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1. Introduction

A numerical simulation of a flowfield requires that the physical description

and the coordinate grids both be consistent with the flow behavior. A number

of methods now are available for different levels of physical approximation

(such as Euler or Navier-Stokes) and for grid generation. However, only a

small portion of a typical domain is subject to major disturbances. There-

fore, control of descriptions and grids, their kind, location and extent, is

of some practical interest for flow past arbitrary configurations.

An overall strategy is to subdivide the global domain into several local

subdomains, each with its own equation and/or grid system. A suitable

Computational Fluid Dynamics (CFD) algorithm would then have practical

storage advantages and an increased speed of computation, but would require

special stratagems to properly and efficiently couple the interacting sub-

domains. The simplest local equation system and coarsest grid are clearly

most favorable but are subject to constraints related to resolving the flow

details, preserving accuracy, and providing a correct modeling of different

length scales that occur across the domain. Procedures which accomplish this

for complex flowfields are the subject of this research.

2. Research Objectives and Tasks

The nature of CFD allows a flow solution to evolve in a discrete, spatial

and temporal stepping fashion, which proves to be convenient for adjustment

to the progress of either. The specific purpose of the research grant is to

develop algorithms which control those adjustments throughout a field and at

suitable or realistic intervals during the solution development, and on the

basis of the actual local events and interactions that arise from a computation.

This requires either a priori qualitative knowledge about the flowfield or

procedures which can recognize scale differences and create or remove sub-

domains as the local need might demand or suggest.

It is therefore natural that separate tasks were undertaken to consider

non-adaptive and adaptive embedded subdomains. Each task includes a global

domain within which there are one or more embedded subdomains of the same

topology and reduced grid scale. Non-adaptive implies preselection of

realistic subregimes; adaptive implies solution-guided choices and updating

of the grid configuration and the equations during the solution procedure.
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The effort to date has carried this out using a basic algorithm (Ni's method,

which is a conservative, finite volume, and multilevel approach) applied to

channel and airfoil configurations, and two-dimensional Euler and Burgers

equations. During the first year of the grant (1983 Annual Report,

AFOSR-TR-83-08411 the emphasis was on necessary algorithm modifications for

embedded regions, their interfaces, and their creation. During t he 7ast

year the non-adaptive approach has been refined and an extended basic

algorithm has been initiated to allow greater dimensional and topological

freedom in applications. The adaptive approach has been extended to two-

dimensional Euler system flows with and without discontinuities. :n addition,

a preliminary concept of a general accelerator for convergence to the steady

state using explicit schemes has also been explored.

A brief summary of the recent work and implications appear in the

three following sections. More detailed reports on each portion of the

research are contained in the attached Appendices A, B and C.

3. Summary of Task I - Nonadaptive Embedded Subdomains

During the past twelve months our efforts have focussed in two directions.

First, the work of Usab reported last year has been concluded with many im-

portant details being refined. Second, based upon the insight gained from our

first experience with embedded mesh calculations, we have initiated the de-

velopment of a more general algorithm for arbitrary 3-D grid topologies and

vector or parallel computer applications. These two efforts are summarized

below.

The work of tjsab and Murman was reported in detail as Appendix A of last

year's annual report. The essential findings therein regarding embedded mesh

calculations have not changed. However, during the first, six months of this

year, additional work was completed so as to polish up the calculations and

investigate several residual problem areas.

We had noticed that the basic Ni algorithm failed to converge on highl%

stretched meshes. The problem was traced to the use of a simple injection

operator for the multiple grid step. That is, if the residual for the 2h grid

was taken as the level h residual at the node point corresponding to the center

of the 2h mesh cell, calculations failed to converge as the grid stretching

increased. Various weighted averages of level h residuals at node points de-

fining the 2h cell were tried, and a successful approach was found. It uses
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the values of the level h residuals at the corner points of the 2h cell, but

weighted by the appropriate second order terms in the Lax-Wendroff method.

With this improvement, highly stretched grids could be used.

Our application of this was to study the effect of the far field vortex

boundary condition for a lifting airfoil on a greater variety of grids than

was previously possible. The following table from Usab's PhD thesis illus-

trates the importance of an accurate far field boundary condition (vortex

and freestrem) for a test case.

Variation of Force Coefficients with

Location and Type of Far Field Boundary Condition
(Actual values C = 0.335 and C = 0.000)

L D

+--------------------------------------------------------------------

UNIFORM FRESTREAM VORTEX FRESTREAM
BOUNDARY CONDITION BOUNDARY CONDITION

IFAR FIELDI------------------------------------------------I
IRADIUS C C C C

(CHORDS) L D L D
------------------- +--------------- .9-----------------------------

5 0.2873 0.0030 0.3238 0.0019

i10 0.3059 0.0022 0.3266 0.0016

20 0.3170 0.0016 0.3276 0.0013

30 0.3211 0.0013 0.3284 0.0011

50 0.3245 0.0010 0.3289 0.0009

+--------------------------------------------------------------------
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A C-grid was applied to the airfoil problem so as to avoid the inherent

0-mesh singularity at the sharp trailing edge. one result was that calculations

could be obtained in half the number of iterations and with less added smoothin~g.

