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1. Introduction

A numerical simulation of a flowfield requires that the physical descripticn
and the coordinate grids both be ccnsistent with the flow behavior. A number
of methods now are available for different levels of physical approximation
(such as Euler or Navier-Stokes) and for grid generation. However, only a
small portion of a typical domain is subject to major disturbances. There-
fore, control of descriptions and grids, their kind, location and extent, is
of some practical interest for flow past arbitrary configurations.

An overall strategy is to subdivide the global domain into several local
subdomains, each with its own equation and/or grid system. A suitable
Computational Fluid Dynamics (CFD) algorithm would then have practical
storage advantages and an increased speed of computation, but would require
special stratagems to properly and efficiently couple the interacting sub-
domains. The simplest local equation system and coarsest grid are clearly
most favorable but are subject to constraints related to resolving the flow
details, preserving accuracy, and providing a correct modeling of different
length scales that occur across the domain. Procedures which accomplish this

for complex flowfields are the subject of this research.

2. Research Objectives and Tasks

The nature of CFD allows a flow solution to evolve in a discrete, spatial
and temporal stepping fashion, which proves to be convenient for adjustment
to the progress of either. The specific purpose of the research grant is to
develop algorithms which control those adjustments throughout a field and at
suitable or realistic intervals during the solution development, and on the
basis of the actual local events and interactions that arise from a computation.
This requires either a priori qualitative knowledge about the flowfield or
procedures which can recognize scale differences and create or remove sub-
domains as the local need might demand or suggest.

It is therefore natural that separate tasks were undertaken to consider
non-adaptive and adaptive embedded subdomains. Each task includes a global
domain within which there are one or more embedded subdomains of the same
topology and reduced grid scale. Non-adaptive implies preselection of
realistic subregimes; adaptive implies solution-guided choices and updating

of the grid configuration and the equations during the solution procedure.




The effort to date has carried this out using a basic algorithm (Ni's method,
which is a conservative, finite volume, and multilevel approach) aprpl:ied tc
channel and airfoil configurations, and two-dimensional Euler and Burgers
equations, buring the first year of the grant (1983 Annual Report,
AFOSR~-TR-83-0841] the emphasis was on necessary algorithm modifications fecr
embedded regions, their interfaces, and their creation. During the rast
year the non-adaptive approach has been refined and an extended basic
algorithm has been initiated to allow greater dimensional and topological
freedom in applications. The adaptive approach has been extended to two-
dimensional Euler system flows with and without discontinuities. In additicn,
a preliminary concept of a general accelerator for convergence tc the steady
state using explicit schemes has also been explored.

A brief summary of the recent work and implicaticns aprear in the
three following sections. More detailed reports on each rortion of the

research are contained in the attached Appendices A, B and C.

3. Summary of Task I ~ Nonadaptive Embedded Subdomains

During the past twelve months our efforts have focussed in two directions.
First, the work of Usab reported last year has been concluded with many im-
portant details being refined. Second, based upon the insight gained from our
first experience with embedded mesh calculations, we have initiated the de-
velopment of a more general algorithm for arbitrary 3-D grid topologies and
vector or parallel computer applications. These two efforts are summarized
below.

The work of Usab and Murman was reported in detail as Appendix A of last
year's annual report. The essential findings therein regarding embedded mesh
calculations have not changed. However, during the first six months of this
year, additional work was completed so as to polish up the calculations and
investigate several residual problem areas.

We had noticed that the basic Ni algorithm failed to converge cn highly
stretched meshes. The problem was traced to the use of a simple injection
operator for the multiple grid step. That is, if the residual for the 2h grid
was taken as the level h residual at the node point ccrresponding to the center
of the 2h mesh cell, calculations failed to converge as the grid stretching
increased, Various weighted averages of level h residuals at node points de-

fining the 2h cell were tried, and a successful approach was found. It uses




the values of the level h residuals at the corner points of the 2h cell, but
weighted by the appropriate second order terms in the Lax-Wendroff method.
with this improvement, highly stretched grids could be used.

Our application of this was to study the effect of the far field vortex
boundary condition for a lifting airfoil on a greater variety of grids than
was previously possible. The following table from Usab's PhD thesis illus-
trates the importance of an accurate far field boundary condition (vortex

and freestream) for a test case.

Variation of Force Coefficients with

Location and Type of Far Field Boundary Condition
(Actual values C = 0.335 and C = 0.000)

L D
o o o e e e e e e e = - — - ——
| | UNIFORM FREESTREAM | VORTEX FREESTREAM
| | BOUNDARY CONDITION | BOUNDARY CONDITION
| FAR FIELD|---=====~========——=c=- e
| RADIUS | C | C | c | c
| (CHORDS) | L | D | L | D
| omm e fommmmm e et Fmmm———————— tommmm e
| | ! ! |
| 5 | 0.2873 | 0.0030 | 0.3238 | 0.0019
| | I I |
| 10 | 0.3059 | 0.0022 | 0.3266 | 0.0016
| I | I I
| 20 | 0.3170 | 0.0016 | 0.3276 | 0.0013
| | | | |
| 30 | 0.3221 | 0.0013 | 0.3284 | 0.0011
| | | | |
| S0 | 0.3245 | 0.0010 | 0.3289 | 0.0009
} I | I I
+ ----------------------------------------------------------




A C-grid was applied to the airfoil problem so as to avoid the inherent
O-mesh singularity at the sharp trailing edge. One result was that calculations
could be obtained in half the number of iterations and with less added smoothing.
In fact, it was possible to get a convergent calculation for a subcritical air-
foil without adding any artificial viscosity. A sequence of five values of
smoothing coefficients ranging from 0.0 to 0.8 were run and various parameters
such as surface pressures and forces and surface total pressure losses were
examined.

Figures 3-1 and 3-2 (from Usab's thesis) show how the lift, drag and total
pressure loss calculations improve as the damping is reduced. The implications
of this are very important for the achievement of accurate solutions for Euler
equations modeling. Embedded mesh calculations also provide improved accuracy
for a given smoothing model since the smoothing is always related to the mesh
size.

The findings of this phase of the work are summarized in detail in
MIT-CFDL~TR-84-2 (also Usab's PhD thesis) given in the cumulative list of
publications.

We are greatly encouraged by the potential that embedded mesh approaches
offer. Yet the work of Usab is not directly extendable to (a) three-dimensions,
(b) embedded grids of non-similar topology, and (c) vector or parallel pro-
cessing, The basic reason for these limitations is that the pointer structure
used in that work was not intended to be completely general, and Ni's algorithm
is not directly extendable to grids which are non-mappable to a Cartesian
space, With these requirements in mind, we set out to develop a second
generation method.

After considering both cell-centered methods (such as Jameson) or nodal
methods (such as Ni), we decided that nodal methods offer higher accuracy with
less added complexity. However, the multistage algorithms of Jameson offer
more flexible time integration methods than the Lax-Wendroff approach and
they should not be limited to cell-centered schemes. Our new method thus
takes what we feel are the best attributes of both approaches. Some pre-

liminary results have been obtained for a simple test problem. They are

encouraging but indicated that we need to concentrate now on the damping.
A great deal of thought has been given to the data base management and

pointer systems. At presemnt we have a general approach which as coded
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will be suitable both for 2 or 3 dimensions, and for grids which need not be
mappable to a Cartesian space. In addition we believe that it is adaptable
to rather arbitrary machine architectures. The details of this are given in
Appendix A. However, our experience with this algorithm is very limited at

this point. During the next year we will be developing its capabilities.

4. Summarv of Task II -~ Adaptive Embedded Subdomains

The adaptive concept developed during the first grant year established
the utility of embedding finer grid structures and alternate descriptions
within the framework of a global algorithm and onlvy if and when reguired.
The first part of Appendix B is a description of that work as presented at
an AIAA meeting. The essential findings were based upon model problems,
purposely kept simple in the one dimensional (inviscid streamtube) and single
variable (Burgers equation) sense, However, the recognition of important
features, the manipulation of grid structures, and the change of governing
equations all were included and shown to be effective. A measure of this is
a factor of 3 computation time advantage that resulted for the adaptive
one dimensional problem.
During the last year the concept has been extended to two-dimensional

Euler systems and test cases have been completed for flow past circular arc
sections in a channel, Subsonic, transonic and supersonic flows were con-
sidered in order to include discontinuities of different strengths, orientations,
and multiplicity. A discussion of the two-dimensional cons_derations and scome
results are contained in the second part of Appendix B and are summarized
below,

° A single parameter basis provides an adequate criteria for
feature recognition in a two-dimensional Euler system.

° Threshhold level is a factor in, but not critical to, the
recognition of multiple features or their interacting regions.

° Irregular embedded grid patterns present no problem for curved
features,

° Pointer systems for collapsed two-dimensional svstems require
special knowledge of adjacent cell/node locations for final adjustment of

floating, collapsed features.




® Variable smcothing coefficients have been introduced to adapt th

1Y

smootning effect to the need.

° Interpolation and floating schemes for fitted, curved shock
discontinuities have been developed but not yet activated in operational,
two-dimensional adaptive codes.

The cases evaluated to date indicate appreciable computing time benefits
with only grid adaptation keing active. Factors of 10, are mentioned in
Appendix B for a transonic flowfield. The present objective is to include
the shock fitting procedure within the adaptation sequencing, allew for
either kind of adaptation in the likely event of multiple features, and

consider "overlapping" (i.e. interacting) features and their appropriate

edges. The intended avplication is to an airfoil at angle of attack.

5. Summarv of Convergance Acceleration Concept

The research described above assumes that interest is centered on the
steadv state soluticn. The use of a multilevel acceleration technique pre-
cludes develcping a time accurate iteration history. Similar accelerators
to hasten convergence nave keen suggestad for explicit finite difference
schemes. Arp'mndix C describes some preliminary work that suggests a possible
substantial improvement over the well known approach which advances the
solution using the local maximum Courant numkbers that maintain stabilityv.
Consideration was given a model partial differential equation (first order,
nonlinear) and a rational basis was used to define an optimal distributicn of
local Courant numbers. Numerical comparisons showed convergence to the
steady state to be achieved with an order of magnitude reduction in the number
of pseudo-temporal iterations. The method is now being extended to and ex-
plored for a multidimensional system and various difference schemes. This
effort was carried out by Professor Saul S, Abarbanel with the collaboration
of D. Gottlieb, whose interest overlaps from his participation in another

OSR grant.




6. Cumulative List of Publications

{1} Usab, W.J. and Murman, E.M., "Embedded Mesh Solutions of the Euler
Equation Using A Multiple Grid Method." AIAA Paper 83-1946 CP, July 1983.
Also to appear in RECENT ADVANCES IN NUMERICAL METHODS IN FLUIDS, Vol., 3,
Editor W.G.Habashi, Pineridge Press.

[2] Usab, W.J., "Embedded Mesh Solutions of the Euler Eguations Using A
Multiple-Grid Method." MIT PhD Thesis, Jan. 1284. Also MIT CFLL-TR-24-2,
May 1984,

[{3] Dannenhoffer, J.F. and Baron, J.R., "Adaptive Solution Procedure
for Steady State Solution of Hyperbolic Equations." AIAA Paper 84-005. Also
submitted to AIAA Journal.

[4] Dannenhoffer, J.F. and Baron, J.R., "Adaptation of Equations and
Grids for the 2~D Euler Equations."” Submitted to AIAA Aercspace Sciences
Meeting, January 198S.

7. Professional Personnel Associated with Research Effort

Principal Investigators

Earll M. Murman, Professor
Judson R. Baron, Professor

Others

Saul S. Abarbanel, Senior Lecturer,MIT; Professor, Tel-Aviv University
wWilliam J. Usab, Jr., PhD candidate (degree awarded Feb. 1984)

John F. Dannenhoffer III, PhD candidate

Gregory L. Larson, PhD candidate

8. Interactions

1. Papers, seminars, presentations

. AIAA Paper 83~-1946CP presented at AIAA 6th Computational Fluid Dynamics
Conference, Danvers, Mass., July 1983.

