spillway discharge channel. Also remove brush, trees, weeds, and debris from and within 20 ft. of the downstream retaining wall.

3. The spillway flashboards should be removed and not be reinstalled pending the results of the investigation stated in 7.2.2.

4. Repair cracks and patch the hole in the spillway apron concrete.

5. Reset displaced stones in the downstream retaining wall.

6. Repair joints in the spillway retaining walls.

7. Perform maintenance on the footbridge spanning the spillway in the form of repainting the exterior of the structure, tightening the downstream handrail, and repainting the left bridge seat.

8. Develop a formal maintenance program and operational procedure. The maintenance program should provide for the visual monitoring of seepage conditions and lateral displacement of the downstream retaining wall until an engineering evaluation such as the one recommended in 7.2-1 can be completed and acted upon.

9. Develop a formal emergency procedures plan and warning system in cooperation with local officials and institute a program of annual technical inspections.

7.4 Alternatives - There are no practical alternatives recommended.
APPENDIX A
INSPECTION TEAM ORGANIZATION AND CHECK LIST

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Inspection Check List</td>
<td>A-1</td>
</tr>
<tr>
<td>Embankment</td>
<td>A-2</td>
</tr>
<tr>
<td>Spillway</td>
<td>A-3</td>
</tr>
<tr>
<td>Spillway (con't)</td>
<td>A-4</td>
</tr>
<tr>
<td>Outlet Works</td>
<td>A-5</td>
</tr>
<tr>
<td>Special Structure: Well located at Dam Crest</td>
<td>A-6</td>
</tr>
<tr>
<td>Special Structure: Footbridge</td>
<td>A-7</td>
</tr>
</tbody>
</table>
Visual Inspection Party Organization

National Dam Inspection Program

DAM: Merino Pond Dam

DATE: 13 August 1979

TIME: 9:00 AM

WEATHER: Overcast - Temperature 55 - 60° F. Northeasterly winds; say 15 mph

WATER SURFACE ELEVATION UPSTREAM: 2.0' + above spillway El.

STREAM FLOW: Zero

INSPECTION PARTY:

2. Francis E. Luttazi - CDM - Operations/Structural
3. John Critchfield - Haley & Aldrich
4. Douglas Gifford - Haley & Aldrich
5. [Blank]

PROJECT FEATURE

<table>
<thead>
<tr>
<th>INSPECTED BY</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRESENT DURING INSPECTION:

1. [Blank]
2. [Blank]
3. [Blank]

APPENDIX A-1
VISUAL INSPECTION CHECK LIST
NATIONAL DAM INSPECTION PROGRAM

DAM: Merino Pond Dam

DATE: 13 August 1979

EMBANKMENT:

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Upstream Slope</td>
<td></td>
</tr>
<tr>
<td>a. Vegetation</td>
<td></td>
</tr>
<tr>
<td>b. Sloughing or Erosion</td>
<td></td>
</tr>
<tr>
<td>c. Rock Slope Protection - Riprap Failures</td>
<td></td>
</tr>
<tr>
<td>d. Animal Burrows</td>
<td></td>
</tr>
<tr>
<td>2. Crest</td>
<td></td>
</tr>
<tr>
<td>a. Vegetation</td>
<td></td>
</tr>
<tr>
<td>b. Sloughing or Erosion</td>
<td></td>
</tr>
<tr>
<td>c. Surface cracks</td>
<td></td>
</tr>
<tr>
<td>d. Movement or Settlement</td>
<td></td>
</tr>
<tr>
<td>3. Downstream Slope</td>
<td></td>
</tr>
<tr>
<td>a. Vegetation</td>
<td></td>
</tr>
<tr>
<td>b. Sloughing or Erosion</td>
<td></td>
</tr>
<tr>
<td>c. Surface cracks</td>
<td></td>
</tr>
<tr>
<td>d. Animal Burrows</td>
<td></td>
</tr>
<tr>
<td>e. Movement or Cracking near toe</td>
<td></td>
</tr>
<tr>
<td>f. Unusual Embankment or Downstream Seepage</td>
<td></td>
</tr>
<tr>
<td>g. Piping or Boils</td>
<td></td>
</tr>
<tr>
<td>h. Foundation Drainage Features</td>
<td></td>
</tr>
<tr>
<td>i. Toe Drains</td>
<td></td>
</tr>
<tr>
<td>4. General</td>
<td></td>
</tr>
<tr>
<td>a. Lateral Movement</td>
<td></td>
</tr>
<tr>
<td>b. Vertical Alignment</td>
<td></td>
</tr>
<tr>
<td>c. Horizontal Alignment</td>
<td></td>
</tr>
<tr>
<td>d. Condition at Abutments and at Structures</td>
<td></td>
</tr>
<tr>
<td>e. Indications of Movement of Structural Items</td>
<td></td>
</tr>
<tr>
<td>f. Trespassing</td>
<td></td>
</tr>
<tr>
<td>g. Instrumentation Systems</td>
<td></td>
</tr>
</tbody>
</table>

1. a. None (masonry retaining wall)
 b. None observed.
 c. Not applicable.
 d. None observed.

2. a. Grass & weeds.
 b. Depressions noted behind U/S wall on right side and behind left spillway training wall.
 c. None observed.
 d. None apparent.

3. a. Some brush growing from masonry retaining wall.
 b. None observed.
 c. None observed.
 d. None observed.
 e. See 4a.
 f. Wall wet and dripping at several locations. Concentrated seepage exiting at base of wall, right of spillway (est. 15-25gpm). Seepage water is clear. Iron staining noted.
 g. Accumulation of coarse sand along base of wall, below spillway. Could be material washed thru, stones, but no active soil movement observed. No boils noted.
 h. None known.
 i. None known.

4. a. Apparent bulging of D/S retaining wall on left side. Some stones dislodged.
 b. Good.
 c. Looks OK, except D/S bulging of wall.
 d. U/S wall at rt. abutment is 1.5 ft higher than at spillway.
 e. Wall bulge as noted above.
 f. Restricted by high wire fence.
 g. None known.

APPENDIX A-2
VISUAL INSPECTION CHECK LIST
NATIONAL DAM INSPECTION PROGRAM

DAM: Merino Pond Dam
DATE: 13 August 1979
SPILLWAY:
BY: F.E.L.

