TRIVALENT ION EXCHANGE IN BETA" ALUMINA

by

B. Dunn* and G. C. Farrington**

Prepared for Publication in Solid State Ionics

*University of California
Department of Materials Science and Engineering
Los Angeles, CA 90024 USA

**University of Pennsylvania
Department of Materials Science and Engineering
Philadelphia, PA 19104 USA

6 July 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Trivalent Ion Exchange in Beta" Alumina

B. Dunn and G. C. Farrington

Department of Materials Science & Engineering
University of Pennsylvania
3231 Walnut Street, Philadelphia, PA 19104

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

July 1984

This document has been approved for public release and sale; its distribution is limited.

beta alumina, solid electrolyte

Ion exchange techniques were used to substitute trivalent cations for the sodium ions present in sodium beta" alumina single crystals. Complete replacement was achieved using Ga^{3+}, Nd^{3+}, and Bi^{3+} ions in molten salts. The conductivity of Ga^{3+} beta" alumina was measured and optical properties of Nd^{3+} exchanged materials were studied. The trivalent beta" aluminas appear to be the first solid electrolytes to exhibit rapid trivalent cation motion at moderate temperatures.
TRIVALENT ION EXCHANGE IN BETA" ALUMINA

B. Dunn

Department of Materials Science & Engineering
University of California
Los Angeles, CA 90024 USA

and

G. C. Farrington

Department of Materials Science & Engineering
University of Pennsylvania
Philadelphia, PA 19104 USA

ABSTRACT

Ion exchange techniques were used to substitute trivalent cations for the sodium ions present in sodium beta" alumina single crystals. Complete replacement was achieved using Gd"", Nb"", and Ba"" ions in molten salts. The conductivity of Gd"" beta" alumina was measured and optical properties of Nb"" exchanged materials were studied. The trivalent beta" alumina appears to be the first solid electrolyte to exhibit rapid trivalent cation motion at moderate temperatures.

1. Introduction

In our previous ion exchange studies we found that the entire sodium ion content of beta" alumina could be replaced by various divalent cations [1]. These studies indicate that the range of divalent beta" alumina compositions is quite broad and that the resulting compounds are a new family of high conductivity solid electrolytes for divalent cations. Furthermore, these divalent materials demonstrate that the phenomenon of fast ion transport in solids is not restricted to selected monovalent ions. Our recent experiments extend this observation. We have found that the beta" alumina are capable of supporting trivalent cation motion. Several different trivalent cations have been exchanged for sodium in beta" alumina and in three cases we have synthesized completely exchanged (or nearly so) trivalent beta" alumina compositions. The preparation of these materials and preliminary measurements of their properties are reported in this paper.

2. Preparation of Trivalent Beta" Aluminas

The trivalent beta" alumina compositions were prepared by the ion exchange of single crystals of Na" beta" alumina. Specific experimental procedures were similar to those described for the divalent beta" aluminas [1]. Careful atmosphere control was required in order to remove water from the halide melts and to minimize the formation of refractory oxyhalide compounds during melting. The conditions used for trivalent ion exchange are summarized in Table 1. The extent of exchange was determined by radiochemical and/or weight change methods. In the latter case the weight increase was consistent with the exchange reaction

\[
0.94\text{Ba}_2\text{O} - 0.67\text{Na}_2\text{O} - 5.2\text{Al}_2\text{O}_3 + 0.56 \text{K}^{3+}
\]

\[
0.28\text{R}_2\text{O}_3 - 0.67\text{Na}_2\text{O} - 5.2\text{Al}_2\text{O}_3 + 1.68 \text{Na}^+
\]

\[
\text{K}^{3+} = \text{Na}^{3+}, \text{Gd}^{3+}, \text{Ba}^{3+}, \text{etc.}
\]

Results show that substantial exchange occurred for all of the trivalent ions and that complete exchange (or within 5%) was found for Gd"", Nb"", and Ba"". The greater melting points of the trivalent halide salts required higher synthesis temperatures than were used for the divalent materials. Nevertheless, considerable ion exchange was observed in the 600°C range when lower melting salts were available (GaCl₃) or when eutectic melt compositions (PrCl₃ - BaCl₂ - NaCl), (NdCl₃ - BaCl₂ - NaCl) were employed. In addition, the large amount of exchange with BiCl₃ at 770°C is a strong indication of rapid trivalent ion diffusion in the beta" aluminas. In contrast to the results in Table 1, single crystals of sodium beta alumina immersed in the PrCl₃ - NaCl melt for 54 hours produced no measurable exchange. The very different response of beta" and beta" alumina to multivalent ion transport was discussed previously [1].

The trivalent exchanged crystals were found to be in good condition with no evidence of cracking. The crystals remained transparent although Nd"" exchanged samples exhibited a slight blue tint. X-ray diffraction analysis confirmed that the beta" alumina structure was retained, however, the Tb"" material appeared to possess some subtle structural modification. The exact nature of this change was not identified.
Table 1