. AIAA Paper 84-005 presented at AIAA 22nd Aerospace Sciences Meeting,
Reno, Nevada, January 1984,

. Seminar on Adaptive Embedded Subdomain results in Paper 84-0005 presented
by Baron at University of Maryland, College Park, Md., February 1984.

2. Interactions with DOD Laboratories

. Seminar on Nonadaptive and Adaptive Embedded Subdomains presented by
Murman and Baron at AFWAL, Dayton, Ohio, March 1984,
. Conferences with Dr. Wilbur Hankey, FDL.

9. New Discoveries, Inventions, etc.

None




A-~1
APPENDIX A

NONADAPTIVE EMBEDDED SUBDOMAINS

1. MOTIVATION FOR NEW ALGORITHM

Many physical systems can bre modeled by an equation of the form

In particular, if the state and flux terms are

(o ] pu ov cw o
Cu Cu2+p cuv cuw
U=1| ov R F = ouv cv2+p cvw (2)
cw ouw pvw Cw2+P
CE | puH pvH owH

then Eq(l) 1s a statement of the Euler equations for three-dimensional inviscid
fluid flow. Equations of this type can be conveniently discretized and solved
by means of a finite volume method, in which the physical space is divided into
nonoverlapping, or disjoint, finite cells, on each of which the right hand side
of Eq(l) is required to vanish at steady state. The equation is integrated over
each cell, and the right hand side is transformed from a volume integral into a
surface integral by Green's theorem:

[7+Fav= [Fean= YFen (3)
volume boundary faces
in which the summation is over the faces that bound the cell.
Within the general class of finite volume methods there are two methods
which are currently popular, each representing a different subclass., Jameson's
method is the most popular version of a cell-based scheme, and Ni's methecd is

a well known example of a node-based scheme.

la. Jameson's Method

In cell-based schemes, the state vector is associated with the center of
the cell (Figure Al). This causes some minor difficulty in the evaluation of
the right hand side. In order to evaluate the flux F at a face, the state U
at that face must be known first. The usual procedure is to take a simple
average of the states at the cells on either side. This seems reasonable
enough, and is second order accurate in the cell size if the mesh is uniform,
but it is only accurate to first order in the cell size if the mesh is skewed
or nonuniform. The left hand side can be solved to second order as

[uav=0yv (4)

where V is the volume of the cell. Thus, to an order of accuracy in space
limited by the accuracy of the flux balance,




- - TF(O) ¢ n
U(U):—."‘—EU__E
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¢ 7 (5)

It remains only to solve the resulting coupled ordinary differential equations,
which Jameson does with the following multistage algorithm.

v =u"
° n
, = U s j = eveys I (&)
Uy U+ (At)Ut(Uj_l) [3=1, r K]
oy
k

lb. Ni's Method

Ni's method is a nodal scheme (Figure A2). The state vectors are assoclated
with the nodes which define the cell corners. With the state vectors Xnown at
the corners of the cells, the fluxes can be evaluated to secondé order accuracy
by the trapezoidal rule, regardless of the nonuniformity or skewness of the mssh,
However, the left hand side of the governing eguaticn can no longer be scolved
explicitly for Up. Ni therefore uses a distribution formula which is based on
a Lax-Wendroff iteration. That is, from EqQ(l),

= = = s . 3F =
Utt=-(V°F)t=-V-;gUt= 'L

(7o

@
chu

<
Qo
&L

)j (7}

Then, the time integration is achieved by using an explicit three-term Taylor
series for the next time level in terms of the current one.

we)? -

=-n+l
v 2 Utt

— _n 1
= U + AtUt +
(8)

In the evaluation of this expression, the term vV ¢ F is evaluated conservatively,
to second order. The second derivative, however, is evaluated by taking a first
derivative of the quantity in square brackets, which is second order accurate
only if the mesh is smoothly varying. Therefore, Ni's method might have con-
vergence problems on highly stretched meshes due to the inaccuracy of the

second derivative calculations.,

F

Realistic problems are expected to have meshes that are highly distorted.
Even for a problem as simple as an airfoil, a C-mesh is frequently used to
avoid the distortion involved in wrapping an O-mesh arounéd the trailing edge,
in spite of the lower density at the trailing edge that a C-mesh produces.
Therefore, a preferable method would make use of only simple formulas to get
second order accuracy, no matter how badly distorted or irregular the grid.
Noting that neither Ni's spatial nor Jameson's temporal discretizations wculd
cause any problems in that attempt, it was decided to try a formulation which
combined the best of both methods. 1In the process, care was to be taken to
make sure that all calculations were carried out in a way that could easily
be assigned to parallel processors.




2. MOTIVATION FOR POINTER SYSTEM

22, Complicated Geometrv

Until recently, most fluid flow calculations were carried out on grids
that mapgped the physical dcmain onto a rectangle in computational sgace. That
is, the rhysical srace would be represented bv a two or three dimensional array
of voints. When the computations at a roint (I,J) required information £from an
adjacent point, to the right, for example, that information was found at the
position (I+1,J) in the array, as shown in Figures Al and A2. This method works
well only if a mapping from physical to computational space can be found which
concentrates points where extra resolution is needed., However, that may prove
to be difficult or impossible with some of the physical geometries of interest.
An alternative is the use of zointers to keep track of connectivity. In the
calculation of some guantitv at the point I, pointers associated with I roint
to neighboring values required by the algorithm,

!
f

2b. Desired Characteristics

Many different structures could ke imagined for a pointer system, with
the choice depending on precisely what information is needed in connection
with the calculaticns, Usab used a pointer system in which each cell pointed
to exactly nine nodes, scme of which could be ncnexistant (Figure A3). The
first four nodes pointed to from each cell were the corner nodes, which always
exist. The remaining five were the nodes at the middle of each face and at
the center of the cell, which might or might not exist, depending on whether
or not the cell or any of its immediate neighbors is subdivided. This particular
choice of pointers works cnly if all cells are four sided and all mesh re-
finements or multigrid mesh inclusions are binary. This may seem like an
innocuous requirement, but one could easily imagine a grid composed of a
Cartesian far field grid with embedded bodv fitted meshes wrapped arcund the
physical features of interest. At either the interfaces between the embedded
meshes or between an embedded mesh and the far field, it might be very diffi-
cult to guarantee four sides to every cell (Figure A4). 1In three dimensions
it would almost certainly be impossible to guarantee each cell its six faces
and eight nodes. It was decided, therefore, to use a pointer structure which
made a minimal number of assumptions about the structure of the computational
grid, while still making available enough connectivity information to the
program so that it can perform its computations without excessive searching
for neighboring data.

The computational grid for any conservative finite volume computation
can be viewed as consisting of disjoint cells, faces and nodes (Figure A5).
Since there are parameters associated with each of the three constituents of
the mesh, there are data substructures in the pointer system for cells, for
faces and for nodes. Each cell is physically defined by the faces that bound
it, so the data structure for each cell includes the number of faces defining
that cell and pointers to those faces. Each face is defined by the nodes that
bound it, so the data structure for each face includes the number of nodes
and pointers to those nodes. Thus, a grid is defined in a topological sense
by pointers from cells to faces and from faces to nodes. Further geometric
information that may be needed includes the volume of the cells, the directed
normal area of the faces, and the (x,y) or (x,v,2) position of the nodes.




Although this is sufficient to define the mesh, both topologically and
geometrically, pointers also tave been included from nodes back to cells. Any
adaptation or shock fitting would be greatly simplified if the pointers form
a ring, so that a cell can interrogate faces, then nodes, to detect its own
neighbors. Also, distributions to nodes in the proposed algorithm will be
greatly facilitated by pointers from nodes to cells.

Note that this pointer system is specifically designed for the prcposed
algorithm with Ni's spatial discretization and Jamescn's time operator., A code
using Jameson's method would not require the data structure for nodes, since
there are nc fundamental guantities associated with nodes. In that case, it
would make sense to have pointers from cells to faces, and from faces to cells.

Since the eventual intent is to produce working three-dimensional codes,
care is being taken during the development of both the pointer system and the
algorithm to avoid any reference, either in the analysis or in the coding, to
dimensionality. In doing a flux integral over a cell, for instance, the loop
is not over the four or six faces of the cell, but cver the number of faces
srecified for that cell by the mesh generator. For the inner product of a flux
vector with a normal area vector for a face, a loop appears as

DO 100 L=1,NEQS

FLOW (M) =0

DC 100 M=1,NDIMS

FLOW (M) =FLOW (M) +FLUX (L ,M) *NORMAL (M)
100 CONTINUE

where NDIMS and NEQS are compile time parameters fcr the number of components
in the spatial and state vectors respectively. Although one might argue that
this is much less efficient than writing the expressiocns out, it proves to be
much more efficient in terms of programmer time; a good optimizing compiler
expands the small loops automatically in any case, so there is no actual loss
of performance. Thus, if the code proves its value in a 2-D Euler flow, very
few lines of code need to be changed to upgrade to either 3-D (increasing the
spatial and state vector length) or to MHD (which would only increase the state
vector length).

3. BASIC ALGORITHM

The algorithm consists of a flux balance over the cell surface to determine
the time derivative of the state vector, followed by a distribution of changes
from cells to nodes, all embedded in a multistage time integration. Separate
explicit smoothing and boundary enforcement are necessary.

3a. Flux Balance

The flux balance proceeds as a loop cver the faces. On each face, the
state is calculated as a weighted average of the states at the defining nodes,
In two dimensions, the weights are always equal, and could be written into the
program as 0.5, However, in three dimensions, there could be various numbers
of nodes defining different faces, and there is no reason to assume a priori
that they should be equally weighted. Therefore, the algorithm uses a weight




for each node that is calculated by the mesh generator. First a state, then
the flux vector for that state, and then its inner product with the normal

area vector for that face are calculated, and that guantity is saved. Next,
looping through the cells, each cell collects the integrated flux from its
defining faces. At this point, each cell has its divergence of the flux vector,
integrated over the cell volume. This quantity is multiplied by the allowable
time step for the cell and divided by the volume to give the change in state
that should hold for the cell.

3b. Distribution

There are a number of possible ways of interpolating the changes from the
cells to the nodes. Among those, only those that reduce to a simple averaging
on a regular mesh can be considered. The one which is currently under inves-
tigation is to weight by the subtended angle (Figure A6). This has been chosen
largely because it is easy to calculate using the same information that is used
by the smoothing operator.

3c. Time Integration

The time integration is the same as in Jameson's scheme. The flux integral
and distribution steps, taken together, define the change in the state vector,
AU, as a function of the state vector U, The several intermediate stages are
defined as

u(o) = Un
U(j) = Un + af{3)*AUu[Uu(i-1)] [1=1,2,...,k]
Un+l = Un + AU[U(k)]

Note that this equation set is nearly the same as Eq(6). The difference lies
in the fact that in the extended method there is no time derivative of U at the
nodes., Therefore, the quantity AU replaces (At) (du/dt).

The optimal number of stages and the coefficients 0. have yet to be deter-
mined. It is planned to use parameter optimization to find the optimal co-
efficients for each number of stages, and to compare the reduction in residual
per cpu second for each number of stages to find the parameters.

3d. Boundaries

Two additional steps are necessary at boundaries. At an open boundary,
or fictitious boundary between the discretized portion of the flow field and
the far field, an approach is used based on Godunov's method. During the flux
integral phase, a one-dimensional simple wave problem is solved after the state
at the face is found by averaging from the nodes, and before the calculation of
the flux vector. First, the velocities are projected into normal and tangential
components, Second, on the basis of the known states inside and outside, the
velocity of the resulting contact discontinuity is found. (For wall boundaries,
this is known a priori to be zero.) With the velocity known, the density and
total volumetric energy can be solved for on either side of the contact dis-
continuity. If that velocity is positive, i.e. fluid flowing out through the
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boundary, then the new state vector is the one calculated on the inside of
the discontinuity. OQOtherwise it is the state immediately outside. The
applicable tangential velocity is also the one from the approrriate side of
the discontinuity.