CHECK LIST

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
</table>
| **1. Approach Channel**
 a. General Condition
 b. Obstructions
 c. Log Boom etc. | **Note**: Spillway fronts on pond.
 1.
 a. Good.
 b. None observed.
 c. None observed. |
| **2. Weir**
 a. Flashboards
 b. Weir Elev. Control (Gate)
 c. Vegetation
 d. Seepage or Efflorescence
 e. Rust or Stains
 f. Cracks
 g. Condition of Joints
 h. Spalls, Voids Or Erosion
 i. Visible Reinforcement
 j. General Struct. Condition |
 2.
 a. Wood flashboards are in good condition. Steel flashboard supports are in good condition.
 b. None observed.
 c. None observed.
 d. Minor seepage observed through flashboard joints at all flashboard sections.
 e. None observed.
 f. None observed.
 g. N/A. Flashboarding founded directly on spillway apron.
 h. N/A
 i. N/A
 j. Good. |
| **3. Discharge Channel**
 a. Apron
 b. Stilling Basin
 c. Channel Floor
 d. Vegetation
 e. Seepage
 f. Obstructions
 g. General Struct. Condition |
 3.
 a. N/A. Apron is not substantially differentiated from channel floor.
 b. None observed.
 c. Two cracks were observed in spillway apron. One crack is located at the upstream end of spillway, just downstream of the flashboards, and extends the width of the spillway parallel to the downstream face. The second crack extends the length of the spillway perpendicular to the downstream face and is located to the right of spillway center line.
 d. Minor shrub growth observed to left of channel downstream at base of training wall.
 e. Seepage noted beneath channel floor.
 f. See 3d.
 g. Fair. |
| **4. Walls**
 a. Wall Location
 (1) Vegetation
 (2) Seepage or Efflorescence
 (3) Rust or Stains
 (4) Cracks
 (5) Condition of Joints
 (6) Spalls, Voids or Erosion
 (7) Visible Reinforcement
 (8) General Struct. Condition |
 Note: Spillway fronts on pond.
 1.
 a. Good.
 b. None observed.
 c. None observed.
 2.
 a. Wood flashboards are in good condition. Steel flashboard supports are in good condition.
 b. None observed.
 c. None observed.
 d. Minor seepage observed through flashboard joints at all flashboard sections.
 e. None observed.
 f. None observed.
 g. N/A. Flashboarding founded directly on spillway apron.
 h. N/A
 i. N/A
 j. Good.
 3.
 a. N/A. Apron is not substantially differentiated from channel floor.
 b. None observed.
 c. Two cracks were observed in spillway apron. One crack is located at the upstream end of spillway, just downstream of the flashboards, and extends the width of the spillway parallel to the downstream face. The second crack extends the length of the spillway perpendicular to the downstream face and is located to the right of spillway center line.
 d. Minor shrub growth observed to left of channel downstream at base of training wall.
 e. Seepage noted beneath channel floor.
 f. See 3d.
 g. Fair. |

APPENDIX A-3
Visual Inspection Check List

National Dam Inspection Program

DAM: Merino Pond Dam
DATE: 13 August 1979
SPILLWAY: (Continued)
BY: F.E.L.

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
</table>
| 1. Approach Channel
 a. General Condition
 b. Obstructions
 c. Log Boom etc. | 4. Left Spillway Training Wall
 a. Vine and brush growth observed.
 b. Minor seepage observed immediately adjacent to flashboards.
 c. None observed.
 d. None observed.
 e. None noted.
 f. None noted.
 g. None observed.
 h. None observed.
 i. None observed.
 j. None observed. |
| 2. Weir
 a. Flashboards
 b. Weir Elev. Control (Gate)
 c. Vegetation
 d. Seepage or Efflorescence
 e. Rust or Stains
 f. Cracks
 g. Condition of Joints
 h. Spalls, Voids Or Erosion
 i. Visible Reinforcement
 j. General Struct. Condition |
 b. Right Spillway Training Wall
 1. Minor brush growth.
 2. Minor seepage observed immediately adjacent to flashboards.
 3. None observed.
 4. None observed.
 5. Fair. Mortar missing from joints at upstream.
 6. None observed.
 7. N/A. Stone masonry construction.
 8. Good. |
| 3. Discharge Channel
 a. Apron
 b. Stilling Basin
 c. Channel Floor
 d. Vegetation
 e. Seepage
 f. Obstructions
 g. General Struct. Condition |
 b. Stone masonry construction.
 4. None observed.
 5. None observed.
 6. None observed.
 7. N/A. Stone masonry construction.
 8. Good. |
| 4. Walls
 a. Wall Location
 (1) Vegetation
 (2) Seepage or Efflorescence
 (3) Rust or Stains
 (4) Cracks
 (5) Condition of Joints
 (6) Spalls, Voids or Erosion
 (7) Visible Reinforcement
 (8) General Struct. Condition |
 b. Stone masonry construction.
 4. None observed.
 5. None observed.
 6. None observed.
 7. N/A. Stone masonry construction.
 8. Good. |
VISUAL INSPECTION CHECK LIST
NATIONAL DAM INSPECTION PROGRAM

DAM: Mernoa Zond Dam
DATE: 13 August 1979
OUTLET WORKS: Abandoned
BY: F.E.L.

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inlet</td>
<td>Note: Outlet works consist of conduit which draws from an inlet at the upstream dam face, and empties into a discharge channel located beneath the mill works. The works are abandoned and inoperable. There is no gate mechanism at the inlet gate.</td>
</tr>
<tr>
<td>a. Obstructions</td>
<td></td>
</tr>
<tr>
<td>b. Channel</td>
<td></td>
</tr>
<tr>
<td>c. Structure</td>
<td></td>
</tr>
<tr>
<td>d. Screens</td>
<td></td>
</tr>
<tr>
<td>e. Stop Logs</td>
<td></td>
</tr>
<tr>
<td>f. Gates</td>
<td></td>
</tr>
<tr>
<td>2. Control Facility</td>
<td>1.</td>
</tr>
<tr>
<td>a. Structure</td>
<td>a. None observed.</td>
</tr>
<tr>
<td>b. Screens</td>
<td>b. N/A. Inlet draws directly from pond.</td>
</tr>
<tr>
<td>c. Stop Logs</td>
<td>c. Mortared stone gate structure in good general structural condition.</td>
</tr>
<tr>
<td>d. Gates</td>
<td>d. Rust and corrosion evident.</td>
</tr>
<tr>
<td>e. Conduit</td>
<td>Several bars severed.</td>
</tr>
<tr>
<td>f. Seepage or Leaks</td>
<td>e. None observed.</td>
</tr>
<tr>
<td>a. Structure</td>
<td>2.</td>
</tr>
<tr>
<td>b. Erosion or Cavitation</td>
<td>a. N/A. Abandoned.</td>
</tr>
<tr>
<td>c. Obstructions</td>
<td></td>
</tr>
<tr>
<td>d. Seepage or Leaks</td>
<td></td>
</tr>
<tr>
<td>4. Mechanical and Electrical</td>
<td>3.</td>
</tr>
<tr>
<td>a. Crane Hoist</td>
<td>a. Conduit extends from inlet to wood bulkhead at head of discharge channel. There is a 12" Ø blank flanged conduit extending from wooden bulkhead.</td>
</tr>
<tr>
<td>c. Service Power</td>
<td>c. Outlet discharge channel beneath millworks substantially obstructed by abandoned machinery, wood debris, and rubble.</td>
</tr>
<tr>
<td>e. Lighting</td>
<td></td>
</tr>
<tr>
<td>f. Lightning Protection</td>
<td></td>
</tr>
<tr>
<td>5. Other</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX A-5
<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well</td>
<td>There is a concrete walled well located at the center of the dam crest to the right of the spillway. Well plan dimensions are approximately 3 ft. by 8½ ft. The well is enclosed by a wood bulkhead. General structural condition of the well is good.</td>
</tr>
<tr>
<td>Well Inlet</td>
<td>The well inlet fronts directly on the pond and is submerged. A wood bar screen is located at the well inlet and is in fair condition. Evidence of wood deterioration was observed and one broken slat noted. Further investigation prohibited by inlet submergence.</td>
</tr>
</tbody>
</table>
VISUAL INSPECTION CHECK LIST
NATIONAL DAM INSPECTION PROGRAM

<table>
<thead>
<tr>
<th>CHECK LIST</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footbridge</td>
<td>Note: There is a structural steel footbridge spanning the spillway at the upstream end directly over the flashboarding. Two, 12 in. deep steel channels support a wood plank deck and metal handrails. The bridge consists of one span and is seated approx. 9 in. into spillway training walls. Steel channels and metal handrails exhibit minor rusting. Downstream handrail is of threaded pipe connection type and slightly loose. Bridge seat at left has spalled. With the exception of the loose downstream handrail, the footbridge is in good general structural condition.</td>
</tr>
</tbody>
</table>
APPENDIX B

LIST OF AVAILABLE DOCUMENTS AND PRIOR INSPECTION REPORTS

DOCUMENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>List of Available Documents</td>
<td>B-1</td>
</tr>
</tbody>
</table>