In fact, it was possible to get a convergent calculation for a subcritical air-

foil without adding any artificial viscosity. A sequence of five values of

smoothing coefficients ranging from 0.0 to 0.3 were run and various parameters

such as surface pressures and forces and surface total pressure losses were

examined.

Figures 3-1 and 3-2 (from Usab's thesis) show how the lift, drag and total

pressure loss calculations improve as the damping is reduced. The implications

of this are very important for the achievement of accurate solutions for Euler

equations modeling. Embedded mesh calculations also provide improved accuracy

for a given smoothing model since the smoothing is always related to the mesh

size.

The findings of this phase of the work are summarized in detail in

,MIT-CFDL-TR-84-2 (also Usab's PhD thesis) given in the cumulative list of

publications.

We are greatly encouraged by the potential that embedded mesh approaches

offer. Yet the work of Usa-b is not directly extendable to (a) three-dimensions,

(b) embedded grids of non-similar topology, and (c) vector or parallel pro-

cessing. The basic reason for these limitations is that the pointer structure

used in that work was not intended to be completely general, and Ni's algorithm

is not directly extendable to grids which are non-mappable to a Cartesian

space. With these requirements in mind, we set out to develop a second

generation method.

After considering both cell-centered methods (such as Jameson) or nodal

methods (such as Ni), we decided that nodal methods offer higher accuracy with

less added complexity. However, the multistage algorithms of Jameson offer

more flexible time integration methods than the Lax-Wendroff approach and

they should not be limited to cell-centered schemes. Our new method thus

takes what we feel are the best attributes of both approaches. Some pre-

liminary results have been obtained for a simple test problem. They are

encouraging but indicated that we need to concentrate now on the damping.

A great deal of thought has been given to the data base management and

pointer systems. At present- we have a general approach which as coded
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will be suitable both for 2 or 3 dimensions, and for grids which need not be

mappable to a Cartesian space. In addition we believe that it is adaptable

to rather arbitrary machine architectures. The details of this are given in

Appendix A. However, our experience with this algorithm is very limited at

this point. During the next year we will be developing its capabilities.

4. Summarv of Task II - Adaptive Embedded Subdomains

The adaptive concept developed during the first grant year established

the utility of embedding finer grid structures and alternate descriptions

within the framework of a global algorithm and only if and when required.

The first part of Appendix B is a description of that work as presented at

an AIAA meeting. The essential findings were based upon model problems,

purposely kept simple in the one dimensional (inviscid streamtube) and single

variable (Burgers equation) sense. However, the recognition of important

features, the manipulation of grid structures, and the change of governing

equations all were included and shown to be effective. A measure of this is

a factor of 3 computation time advantage that resulted for the adaptive

one dimensional problem.

During the last year the concept has been extended to two-dimensional

Euler systems and test cases have been completed for flow past circular arc

sections in a channel. Subsonic, transonic and supersonic flows were con-

sidered in order to include discontinuities of different strengths, orientations,

and multiplicity. A discussion of the two-dimensional considerations and some

results are contained in the second part of Appendix B and are summarized

below.

o A single parameter basis provides an adequate criteria for

feature recognition in a two-dimensional Euler system.

o Threshhold level is a factor in, but not critical to, the

recognition of multiple features or their interacting regions.

o Irregular embedded grid patterns present no problem for curved

features.

o Pointer systems for collapsed two-dimensional systems require

special knowledge of adjacent cell/node locations for final adjustment of

floating, collapsed features.
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o Variable smoothing coefficients have been introduced to adapt the

smoothing effect to the need.

o Interpolation and floating schemes for fitted, curved shock

discontinuities have been developed but not yet activated in operational,

two-dimensional adaptive codes.

The cases evaluated to date indicate appreciable computing time benefits

with only grid adaptation being active. Factors of 10. are mentioned in

Appendix B for a transonic flowfield. The present objective is to include

the shock fitting crocedure within the adaptation sequencing, allow for

either kind of adaptation in the likely event of multiple features, and

consider "overlapping" (i.e. interacting) features and their appropriate

edges. The intended application is to an airfoil at angle of attack.

5. Summary of Convergence Acceleration Concept

The research described above assumes that interest is centered on the

steady state solution. The use of a multilevel acceleration technique pre-

cludes developing a time accurate iteration history. Similar accelerators

to hasten convergence have been suggestad for explicit finite difference

schemes. Appendix C describes some preliminary work that suggests a possible

substantial improvement over the well known approach which advances the

solution using the local maximum Courant numbers that maintain stability.