The other measure taken to ensure satisfaction of the boundary conditions
is a simple wave solution applied to the nodes after each iteration. The
normal direction is taken to be the sum of the normals of the faces on each
side of the current node. Other than that, the procedure is the same as that
applied at the faces.

3e, Smoothing

Some form of smoothing is necessary, since the algorithm described above
is completely transparent to sawtooth waves. An optimum smoothing procedure
has not yet been determined. One form has been found which damps out the saw-
tooth waves, but has excessive damping. The kind of smoothing operator being
considered is a polynomial in a kind of second difference operator, which is
calculated as follows. The values are averaged from the nodes to the faces,
and then to the cells, Then the difference is calculated by summing the
differences between the values at the cell and at the node, multiplied by the
angle (solid angle in 3-D) subtended by the cell from the node.

2
= 7 - U a8
D7(W = J(Cea11 ~ Unoge) Peett )
The operator in use now is of the form
1+ w?
= { )
Usmooth 1+ D Urouqh {e
It is hoped that an operator can be implemented which would provide more
fourth difference smoothing with less second difference smoothing, such as
22
= - 1
Usmooth (1 v(D ) ]Urough ()

3f. Acceleration

No attempt has been made as yet to implement a multigrid accelerator.
However, there does not seem to be any reason to expect it not to work as
well here as it has with Ni's and Jameson's methods.

4. RESULTS

Solutions to the McCartin (Ni's) bump »roblem have been generated which
are consistent with an interpretation that the imposed smoothing is overly
dissipative. The two calculations that were performed on a 65 x 17 mesh
yielded spectral radii of 0.9913 and 0.9918. This is without adjustment of
the free parameters, i.e. the o coefficients for each stage in the time
integration, and the CFL number. The spectral radius would probably be
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larger, and the convergence therefore slower, if the smoothing were not too
large. Both cases were run using two stages of equal weight.

5. VECTORIZATION/PARALLEL PROCESSING

The entire algorithm falls logically into separate phases, on each of
which a large number of calculations could be performed in parallel. For
instance, the calculation of the flux vector, and its inner product with the
normal vector to a face, are carried out independently for each face. A large
number of processors could simultaneously consider different faces. Similarly,
the calculation of the changes at each cell or the updating of the state vector
at the nodes could be accomplished in parallel.

6. SUMMARY/CONCLUSIONS

A new computational method for solving conservative partial differential
equations is being developed. The method has been formulated in such a way
that it should be completely mesh independent, in the sense that it would ,
operate on any finite volume mesh that can be generated, including highly
stretched, skewed, or irregular meshes, and still retain second order accuracy
in cell size. Preliminary results have been obtained solving the Euler eguations
on the McCartin bump problem.

In the near future, work will concentrate on the following areas:

1 Improving the smoothing operator
2 Implementing a multigrid accelerator
. 3 Determining optimal values for the free parameters
4 Developing grid generators to take advantage of the
flexibility of the algorithm
5 Solving realistic one and two body airfoil problems
6 Solving a simple three dimensional problem

It is felt that with the correction of the smoothing operator, the addition
of multigrid acceleration, and the implementation of well thought out grid
generators, the algorithm will provide a relatively efficient solver for complex
two and three dimensional inviscid flow fields. The extension to viscous flow
appears to be straightforward.
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ABSTRACT

An algorithm to determine
state solution of a set
partial differential equations

the steady
of hyperbolic
using grid-

and/or equation-adaptation is presented.
The evolving solution is periodically
examined for 1solated features and the

adaptation strategy most appropriate to each
is applied. Simple detection and pattern
recognition procedures are used to locate
such features. Grid adaptation is
accomplished by using an embedded mesh
procedure on an irregularly shaped embedded
domain, with a mnultiple-grid accelerator
used to couple the global and embedded
regions. Equation adaptation is
accomplished by altering the basic
integration scheme in cells through which
“collapsible* features pass. A flexible
data structure is employed to make switching
between the two adaptation schemes
relatively simple. A new program has been
written for general hyperbcolic systems in
two dimensions. Specific computed examples
include the one-dimensional Euler equations
with both adaptive equations (a new floating

shock fitting procedure) and adaptive
gridding. The Burgers equation 1s wused to
illustrate the adapted grid solution on an

irregular embedded region in two dimensions.
Significant time savings and accuracy
improvements are shown to be achievable with
the present method.

INTRODUCTION
In general, the steady state solution
of a systen of hyperbolic, partial

differential equations can be computed by a
discrete approximation to the governing
equations. The discreteness of the
approximate equations causes truncation
errors which are typically related to both
the 1local computational grid size and the
local solution behavior. For purposes of
computational efficiency, the mesh on which
the discrete approximations are made 1is
generally coarse.

For problems of practical interest,

the truncation errors over a large portion
of the domain are frequently small due to
smoothness of the solution. However, there

# Research Assistant, Member AIAA
A& Professor, Associate Fellow AIAA

can he features within the domain where the
solution is not smooth; shock waves,
boundary layers, and wakes are examples. To
ninimize the truncation errors which are
generally much larger near the feature than
the average over the whole domain, one can
either introduce a finer computational grid
or alternatively provide a more precise
accounting of the 1local physics which {s
responsible for the local non-smoothness.

Unfortunately, one does not know a
priori where the features occur within the
domain. Adaptive solution algorithms 1s a
generic designation for numerical methods
which sense unique physical behavior
(features) 1in the flowfield being ccmputed,
and subsequently change the governing
equations and/or computational grid to
adequately describe those features.
Adaptive solution algorithms which change
the governing equations are known as
adaptive egquation techniques; those which
alter the computationai mesh are known as
adaptive grid technigues.

Initially, consider only adaptive grid
procedures. These schemes make use of the
same descriptive equations as before
adaptation, but with the grid spacing
adjusted so that the integration algorithm
properly captures the 1local physics. For
example, an adaptive grid algorithm captures
boundary layer gradients by decreasing the
local mesh spacing at the wall.

Within the basic framework of adaptive
grid algorithms, there are currently two
ma jor approaches. The tirst (and currently
most popular) can be called gqrid point
redistribution, and the second can be called
embedded grids.

Many different grid point
redistribution schemes have appeared
recently in the literature C(1-13]; most are

discussed in the survey article by Thompson
C143. 1In these schemes, a fixed number of
grid points are redistributed throughout the
flow field. The nodes are moved about such
that grid points are concentrated in regions
of high gradients or errors (most 1likely
regions near features). For one-dimensional
cases, this results in a solution which may
be viewed as either uniformly gqood or
alternatively uniformly bad, since in
regions with small errors initially, the
grid point are “moved out"”,

resulting in
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larger errors there. In cases with multiple
features, the time development of the
features can have a large influence on the
“split” of mesh points between the features
and hence their resolution. Further
complications are added 1in two-dimensional
cases due to topological limitations; for
exanple, grid 1lines concentrated near a
shock at an airfoil surface nust also
propagate away from the airfoil, resulting
in excessive resolution in the farfield.

One way that the redistribution is
accomplished 1is by treating each node as a
body, assigning an attraction parameter to
each, and then integrating the resulting
n-body problem forward in time £1-41].
Special care must be taken 1in such
techniques, since unfortunately grids may
result which cross and/or are excessively
skewed [1]). To circumvent these problenms,
some have resorted to solving partial
differential equations (111 while others
have posed the grid generation as a
variational problem with direct control over
grid concentration, smoothness, and skew
C12). 1In any event, the result of grid
point redistribution is a grid with varying
grid spacing and skew. It has been shown
that both of these can cause significant
errors in the computed solution [15). Also,
care must be exercised to ensure that the
moving grid and the flow solution do not
couple, yielding the unwanted oscillations
reported by some C71. In addition,
displacing grid points implies that the
previously calculated values at previous
grid point locations are no longer correct.

Despite these drawbacks,
is very popular
implement the
straightforward.
for all cases, independent of
which are (or are not) present.

this method

since the logic needed to
algorithm is relatively
The same logic can be used
the features

The other adaptive grid algorithm 1is
known as embedded grids £16-19]. In this
method, the global grid is maintained and
new grid points are added at the features,
yielding locally embedded patches. These
patches may be aligned with the global grid
€201, be rotated €161, or may be
topologically dissimilar. This procedure
maintains a basic accuracy on the global
mesh and at the same time increases the
otherwise reduced accuracy at features.
Even though the scheme involves adding grid
points (thereby increasing the total
computational effort and required storage),
they are only added where necessary,
resulting in more efficiency than if
comparable resolution were obtained by
adding nodes globally.

Since the fine regions are embedded
only locally, artificial internal boundaries
with an abrupt grid spacing change result;
special care must be taken there to account
for this abrupt change and to assure both
stability and conservation £17,211.
Coupling the global and embedded grids does
not present a problem for aligned patches,

since nodes are shared by the two grids. On

the other hand, rotated or topologically
dissimilar embedded regions require
iteration between solutions on the two

grids, with Dirichlet boundary conditions on
each derived from the solution on the other.
The chief disadvantage of grid adaptation by

embedding is that the 1logic needed to
implement this method is considerably more
complicated than that for grid point
redistribution. Processes are “turned c¢n”

or “turned off", depending on the type and
location of various features. In addition

to the detection process required of all
adaptation schemes, some require that
detected nodes be clustered before an

embedded patch can be created £16).

The application of grid adaptation to
some features points out a major deficiency
of all the above schemes. To wunderstand
this, it 1is helpful to examine the concept
of “features” more closely. Each feature
can be characterized by its type, location,
strength, orientation, and scale. The scale
of a feature has special importance in
classifying the feature as either
collapsible or non-collapsible. The
collapsible character of a feature implies
that the scale is sufficiently small
relative to the global scale such that the
entire feature may be collapsed to a point,
line, or surface with the implied associated

physics taken into account. Examples of
collapsible features are shocks and thin
boundary layers.

In order to make the 4grid resolution
fine enough to be able to capture the

physics of a collapsible feature, grid point
redistribution requires that a very large
fraction of the available nodes be used at
the feature, leaving other parts of the flow
inadequately defined. In an embedded mesh

scheme, many points would have to be added
at the feature, resulting in a very
inefficient <calculation. It is interesting

to note that as more points become available
at a shock, the shock indeed becomes thinner

(closer to the di-~continuous physical
solution). The gradient becomes larger
(first difference remains the same), and

even more grid points are required on the
next pass. Thus, it 1is clear that grid
adaptation alone is insufficient for

resolving collapsible features.

Alternatively, if a
collapsible, adaptive equation techniques
are very useful. In adaptive equation
schenes, a special subset of the governing
equations is used to adequately model the
physics within the feature; shock fitting
and recent strong inviscid/viscous
interaction algorithms are examples of this
approach. The chief advantage of these
methods is that accurate solutions can be
computed more efficiently than can a finite

feature is

difference or finite volume method; this
follows since the adapted equations are
precisely the model for the local dominant
physics.
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For example, the “discontinuity”
associated with a shock causes Gibbs’
phenomenon in shock capturing methods, which
assume the solution is smooth (representable
by a Taylor series expansion) across the
shock. Significant artificial viscosity
levels are typically used to control the
pre- and post-discontinuity oscillations.
On the other hand, in shock fitting
techniques (22-263, the discontinuity is
modelled as a jump, with the solution being
smooth on each side of, but not across the
jump; this eliminates the oscillations
since the solution 1is smooth where it is
assumed smooth. The major drawback of shock
fitting is that it typically requires that

the shock lie along a grid 1line. As the
shock moves, so does the grid. In addition,
neither the number nor the existence of

shocks is necessarily known beforehand, and
this may lead to problems.