PRIOR INSPECTION REPORTS

<table>
<thead>
<tr>
<th>Date</th>
<th>By</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 7, 1925</td>
<td>Worcester County (Index)</td>
<td>B-2</td>
</tr>
<tr>
<td>1925</td>
<td>Worcester County</td>
<td>B-3</td>
</tr>
<tr>
<td>March 24, 1930</td>
<td>Worcester County</td>
<td>B-4</td>
</tr>
<tr>
<td>December 12, 1931</td>
<td>Worcester County (Letter)</td>
<td>B-5</td>
</tr>
<tr>
<td>January 4, 1931</td>
<td>Worcester County (Computations)</td>
<td>B-6</td>
</tr>
<tr>
<td>January 27, 1932</td>
<td>Worcester County</td>
<td>B-7</td>
</tr>
<tr>
<td>February 27, 1932</td>
<td>Worcester County (Notes)</td>
<td>B-8</td>
</tr>
<tr>
<td>February 7, 1933</td>
<td>Worcester County (Letter)</td>
<td>B-9</td>
</tr>
<tr>
<td>January 13, 1937</td>
<td>Worcester County</td>
<td>B-10</td>
</tr>
<tr>
<td>October 19, 1938</td>
<td>Worcester County</td>
<td>B-11</td>
</tr>
<tr>
<td>December 30, 1941</td>
<td>Worcester County</td>
<td>B-12</td>
</tr>
<tr>
<td>November 10, 1942</td>
<td>Worcester County</td>
<td>B-13</td>
</tr>
<tr>
<td>February 18, 1944</td>
<td>Worcester County</td>
<td>B-14</td>
</tr>
<tr>
<td>December 11, 1945</td>
<td>Worcester County</td>
<td>B-15</td>
</tr>
<tr>
<td>December 1, 1947</td>
<td>Worcester County</td>
<td>B-16</td>
</tr>
<tr>
<td>December 2, 1950</td>
<td>Worcester County</td>
<td>B-17</td>
</tr>
<tr>
<td>November 29, 1951</td>
<td>Worcester County</td>
<td>B-18</td>
</tr>
<tr>
<td>September 13, 1955</td>
<td>Worcester County</td>
<td>B-19</td>
</tr>
<tr>
<td>September 25, 1963</td>
<td>Worcester County</td>
<td>B-20</td>
</tr>
<tr>
<td>March 5, 1969</td>
<td>Worcester County</td>
<td>B-21</td>
</tr>
<tr>
<td>March 21, 1969</td>
<td>Worcester County</td>
<td>B-22</td>
</tr>
<tr>
<td>September 9, 1969</td>
<td>Worcester County</td>
<td>B-23</td>
</tr>
</tbody>
</table>

DRAWINGS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proposed Repairs to Dam at Stevens Linen Co. Dudley, MA July 5, 1932</td>
<td>B-26</td>
</tr>
</tbody>
</table>
LIST OF DOCUMENTS

MERINO POND DAM

All available documents are included in Appendix B
APPENDIX B-2
COUNTY OF WORCESTER MASSACHUSETTS
COUNTY ENGINEER

Inspected by L. O. HARRISON

Date Jan. 7, 1925

Dam No. 14-07

Town Dudley

Location Near Webster Mass Mo.

Owner Stevens Linen Works

Use Mill Pond and Storage

Material and Type Earth works up and downstream walls

Spillway

Designed by

Construct by

Year

Elevation Top of Abutment 100.0

Elevation Crest 95.5

Elevation End of Spillway 86.0

Total Length 21 ft 5 in

Width of Abutment 30 ft

Width Top Crest 20 ft

Width Bottom Spillway 36 ft

Width Flashboards carried 3.7

Kind Flashboards Wood

Elevation Cleanout Pipe 30 ft

Size and Kind Cleanout Pipe

Kind of Foundation under Spillway Gravel Rock Sand

Condition good

Embankment

Length 220 ft

Main dam is actually 60 ft long

Elevation Top of Abutment 100.0

Elevation Natural Ground 60 ft

Width of Bottom 36 ft

Upstream Slope Vert. Wall

Downstream Slope Vert. Wall

Kind of Core and Filling None Visible

Material in Embankment earth

Foundation Gravel Rock Soil

Condition grown up with brush and trees

Gates waste gate filled up

Location 25 ft south of spillway

Size Kind El Flowline

Condition filled up

Wheel Kind Size Rated H.P.

Location Ave. Road

Evidence of Leaks in Structure none

Recent Repairs and Date none

Topography of Country below Dam Mill Pond

Nature of Buildings and Roads below Dam Stevens Linen Works

Number Acres in Pond

Drainage Area in Square Miles

Water in Sec. Foot per Square Mile

APPENDIX B-3
The County Commissioners of Worcester County, acting under Chapter 252, General Laws, as amended by Chapter 178 of the Acts of 1924, and section being headed "Safety of Dams and Reservoirs", have ordered an inspection of your dam. The above Acts states in part regarding the inspection of dams:

"The county commissioners shall cause an inspection to be made of every reservoir, reservoir ace and mill dam by the building of which loss of life or damage to a road or bridge is likely to be caused. The commissioners shall cause every inspection to be made by a competent engineer who shall report in detail and the work or the changes required for safety and the public good." The County Commissioners hereby order that the following repairs be made to your dam: (Notes- Repairs to be made are marked with a cross.)

1. Repair dam stream wall
 2. **up**
 3. walls to spillway section
 4. " canal or flume
 5. concrete walls
 6. " apron to spillway
 7. Leaks at
 8. Repair planks and timbers
 9. Clean out waste at pipe or flume
 10. " canal to mill
 11. Provide new waste pipe or flume
 12. " pipe to mill thru embankment
 13. Prune flashboards
 14. Lower
 15. Construct spillway section spillway to be... feet long and... feet deep. At
 16. Cut off brush and trees from embankment
 17. Fill up holes and regrade embankment

Finally notify us either in person or by letter after you have made these repairs.

Yours very truly,

[Signature]
County Engineer

APPENDIX B-4
COUNTY OF WORCESTER MASSACHUSETTS
COUNTY ENGINEER

Inspection of Dams, Reservoir Dams, and Reservoirs.

Inspected by: L. O. Warden
Date: 3-24-30

<table>
<thead>
<tr>
<th>Town</th>
<th>Location</th>
<th>Use</th>
<th>Material and Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dam Designed by</th>
<th>Constructed by</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPILLWAY — Length: Feet | Depth: Feet
El. top Abutment	El. Crest	El. Apron	El. Streambed
Width top Abutment	Width top Crest	Width bottom Spillway	
Width Flashboards carried	Kind Flashboards		
El. Flowline Cleanout Pipe	Size and Kind Cleanout Pipe		
Kind of Foundation under Spillway			
Condition: Flashboards too high close to underside of platform joints			

EMBANKMENT — Length overall: Feet
<table>
<thead>
<tr>
<th>El. Top</th>
<th>El. Natural Ground</th>
<th>Width Top</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Width of Bottom: Upstream Slope | Downstream Slope
| Joint of Corewall | Riprap |
| Material in Embankment | Foundation |
| Condition: Recommend top upstream stone wall be concreted large open joint should be filled downstream wall is lower than upstream wall by 2' should have embankment raised and regraded to protect roots |

GATES — Location
<table>
<thead>
<tr>
<th>Size</th>
<th>Kind</th>
<th>El. Flowline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Condition |

WHEEL — Kind | Size | Rated H. P.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location: Ave. Head

Evidence of Leaks in Structure: Good sized stream from north and east-north west branch has several leaks underneath it

Recent Repairs and Data

Topography of Country below Dam

Nature of Buildings and Roads below Dam

Number of Acres in Pond | Drainage Area in Square Mils
| | |
| | |

Pounds per Acre | Pounds per Square Mile
| | |

Condition:

APPENDIX B-5
Dec. 11, 1931.