Consideration was given a model partial differential equation (first order,

nonlinear) and a rational basis was used to define an optimal distribution of

local Courant numbers. Numerical comparisons showed convergence to the

steady state to be achieved with an order of magnitude reduction in the number

of pseudo-temporal iterations. The method is now being extended to and ex-

plored for a multidimensional system and various difference schemes. This

effort was carried out by Professor Saul S. Abarbanel with the collaboration

of D. Gottlieb, whose interest overlaps from his participation in another

OSR grant.
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APPENDIX A

NONADAPTIVE EMBEDDED SUBDOMAINS

1. MOTIVATION FOR NEW ALGORITHM

Many physical systems can be modeled by an equation of the form

U = 7- F (1)t

In particular, if the state and flux terms are

PU pu v ;:w

2
Cu Cu +p Cuv uw

Ov , F= Ouv cv2+p ovw (2)
2

w 0uw pvw Cw +p

pE DuH pvH QwH

then Eq(l) is a statement of the Euler equations for three-dimensional inviscid
fluid flow. Equations of this type can be conveniently discretized and solved
by means of a finite volume method, in which the physical space is divided into
nonoverlapping, or disjoint, finite cells, on each of which the right hand side
of Eq(l) is required to vanish at steady state. The equation is integrated over
each cell, and the right hand side is transformed from a volume integral into a
surface integral by Green's theorem:

f 7 dV= f = -d= Fn (3)
volume boundary faces

in which the summation is over the faces that bound the cell.

Within the general class of finite volume methods there are two methods
which are currently popular, each representing a different subclass. Jameson's
method is the most popular version of a cell-based scheme, and Ni's method is
a well known example of a node-based scheme.

la. Jameson's Method

In cell-based schemes, the state vector is associated with the center of
the cell (Figure Al). This causes some minor difficulty in the evaluation of
the right hand side. In order to evaluate the flux F at a face, the state U
at that face must be known first. The usual procedure is to take a simple
average of the states at the cells on either side. This seems reasonable
enough, and is second order accurate in the cell size if the mesh is uniform,
but it is only accurate to first order in the cell size if the mesh is skewed
or nonuniform. The left hand side can be solved to second order as

f dV = V (4)

where V is the volume of the cell. Thus, to an order of accuracy in space
limited by the accuracy of the flux balance,
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Z(u) = F (5)
t V

It remains only to solve the resulting coupled ordinary differential eauations,
which Jameson does with the following multistage algorithm.

U = Un

0
U j = Un + aj(At)U t(U j_) [j=l ... , k]
Un + l  Ut

lb. Ni's Method

Ni's method is a nodal scheme (Figure A2). The state vectors are associated
with the nodes which define the cell corners. With the state vectors known at
the corners of the cells, the fluxes can be evaluated to second order accuracy
by the trapezoidal rule, regardless of the nonuniformity or skewness of the mesh.
However, the left hand side of the governing equation can no loncer be solved
explicitly for Ut . Ni therefore uses a distribution formuia which is based on
a Lax-Wendroff iteration. That is, from Eq(l),

= ~ F)= - . Ut = 7.

Then, the time integration is achieved by using an explicit three-term Taylor
series for the next time level in terms of the current one.

-n+l -n + - + (t)
t 2 tt

(8)

- 7.+V. -(F0

In the evaluation of this expression, the term 7 • F is evaluated conservatively,
to second order. The second derivative, however, is evaluated by taking a first
derivative of the quantity in square brackets, which is second order accurate
only if the mesh is smoothly varying. Therefore, Ni's method might have con-
vergence problems on highly stretched meshes due to the inaccuracy of the
second derivative calculations.

Realistic problems are expected to have meshes that are highly distorted.
Even for a problem as simple as an airfoil, a C-mesh is frequently used to
avoid the distortion involved in wrapping an O-mesh around the trailing edge,
in spite of the lower density at the trailing edge that a C-mesh produces.
Therefore, a preferable method would make use of only simple formulas to get
second order accuracy, no matter how badly distorted or irregular the grid.

Noting that neither Ni's spatial nor Jameson's temporal discretizations wculd
cause any problems in that attempt, it was decided to try a formulation which
combined the best of both methods. In the process, care was to be taken to
make sure that all calculations were carried out in a way that could easily
be assigned to parallel processors.
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2. MOTIVATION FOR POINTER SYSTEM

2a. Complicated Geometry

Until recently, most fluid flow calculations were carried out on grids
that mapped the physical domain onto a rectangle in computational space. That
is, the physical space would be represented by a two or three dimensional array
of points. When the comcutations at a point (I,J) required information from an
adjacent point, to the right, for example, that information was found at the
position (I+l,J) in the array, as shown in Figures Al and A2. This method works
well only if a mapping from physical to computational space can be found which
concentrates points where extra resolution is needed. However, that may prove
to be difficult or impossible with some of the physical geometries of interest.
An alternative is the use of pointers to keep track of connectivity. In the
calculation of some quantity at the point I, pointers associated with I point
to neighboring values required by the algorithm.