Another adaptive equation application
the popular inviscid/viscous interaction
technique £271. Here, it is known
beforehand that the viscous effects are
confined to thin layers near the boundary
(or along the wake). An inviscid subset of
the governing (Navier-Stokes) equations are
solved external to the viscous region and
the boundary/shear layer equations are
solved where appropriate. The solutions are
matched by using modified boundary
conditions for the inviscid solver. These
modified boundary conditions could be viewed

is

as a “discontinuity” between the actual no-
slip condition for the Navier-Stokes
equations and the equivalent inviscid
boundary conditions. Note that this
technique requires that the viscous region
be thin (so that the boundary layer
assumption is not violated). If the

assumption becomes invalid during the course
of the solution development, equation
adaptation can no longer be wused, and the
grid must be adapted to resolve the boundary
layer.

Since the location of features are not

always known a priori, the solution
initially must be computed either without

any adaptation or with adaptation at assumed

feature locations. At a suitable time,
features can be detected and adaptation
begqun. Recall that for a feature to be
classified as <collapsible and thus be a
candidate for equation adaptation, the
thickness (scale) of the feature must be
less than one global cell width (a measure
of the global scale). Generally this will
not be the case when features are initially

detected because the feature will be smeared
over a nunmber of global cells, The
subsequent grid adaptation will eventually
result in a feature which remains smeared
over a few cells, but those adapted cells
will now be small enough such that the
overall scale of the feature will be less
than one of the original global cells; thus
equation adaptation can commence, It can be
seen that although grid adaptation in
general 1is 1inadequate for resolving the
physics associated with collapsible
features, it 1is a necessary first step in

the clasasification of features as
collapsible.
A new computer program, MITOSIS (MIT

Optimizing Scheme for Integrating Systems),
has been written to take advantage of the
efficiencies in both adaptive equation and
adaptive grid algorithms. An automatic
algorithm is included which locates multiple
features, determines their types, and
subsequently which kinds of adaptation are
most appropriate. Cell oriented schenes
applied on a fixed global grid were chosen
for convenient combination of the adaptation
stategies with the wunadapted base solver.
Ni‘s finite-volume, Lax-Wendroff scheme with
its multiple-grid accelerator (28] is used
here as the basic solver. The embedded grid
technique proposed by Usab and Murman [20]
and a newly developed, floating shock
fitting scheme are employed. The resulting
schene offers a high degree of computational
efficiency with appreciable generality.

This paper is divided into two major
sections. 1In the first section, the overall
algorithm is briefly described and

definitions used throughout the remainder of
the paper are given. Following that, each
major component of the scheme 1is described
more fully, and specific options for each
are discussed. The first section concludes
with a discussion of the data structure
which has been developed for easy
implementation of both adaptation schemes.
In the second section, two major examples
using MITOSIS are discussed. The first
example is for the one-dimensional Euler
equations with both adapted grids and
adapted equations. Computed results are
shown for subsonic and transonic cases. The
second example 1is for the two-dimensional
Burgers equation with grid adaptation only.
Computed results include a diffusion
dominated case as well as a case with a
curved discontinuity.

ADAPTIVE SOLUTION ALGORITHM

General Approach

Consider the integration of a system
of hyperbolic partial differential equations
in vector form:

U + F + G = H + 1

t % y - v (1

where the subscripts t, x and y denote
differentiation with respect to time and the
two space dimensions respectively. The
state vector is given by U; the F and G ar-
convective terms expressed in strong
conservation law form whereas H and I are
diffusive (non-conservative) terms. Both
the Euler and Navier-Stokes equations can be

written in this form. Interest is
restricted to the resulting steady state
behavior.

The approach taken here is to
integrate the hyperbolic system to steady
state by making available three different
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integrators simultaneously. Oon a fixed
global grid, the type of each cell (non-
adapted, grid-adapted, or equation-adapted)
is determined and the appropriate integrator
is applied. Thus, all three cell
integration schemes can be viewed as
building blocks which can be assembled in
any combination to yield the optimal
adaptation for a given problem. Figure 1
depicts a typical flow field of interest,
containing a shock, boundary layers, and a
wake. A fixed global grid is superimposed.
Cells which are unshaded represent those in
which the basic (non-adapted) integrator 1is
used, shaded cells are those in which grid
adaptation is wused, whereas cross-hatched
cells contain collapsible features which are
treated with equation adaptation.

NOAOA Y ML LT L
~ equation-adapted celly W
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non-adapted cell-{/
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Figure 1. Typical flowfield.

A conceptual flowchart of such an
integrating procedure (the MITOSIS program)
is shown in figure 2. Each of the blocks in
the flowchart will be briefly described in
order to provide an overall view of the
scheme; details follow in subsequent
sections.

The process begins by initially
assuming that there are no adapted regions
present. A global grid is generated and the
equations are integrated using the basic
(non-adapted) integrator for all cells.
Integration continues until features begin
to form, as measured by a given level of
convergence, At this point, a detection
algorithm searches for the nodes whose
variation (for example, gradient or
truncation error) of a key variable (for

example, density or entropy) are well above
the average over the whole domain. All
cells which are adjacent to those detected
nodes (if any) are then djvided, resulting
in embedded grid cells.

Control then returns to the
integrator, which now employs the
appropriate combination of grid- and non-
adapted algorithms. The detection algorithm
is again applied after the features have

reformed. On this and subsequent cycles,
nodes are clustered so that those

associated with a specific physical feature

are treated as a group. The attributeg
(scale, location, orientation, etc.) of each
cluster are determined; features (clusters)
whose width scale 1{a less than the global
grid scale are further classified as
collapsible. The clusters are individually
compared with a library of standard patterns
to determine if an alternate description for
the local physics is available. e P4

features will subsequently be integrated
with equation adaptation; the additional
information required for equation adaptation
is computed and any cells associated with
the recognized feature which were divided
during previous cycles are contracted
(embedded <c¢ells removed). For unrecognized
clusters, grid adaptation is again utilized.

Again, control returns to the
integrator, which now employs any
combination of the three integration
schemes. Detection, clustering,
attribution, and recognition are then
repeated. Such cycling continues until no
change in the adaptation strategies result
from the above sub-processes.

Lastly, the equations are integrated

until a
reached.

final desired convergence level 1s

Initialize 1

9

Integrate
- Basic Solver
- Embedded Mesh
Special Cells

- Detection

- Clustering

Attribution

}

Recognize

Adapt
Grid

Adapt
Equations

Figure 2. Conceptual flowchart.
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A body-fitted global grid (called the
level 0 grid) which remains fixed throughout
the solution procedure is generated by any
convenient procedure (algebraic, PDE, etc.).
Since the integration will involve a finite-
volume formulation, there is no requirement
that grid metrics be computed. The data
structure, which consists of a cell oriented
pointer system with solution variables
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stored at the cell corners £203, 1is
initialized. The data structure is
described in detail below.

The basic integrator enploys a
multiple-grid accelerator for additional
efficiency. This requires the generation of
level -1 grids which are twice as coarse as
the global (level 0} grid. Figure 3
illustrates the relationship of such cells.
The 1level -1 griad was generated by
eliminating every other line of the level O
grid. Since cells on level 0 and -1 share
nodes, the data structure (which exploits
this fact) allows for an easy coupling of
information on various multiple grid levels.
Still coarser levels (-2, -3, etc,) are set
up in a similar manner. Initially, all
level 0 cells are considered basic (non-
adapted) cells.

level 0

level -1

Figure 3. Cells on two multiple-grid levels.

Integqration - Basic Solver

For non-adapted cells, integration of
the governing equation i{s performed using
Ni‘s multiple-grid algorithm £281. This
scheme is composed of two parts -- a finite-
volume form of a standard single-step, Lax-
Wendroff integration applied on a fine mesh,
and a coarse grid accelerator which operates
on residuals transported from the fine mesh
solver. In Dboth parts a "change"” is
computed in the center of each cell and then
transferred to the adjacent nodes by means
of "distribution formulae".

An essential point for present
purposes 1s that Ni’'s scheme is cell-based;
i.e., each cell can be integrated
independently. The governing equations are
approximated on the cell and the appropriate
changes at each of the cell’s nodes are
computed. In this way, cells communicate
with each other only through the dependent
variable quantities at the shared nodes from
the previous explicit pseudo~time step, or
through changes at the nodes computed at the
current pseudo-time level. This property is
the basis of the data structure form.

Consider the fine mesh cell shown 1In
figure 4. To calculate the “change” in the
dependent variables at the center of this
cell, the divergence theorem is applied to
the convection terms of the governing
equations, giving

x
Figure 4. Basic cell with fluxes.

WeiS e R, -F +F, -F 2 (2)

where F denotes the contravariant flux
through each given face, )t denotes the
pseudo-time step, and AV the cell volune,
The contravariant fluxes are computed by
trapezoidal integration along each cell
face; for example, the contravariant flux
through the eastern face is given by

F__+F
E o -3&__N€e -
F 2 (yne

G__+G
. —=e_ne -
e ) 2 (xne x__) (3)

ys se

e

Equations (2) and (3) together are called
the cell flux balance.

The distribution formulae serve to
transfer this “change” from the center of
the cell to the four corner nodes. The
formulae are derived from the (first two
terms in a Taylor series expansion of U
(with respect to time), and are given by

1 - At . At
su =4tsutAxAF_“AGJ (4)
f8 PR
where
iE 26
AF = YT AU and AG = U AU (S)

are the unsteady fluxes based upon the
Jacoblans of F and G evaluated at the center
of the cell. The first term in equation (4)
(AU) 1is the first-order-change-in-time for
the Taylor series expansion while the last
two terms represent a second-order-change-
in-time which is necessary for stability.
These terms Dbias the distribution of the
"change"” in the windward direction, which is
somewhat similar to the stabilizing effects
of upwind differencing [29].

Integration of the diffusive terms 1is
performed by using a forward-time, centered-
spaced scheme applied on staggered cells
centered around nodes. One such staggered
cell is shown by dashed lines in figure 5.

-5-




nw

se

sw
Figure S.
Staggered cell for diffusive terms.

Each base cell (for example, cell
SH-SE-NE-NW) contributes a first difference
at its own cell center (for example, at node
1) toward the second derivative at the base
node (for example, node NE). These
contributions are calculated by centered,
first differences in each base cell and are
transferred to the base node by means of the
diffusive’ distribution formulae

su =}|: (6

i

In practice, equations and (6) are
combined and evaluated simultaneously.
Since only the steady state solution i{s of

AH t Al )

+)id

(43)

interest, the first order time accuracy of
the forward-time, centered-space scheme 1is
of no conseguence.

In cases for which additional
artificial viscosity is required, a
spatially first order accurate smoothing
term

3 AX (Uxx+Uyy)
is added to the right hand side of the

governing equations. In the current scheme,
the above terms are combined with the
diffusive terms in equation (1), resulting
in an effective viscosity coefficient with
two contributions -- the true viscosity and
the (varying) smoothing viscosity. Though
implemented differently than the smoothing

suggested by Ni, the effect of the two
formulations is identical. As before, the
effective diffusion is evaluated
simultaneously with the convective
distribution.

Consider now the coarse grid cell
depicted in figure 6. The "change" at the

center of this cell could again be performed
by a flux balance, but with less accuracy

than for the fine mesh flux balance due to
the larger spatial discretization. To
circumvent this problem, Ni uses the
multigrid concept of “transporting* the

changes previously calculated from the finer
meshes ([30]. The residual transfer then
results 1in fine aesh accuracy. The

transportation operation is simple to
implement, since in the previous sweep on
the fine mesh (shown by dashed lines in
figure 6), the “changes" at node C were
computed and stored; thus only access to
this node is required. Note that the coarse
grid scheme has no effect on the final,
converged results since it operates on fine
mesh residuals which vanish at convergence.

The distribution of the convective
change on the coarse grid is again
accomplished by using the distribution
formulae (equations (4) and (5)). Since
convective terms dominate over diffusive
ones in problems of interest, the latter are
neglected on the coarse mesh, as suggested

by Johnson L31]). No smoothing is applied in
the coarse mesh accelerator.

ne

sw s

Figqure 6. Coarse grid cell.