Mr. Linsme Worky,
Dudley, Mass.
Attention Mr. Crawfords.

Lever Sirs:

An inspection was recently made, as you know, in
company with you, of your dam, our number 12-07, at
Upper Irvine Pond, at Dudley, Mass., according to
written plan, and we found that the following repairs
should be made:

1. Large stones and boulders, not on top of embankments,
should be placed at downstream foot embankments.

2. A reinforced concrete core wall, at least one foot
higher than the present upstream stone wall, should
be poured against the present wall, so that all waters
in the will be filled with concrete. The top of this wall
should be 18 inches wide. The floor and sidewalls of
the spillway should also be lined with concrete.

3. The walkway across the spillway should be raised at
least 18 inches.

4. Elecctrodes should be held in position by iron pins
that could bend and remove shorts under certain
situations, to prevent short circuits, which must not have
been refused upon.

5. Embankment should be raised, so that its top would
be even with the elevation of concrete walls.

6. I consider that this dam is in poor condition, and
in March the outlet gates out of downstream free of spillway, and that
these repairs should be made immediately.

Yours very truly,

[Signature]

APPENDIX B-6
14-07

\[q = 3.33 \left(b - 1.2h \right) \text{ft}^2 \]
\[q = 3.33 \left(21 - 1.2 \times 4.4 \right) \text{ft}^2 \]
\[= 3.33 \times 16.2 \times 8 \]
\[= 1315.61 \text{ cfs} \quad \text{say} 130 \text{ cfs} \]

Assumed 60 cfs/sq mi max flood Sudbury River max 44.2 cfs

60 \times 4.9 = 294 \text{ cfs},

Assumed 75 cfs/89 mi. at max flow

75 \times 4.9 = 367.5 \text{ cfs},

The above figures do not take into consideration the dams on Cenid, Earned, and Yeter Ponds.
COUNTY OF WORCESTER MASSACHUSETTS
COUNTY ENGINEER
Prof. C.M. Allen, Woc. Poly. Institute
Inspected by L.O. Jordan
Date Jan. 27, 1931
Dain No. 11-07

TOWN: Dudley
LOCATION: Upper Burino Pond
OWNER:
MATERIAL AND TYPE:

DAM DESIGNED BY:
CONSTRUCTED BY:

SPILLWAY—Length:
Feet
Depth:
Feet
El. top Abutment
El. Crest
El. Apron
El. Stream-bed
Width top Abutment
Width top Crest
Width bottom Spillway
Width Flashboards carried
Kind Flashboards
El. Flowline Clean-out Pipe
Size and Kind Clean-out Pipe
Kind of Foundation under Spillway
CONDITION: Prof. Allen agrees that bridge should be raised 5 feet, and that concrete wall should be built on upstream side of spillway.

EMBANKMENT—Length overall:
Feet
El. Top
El. Natural Ground
Width Top
Width of Bottom
Upstream Slope
Downstream Slope
Kind of Corewall
Kind of Encasement
Material in Embankment
Foundation
CONDITION:

GATES
Size
Kind
El. Flowline
LOCATION:

WHEEL: KIND
SIZE
RATED H.P.
LOCATION
EVIDENCE OF LEAKS IN STRUCTURE
RECENT REPAIRS AND DATE

TOPOGRAPHY OF COUNTRY BELOW DAM:

NATURE OF BUILDINGS AND ROADS BELOW DAM
NUMBER OF ACRES IN POST
ELEVATION AREA IN SQUARE MILES
NO. HORSE IN SQUARE MILES

APPENDIX B—8
Report by Jack All. Feb 27 1952. in file. 1032.81-01."

(Door should be raised 10" from front side with care.)
Feb. 7, 1931

Stevens Liner Works,
Harley, Mass.,

Attention of Crane's,

Dear Sir:

I wish to inform you that I recently inspected the work done by your company on Upper Marine Pond, in Dudley, according to plans furnished. It was indeed a pleasure to view such a structure, that has been rebuilt, in such a substantial form.

Yours very truly,

County Engineer.
Inspection of Down, Reservoir Dam, and Reservoirs

<table>
<thead>
<tr>
<th>Town</th>
<th>Location</th>
<th>Upper Merino or High Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Stevens Linen Works</td>
<td></td>
</tr>
<tr>
<td>Material and Type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Upper Merino or High Pond</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dam Designed by</th>
<th>Constructed by</th>
<th>Year</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPILLWAY—Length</th>
<th>Feet</th>
<th>Depth</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>El. top Abutment</td>
<td>El. Crest</td>
<td>El. Apron</td>
<td>El. Streambed</td>
</tr>
<tr>
<td>Width top Abutment</td>
<td>Width top Crest</td>
<td>Width bottom Spillway</td>
<td></td>
</tr>
<tr>
<td>Width Flashboards carried</td>
<td>Kind Flashboards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El. Flowline Cleanout Pipe</td>
<td>Size and Kind Cleanout Pipe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kind of Foundation under Spillway</th>
<th>OK</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>OK. Eater. spouting thru each abutment wall in small stream. Not dangerous. Should be stopped.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EMBANKMENT—Length overall</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>El. Top</td>
<td>El. Natural Ground</td>
</tr>
<tr>
<td>Width of Bottom</td>
<td>El. Natural Ground</td>
</tr>
<tr>
<td>Kind of Corewall</td>
<td>Upstream Slope</td>
</tr>
<tr>
<td>Material in Embankment</td>
<td>Foundation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kind</th>
<th>Location</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>GATES</th>
<th>OK</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Kind</th>
<th>El. Flowline</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>OK</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WHEEL</th>
<th>Kind</th>
<th>Size</th>
<th>Rated H. P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Ave. Head</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evidence of Leaks in Structure</th>
<th>see above</th>
</tr>
</thead>
</table>

| Recent Repairs and Date | |
|-------------------------| |

| Topography of Country below Dam | |
|-------------------------------| |

| Nature of Buildings and Roads below Dam | |
|---------------------------------------| |

<table>
<thead>
<tr>
<th>Number of Acres in Pond</th>
<th>Draining Area in Square Miles</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Change in Second Feet per Square Mile</th>
<th>Consistent or Not Significant</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Storage</th>
<th>Cubic Feet</th>
</tr>
</thead>
</table>

APPENDIX B-11
WORCESTER COUNTY ENGINEER

Inspection of Dams, Reservoir Dams, and Reservoirs

Inspected by ES Dunn Date Oct 9, 1935 Dam No. 14-07

Town Dudley Location Upper Merino

Owner Stream Linen Use Power

SPILLWAY 26'-9" Long

El. top Abutment 65'-6" El. Crest 65'-8" El. Apron 65'-9" El. St. Bed 65'-10"

Width top Abut. Width top Crest Width bottom Sp. way 26'-9"

Width Flashboards 2'-6" x 4'-0" Kind Flashboards Wood

El. Flowline Cleanout Pipe Size and Kind Pipe

Kind of Foundation under Spillway
Condition OK 937 Required

Small Work on Both Abutments

EPAINTMENT

El. Top 5' above El. Natural Ground Width Top 25'