<table>
<thead>
<tr>
<th>Ion</th>
<th>Melt Composition</th>
<th>Temp (°C)</th>
<th>time(h)</th>
<th>%exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd$^{3+}$</td>
<td>GdCl$_3$</td>
<td>615</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Nd$^{3+}$</td>
<td>NdBr$_3$</td>
<td>720</td>
<td>0.5</td>
<td>95</td>
</tr>
<tr>
<td>S$_{2}$</td>
<td>45 NaCl/55 NaCl</td>
<td>650</td>
<td>12</td>
<td>53</td>
</tr>
<tr>
<td>BiCl$_3$</td>
<td>BiCl$_3$</td>
<td>870</td>
<td>20</td>
<td>96</td>
</tr>
<tr>
<td>YCl$_3$</td>
<td>YCl$_3$</td>
<td>740</td>
<td>24</td>
<td>90</td>
</tr>
<tr>
<td>SmCl$_3$</td>
<td>SmCl$_3$</td>
<td>700</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>HoCl$_3$</td>
<td>HoCl$_3$</td>
<td>740</td>
<td>48</td>
<td>90</td>
</tr>
<tr>
<td>DyCl$_3$</td>
<td>DyCl$_3$</td>
<td>1000</td>
<td>0.5</td>
<td>70</td>
</tr>
<tr>
<td>BiCl$_3$</td>
<td>BiCl$_3$</td>
<td>373</td>
<td>12</td>
<td>70</td>
</tr>
<tr>
<td>Pr$^{3+}$</td>
<td>37 PrCl$_3$/63 NaCl</td>
<td>600</td>
<td>54</td>
<td>43</td>
</tr>
</tbody>
</table>

3. Electrical and Optical Properties

The conductivity for Gd$^{3+}$ beta" alumina was measured by ac impedance techniques. Initial results are shown in Fig. 1 and compared to a typical divalent (Sm$^{3+}$) and to Na beta" alumina. [2] The lower conductivity for Gd$^{3+}$ and the greater activation energy for conduction are expected because of the more difficult process of transporting an ion of higher charge within the conduction plane. The low conductivity at room temperature is consistent with the structure data which show Gd$^{3+}$ ions locked in bonds to column oxygen. [3] At higher temperatures, however, the trivalent ions are quite mobile. The conductivity at 475°C (+ 840^{-1} cm$^{-1}$ cm$^{-1}$) concurs with the diffusion rate extrapolated from the ion exchanged treatments and is actually comparable to the conductivity of Na" in oxide stabilized zirconia.

The measured conductivity values are sufficiently low that they may be influenced by trace Na" in the conduction plane. These possible contributions are not yet identified and require complementary transport measurements and accurate determination of residual Na" content. Nonetheless, the low temperature exchange of Na" and the ability to achieve complete replacement within the temperature and time periods of exchange provide corroborative evidence of fast trivalent cation motion. At this time, the trivalent beta" alumina appear to be the first crystalline compounds to exhibit high conductivity for trivalent cations.

The rare earth ions exchanged into sodium beta" alumina are optically active and preliminary experiments indicate that all of these trivalent compositions fluoresce. This behavior suggests that the exchange of rare earth ions may be used as a very sensitive optical probe to determine local structure and ion distributions in the conduction plane. In this paper, some initial optical measurements on Na" beta" alumina are presented. A more thorough spectroscopy study of this material will be published elsewhere.

The fluorescence spectra of Nd$^{3+}$ exchanged beta" alumina are generally similar to that of Nd$^{3+}$ in Y$_2$O$_3$ (YAG). The latter material is one of the most common and successful solid state laser hosts. The optical transitions and linewidths are virtually the same for both compositions, the only difference being that the spectra in beta" alumina are shifted to shorter wavelengths by approximately 10 nm. This shift arises from the different local structures of the two host materials.

The ability to rapidly and completely exchange Nd$^{3+}$ into beta" alumina has enabled us to investigate the fluorescence lifetime of the 4F_3 state as a function of Nd$^{3+}$ concentration. Table 2 compares results for beta" alumina, YAG, and La$_3$ Nd$_3$ MgAl$_2$O$_{12}$ (LNA) host materials. LNA, an aluminate compound with the magnetoplumbite structure, is a candidate material for high power laser applications. [5] The values shown

Fig. 1 Conductivity of monovalent (Na$^+$), divalent (Ba$^{2+}$) and trivalent (Gd$^{3+}$) beta" alumina single crystals
Table 2

<table>
<thead>
<tr>
<th>Host Material</th>
<th>Nd³⁺ Concentration (cm⁻²)</th>
<th>Fluorescence Lifetime (µs)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta” Alumina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0 x 10¹⁹</td>
<td>395</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>8.5 x 10²⁰</td>
<td>350</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>1.5 x 10²¹</td>
<td>350</td>
<td>This Work</td>
</tr>
<tr>
<td>Y₃Al₅O₁₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ca. 1.4 x 10²⁰</td>
<td>240</td>
<td>This Work</td>
</tr>
<tr>
<td>La₁₋ₓNdₓMg₃Al₅O₁₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 x 10¹⁹</td>
<td>360</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3.4 x 10²⁰</td>
<td>260</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.1 x 10²¹</td>
<td>52</td>
<td>5</td>
</tr>
</tbody>
</table>

in Table 2 indicate that the fluorescent lifetimes are quite long in the beta” alumina host, even at very large Nd³⁺ concentrations. This suggests that Nd³⁺ in the beta” alumina conduction planes is less susceptible to the self-quenching effects which cause serious reduction in lifetime and quantum efficiency at concentrations above 1% in YAG hosts. Additional optical studies are in progress.

4. Conclusions

Trivalent ion exchange in beta” alumina is a completely unexpected and extraordinary phenomenon. The trivalent beta” alumina appear to be the first solid electrolytes to exhibit rapid trivalent cation motion, thus demonstrating that fast ion transport in solids extends beyond monovalent and divalent ions. In addition, these trivalent beta” alumina possess interesting optical properties. These properties not only permit new structural information to be derived, but also suggest that the trivalent beta” alumina may have potential optical applications.

Acknowledgements

The authors are grateful for the support of this work by the Office of Naval Research (Contract No. N00014-81-K-0576) and, at the University of Pennsylvania, for additional assistance from the National Science Foundation (NSF Program No. DMR-7923647). We also appreciate the experimental assistance of V. Tallkamp, D.L. Yang, B. Ghosal, S. Sattar and Professor O.H. Staffeldt, Jr. and M. Topp.

References