One cycle of the Ni mwmultiple-grid
integration scheme is shown in figure 7. It
consists of the following operations:

1. Injtialize: Changes in the dependent
variables stored at each node are set to
zero at the beginning of each multiple-
grid cycle.

2. Flux balance and distribute on level 0:
Cell by cell operations are performed as
described above.

3. Apply boundary conditions on 1level 0:
Characteristic boundary conditions are
applied at each boundary node. The

boundary condition formulation
characteristic waves which
exit the computational
differently, similar to
development £32].
characteristics which exit the domain,
it is assumed that the change of the
characteristic variable is properly
predicted by the distributuion fornmulae.
The characteristic variables
corresponding to waves which enter the
domain are kept unchanged from their
previous values. Finally, the changes
in the characteristic variables from
above are recombined to give the
conservation variable changes.

treats
enter and

domain
Chakravarthy'’s
For those




Level 0 Level -1

flux balance
& distribute

t

apply boundary
conditions

transport
update AAP———-—-————a{_ai3tribute ]

interpolate

apply boundary
conditions

¥

I update l

apply bounadry
conditions

Figure 7. Ni multiple-grid cycle.

4. Update on level 0: The change at each
node 1is added to the dependent variable
at the node. Since time accuracy is not
of 1interest, the time step for this
update is computed locally based upon a
global CFL number and the local solution
behavior. The convergence to steady
state 1is measured by the largest change
in §U at any node on level 0.

S. Transport from level 0 to level =1 and
distribute: Cell by cell calculations
are performed as described above.

level -1:

6. Apply boundary conditions on
Same as in step 3.

7. Interpolate from level -1 to level 0:
Changes at the side and center nodes
must be interpolated based upon the

recently computed corner changes. This
is accomplished by bilinear
interpolation. A shifted "distribution
formula* which does not generate the
smoothing errors associated with simple
interpolation 1s another possibility;
this however requires significantly more
operations than the bilinear scheme and
has not yet proven to yleld superior
convergence rates for all cases.

8. Apply boundary gonditions on level 90:
Again the procedure in step 3 s

applied, this time to ensure that values
interpolated onto boundaries satisfy the
boundary conditions.

9. Update on level 0: The level -1 changes
determined either from the distribution
in step 5 or the interpolation in step 7
are added to the solution dependent
variables.

The use of Ni's integration scheme as
the non-adapted cell integrator 1is not
imperative; the only requirements are that

the scheme be explicit and expressible on a
cell-by-cell basis. As will be seen
however, the similarity of the fine and
coarse solvers in Ni's schene greatly
simplifies the formulation of the adaptive
grid integration.

Inteqgration - Embedded Grid Procedure

For grid-adapted cells, the embedded
mesh procedure of Usab and Murman [20] is
used. This 1is a straightforward combination
of the fine and coarse techniques used for
non-adapted cells, Consider the geometry
shown 1in figure 8. The unshaded cells are
fine whereas those shaded are coarse (since
they coexist with finer cells). The
appropriate fine or coarse operation
outlined above 1is applied to each cell.
Thus, two consecutive cells on the same
level may be integrated by different
procedures. Away from the fine/coarse
interface, the integration proceeds as
usual, with one more multiple-grid level in
the embedded region.

level 1

level 0
8
nw
cell A
S50 se
/1 / T 3 .
Figure 8.
Embedded grid -- coarse/fine interface.

Using the multiple-grid accelerator to
couple the global and embedded meshes was
first suggested by Brandt (333 and has been
implemented by Brown for the full potential
equation [34]. With this technigue, waves
can propagate through the embedded regions
at coarse grid speeds. Usab has shown that
this coupling results in convergence rates
which are as fast as coarse-grid-alcne
solutions C[20]. This 1is significant when
one considers the consequences of simply
coupling global and embedded regions at the
interface £21]. In the latter technigue,
wave propagation is restricted to the
embedded (fine) grid speed, resulting iIn
slower convergence rates.

Points at the edge of the embedded
domain must be carefully treated in order to

maintain global conservation and
computational stability. In the present
scheme, nodes 2, 5, and 9 are considered

part of the fine domain. Thus the flux
balance and distribution formulae can be
applied as usual to the level 1 cells (B, C,
D, and E). Although the changes in the
dependent variables are computed at nodes 2,
5, and 9 due to cells B and D, the changes
must not be applied when operating on level
1. Instead, they must be stored and applied
only after the (explicit) flux balance has
been performed on cell A.
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Since cell A is a fine cell on level
0, the appropriate integration consists of a

flux balance and distribution. Each of
these steps must be modified due to the
presence of node S. For this cell, the
contravariant fluxes, F , and F_ are
given in equation (3), buE the"f 1ux :h?ouqh
the eastern edge is given by
+F G__+G
= se e - _ _se e -
Fe = 2 (Ye yse) (xe ‘se) (7
F__+F G_ _+G
ne e - _ne e -
+ 2 (yne ye) 2 (xne xe)
If one assumes that node 5 is at the mid-
point of the eastern edge (as 1t is by
construction), then equation (7) takes the
simpler form
5 . F=e+2 F +Fn (5. -y )
e 4 ne - se (8)
_ G__+2 Ge+G ey -x )
4 ne ~se
The distribution formulae given by
equation (4) still are valid for cell A.
However, the change at the center of the

cell must also be distributed to node 5.
Presently, this is accomplished by averaging

the distribution to nodes 2 and 9, or in
general
-1 at
SUS i C AU + Ax AF 3]
and (9)
1 . At
SUB =3 CAU iy AG ]
The scheme wmaintains global conservation
since the flux balances exactly cancel at

the fine/coarse interface, and no additional
mass is created as a result of equation (9).

Cell BCDE is treated the same as any

other coarse cell interior to the embedded
region. This yields an apparent
inconsistency at nodes 2, 5, and 9 due to

the absence of a coarse cell underlying cell

A. At convergence however, the residuals
transferred to BCDE do vanish as do the
inconsistencies.
Integration - Jpecjal Cells

Recall that equation adaptation 1s
used in cases where the local dominant

physics can be applied to a collapsed region
to yield a discontinuous solution. For such
cells, the integration scheme must integrate
the basic governing equations on each side
of the discontinuity (which is free to move
to any location in the cell) and also be
capable of computing the discontinuity
location and strength consistent with the
collapsed physical model. The present
scheme accomplishes this in two steps.
First, the equations are integrated over the
cell, with an assumed discontinuity location

and strength. This includes a flux balance

and application of the distribution
formulae. The second part consists of
updating the discontinuity location and
strength. This two step procedure, which
was first suggested by de Neef [22], is
consistent with the explicit nature of the
overall scheme.

For illustrative purposes, consider
the case of a shock in a quasi-one-

dimensional cell, as shown in figure 9. For
an assumed shock location and strength, the
flux balance for this cell may be written as

s = 25 CF -Fy) ¢ (F,-Fy) 4 (F;-F)1  (10)
where the first and last terms in
parentheses represent the flux balance to
the left and right of the shock,
respectively. The flux balance (F,~F

represents the flux balance across the
shock, which 1is zero for equations written

in conservation form. Egquation (10) may be
rewritten in the simpler form

= At - -
AU = 33 CF -F ) + (Fy-F )3 (11)

where the first parentheses represents the
flux balance for a non-adapted cell and the

latter may be interpreted as a correction
due to the shock jump. The one dimensional
form of the distribution formulae (4) are

then applied to the change given by equation
(11). The Jacobian required in the
distribution is computed based on the
average value of U over the cell.

Density 3

Position

Assumed shock position

T

1.2'3 4

]
\L'\J\
One-dimensional cell
Figure 9. Shock fitting nomenclature.

To compute the proper shock location
and strength, the characteristics (Riemann
variables) which coalesce to form the shock
are integrated to the new time and the
appropriate shock speed and strength
determined. Figure 10 shcws time versus
position away from the shock. The
horizontal axis represents the time level
from the previous multiple-grid cycle. The
characteristics a, b, and ¢ are downstream
running from the supersonic flow, while d is




running characteristic from the

After point e 1s located
the maximum At allowed by the
CFL condition and the cell size), the
intersections of the four characteristics
emanating from e and the horizontal axis are

the upwind
subsonic flow.
(based upon

determined. The characteristic variables at
those points are determined (by
interpolation of the conservation

variables), and integrated forward to point

e. The a, b, and ¢ characteristic variables
uniquely determine the conditions just
upstream of the shock, and hence 1its
strength. With this strength and the known
characteristic variable (from d) Jjust after
the shock, the shock speed can be determined
iteratively. The speed is then integrated
to give a new shock location. For the
converged solution, the shock speed
vanishes, and thus the shock remains
stationary.
Time | Flow Direction
——ael
\
e
t
a N d <
A
- -y D
Supersonic Subsonic
0ld
Shock
Location

Figure 10. Characteristic integration.

The shock speed and strength are
computed Dbased upon the fine grid and are
thus frozen throughout the multiple-grid
acceleration cycle. By this means, not only
is the fine grid accuracy maintained, but
also the multiple-grid cycle converges as
rapidly as if the shock was absent. This
result is very similar to the results stated
by Boerstoel and Kassies [351,

only

Care must be taken when a solution
discontinuity passes from one cell to
another. The dependent variable at the node

over which the discontinuity passes must
then be adjusted and a new cell designated
as an equation-adapted cell. The change in
dependent variables which results from a
discontinuity passing a node must not be
included however in the change transported
to coarser multiple-grid levels, since a
very large change (i.e., the discontinuity
jump) is inconsistent with changes resulting
from the flux balance and distribution.

Feature Detection

Detected nodes are points in the
computational domain at which the

"variation" of some "key variable” is large,

indicating that adaptation 18 necessary.
Determining which nodes are detected i1s a
two step process. First, the variation must
be computed at each node; then, a threshold
must be set to separate the signal (detected
nodes) from the background noise.

The “"variation" can be computed i1in a
variety of ways. Popular choices include
gradient (31, Laplacian (second derivative)
€73, and truncation error (1831. To be
useful, the gradient calculation should be
performed in the computational domain (a
first difference in the physical domain) to
account for the effect of the smaller grid
spacing associated with adaptation.
Gradient and Laplacian are relatively simple
to compute and are therefore the most
popular. Berger 161 has developed a method
which directly measures the truncation error
through the use of a Richardson
extrapolation. This method is more
complicated to compute than the others but
is claimed to be problem and integrator
independent.

The choice of the
apparent

"key variable" is
for scalar equations. However, in
problems involving a set of governing
equations, the choice of the "key variable*
is not obviocus. For example, choices for
the Euler equations include density.
momentum, velocity, vorticity, and entropy.
It is possible that there may be more than
one “"key variable" for <certain problems.
The important consideration in choosing the
Key variable(s) is that it{(they) vary in all
the expected feature types; the most
appropriate “"key variable" for the Euler
equations has not yet been identified.

The second step of detection is the
determination of an appropriate threshold,
above which points are detected. The
thresholding algorithm should Dbe general
enough to work under a variety of
circumstances. If the threshold is too low,
too many points are detected, resulting in
wasted adaptation. On the other hand, if
the threshold is set too high, important
features may be missed.

Figure 11 shows the effect of
selecting various thresholds; the fraction
of points with "variation" above the
threshold is plotted versus threshold level.
As can be seen, over a large range of
threshold, the fraction of thresholded
points is constant. However, if the
threshold is reduced below that value, nodes
in the "noise" are accepted. Thus the
threshold 1is set to find the "knee" in such
a plot.

There are cases which contain no
features and thus no adaptation is desired.
In these, the threshold plot will not have a
“knee" and additional constraints are
necessary to properly set the threshold.
Adequate constraints are easily formulated
by setting a lower bound on the threshold
(typically 20 percent above the average
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“variation®”) as well as a 1limit on the
number of nodes detected on any pass
(typically 30 percent). In all computed
cases shown i1in the results section, these

values were used and found to be sufficient.