Width of Bottom Upstream Slope 1:2 Downstream Slope

Kind of Corewall None Riprap None

Material in Epaaintment Gravel Soil with Vigna Foundation
Condition OK

GATES

Size 4'-6" x 4'-0" Kind Wood El. Flowline 11'-3"
Condition OK

Evidence of Leaks in Structure

Recent Repairs and Date Painted in 1935

Under Water in Pond Drainage Area in Spillway

Erosion in Second Foot per Square Mile

Appended Million Cubic Feet

APPENDIX B-12
WORCESTERS COUNTY ENGINEER

Inspection of Dams, Reservoir Dams, and Reservoirs

Inspected by __________________________ Date 12-80-41 Dam No. 14-07

Town ____________ Location __________ Location __________ Location __________ Location __________

Owner __________________________ Use __________________________

SPILLWAY

El. of Abutment __________ El. of Crest __________ El. of Abut. __________ El. of Crest __________

Width top Abut. __________ Width top Crest __________ Width bottom Sp. way __________ Width bottom Sp. way __________

Width flashboards __________ Width flashboards __________

El. of Flowline cleanout Pipe __________ Size and Kind Pipe __________

Kind of formation under Spillway __________ Condition __________

dRAINAGE

El. of Top __________ El. of Natural Ground __________ Width Top __________

Width of Borrom __________ Upstream slope __________ Downstream slope __________

Kind of Corewall __________

Material in Embankment __________ Foundation __________

Condition __________

GATE

Size __________ Kind __________ El. of Flowline __________

Condition __________

Evidence of Leaks in Structure __________

Recent Repairs and Facts __________

Maximum Area in Pond __________

Drainage Area in Sq. Miles __________

Flow in Second Feet per Square Mile __________

Million Cubic Feet __________

APPENDIX B-13
WORCESTER COUNTY ENGINEER

Inspection of Dams, Reservoirs, and Reservoirs

Inspected by John A [redacted] Date 11-10-67 Dam No. [redacted]

Owner Stevens Mill Assoc. Use

SPILLWAY

El. Top Abutment El. Crest El. Apron El. St. Bed

Width top Abut. Width top Crest Width bottom Sp. Way

Width flashboards Kind flashboards Wood

El. Flowline Cleanout Pipe Site and Kind Pipe

Kind of Foundation under Spillway

Condition Small leaks on both abutments of spillway

FLOODGATE

El. Top El. Natural Ground Width Top

Width of Bottom: Upstream Slope Downstream Slope

Kind of Cornwall Riprap

Material in Embankment

Condition Apparently OK

GATES

Location Center

Size 2 pipes to miles Kind El. Flowline

Condition [redacted]

Evidence of Leaks in Structure None

Recent Repairs and Date: 10 yr ago

Number Acres in Pond Drainage Area in Sq. Miles

[redacted]

APPENDIX B-14
COUNTY OF WORCESTER MASSACHUSETTS
COUNTY ENGINEER

Inspection of Dams, Reservoir Dams, and Reservoirs.

Inspected by: J. A. [Name]

Date: 7-17-43

Town: Dudley

Location:

Owner:

Use:

Material and Type:

Dam Designed by:

Constructed by:

Year:

SPILLWAY

<table>
<thead>
<tr>
<th>El. top Abutment</th>
<th>El. Crest</th>
<th>El. Apron</th>
<th>El. Streambed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width top Abutment</td>
<td>Width top Crest</td>
<td>Width bottom Spillway</td>
<td>Width bottom Spillway</td>
</tr>
<tr>
<td>Width Flashboards carried</td>
<td>Kind Flashboards</td>
<td>El. Flowline Cleanout Pipe</td>
<td>Size and Kind Cleanout Pipe</td>
</tr>
</tbody>
</table>

Kind of Foundation under Spillway:

Condition: Good

EMBANKMENT

<table>
<thead>
<tr>
<th>El. Top</th>
<th>El. Natural Ground</th>
<th>Width Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of Bottom</td>
<td>Upstream Slope</td>
<td>Downstream Slope</td>
</tr>
<tr>
<td>Kind of Corewall</td>
<td>Riprap</td>
<td>Foundation</td>
</tr>
</tbody>
</table>

Condition: Good

GATES

<table>
<thead>
<tr>
<th>Size</th>
<th>Kind</th>
<th>Location</th>
<th>El. Flowline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Needs New Trash rack, old one rusted, many bars rusted through</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WHEEL

<table>
<thead>
<tr>
<th>Size</th>
<th>Rated H. P.</th>
<th>Location</th>
<th>Ave. Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence of Leaks in Structure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recent Repairs and Date:

Topography of Country below Dam

Nature of Buildings and Roads below Dam

<table>
<thead>
<tr>
<th>Number Acres in Und.</th>
<th>Duneage Area in Square Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated storage in Cubic Feet</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX B-15
COUNTY OF WORCESTER MASSACHUSETTS
COUNTY ENGINEER

Inspection of Dams, Reservoir Dams, and Reservoirs.

<table>
<thead>
<tr>
<th>Town</th>
<th>Location</th>
<th>Material and Type</th>
<th>Dam Designed by</th>
<th>Constructed by</th>
<th>Year</th>
</tr>
</thead>
</table>

SPILLWAY

- **El. top Abutment**
- **El. Crest**
- **El. Apron**
- **El. Streambed**
- **Width top Abutment**
- **Width top Crest**
- **Width bottom Spillway**
- **Width Flashboards carried**
- **Kind Flashboards**
- **El. Flowline Cleanout Pipe**
- **Rise and Kind Cleanout Pipe**
- **Kind of Foundation under Spillway**
- **Condition**

EMBANKMENT

- **El. Top**
- **El. Natural Ground**
- **Width Top**
- **Width of Bottom**
- **Upstream Slope**
- **Downstream Slope**
- **Kind of Corewall**
- **Riprap**
- **Material in Embankment**
- **Foundation**
- **Condition**

GATES

- **Size**
- **Kind**
- **Location**
- **Condition**

WHEEL

- **Kind**
- **Size**
- **Rated H. P.**
- **Location**
- **Evidence ofLeaks in Structure**
- **Recent Repairs and Date**

Topography of Country below Dam

- **Nature of Buildings and Roads below Dam**
- **Number Acres in Field**
- **Delineate Area in Square Miles**
- **Discharge in Feet per Square Mile**
- **Estimated Storage in Million Cubic Feet**

APPENDIX B-16
TOWN: Dudley
LOCATION: Upper Merino Pond

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

OWNED BY: Stevens Line Associates
PLACE: Dudley
USE: industrial

INSPECTED BY: E.V. Keougher-L.O.M.
DATE: Dec. 1, 1947

TYPE OF DAM: high earth embankment-downstream
CONDITION: fair to good

SPILLWAY
FLASHBOARDS IN PLACE: yes
RECENT REPAIRS: none
CONDITION: small leaks under each abutment
REPAIRS NEEDED: cutoff leaks

EMBANKMENT
RECENT REPAIRS: none
CONDITION: good
REPAIRS NEEDED: none

GATES
RECENT REPAIRS: none
CONDITION: gate stem removed-to install new gate
REPAIRS NEEDED: to install new gate

LEAKS
HOW SERIOUS: some seepage same as previous inspection
DATE: Dec. 1, 1947

[Signature]
ENGINEER

APPENDIX B-17
DAM NO. 14-27

OWNED BY WORCESTER COUNTY ENGINEERING DEPARTMENT
Worcester, Massachusetts

DAM INSPECTION REPORT

TOWN: Dudley
LOCATION: Upper Azara Pond

Worcester County Engineering Department
Worcester, Massachusetts

SPILLWAY
FLASHBOARDS IN PLACE: None
RECENT REPAIRS: New
CONDITION: Fair
REPAIRS NEEDED: Enlarge spillway.