2b. Desired Characteristics

-any different structures could be imagined for a pointer system, with
the choice depending on precisely what information is needed in connection
with the calculations. Usab used a pointer system in which each cell pointed
to exactly nine nodes, scme of which could be nonexistant (Figure A3). The
first four nodes uointed to from each cell were the corner nodes, which always
exist. The remainina five were the nodes at the middle of each face and at
the center of the cell, which might or might not exist, dependin g on whether
or not the cell or any of its immediate eighbors is subdivided. This particular
choice of pointers works only if all cells are four sided and all mesh re-
finements or multigrid mesh inclusions are binary. This may seem like an
innocuous requirement, but one could easily imagine a grid composed of a
Cartesian far field grid with embedded body fitted meshes wrapped around the
physical features of interest. At either the interfaces between the embedded
meshes or between an embedded mesh and the far field, it might be very diffi-
cult to guarantee four sides to every cell (Figure A4). In three dimensions
it would almost certainly be impossible to guarantee each cell its six faces
and eight nodes. It was decided, therefore, to use a pointer structure which
made a minimal number of assumptions about the structure of the computational
grid, while still making available enough connectivity information to the
program so that it can perform its computations without excessive searching
for neighboring data.

The computational grid for any conservative finite volume computation
can be viewed as consisting of disjoint cells, faces and nodes (Fiqure A5).
Since there are parameters associated with each of the three constituents of
the mesh, there are data substructures in the pointer system for cells, for
faces and for nodes. Each cell is physically defined by the faces that bound
it, so the data structure for each cell includes the number of faces defining
that cell and pointers to those faces. Each face is defined by the nodes that
bound it, so the data structure for each face includes the number of nodes
and pointers to those nodes. Thus, a grid is defined in a topological sense
by pointers from cells to faces and from faces to nodes. Further geometric
information that may be needed includes the volume of the cells, the directed
normal area of the faces, and the (x,y) or (x,y,z) position of the nodes.
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Although this is sufficient to define the mesh, both topologically and
geometrically, pointers also have been included from nodes back to cells. Any
adaptation or shock fitting would be greatly simplified if the pointers form
a ring, so that a cell can interrogate faces, then nodes, to detect its own
neighbors. Also, distributions to nodes in the proposed algorithm will be
greatly facilitated by pointers from nodes to cells.

Note that this pointer system is specifically designed for the proposed
algorithm with Ni's spatial discretization and Jameson's time operator. A code
using Jameson's method would not require the data structure for nodes, since
there are no fundamental quantities associated with nodes. In that case, it
would make sense to have pointers from cells to faces, and from faces to cells.

Since the eventual intent is to produce working three-dimensional codes,
care is being taken during the development of both the pointer system and the
algorithm to avoid any reference, either in the analysis or in the coding, to
dimensionality. In doinq a flux integral over a cell, for instance, the loop
is not over the four or six faces of the cell, but over the number of faces
scecified for that cell by the mesh generator. For the inner product of a flux
vector with a normal area vector for a face, a loop appears as

DO 100 L=I,NEQS
FLOW(M)=0
DO 100 M=I,NDIMS
FLOW(M)=FLOW(M)+FLUX(L,M)*NORLAL(M)

100 CONTINUE

where NDIMS and NEQS are compile time parameters for the number of components
in the spatial and state vectors respectively. Although one might argue that
this is much less efficient than writing the expressions out, it proves to be
much more efficient in terms of programmer time; a good optimizing compiler
expands the small loops automatically in any case, so there is no actual loss
of performance. Thus, if the code proves its value in a 2-D Euler flow, very
few lines of code need to be changed to upgrade to either 3-D (increasing the
spatial and state vector length) or to MHD (which would only increase the state
vector length).

3. BASIC ALGORITHM

The algorithm consists of a flux balance over the cell surface to determine
the time derivative of the state vector, followed by a distribution of changes
from cells to nodes, all embedded in a multistage time integration. Separate
explicit smoothing and boundary enforcement are necessary.