In an evolving field computation,
features may move or be narrowed by previcus
adaptations. Thus, a "contraction
threshold” is set so that unnecessary
adaptation may be eliminated. This value is
typically 25 percent of the average
“variation”.

1.0 -

Fraction of Soise
points above
threshold
\ signal
:
[
0.0 1

Threshold
Figure 11. Signal/noise discriminator.

Clustering

Detected nodes which are contiguous
are assumed to be part of a single physical
phenomenon, and thus should be clustered
together, Standard hierarchical and non-
hierarchical clustering techniques [36] are
generally iterative in nature, requiring
many passes through the detected nodes.
This is primarily due to the fact that these
techniques have no a priori Dbasis for
measuring contiguousness.

Since the grid can be used to measure
contiguousness, a new clustering technigue
has been developed which uses grid structure
information. In the new technique, which
can cluster the detected nodes in a single

pass, the cells are scanned and the
following operations are performed:

o If no nodes have been previously
assigned to any cluster, then--

If one or more of the nodes are

detected, associate this cell with a
new cluster, mark all the nodes as
members of the cluster, and continue
on to the next cell.

Otherwise, continue on to the next

cell.

o If all assigned nodes belong to the sanme

cluster, associate the remaining nodes
with the cluster, flag the cell as
member of the cluster, and continue on

to the next cell.

cluster
then merge

o In the event that more than one
is associlated with this cell,

all of the pertinent clusters into one,
and continue as 1f all the nodes
belonged to the same cluster.

From the above, it can be seen that
the clustering 1s accomplished in a single
pass, with the exception of the merging
operation which simply requires reassigning
cluster numbers. The resulting clustering
algorithm has been found to execute very

rapidly, resulting in insignificant computer
times when compared with the integration
time.

Attribution

Once clusters have been formed, the
attributes of the cluster must be determined
as a first step in the recognition process.

Initially, the orientation of each cluster
must be determined. By comparing the
orientation and location of each cluster, it
is possible to determine if more than one

contiguous physical featur. is likely to be
present. Since, in genera.. features will
not abruptly change orientation, any
significant orientation change is used to
break a cluster into sub-clusters. For
example, this algorithm would break up the

intersection of a shock and a boundary layer
into four features (figure 12).

features have been
subdivided, the “width* of the
nornmal to the feature orientation
measured at various locations. If these
widths are smaller than the local global
grid spacing, the feature is designated as
“collapsible”. Note that the width is
measured only with respect to detected
nodes, and thus for a discontinuity such as
a shock, it continually becomes thinner with
repeated adaptations.

Once properly
feature

can be

shock

outgoing

interaction region boundary layer

incoming P N
boundary layer, ,/ \
1)
i} f
- r vy 4 L ey L2 —Lvvy ML o

Figure 12. Four features from one cluster.
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BRecognition

Collapsible features are now compared
with standard patterns to determine if an
associated set of local physics is
consistent with the feature. Such a pattern
for a shock may assume the form: incoming,
supersonic normal Mach number; outgoing,
subsonic normal Mach number ; entropy
increase; etc. Recognized features then

are tagged as to type.
Grid Division and Contragtion

Processes are needed to accomplish
grid division and contraction for both grid
and equation adaptation. In grid
adaptation, the cells surrounding a detected
node are subdivided, as long as the cell to
be divided is not already at the edge of an
embedded region. Such a restriction is
necessary since the cell just outside the
embedded region would otherwise be described
by four or more nodes along a single edge;
this eventuality could cause considerable
difficulties in the basic and embedded grid
solvers.

Data Structure

In each algorithm described above, the
computations are performed cell by cell.
There is no requirement that the nodes be
stored in any specific order as long as
those associated with each cell are known.
This, coupled with the complex arrangement
of nodes which may result from successive
grid adaptations, 1leads to the requirement
for a flexible data structure. Usab has

developed a pointer system [£37] which offers
such flexibility.

The data structure is shown in figure
13. Node information is stored in a single
array with the arrangement oy node numbers
arbitrary. For each node, its location, the
dependent variables, and the changes in
those dependent variables are stored.

Connectivity or cell
the numbers of the nine
with each cell (0 if a node
Thus, all interior nodes are accessed by
four cells on level 0 (the global level).
Because of the multirle-grid structure, each
node is actually accessed on each level of
which it 1is a nmnember. Also included for
each cell is a special word which contains
information about the cell’s location
relative to the domain boundary and edge of
an embedded region; this word also includes
a tag indicating the type of integrator
(non-adapted, grid-adapted, or equation-
adapted) used for the cell. This cell
information is stored in one long array,
organized so that all cells of the same
level are stored contiguously. A set of
level pointers are used to indicate the
first and 1last cell on each level. This
type of organization makes even complicated
global topologies as shown in figure 14 very
easy to implement.

arrays contain
nodes associated
does not exist).

Nodes: [1 } 2 |3 Ja]sle] ...
Celts: [A[B | Cc|D - (
sw |1]z2]s5]a {
se 2 3 6 5
nw S 6 9 8
ne 4 ) 8 7
Figure 13. Data structure.

/ \
&\’( ’
f&(K.KX%
\\ A \ L_L—»
Figure 14.
Global grid with complex topology.

.

Two additional arrays are required
complete the data structure. The first is a
boundary condition array, which ccntains
nodes numbers for all boundary nodes, the
adjoining cells used in boundary condition
calculations, and the boundary condition
type (solid wall, free stream, etc.). For
special cells, the other array contains
feature types and discontinuity values.

to

Though the data structure may seen
complicated, utility routines have Dbeen
written which make grid manipulation simple.
For example, a grid division routine creates

the required nodes and cells and readjusts
all indicators which contain edge-of-
embedded region information. Such routines

are problem independent.
ONE-DIMENSIONAL EULER EQUATION

The first set of results illustrate
both grid- and equation-adaptation applied
to the quasi-one-dimensional Euler flow
through a converging-diverging nozzle.
Cases with and without shocks are
considered.
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Governing Equation and Boundary Conditjons

The one-dimensional Euler equations in
conservation form are given by

G
Ut = Fx t 3 Ax (12)
where
> m
3y n?
U s = F = > 5 +(y-1) E
o
3
E 1-y m~ + Enm
2 27 Ve
o
m
2
G = z
vl
3
i m .  Em
2 2 o
e
The three equations represent conservation
of mass, momentum, and internal erergy,
respectively. The source terms are due to
the area change along the duct.
Characteristic boundary conditicns applied
at the inlet and exit of the duct assume
those characteristics which exit the domain

are correctly predicted by the distribution
formulae, while for those entering, the
characteristic variables remain unchanged.
The cases shown all have a subsonic inlet at
which two boundary conditions are prescribed
and a subsonic exit for which only one is

given.

(a) non-adapted

Computed Results

The first case is a choked flow,
a shock 1in the expanding section.
15a shows the duct geometry with the global
grid superimposed. The global grid is
equally spaced here, although this is not a
requirement. The computed axial Mach number
distribution is plotted in figure 1l6a. Note
that the captured shock extends over
approximately three cells, The entropy
change distribution (figure 17a) shows that
the added artificial viscosity that was
necessary tc control oscillations near the
shock results in a significant entropy rise
in adjacent regions and hence the incorrect
placement of the shock. As a result of
capturing the shock, the computed entropy
rise across the shock 1s approximately 21
percent toc small as compared with the
analytical value associated with this
incident Mach number. The mass flow rate
distribution (figure 18a), 1indicates that
the added artificial viscosity causes
appreciable mass creation and destruction
before and after the shock; the peaks do
not cancel exactly in this case, resulting
in a 0.6 percent residual mass flow rate
error after the shock.

with
Figure

Since the added artificial wviscosity
is proportional to the local mesh spacing,
it is expected that finer mesh resolution
will result in both better shock resolution
and placenment. Figure 1S5h depicts the
geometry after dividing each global cell
into quarters. The resulting Mach number,
entropy, and mass distributions are shown in

(b) fine global

(c) adapted grid

figures 16b, 17b, and 18b, respectively.
Note that the shock has moved downstreanm
relative to the non-adapted solution as a
1.59Q : :
N
MACH MO J
—k***’*l{ \~\\*
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(d) full adaptation
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Figure 15. Grid distribution.
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result of the lesser entropy rise ahead of
the shock which followed from the smaller
added artificial viscosity. The computed
entropy rise across the shock is now within
4 percent of its theoretical value while the
mass flow rate error has been reduced to 0.4
percent.

Figures 15c, l16c, 17c, and 18c contain
results for grid adaptation alone. Note
that the shock width has been reduced,
although it still extends over three cells.
The artificial viscosity in the large
(non-adapted) cells ahead of the embedded
region again causes the shock to be
incorrectly located even though the entropy
rise across the captured shock is now only
about 6 percent low. This erroz, which is
approximately the same as the ine global
grid case (b)), is appreciably smaller than
that for the non-adapted case (a).

Full (i.e., both grid and egquation)
adaptation results are shown in figures 154,
léd, 17d, and 18d. Here, both the shock
position and entropy rise are correctly
predicted. Note also that since the shock
is fit (not captured), virtually no mass
flow error exists. The results were
obtained from the following sequence of
operations: first, a non-adapted solution
was computed until a shock formed. Since
the detected <cluster was not collapsible
(spread over 2 global cells) grid-adaptation

Equation adaptaticn was initiated and
previously embedded cells were deleted.
After advancing the solution and applying
detection again, no further adaptation was
required. The artificial viscosity
parameter was reduced ({since it is
unnecessary to fit the shock) and the
solution advanced to final convergence. The

ability to decrease the artificial viscosity

parameter 1s important 1in obtaining an
overall accurate result.

Figure 19 shows convergence histories
for each of the above four cases. The

logarithm of the average change in momentum
over the whole domain is shown as a function
of the number of wmultiple-grid cycles.
Figure 20 similarly shcws the convergence
histories versus work units, which are the
accumulated CPU time on the system clock
normalized by the CPU time required for the
non-adapted case. This work measure
includes any time wused by the detection,
adaptation, etc. algorithms. The dotted
lines in the two figures show the
convergence of the non-adapted calculation.
Note that the fully embedded grid
(dot/dashed 1line) requires more than 2.5
times as many cycles with an even wmore
dramatic work difference due to the
lengthier calculation required for the
larger number of grid points.

The adapted grid results (dashed line)

was performed. The integration continued shows some interesting results. The
until the effects of adaptation had been convergence history is identical to the non-
established. The detected nodes then adapted case until the first grid
extended oOver two fine (adapted) cells with adaptation, corresponding to the abrupt rise
a total width less than one global cell. in the residual. In the work plot, the rise
occurs over a relatively small region,
(a) non-adapted 0.020 1.020 : : . \\
€ L R
ENTROPY B e e e e e \ -
0.000
(b) fine global 0.0e0
_41' S——
ENTAROPY ] T
0.000 C.830
1.Ged
(c) adapted grid  ©-020
: 4t
ENTROPY MASS Tt -
0.000 ++ — 0.9ad
0.020 1. 020
(d) full adaptation “-
P D S SIS SO NP WSS A
ENTABPY MASS
0.000 0.9310
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Figure 17. Entropy distribution.
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Figure 19.

Convergence histories - multiple-grid cycles.
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Figure 20.

Convergence histories - computational work.

indicating that the adaptation calculations
are very inexpensive compared to the
integration time. The second abrupt rise
corresponds to the second grid adaptation.
The differences in the slopes between the
cycle plot (figure 19) and the work plot
(figure 20) 1is due the presence of more
nodes after adaptation. The fully-adapted
solution 1is shown by the solid line and
again shows two abrupt rises, the first due
to the grid adaptation and the second due to
the equation adaptation. Again the
adaptation time is negligible compared with
the integration time. The more negative
slope in the work plot (as compared with
grid adaptation alone) after equation
adaptation 1is due to the reduced number of
computational nodes.