EMPANKMENT
RECENT REPAIRS: None
CONDITION: Sec. under Leaks
REPAIRS NEEDED:

DATE:
RECENT REPAIRS: None
CONDITION: Upper Grd
REPAIRS NEEDED:

LEAKS
SMALL
HOW SERIOUS?
SIZE LEAKS UNDER CONCRETE:
DATE: Dec. 2, 1985

3.0 x 3.0
DATE: Dec. 2, 1985

COUNTY ENGINEER

APPENDIX B-18
DAM INSPECTION REPORT

OWNED BY: Stevens Linen Co
PLACE:
INSPECTED BY:
DATE: 11/29/51

TOWN: Dudley
LOCATION:
DAM NO.: 11-07
STREAM:

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

<table>
<thead>
<tr>
<th>SPILLWAY</th>
<th>FLASHEARS IN PLACE</th>
<th>4 ft - Removable</th>
<th>RECENT REPAIRS</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONDITION</td>
<td>Good</td>
<td>REPAIRS NEEDED</td>
<td>None</td>
</tr>
</tbody>
</table>

EMBANKMENT

<table>
<thead>
<tr>
<th>RECENT REPAIRS</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION</td>
<td>Good</td>
</tr>
<tr>
<td>REPAIRS NEEDED</td>
<td>None</td>
</tr>
</tbody>
</table>

DATES

<table>
<thead>
<tr>
<th>RECENT REPAIRS</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION</td>
<td>Good</td>
</tr>
<tr>
<td>REPAIRS NEEDED</td>
<td>None</td>
</tr>
</tbody>
</table>

LEAKS
Small leak under Cap. Apron - No Hassard

HOW SERIOUS

DATE

COUNTY ENGINEER

APPENDIX B-19
<table>
<thead>
<tr>
<th>TOWN</th>
<th>Dudley</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td></td>
</tr>
<tr>
<td>STREAM</td>
<td></td>
</tr>
</tbody>
</table>

| DAM NO. | 407 |

WORCESTER COUNTY ENGINEERING DEPARTMENT

WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

<table>
<thead>
<tr>
<th>OWNED BY</th>
<th>Place</th>
<th>Use</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INSP.</th>
<th>Date</th>
<th>Condition</th>
<th>Recent Repairs</th>
<th>Repairs Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF DAM</th>
<th>CONDITION</th>
<th>RECENT REPAIRS</th>
<th>REPAIRS NEEDED</th>
</tr>
</thead>
</table>

SPILLWAY

<table>
<thead>
<tr>
<th>Flashboards in Place</th>
<th>Condition</th>
<th>Recent Repairs</th>
<th>Repairs Needed</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EMBANKMENT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Recent Repairs</th>
<th>Condition</th>
<th>Repairs Needed</th>
</tr>
</thead>
</table>

DAM

<table>
<thead>
<tr>
<th>Recent Repairs</th>
<th>Condition</th>
<th>Repairs Needed</th>
</tr>
</thead>
</table>

LEAKS

<table>
<thead>
<tr>
<th>How Serious</th>
<th>Date</th>
</tr>
</thead>
</table>

OTHER

REMARKS

APPENDIX B-20
<table>
<thead>
<tr>
<th>TOWN</th>
<th>Tully</th>
<th>DAM NO.</th>
<th>19607</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>Waits Village</td>
<td>STREAM</td>
<td>Assawoman Brook</td>
</tr>
</tbody>
</table>

DAM INSPECTION REPORT

- **Owned by**: [Owner Name]
- **Place**: Tully
- **Use**: [Use Description]
- **Inspected by**: [Inspector Name]
- **Date**: 1/18/69
- **Type of Dam**: [Type of Dam]
- **Condition**: [Condition]

SPILLWAY

- **Flashboards in Place**: Yes
- **Recent Repairs**: [Recent Repairs]
- **Condition**: [Condition]
- **Repairs Needed**: [Repairs Needed]

EPAKMENT

- **Recent Repairs**: The bank has erosion been cut.
- **Condition**: [Condition]
- **Repairs Needed**: [Repairs Needed]

GATES

- **Recent Repairs**: The flood gate is improved.
- **Condition**: [Condition]
- **Repairs Needed**: [Repairs Needed]

LEAKS

- **How Serious**: No leaks are visible.

DATE: [Date]

[Owner Name] County Engineer

APPENDIX B-21
OWNER/PLACE

INSPECTED BY

DATE

TYPE/STAGE

CONDITION

SPILLWAY

Flashboards in Place
Recent Repairs
Condition
Repairs Needed

FREANKERT

Recent Repairs
Condition
Repairs Needed

GATES

Recent Repairs
Condition
Repairs Needed

LEAKS

How Serious

DATE:

COUNTY ENGINEER

APPENDIX B-22
DAM INSPECTION REPORT

OWNED BY _______________________

INSPECTED BY _______________________

TYPE OF DAM _______________________

SPILLWAY
Flashboards in Place: YES
Recent Repairs: Fresh Flashboards
Condition: Water level is 24 in above crest
Repairs Needed: Gates closed

RECOMMENDATION
Recent Repairs:
Condition:
Repairs Needed:

Recheck 7-21-69:
1 Gates partially open
3 Gates closed

GATES
Recent Repairs:
Condition:
Repairs Needed:

3/21/69

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

APPENDIX B-23
<table>
<thead>
<tr>
<th>TOWN</th>
<th>Dudley</th>
<th>DAM NO.</th>
<th>14-07</th>
<th>Name of Village</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>Stream</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

Owned by

Place

Use

Inspected by

Date

Type of Dam

Condition

SPILLWAY

Flashboards in Place

Recent Repairs

Condition

Repairs Needed

EROSION

Recent Repairs

Condition

Repairs Needed

GATES

Recent Repairs

Condition

Repairs Needed

LEAKS

How Serious

DATE

9 Sept 1967

Signed

County Engineer

APPENDIX B-24
INSPECTION REPORT & DATA FOR DAMS

Owner: STEVENS, LINN ASSOCIATES
His Address: MILL ST. DUDLEY
Function of Dam: MILL POND
Location & Access: North of Dudley & West of Route 12

Condition Rating:
Structural: Good
Hydraulic: 3x30

Estimated Discharge:
Capacity:

General Description of Dam and Discharge-Control:
- EARTH - DRY MALLS
- 6' GATE, 25' SOUTH OF STILLWAY FEEDING MILL, NOT IN USE
- ASL, DISCHARGE ONTIO, LOADED WITH DEBRIS AND DRY
- FLASHBOARDS 310' IN GOOD SHAPE

Sketch (Not to Scale):

Date: 1/1/72

Comment:

APPENDIX B-25
PROPOSED REPAIRS TO DAM
STEVENS LINEN CO.
DUDLEY, MASS.
JUNE 28, 1932
SCALE 1:20
THE LOWELL-WHIPPLE CO.

WORCESTER COUNTY COMMISSIONERS
WORCESTER COUNTY ENGINEERING DEPARTMENT
PLAN OF
PROPOSED REPAIRS
TO DAM
AT STEVENS LINEN CO.
DUDLEY, MASS.
AS FILED AND APPROVED BY THE
COUNTY COMMISSIONERS
JULY 3, 1932

SCALE 1:20

ATT. A TRUE COPY BY
CLERK.