3a. Flux Balance

The flux balance proceeds as a loop over the faces. On each face, the
state is calculated as a weighted average of the states at the defining nodes.
In two dimensions, the weights are always equal, and could be written into the
program as 0.5. However, in three dimensions, there could be various numbers
of nodes defining different faces, and there is no reason to assume a priori
that they should be equally weighted. Therefore, the algorithm uses a weight
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for each node that is calculated by the mesh generator. First a state, then
the flux vector for that state, and then its inner product with the normal
area vector for that face are calculated, and that quantity is saved. Next,
looping through the cells, each cell collects the integrated flux from its
defining faces. At this point, each cell has its divergence of the flux vector,
integrated over the cell volume. This quantity is multiplied by the allowable
time step for the cell and divided by the volume to give the change in state
that should hold for the cell.

3b. Distribution

There are a number of possible ways of interpolating the changes from the
cells to the nodes. Among those, only those that reduce to a simple averaging
on a regular mesh can be considered. The one which is currently under inves-
tigation is to weight by the subtended angle (Figure A6). This has been chosen
largely because it is easy to calculate using the same information that is used
by the smoothing operator.

3c. Time Integration

The time integration is the same as in Jameson's scheme. The flux integral
and distribution steps, taken together, define the change in the state vector,
AU, as a function of the state vector U. The several intermediate stages are
defined as

U(O) = Un

U(j) = U + CL(j)* AU[U(j-l)] [j = 1,2,... ,k]n

Un+1 = U + AU[U(k)]nl n

Note that this equation set is nearly the same as Eq(6). The difference lies
in the fact that in the extended method there is no time derivative of U at the
nodes. Therefore, the quantity AU replaces (At) (dU/dt).

The optimal number of stages and the coefficients aj have yet to be deter-
mined. It is planned to use parameter optimization to find the optimal co-
efficients for each number of stages, and to compare the reduction in residual
per cpu second for each number of stages to find the parameters.

3d. Boundaries

Two additional steps are necessary at boundaries. At an open boundary,
or fictitious boundary between the discretized portion of the flow field and
the far field, an approach is used based on Godunov's method. During the flux
integral phase, a one-dimensional simple wave problem is solved after the state
at the face is found by averaging from the nodes, and before the calculation of
the flux vector. First, the velocities are projected into normal and tangential
components. Second, on the basis of the known states inside and outside, the
velocity of the resulting contact discontinuity is found. (For wall boundaries,
this is known a priori to be zero.) With the velocity known, the density and
total volumetric energy can be solved for on either side of the contact dis-
continuity. If that velocity is positive, i.e. fluid flowing out through the
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boundary, then the new state vector is the one calculated on the inside of
the discontinuity. Otherwise it is the state immediately outside. The
applicable tangential velocity is also the one from the appropriate side of
the discontinuity.

The other measure taken to ensure satisfaction of the boundary conditions
is a simple wave solution applied to the nodes after each iteration. The
normal direction is taken to be the sum of the normals of the faces on each
side of the current node. Other than that, the procedure is the same as that
applied at the faces.

3e. Smoothing

Some form of smoothing is necessary, since the algorithm described above
is completely transparent to sawtooth waves. An optimum smoothing procedure
has not yet been determined. One form has been found which damps out the saw-
tooth waves, but has excessive damping. The kind of smoothing operator being
considered is a polynomial in a kind of second difference operator, which is
calculated as follows. The values are averaged from the nodes to the faces,
and then to the cells. Then the difference is calculated by summing the
differences between the values at the cell and at the node, multiplied by the
angle (solid angle in 3-D) subtended by the cell from the node.

D2 (U) = 7(Ucell- Unode ) Ac ell (9)

The operator in use now is of the form

U smooth = (1 + VD2 2 Urough

It is hoped that an operator can be implemented which would provide more
fourth difference smoothing with less second difference smoothing, such as

U smooth (1 - V(D 2) ]Urg(11)

3f. Acceleration

No attempt has been made as yet to implement a multigrid accelerator.
However, there does not seem to be any reason to expect it not to work as
well here as it has with Ni's and Jameson's methods.

4. RESULTS

Solutions to the McCartin (Ni's) bump problem have been generated which
are consistent with an interpretation that the imposed smoothing is overly
dissipative. The two calculations that were performed on a 65 x 17 mesh
yielded spectral radii of 0.9913 and 0.9918. This is without adjustment of
the free parameters, i.e. the a coefficients for each stage in the time
integration, and the CFL number. The spectral radius would probably be

-
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larger, and the convergence therefore slower, if the smoothing were not too

large. Both cases were run using two stages of equal weight.

5. VECTORIZATION/PARALLEL PROCESSING

The entire algorithm falls logically into separate phases, on each of

which a large number of calculations could be performed in parallel. For

instance, the calculation of the flux vector, and its inner Product with the

normal vector to a face, are carried out independently for each face. A large

number of processors could simultaneously consider different faces. Similarly,

the calculation of the changes at each cell or the updating of the state 
vector

at the nodes could be accomplished in parallel.