A fifth case was computed with an a
priori embedded grid identical to the final
grid from the adapted grid results, yielding
the same solution (as expected). The a
priori embedding required 6 percent fewer
multiple-grid cycles, since the residual
rises associated with adaptation were not
present. However, the total computational
work required for the a prjori embedding was
4 percent greater, owing primarily to the
less expensive computation per cycle before
adaptation; this is analogous to the
efficiency gains resulting from ccarse/fine
sequencing.

To demonstrate that a specified 1level
of residual 1is an appropriate measure of
feature formation, figure 21 shows the
development of the Mach number distribution
versus residual. After the residual has
decreased about two decades, the shock
location and strength are fairly well
established, with only small adjustments
over the last two decades. Since adaptation
changes the fine structure near the feature
anyway, significant savings can be realized
if the adaptation 1is performed after the
residual drops only two decades.

log (residual)

Multiple-grid cycles

Figure 21. Mach number distribution
for selected residual levels.

The second test case assumes the same
geometry, but this time with insufficient
back pressure to choke the flow. The
results are shown 1in figure 22. The
detection process correctly found no nodes
and adaptation was not performed.

A final one-dimensional test case
considered the nozzle with a wavy wall
upstream of the throat. By this means, two
distinct features were included (one at the
shock and one due to the wavy geometry)
which were found and treated independently.
The shock was automatically recognized and
the equations adapted for shock fitting;
the geometrically generated feature was
detected but not recognized, resulting only
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in grid adaptation. These results, which
are shown in figure 23, demonstrate the
flexibility and generality of the present
method.
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Figure 22. Unchoked nozzle.
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Figure 23. Multiple features.

TWQ-DIMENSIONAL BURGERS EQUATION

Similar concepts have been used to
extend the grid adaptation procedure to two-
imensional models based on the Burgers
equation, offering two new complications.
In contrast to the one-dimensional case for
which clustering 1s almost trivial and the
coarse/fine interface is relatively easy to
iaplement, a second dimension introduces

appreciable complexity. The second
complication arises from the presence of
diffusive terms. If modeled by a centered
second difference split between two
different scale cells, the coarse/fine
interface condition must be carefully
modified. The equation 1s a good medel
equation for the Navier Stokes equations
excepting for its scalar nature. The latter
is the major justification for using Burgers
equation, namely rapid computation with the
essential contents of a two-dimensional
viscous description included.

Governing Equation and Boundary Conditions

Burgers equation in two dimensions and
conservation form is given by

U S s N
Ut + 35 (U )x + 3 (U )y wk Uxx+Uny (13)
Characteristic boundary conditions

have been applied as derived from the
convective terms. It is assumed that the
convective terms dominate at entrance and
exit regions. No added artificial viscosity
is used in any of the computed
two-dimensional results.

Computed Results

The non-linear convective terms in
eguation (13) allow for a discontinuity; a
test case was computed with such a curved
"shock". The final adapted grid ard a
contour plot of U are shown 1in figure 24.
The adapted equation algorithm is not yet
included in the two-dimensional code and
therefore the discontinuity has been
captured, but not fit. The irregular shape
of the embedded region necessary for this
feature 1s an essential capability of the
algorithm for ‘a still broader <class of
descriptions. The flexibility of the
approach and the inh.rent data structure
make the computation of this case no more
complicated than any other.

As a demonstration of the effect of
grid adaptation, a horizontal cut has been
made across the domain, and both non-adapted
and grid-adapted results are shown in figure
24c. It is clear that the grid adaptation
yields much better resolution of the
discontinuity.

The seccnd two dimensional case
considers a situation in which diffusion is
important. A perturbation at the lower left
corner of a rectangular domain (figure 25)
propagates up and to the right and at the
same time diffuses. Again it is of some
importance that the embedded region is
irregularly shaped. HNote that the sclution
smoothly traverses the edge of the embedded
region. Even though the diffusion is
important here (approximately equal to a
Reynolds number of 10 based upon the domain
length), the characteristic boundary
conditions based only upon convective terms

-15~
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seem to be effective and proved satisfactory
since a singular perturbation (boundary
layer) was not present.

Currently, program MITOSIS is Dbeing
extended to two-dimensional Navier-Stokes
equations with both grid and equation
adaptation. Although quite general and in
principle extendable to three dimensions,
such efforts will require some care.

It
i

(b) contours of U

._——-#§<f::€§ ggid-adapted
\\\‘

{(c) Section A-A

Figure 24.
Burgers equation - curved “shock".

CONCLUSIONS
A single algorithm has been developed
which combines adaptive grid and
eguation techniques, yielding both
significant time savings and accuracy
improvenents.

Shock fitting can be combined with a
Lax-Wendroff scheme (including mutiple-
grid acceleration) to obtain converged
solutions with a significantly reduced
requirement for artificial viscosity.
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(a) computational grid

S 7

(b) contours of U

Figure 25.
Burgers equation - diffusive field.

o Irregular embedded grid regions which
track features are an essential
component for multi-dimensional
problems.

o The compr tional work (both direct and
indirect: associated with adaptation is
small compared with that saved by the
increased efficiency of the adaptation.

o A new, single-pass clustering algorithm
has been developed.

o A flexible data base system is essential
for effective combination of adaptive
grid and equation algorithms,
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APPENDIX B - Part 2

ADAPTATION OF EQUATIONS AND GRIDS FOR 2-D EULER SYSTEMS

1. Background

The preceding Part 1 presents the essentials of the rresent adaptiocn concezt
but with a focus on one-dimensional applications both by wav of illustraticn and
as a first test of its utility. In two dimensions it was to be expected that
multiple parameters and egquations will reguire modification of the procedure.

The essential changes, however, are:

1) The possibility of having directly interacting, effectivelv over-
lapping, features, and

2} A reduction in the proportion of the global domain in which deminant
features will arpear.

The first is the zrimarv difficulty for adagtive equations but nerhanrns less so
for adaptive grids; i.e. eguation adaptation will require special clustering
algorithms to separate intersecting features., The second suggests that the
gains in two dimensions will be greater than :tnose already exger

dimension. During the latter part of this vear the research has peen limited

to two-dimensional Euler egquations and therefore adaptation to large disturkancs
regions and discontinuities as features. The intended extensicn to Navier-Stck=
systems effectively will increase the number and kinds of interactions.

o

The two-dimensional studies have again used the Ni solver for the global
algorithm. Density gradient was employed as the fundamental measure of feature
presence, and has proven to be adequate in fields with and without discontinu-
ities. A precise level at which adaptation steps are to be taken tc improve
an evolving field has not been established, but threshold studies have indicated
that distributions of field gradients are very good indicators of gossible cut-
offs that define proper feature scales. Their role and limitations will be
apparent in the test solutions to be presented.

2. Threshold Definition of 2-Dimensional Feature

The adaptation procedure is designed to recognize nonuniformities across
the domain, for which spatial rate of change provides one measure of scale.
Equivalently, local errors often provide similar information for a discrete
numerical method. The distribution of relative rates of change, i.e. local
values referred to an average over the global domain, has proven to be a re-
liable indication of feature locations in two dimensions. Each such threshold
level corresponds to a certain portion of the domain (fraction of nodes) which
exceed that level. Suitable cutoff criteria were explored by study of actual
distributions that were obtained from global solutions.

Figures Bl(a) and B2(a) show tyvpical distributions that correspond to
transonic and supersonic flowfields generated by the Ni method for a circular
arc section in a channel. Relatively few of the nodes (approximately 20%)
in these pre-adaption cases are associated with above average gradients. The
"knee" in such distributions appears close to the point for a slore of -0.2
[indicated by the square symbol], while other controls are the 1.25 threshold
level [hexagon] and the 25% of all nodes marker [triangle]. The consequences
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of a specific choice of level are shown in the remaining portions of Figures El
and B2, The 0.50 threshold includes a relatively large number of nodes and
makes guite evident the centered and downstream oriented disturbances that are
cresent at transonic and supersonic speeds. The essential point is that higher
thresholds rapidly disclose such primary features as shocks and interactions,
Imposing limits such as: those nodes for which gradients are at least 1,25,

or the £lagging of no mecre than a 0.25 proportion of the total nurber, together
with a knee approximation, together imply a rational decision basis for grid
adagtation. The transcnic case focuses in cn the relatively weak shock at a
threshold level between 1.0 and 2.0; in the supersonic case the several dis-
continuities, reflection, and intersecticns near the trailing edje are very
clearly defined above a threshold of 1.5.

A similar definition of relevant subdomains takes place during any sub-
uent search for feature locations. The evolving solution, when based on a
st level grid adaptaticn as in Figures Bl and B2, finds sharper discon-
viities, results in thresheold distributions with clearer knee lccations
(as in the supersonic example), and suggests a length scale for the next
embedded grid.

e

3o

>
£4
P
-1
U

»

Lastly, the 0.5 threshold marker [cross] in the figures is included as a
measure of that portion cf the domain affected very little by disturbances.
The influence for a sursonic flow extends over virtually the entire domain.

A large upstream, supersonic region is essentially undizturked (Figure B2)
and a characteristic plateau appears.

3. Smoothing

The present solver requires the explicit addition of artificial viscosity,
even for cases without anyv adaptation. The viscositv is necessary globally
in order to smooth out those high frequency errors which arise during the
interpolation phase of the multiple-grid cycles. A significantly larger
amount of smoothing is also required in the vicinity of a shock in order for
it to be prorerly captured.

In the past the high level of smoothing that was required solelvy near
shocks was imposed globally (e.g. Ni, Usab) and resulted in larger smoothing
errors than was necessary in regions away from discontinuities. In recognition
of this the present research has introduced a globally varying, smoothing co-
efficient which adjusts the imposed smoothing to the smallest acceptable value,

The new smoothing coefficient distribution is generated by determining an
initial coefficient magnitude at each node on the basis of the local density
gradient, which is a measure of the shock presence, and then smoothing these
coefficients using a Laplacian-type operator in order to ensure stability.

For efficient computation the actual implementation involves the integration
of a specially devised partial differential equation which makes use of a
smoothed value of both the coefficient from the previous iteration and a
forcing function based upon the local density gradient of the new iteration.

Use of the spatially varying coefficient requires special care to ensure
that the smoothing does not disturb the global conservation properties of the
inviscid solver. Conservation is obtained in the current research by using
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conservative differencing similar to that discussed by Tong (PhD Thesis, MIT,
February 1984]. The embedded mesh interface poses no sgpecial smoothing problems
as long as post-smoothing is used. Tong points out that for model problems a
post-smoothing procedure in fact results in improved convergence rates over
those obtainable with traditional co-smoothing. Numerjcal experiments we have
completed corroborate his results for the full two-dimensional Euler eguations.

4., Two-Dimensional Shock Fitting

Since we require that the global grid remain fixed, it must be possible
for the shock to "float" through the grid with both its location and orientation
being arbitrary. This results in significant shock/grid interaction problems.

Software has been written to allow interpolation near shocks with the
proper domain of dependence and to track a shock surface as it moves from
iteration to iteration. Such movement can result in node c_-ossings as well as
simply adjustment of an oblique shock segment within the cell interior. The
collapsed feature therefore adds to the pointer burden. In order to accommodate
the floating behavior, new elements were added to the pointer system. These
store the shock/grid intersections as a "linked list." Effectively ncde
locations have been made aware of adjacent cells to permit the inter-cell
transfers. Such transfers may well be few in number after a precise positioning
of the shock by several levels of grid adaptation and removal of the fine mesh.

The egquation adaptation for collapsed shocks is still being developed and
is not included in the adaptive embedded sclutions discussed next.

5, Two-Dimensional Adaptive Grid Euler Flow

The threshold study offered encouragement for multiple embedding based
on the density variations. Solutions have been completed for subsonic, tran-
sonic and supersonic flow with one and two levels of adaptation. They also
have been obtained without adaptation for an initially coarse grid, and a
globally fine grid which is equivalent in scale to the finest scale with
embedding.