APPENDIX B-26
APPENDIX C

SELECTED PHOTOGRAPHS OF PROJECT

<table>
<thead>
<tr>
<th>Location Plan</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of Photographs</td>
<td>C-1</td>
</tr>
</tbody>
</table>

PHOTOGRAPHS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Overview of Downstream Face of Dam and Spillway</td>
<td>iv</td>
</tr>
<tr>
<td>2.</td>
<td>Overview of Upstream Face of Dam from Left Abutment Area</td>
<td>iv</td>
</tr>
<tr>
<td>3.</td>
<td>Crest of Dam from Left Abutment</td>
<td>C-2</td>
</tr>
<tr>
<td>4.</td>
<td>View of Spillway Showing Bridge, Flashboards and Supports</td>
<td>C-2</td>
</tr>
<tr>
<td>5.</td>
<td>Downstream Face and Toe of Spillway</td>
<td>C-3</td>
</tr>
<tr>
<td>6.</td>
<td>Sand and Gravel Deposits at Toe of Spillway</td>
<td>C-3</td>
</tr>
<tr>
<td>7.</td>
<td>Portion of Downstream Face of Dam Located to the Left of the Spillway</td>
<td>C-4</td>
</tr>
<tr>
<td>8.</td>
<td>Seepage Near Toe of Downstream Face of Dam to the right of the Spillway</td>
<td>C-4</td>
</tr>
<tr>
<td>9.</td>
<td>View of Downstream Channel from Crest of Dam</td>
<td>C-5</td>
</tr>
<tr>
<td>10.</td>
<td>Wooden Trash Rack on Upstream Face of Dam for Intake to Process Water Wet Well</td>
<td>C-5</td>
</tr>
<tr>
<td>11.</td>
<td>Trash Rack and Gate Stem at Intake for Abandoned Outlet Works</td>
<td>C-6</td>
</tr>
<tr>
<td>12.</td>
<td>Wingwalls and Remains of Wooden Gates on Downstream Face of Dam at Abandoned Outlet Works</td>
<td>C-6</td>
</tr>
<tr>
<td>13.</td>
<td>Abandoned Hydro-Power Equipment Beneath Mill Building</td>
<td>C-7</td>
</tr>
<tr>
<td>14.</td>
<td>Abandoned Outlet from Beneath Mill Building</td>
<td>C-7</td>
</tr>
</tbody>
</table>
NOTES:
1. PLAN BASED ON JULY 1932 DRAWING AND CDM FIELD OBSERVATIONS.
2. ▲ DENOTES PHOTOGRAPH NUMBER AND DIRECTION OF VIEW.
3. CREST OF DAM FROM LEFT ABUTMENT.

4. VIEW OF SPILLWAY SHOWING BRIDGE, FLASHBOARDS AND SUPPORTS.

APPENDIX C-2
5. DOWNSTREAM FACE AND TOE OF SPILLWAY. NOTE FLOW EXITING FROM WALL.

6. SAND AND GRAVEL DEPOSITS AT TOE OF SPILLWAY.
7. PORTION OF DOWNSTREAM FACE OF DAM LOCATED TO THE LEFT OF THE SPILLWAY.

8. SEEPAGE NEAR TOE OF DOWNSTREAM FACE OF DAM TO THE RIGHT OF THE SPILLWAY.
9. VIEW OF DOWNSTREAM CHANNEL (LOW POND) FROM CREST OF DAM.

10. WOODEN TRASH RACK ON UPSTREAM FACE OF DAM FOR INTAKE TO PROCESS WATER WET WELL.
11. TRASH RACK AND GATE STEM AT INTAKE FOR ABANDONED OUTLET WORKS.

12. WINGWALLS AND REMAINS OF WOODEN GATES ON DOWNSTREAM FACE OF DAM AT ABANDONED OUTLET WORKS.
13. ABANDONED HYDRO-POWER EQUIPMENT BENEATH MILL BUILDING.

14. ABANDONED OUTLET FROM BENEATH MILL BUILDING.
APPENDIX D

MAPS AND HYDRAULIC/HYDROLOGIC COMPUTATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAINAGE AREA MAP</td>
<td>D-1</td>
</tr>
<tr>
<td>DAM FAILURE IMPACT AREA MAP</td>
<td>D-2</td>
</tr>
<tr>
<td>COMPUTATIONS</td>
<td></td>
</tr>
<tr>
<td>Elevations; Surface Areas; Storage Volumes;</td>
<td>D-3</td>
</tr>
<tr>
<td>Test Flood Determination</td>
<td></td>
</tr>
<tr>
<td>Stage-Discharge Relationships</td>
<td>D-4</td>
</tr>
<tr>
<td>Stage-Discharge and Storage-Elevation Curves</td>
<td>D-5</td>
</tr>
<tr>
<td>Surcharge Storage Routing</td>
<td>D-6</td>
</tr>
<tr>
<td>Dam Failure Analysis</td>
<td>D-7</td>
</tr>
</tbody>
</table>
ELEVATIONS

Spillway Crest: 485.0 (Based on National Geodetic Vertical Datum)
Crest of Dam: 490.3
Toe of Dam: 470.8

SURFACE AREAS

Drainage Area: 4.40 sq. miles = 2816 acres

Total Ponded Water Surface Area = 0.4 sq. miles = 9% of DA

Water Surface Areas at Norino Pond:
- @ elev. 485 (Spillway crest) = 76.2 acres
- @ elev. 490: 96.5 acres
- @ elev. 500: 139.6 acres

STORAGE

@ W.S.E.I. 485 (Spillway Crest) = \(\frac{76.2 \times 12}{3} = 305 \) ac-ft

@ W.S.E.I. 490, storage = 305 + \(\frac{(76.2\times 12)\times 5}{2} = 736 \) ac-ft

@ W.S.E.I. 500, Storage = 736 + \(\frac{(76.2\times 12)\times 10}{2} = 1916 \) ac-ft

TEST FLOOD DETERMINATION

The dam size is "small" based on a height of 193 feet
and a storage of 762 ac-ft. The hazard is "high" based on the "Dam Failure Analysis" shown on page 5.

Therefore, based on the NDECS Engineers' Guidelines, the Test Flood range for Norino Pond Dam is:

\[\text{Test Flood} \approx \frac{1}{2} \text{PMF to PMF; use } \frac{1}{4} \text{PMF} \]

Given that the dam is "low" ponded water and has a slope of about 1 percent, use 1 point a quarter the way between the "Flat and Coastal" and "Rolling" curves of the NDECS Engineers' "Detim. Guideline for Estimating Max. Possible Discharge in Phase 2 Dam Safety Investigations" March 1978.

\[\text{Test Flood} = \left(1 \times 5000 \times \left(44.9 \text{ mile} \right)^{1/2} = 2640 \text{ cfs} \]

APPENDIX D-3
STAGE-DISCHARGE RELATIONSHIP

Effective Discharge: Weir & Merino Pond Dam:

Assume no flashboards in place. There are facilities for a maximum of 3/4 feet of flashboards. At the time of the field inspection (8-12-74), there were 3 feet of flashboards in place at the spillway.

Also assume that walkway over spillway gets washed away during the test.

Stage Discharge Relationship:

<table>
<thead>
<tr>
<th>W.S. El. (ft)</th>
<th>Q_0 (cfs)</th>
<th>Q_1 (cfs)</th>
<th>Q_2 (cfs)</th>
<th>Q_3 (cfs)</th>
<th>Q_4 (cfs)</th>
<th>Total (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>186</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>87</td>
</tr>
<tr>
<td>187</td>
<td>294</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>294</td>
</tr>
<tr>
<td>188</td>
<td>452</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>189</td>
<td>696</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>696</td>
</tr>
<tr>
<td>190</td>
<td>973</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>973</td>
</tr>
<tr>
<td>191</td>
<td>1,278</td>
<td>30</td>
<td>0</td>
<td>213</td>
<td>367</td>
<td>1,868</td>
</tr>
<tr>
<td>192</td>
<td>1,611</td>
<td>289</td>
<td>4</td>
<td>807</td>
<td>535</td>
<td>3,296</td>
</tr>
<tr>
<td>193</td>
<td>1,969</td>
<td>887</td>
<td>158</td>
<td>1,615</td>
<td>722</td>
<td>5,351</td>
</tr>
</tbody>
</table>

* No Tailwater effects will influence discharge from Merino Pond. Thus is a 0’ vertical step to O’ Daniel Inlet.