6. SUMMARY/CONCLUSIONS

A new computational method for solving conservative partial differential

equations is being developed. The method has been formulated in such a way

that it should be completely mesh independent, in the sense that it would

operate on any finite volume mesh that can 
be generated, including highly

stretched, skewed, or irregular meshes, and still retain second order accuracy

in cell size. Preliminary results have been obtained solving the Euler equations

on the McCartin bump problem.

In the near future, work will concentrate on the following areas:

1 Improving the smoothing operator

2 Implementing a multigrid accelerator

3 Determining optimal values for the free parameters

4 Developing grid generators to take advantage of the

flexibility of the algorithm

5 Solving realistic one and two body airfoil problems

6 Solving a simple three dimensional problem

It is felt that with the correction of the smoothing operator, the addition

of multigrid acceleration, and the implementation of well thought out grid

generators, the algorithm will provide a relatively efficient solver for complex

two and three dimensional inviscid flow fields. The extension to viscous flow

appears to be straightforward.
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ABSTRACTr can he features within the domain where the
solution is not smooth; shock waves,

An algorithm to determine the steady boundary layers, and wakes are examples. To
state solution of a set of hyperbolic minimize the truncation errors which are
partial differential equations using grid- generally much larger near the feature than
and/or equation-adaptation is presented. the averaqe over the whole domain, one can
A Th evlvin soutio is peridiclly either introduce a finer computational grid
Teaiedolforg soltedn featur oadicthe or alternatively provide a more precise
eaatin stratg msostaorate to adtea accounting of the local physics which is
is applied. Simple detection and pattern repnil fothlcann-mtns.
recognition procedures are used to locate
such features. Grid adaptation is Unfortunately, one does not know a
accomplished by using an embedded mesh Priori where the features occur within the
procedure on an irregularly shaped embedded domain. Adaptive solution algorithms is a
domain, with a multiple-grid accelerator generic designation for numerical methods
used to couple the global and embedded which sense unique physical behavior
regions. Equation adaptation is (features) in the floufield being computed,
accomplished by altering the basic and subsequently change the governing
integration scheme in cells through which equations and/or computational grid to
.collapsible" features pass. A flexible adequately describe those features.
data structure is employed to make switching Adaptive solution algorithms which change
between the two adaptation schemes the governing equations are known as
relatively simple. A new program has been adaptive equation techniques; those which
written for general hyperbolic systems in alter the computational mesh are known as
two dimensions. Specific computed examples adaptive grid technI'ques.
include the one-dimensional Euler equations
with both adaptive equations (a new floating Initially, consider only adaptive grid
shock fitting procedure) and adaptive prcdes Theshmsmaeueote

gridin. Te Brges quaionis sedto same descriptive equations as before
illustrate the adapted grid solution on an adptin bu wth hegdsacg
irregular embedded region in two dimensions,. dpain u ih tegi pcn

Sgiiat time svns adacrc adjusted so that the integration algorithmSignificantcurac properly captures the local physics. For
improvements are shown to be achievable with example, an adaptive grid algorithm captures
the present method, boundary layer gradients by decreasing the

local mesh spacing at the wall.

INTRODUCTION
Within the basic framework of adaptive

grid algorithms, there are currently two
of Inf general, the steady state solution major approaches. The tirst (and currently
of a system of hyperbolic, partial most popular) can be called grid.~ Point

differential equations can be computed by a redistribution, and the second can be called
discrete approximation to the governing embedded grids.
equations. The discreteness of the

*approximate equations causes truncation
*errors which are typically related to both Many different grid point

the local computational grid size and the redistribution schemes have appeared
local solution behavior. For purposes of recently in the literature 11-133; most are
computational efficiency, the mesh on which discussed In the survey article by Thompson

*the discrete approximations are made is C143. In these schemes, a fixed number of
generally coarse. grid points are redistributed throughout the

flow field. The nodes are moved about such
that grid points are concentrated in regions

For problems of practical interest, of high gradients or errors (most likely
the truncation errors over a large portion regions near features). For one-dimensional
of the domain are frequently small due to cases, this results in a solution which may
smoothness of the solution. However, there be viewed as either uniformly good or

alternatively uniformly bad, since in
AResearch Assistant, Member AIAA regions with small errors initially, the