The geometry is that of a 10% thick biconvex, circular arc cascade.
Figures B3 through B6 show the several transonic solutions in terms of the
final grids that were used or adapted, Mach number contours that indicate
the increasing gradient that is developed at the shock (which stand at about
the three-quarter chord location), and the fractional loss of total pressure
contours which are present primarily due to the shock. The coarsest grid
does indicate losses at the leading edge as well (Figure B3) and the two
levels of adaptation lead to the consistent suggestion of the presence of
a relatively larger disturbance there (Figure BS).

The comparison between two-level adaptation and the uniformly fine grid
result is reasonably good, but with some differences in the region opposite
the airfoil which may result from an excessive threshold choice [see Figures
Bl(b)-(d)]. The comparable accuracy corresponds to the convergence histories
shown in Figures B7 and B8, The abscissas are number of iteration cycles and
normalized CPU time respectively, and an appreciable saving (factor of 10) in
machine time is apparent when adapting. It is anticipated that the adaptive
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equation application will result in additional but somewhat lesser savings.

A supersonic flow (M=1.4) field for the same geometry (4% thick) is shown
in Figure B9 after two levels of adaptation. Reference to Figure B2 suggests
that a high threshold was emploved., Nevertheless, the Mach number contours
make quite clear the intersection of the reflected shock and the shock that is
generated at the trailing edge, Witnhout adaptation this very essential behavior
is completely overlooked. The sensitivity to threshold level is to be kalanced
against the increased precision that should result on collapsing the features.
That capability should be available shortly.
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Figure B6. All cells subdivided twice. Transonic flow in channel. M=0.,7, 10% bump
(a) Grid
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APPENDIX C

ACCELERATING CONVERGENCE TO STEADY STATE

1. INTRODUCTION

In many problems of computational fluid dynamics we are
interested in the time independent (steady state) solution. Often,
and for a variety of reasons, the steady state solution is approached
via the explicitly differenced time dependent equations. This method
may be very time consuming; for example, when the grid mesh is highly
stretched or if there is present a source term due to chemistry, .
combustion etc. The reason for the high computer time expenditure is
the restricted stability criterion necessary to meet time consistancy.
Over the past ten years (at least) some computational fluid dynamicists
used a "'super-convergence' method which gave up time consistancy in
order to impose at each grid point a time step based on the maximal
stable Courant number. This approach, though empirical or heuristic
at best, yields good results - convergence to steady state is
markedly accelerated.

With this background in mind a natural question is - can one
determine, fationally and a priori, an optimal distribution of local
Courant numbers? The optimum is defined here to mean a distribution
of Courant numbers so that at each iteration the steady state
residual (or a suitable norm thereof) is diminished by a maximum
amount. We next present analyses for the cases of model
hyperbolic differential equations. We show that one can do much
better than "'super convergence'.
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z A SCALAR ONE DIMENSIONAL CASE

2.1 The Linear Case |

Consider the linear hyperbolic first order partial differential

equation with variable coetficients:

su ou _ .
S TE c(x);; =g(x)u ; 0sx<1, t3>0 (1)

u(0,t) = uy .

For the moment assume c(x) > 0, c(x) 2 0. The finite difference
approximation will be taken to be a one-sided (up-winc) first order
differencing in x and a simple single level time differencing.

The grid is not necessarily uniform and since we are giving up time
consistency the time step at each grid point j, at each iteration
count n, At?, will not be a constant over the j's. The finite

difference representation of Eq. (1) is, then

n+l n At e, n_n n n
TR L W ATt e R X - PR T ey . (2)

Define local Courant and source numbers respectively:

n

At c.
}\ = (3)
AX.
) y
c.40X.
o, = 1—& | (4)
J Cs
J
Eq. (1) becomes:
n+l n n, n n n n
u. = u., - A, (u.-u; + A.a.u, 5
j uj - Aglagrugig) v Agagy (5)
or, more compactly
u?*l = u? - TLy? (6)

j } 3773




the definition of the differencing operation L ©being clear from
Eqs. (5) and (6).

By steady state we mean that Lu? = 0, or equivalently

+* - - . -
n L u?. Consider an iteration level n: usually Lu + 0. We

will, however, be satisfied if the L, - norm will be less than some ;
specified level; 1i.e. ”Lu?]l2 < €. We assume that this criterion
for steady state is not met after n iterations (if it is,then the
computation is finished). We then ask the question - what is the

distribution of the local A?'s such that the norm of the residual

. . n+l, . s . .
at the nex: iteration, IlLuj 4, 1is minimized. This is a standard
least square fit problem, but one has to watch for the boundary

condition u = u.. We write

0 0
N T S R O N TN S A S TR O
) i "L J 3Tk Ny A R R
and substituting from (6) and (5) we have
+1 1 n ,n.n n 2
QLT = U2 ) Tu -2 (u-ug) + X?alul] - upk
.5 %I {(1-a )[un-kn.(un-un 1+ ATaut)
PR DEhS S R B B ERRS A b
_ ¢, N n _n n noo,2 -
[uy y-ry g (uyogmuyog) * Ayt - ()

Differentiating Qn+1 with respect to X; (1¢jsN) 1leads to a
set of N linear algebraic equations:

) n
- (1-a) pulaTw-ubau ] ¢ Qo ug + oz, = 0 (8)
n "n = 1 -
zj+1 - (l-aj)Lj 0 (2¢j<N-1) (9)
2y =0, (10)

- e et gty s ore Tt e vt PRI v R ot myer sttt oo ottt e L ien




where

t

n n n n n n n
= (1-a. .=Ax.(u.-u. + A.a.U.
(1-ay)Tug-As(uy-uy ) 3451

J
n n n n n n
T luy Ay Uy gmuy ) Ay oy ] (1)
It is seen immediately that
n .
zj = 0 (2<j<N) . (12)

We can then compute A? from (8) and the rest of the xi's recursiye1;
from (11). Specifically, we find l

AT = 1w, , (13)
and
(M uw )ug - Uy
n s=1 S J L
xj = - (2€3gN) (14)
n.n n vt
(szlws)(uj-uj_l-ajuj)
where
u.)j = (l'aj) .

If we substitute A? from (14) into the governing difference Eq. (3)

we find
3
Teug/ m g (15)
J s=1

The R.H.S. of (15) is the steady state solution of (5) and thus we
find that the least square minimization approach yields the steady
state in one single iteration.
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2.2 A Non-linear Example

If, instead of (1), we have

%% + %5 = o(x)u

with f = %u?, the difference equation, by analogy to (2) is

n+l n n_, n? n?
. = u, - A. . - .
Y3 j 7 2y Gy thuy )

The least square minimization in this case leads to:

[2+ 2
Ul Ql uo Ql

2 2
ku;-ku,-ao,;u,

and for j 3 2 we have recursively

where

2

w, = a, + Vai+ug

w = Q + VQZ+W2
j oi-1

J J

+ k?a.u.

JJ

(25j¢N)

In this case also it can be demonstrated that with this choice of

AT
j

s steady state is achieved after one iteration

(16)

(17)

(18)

(19)




EXAMPLE OF A SYSTEM

w

Consider the 2x2 linear system (obtainsd after dizgonalizing =

more general system)

u, + c(x)ux a(xju + b(x)v

t
c(x), e(x) > 0
v, + e(x)vx = A(x)Ju + B(x)v (20)
The upwind difference equations are:
n+l n n n .n n n n n. n
. = u. - A, RS I - a.u, - 8.v.] = u, - A,LV(u,v
Y3 uy - AjlQugrugg) - oaguy - 85v5l = uy o Agky ()
(21)
n+l n n n.n n n n ol o
V. = v, - u.[(v.,-v, - y.v, - §.ul] o= ov, - MU {u,v)
j 57OV s ovgvy s fyuyl = vy e
where
n n
At.c. AT.e a.lx,
A? = __l_laX. ; u? = T ; O’J = = 1
) J J
b.Ax A.AX B.JaAX.
BJ = c H Y = e 53 = —‘l‘e—:'l
j ) j j
n - ) n _ .n _ 2 D
Lj(u,v) (1 aj)uj uj-l DjVj
M2 ¢ = (l-y. vl - vB . - 5.l
MyQu, v = (Loygdvy = Vi = 25l :

Notice that not only we advance u? with different atT but the

vl is advanced, even at the same j, with a different "time-step”

j

AT?
J
The analysis in this case is more elaborate but basically we
... + n+l .
least-square minimize the norms of L? 1 and Mj The results

of this analysis lead to the following expressions for the optimal
"Courant numbers'" and hence '"time-steps':




[(1-11)(1-y1)-5151]u?-(l-yl)uo-ﬁlvo

AL =
((1-0,)ul-u,-8,v]1l(2-2,) (1-v,)-8,3,]
(22)
o [(Q-a)(1-v,)-8,8,1vi-(1-a,)v,-6,u,
My T n n
(Q-y,)vy-v,-8,u 10 (1-0,) (1-v,)-8,6,]
Ag and u? are found recursively as follows:
l-a.) (1-v,)-8.86, SRS AU Y- S £V RV o |
. [( al)( YJ) B8, J -(1- Y5 )[u 1725k levj_l uy M)
] [Ll-aj)u?~u?_l ; 2 [(1-a;) (1-v;)-8,6,]
(23)
and
} 5 n_ yD n
o (1 a.)(l 713,81 ]V (1-o. )[V -1 uJ 1“171] SJIuL1 }J 1LJ 1]
) [{L-yy) (v3-vs fSJu?][(l a;) (1-v5) 85851

(24)

4, NUMERICAL EXPERIMENTS

The question that faced us was: will the X?'s, predicted by
the linear theory, be effective in reducing the number of iterations
in the case of a non-linear problem. The non-linear theory basically
requires the same amount of the work to determine the A?'s as to
solve the éteady state non-linear p.d.e.; hence, the motivation to
try the efficacy of the linear theory when applied to the non-linear
case. The case tested was that described by Eq. (17) in the range
0 € x € 1. The source term was chosen to be:




1 ’a(xj';i)z o
aj = —T-e (=>)

and the mesh was stretched by the transformation
X, = :,[1-%(\)-\/'-;452)] (26)

where

(]
1]

and v 1is the grid stretching parameter and N 1is the number of
grid intervals. The grid stretching is quite sensitive to .

For example, for v = 2, 5, 10 and N = 50 the following geometry
emerges:

v Axmax=A)§l=Ax5u EX T AX @A [ X o AKX L
2 . 2969 .0050 59.4

5 .40613 .00200 203.1

10 .45180 .00100 451.8

The test problem was run with the parameters: v =1, a=4 and
v=2,5, 10. Each of the cases was run twice - once with the
local Courant number taken to be unity (x?=1) and once with A?

chosen according to the linear theory, Eqs. (13) and (14)
n .n
(Ajsxj,theory

term. The iterations continue until the L,-norm of the steady state

), although the problem has a non-linear advection

. -5 . .
residual decreased below 10 ~. The results are summarized in the

following table:




C-9
n _ n_ ,n
Aj =1 {i Aj,theory
v | iteration count, n.{| iteration count, n
2 54 4
5 55 5
10 55 6

5. SUMMARY

It is seen that the number of iterations necessary to converge
to steady state of the non-linear model problem with a highly
stretched grid and a source term may be reduced by an order of
magnitude compared to the '"superconvergence' method of taking

Vo= 1, by sziecting the local time steps appropriately. Further h

wgrk is necessary to establish the limits of applicability of the
iinear prediction to non-linear problems. Also the efficacy of the
method in the case of a system or multidimensional problem has to
be explored, reven though the extension of the linear theory of
those cases is straightforward if somewhat elaborate. The theory
should also be extended to the case of central finite differences
with boundary conditions specified according to the "inflow" and
"outflow" conditions. This program poses a realistic goal to the
linear theory - its applicability to "real-1ife' computations will
need careful expioration.