APPENDIX D-4
SURCHARGE-STORAGE ROUTING

Inflow Test Flood, Q_p = 2,650 cfs. (See page 1 for Inflow Determination.)

Surcharge Height to pass Q_p is El. 491.60

\[\text{STOR}=\frac{\text{Surcharge Storage}}{\text{Drainage Area}} = \frac{60526 \text{ ft}^2 \times 12 \text{ in.}}{2816 \text{ acres}} = 2.578 \text{ inches} \]

Possible Maximum Flood, Q_r = Q_p \left(\frac{1-\text{STOR}}{0.95} \right) = 2,650 \left(\frac{1-2.578}{0.95} \right) = 1,930 \text{ cfs}

Surcharge Height to Pass Q_r is El. 491.05

\[\text{STOR}_r = \frac{540 \text{ ac. ft} \times 12 \text{ in.}}{2816 \text{ acres}} = 2.301 \text{ inches} \]

\[\text{STOR}_{av} = \frac{2.578 + 2.301}{2} = 2.44 \text{ inches} \]

\[Q_p = 2,650 \left(1 - \frac{2.44}{0.95} \right) = 1,970 \text{ cfs} \], say 2,000 cfs

Surcharge Height to Pass Q_p is El. 491.1

i. Test Flood Inflow = 2,650 cfs

ii. Rated Test Flood Outflow = 2,000 cfs

Surcharge Elevation = 491.1

Spillway capacity of Test Flood El. (dkt. 491.1)

\[Q = 2.9 \times (30)(0.5)^{4.5} = 1,310 \text{ cfs}, \text{ say 1300 cfs} \]

Spillway capacity at Top of Dam El. (dkt. 490.3)

\[Q = 2.9 \times (30)(5.3)^{4.5} = 1060 \text{ cfs}, \text{ say 1050 cfs} \]
DAM FAILURE ANALYSIS:

Compute Dam Failure Outflow according to the NED Corps of Engineers Guidelines:

\[Q = \frac{1}{27} (3)^{\frac{1}{2}} (w_0) (h)^{\frac{4}{3}} \]

where \(g = 32.2 \text{ ft/sec}^2 \)

\(w_0 = 90 \text{ percent of the length of dam measured from the left corner of the mill} \)
\(h = \text{height of mid-height of dam} = 150' \times 0.4 = 60' \)
\(b = \text{height of dam measured from crest of dam to toe of dam} = 19.5' \)

Then \(Q = \frac{1}{27} (32.2)^{\frac{1}{2}} (60) (19.5)^{\frac{4}{3}} = 8686 \text{ cfs} \)

so dam failure outflow = 8,700 cfs

In the event the dam at Merino Pond failed, the outflow would discharge directly to lower Merino Pond where some attenuation would occur.

Determine stage at Lower Merino Pond:

<table>
<thead>
<tr>
<th>El.</th>
<th>Water Surface Area x 10^3</th>
<th>Storage Volume x 10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>471</td>
<td>3.6</td>
<td>(3.6 x 7)^{\frac{1}{2}} = 8.8</td>
</tr>
<tr>
<td>480</td>
<td>7.3</td>
<td>8.8 + (5.5 x 9) = 58</td>
</tr>
</tbody>
</table>

APPENDIX D-7
Stage-Discharge Relationship

<table>
<thead>
<tr>
<th>El. (ft)</th>
<th>Spillway Discharge (cfs)</th>
<th>Overbank Discharge (cfs)</th>
<th>Total (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>471</td>
<td>0</td>
<td>0</td>
<td>Zero</td>
</tr>
<tr>
<td>474</td>
<td>197</td>
<td>0</td>
<td>497</td>
</tr>
<tr>
<td>475</td>
<td>627</td>
<td>740</td>
<td>1,367</td>
</tr>
<tr>
<td>476</td>
<td>766</td>
<td>2,093</td>
<td>2,859</td>
</tr>
<tr>
<td>477</td>
<td>1,070</td>
<td>6,138</td>
<td>7,208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,276</td>
<td>12,682</td>
</tr>
</tbody>
</table>

Effective Discharge Weir

@ Q = 8,700 cfs; stage = 476.3'; storage = 38 80-ft

Flow attenuation: \(Q_{out} = Q_{in} \left(1 - \frac{S}{S_E} \right) \)

\(S_E = 760 \text{ ft} \)

\(Q_{out} = 8,700 \text{ cfs} \left(1 - \frac{38}{760} \right) = 8,265 \text{ cfs} \)

@ Q_out = 8,300 cfs; stage = 1076.2'

APPENDIX D-8
Thus, Lower Merino Pond Dam would be overtopped by 2 feet plus of water, which may cause it to fail.

About ½ the flow would exit by way of the right bank creating high velocity sheet flow of about 2 feet or more depth. Although a debris elevated area all the way to the French River.

The remaining half of the flow (3000 cfs) would discharge over the spillway and the dam onto the normal brook channel which circled the Steven's Linen Mill before discharging into the French River. Just upstream of the mill complex, the brook runs under a culvert. The capacity of the culvert is approximately 800 cfs. With U.S. Elevation of top of road (Q: C = V^{1/3} = (0.7)^{1/3} = 0.781) the remaining 3000 cfs would overtop the road, dam up against the mill complex and discharge around and through the mill buildings to the French River downstream.

Many commercial, industrial and residential buildings as well as roads and possibly lower Merino Pond Dam would be affected by a dam failure of Merino Pond creating a "HIGH HAZARD".
APPENDIX E
INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS
<table>
<thead>
<tr>
<th>STATE/ENTITY NUMBER</th>
<th>DIVISION</th>
<th>STATE/COUNTY</th>
<th>SITE/COUNTY</th>
<th>NAME</th>
<th>LATITUDE (NORTH)</th>
<th>LONGITUDE (WEST)</th>
<th>REPORT DATE (DAY/MONTH/YEAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>110</td>
<td>MA 027</td>
<td>MA 027</td>
<td>MERINO POND</td>
<td>4203.0</td>
<td>7155.0</td>
<td>04/05/1979</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POPULAR NAME</th>
<th>NAME OF IMPOUNDMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERINO POND</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGION/BASIN</th>
<th>RIVER OR STREAM</th>
<th>NEAREST DOWNSTREAM CITY-TOWN-VILLAGE</th>
<th>DATE FROM DAM (MILES)</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 07</td>
<td>TRIBUTARY TO FRENCH RIVER</td>
<td>DUDLEY</td>
<td>0</td>
<td>7657</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF DAM</th>
<th>YEAR COMPLETED</th>
<th>PURPOSES</th>
<th>START HEIGHT (F.T.)</th>
<th>MAXIMUM HEIGHT (F.T.)</th>
<th>IMPOUNDING CAPACITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGARPS</td>
<td>1900</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>762</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-PRIOR TO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNER</th>
<th>ENGINEERING BY</th>
<th>CONSTRUCTION BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVENS LINEN ASSOCIATES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>CONSTRUCTION</th>
<th>OPERATION</th>
<th>MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSPECTION BY</th>
<th>INSPECTION DATE (DAY/MONTH/YEAR)</th>
<th>AUTHORITY FOR INSPECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMP DRESSER & MCKEE INC</td>
<td>13AUG79 PUBLIC LAW 92-167</td>
<td></td>
</tr>
</tbody>
</table>