A* Professor, Associate Fellow AIMA grid point are "moved out", resulting in
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larger errors there. In cases with multiple since nodes are shared by the two grids. On
features, the time development of the the other hand, rotated or topologically
features can have a large influence on the dissimilar embedded regions require
.split" of mesh points between the features iteration between solutions on the two
and hence their resolution. Further grids, with Dirichiet boundary conditions on
complications are added in two-dimensional each derived from the solution on the other.
cases due to topological limitations; for The chief disadvantage of grid adaptation by
example, grid lines concentrated near a embedding is that the logic needed to
shock at an airfoil surface must also implement this method is considerably more
propagate away from the airfoil, resulting complicated than~ that for grid point
in excessive resolution In the farfield. redistribution. Processes are "turned on"

or "turned off", depending on the type and
location of various features. In additionOne way that the redistribution is to the detection process required of all

accomplished is by treating each node as a adaptation schemes, some require that
body, assigning an attraction parameter to detected nodes be clustered before an
each, and then integrating the resulting embedded patch can be created (163.
n-body problem forward in time (1-4).
Special care must be taken in such
techniques, since unf~ortunately grids may The application of grid adaptation to
result which cross and/or are excessively some features points out a major deficiency
skewed (13. To circumvent these problems, of all the above schemes. To understand
some have resorted to solving partial this, it Is helpful to examine the concept
differential equations 11]3 while others of "features" more closely. Each feature
have posed the grid generation as a can be characterized by its type, location,
variational problem with direct control over strength, orientation, and scale. The scale
grid concentration, smoothness, and skew Of a feature has special Importance In
(12). In any event, the result of grid classifying the feature as either
point redistribution is a grid with varying collapsible or non-collapsible. The
grid spacing and skew. It has been shown collapsible character of a feature implies
that both of these can cause significant that the scale is sufficiently small
errors In the computed solution r153. Also, relative to the global scale such that the
care must be exercised to ensure that the entire feature may be collapsed to a point,
moving grid and the flow solution do not line, or surface with the implied associated
couple, yielding the unwanted oscillations physics taken into account. Examples of
reported by some (7]. In addition, collapsible features are shocks and thin
displacing grid points implies that the boundary layers.
previously calculated values at previous
grid point locations are no longer correct. In order to make the grid resolution

fine enough to be able to capture the
Despite these drawbacks, this method physics of a collapsible feature, grid point

is very popular since the logic needed to redistribution requires that a very large
implement the algorithm is relativel y fraction of the available nodes be used at
straightforward. The same logic can be used the feature, leaving other parts of the flow
for all cases, independent of the features inadequately defined. In an embedded mesh
which are (or are not) present. scheme, many points would have to be added

at the feature, resulting in a very
inefficient calculation. It is Interesting

The other adaptive grid algorithm is to note that as more points become available
known as embedded grids (16-19). In this at a shock, the shock indeed becomes thinner
method, the global grid is maintained and (closer to the di-continuous physical
new grid points are added at the features, solution). The gradient becomes larger
yielding locally embedded patches. These (first difference remains the same), and
patches may be aligned with the global grid even more grid points are required on the
(20), be rotated (163, or may be next pass. Thus, it is clear that grid
topologically dissimilar. This procedure adaptation alone is insufficient for
maintains a basic accuracy on the global resolving collapsible features.
mesh and at the same time increases the
otherwise reduced accuracy at features.
Even though the scheme involves adding grid Alternatively, If a feature is
points (thereby increasing the total collapsible, adaptive equation techniques
computational effort and required storage), are very useful. In adaptive equation
they are only added where necessary, schemes, a special subset of the governing
resulting in more efficiency than if equations is used to adequately model the
comparable resolution were obtained by physics within the feature; shock fitting
adding nodes globally, and recent strong inviscid/viscous

interaction algorithms are examples of this
Sine te fne egins re mbeded approach. The chief advantage of theseSine te fne egins re mbededmethods is that accurate solutions can beonly locally, artificial Internal boundaries computed more efficiently than can a finite

with an abrupt grid spacing change resul t; difference or finite volume method; this
special care must be taken there to account folw sic th adpe eqton ar
for this abrupt change and to assure both followselsince thel adapte equationare
stability and conservation (17, 213. prescsl. h oe otelcldmnn
Coupling the global and embedded grids does pyis
not present a problem for aligned patches,
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For example, the "discontinuity" the classification of features as
associated with a shock causes Gibbs' collapsible.
phenomenon in shock capturing methods, which
assume the solution is smooth (representable A new computer program, MITOSIS (M IT
by a Taylor series expansion) across the Qptimizing qcheme for Integrating Systems),
shock. Significant artificial viscosity has been written to take advantage of the
levels are typically used to control the efficiencies in both adaptive equation and
pre- and post-discontinuity oscillations. adaptive grid algorithms. An automatic
On the other hand, in shock fitting algorithm is included which locates multiple
techniques 122-26], the discontinuity is features, determines their types, and
modelled as a jump, with the solution being
smooth on each side of, but not across the subsequently which kinds of adaptation are

jump; this eliminates the oscillations most appropriate. Cell oriented schemes

since the solution is smooth where it is applied on a fixed global grid were chosen

assumed smooth. The major drawback of shock for convenient combination of the adaptationstategies with the unadapted base solver.
fitting is that it typically requires that Ni's finite-volume, Lax-Wendroff scheme with
the shock lie along a grid lne. As the its multiple-grid accelerator C28] is used
shock moves, so does the grid. In addition,heeatebsisovr Teemdddgd

neither the number nor the existence of here as the basic solver. The embedded grid

shocks is necessarily known beforehand, and technique proposed by Usab and Murman s20
ths ayladtopobem.and a newly developed, floating shock

this may lead to problems, fitting scheme are employed. The resulting

scheme offers a high degree of computational
Another adaptive equation application efficiency with appreciable generality.

is the popular inviscld/viscous interaction
technique E273. Here, it is knowntecniqe (7]. Hee, t i knwnThis paper is divided into two major
beforehand that the viscous effects are Ti ae sdvddit w ao
beorend thnat ers the viscouseffec dare sections. In the first section, the overall
confined to thin layers near the boundary algorithm is briefly described and
(or along the wake). An inviscid subset of definitions used throughout the remainder of
the governing (Navier-Stokes) equations are the paper are given. Following that, each
solved external to the viscous region and major component of the scheme is described
the boundary/shear layer equations are mor component ofetheichemeis dec
solved where appropriate. The solutions are more fully, and specific options for eachmatched by using modified boundary are discussed. The first section concludes

conditions for the Inviscid solver. These with a discussion of the data structure
modified boundary conditions could be viewed which has been developed for easy

a implementation of both adaptation schemes.as a "discontinuity" between the actual no In the second section, two major examplesslip condition for the Navier-Stokes

equations and the equivalent inviscid using MITOSIS are discussed. The first
boundary conditions. Note that this example is for the one-dimensional Euler
bounary condiios. N that thr ion equations with both adapted grids andtechnique requires that the viscous region adapted equations. Computed results are
be thin (so that the boundary layer shown for subsonic and transonic cases. The
assumption is not violated). If the second example is for the two-dimensional
assumption becomes invalid during the course Burgers equation with grid adaptation only.
of the solution development, equation Cmue eut nld ifso
adaptation can no longer be used, and the Computed results include a diffusiondominated case as well as a case with a
grid must be adapted to resolve the boundary curved discontinuity.
layer.

ADAPTIVE SOLUTION ALGORITHM
Since the location of features are not

always known a priori, the solution General Approach
initially must be computed either without
any adaptation or with adaptation at assumed Consider the integration of a system
feature locations. At a suitable time, of hyperbolic partial differential equations
features can be detected and adaptation in vector form:
begun. Recall that for a feature to be
classified as collapsible and thus be a U + F + G . H + 1 (1)
candidate for equation adaptation, the t X y x y
thickness (scale) of the feature must be
less than one global cell width (a measure where the subscripts t, x and y denote
of the global scale). Generally this will differentiation with respect to time and the
not be the case when features are initially two space dimensions respectively. The
detected because the feature will be smeared state vector is given by U; the F and G ar-
over a number of global cells. The convective terms expressed in strong
subsequent grid adaptation will eventually conservation law form whereas H and I are
result in a feature which remains smeared diffusive (non-conservative) terms. Both
over a few cells, but those adapted cells the Euler and Navier-Stokes equations can be
will now be small enough such that the written in this form. Interest is
overall scale of the feature willbe less
than one of the original global cells; thus restricted to the resulting steady state

equation adaptation can commence. It can be behavior.

seen that although grid adaptation in
general is inadequate for resolving the The approach taken here is to
physics associated with collapsible integrate the hyperbolic system to steady
features, it is a necessary first step in state by making available three different
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Integrators simultaneously. On a fixed are treated as a group. The attributes
global grid, the type of each cell (non- (scale, location, orientation, etc.) of each
adapted, grid-adapted, or equation-adapted) cluster are determined; features (Clusters)
is determined and the appropriate integrator whose width scale is less than the global
Is applied. Thus, all three cell grid scale are further classified a3
Integration schemes can be viewed as coLlaosibleS. The clusters are Individually
building blocks which can be Assembled in compared with a library of standard patterns
any combination to yield the optimal to determine if an alternate description for
adaptation for a given problem. Figure 1 the local physics is available. Reon~e
depicts a typical flow field of interest, features will subsequently be integrated
containing a shock, boundary layers, and a with equation adaptation; the additional
wake. A fixed global grid is superimposed, information required for equation adaptation
Cells which are unshaded represent those in is computed and any cells associated with
which the basic (non-adapted) integrator is the recognized feature which were divided
used, shaded cells are those in which grid during previous cycles are contracted
adaptation is Used, whereas cross-hatched (embedded cells removed). For unrecognized
cells contain collapsible features which are clusters, grid adaptation is again utilized.
treated with equation adaptation.

-',-)-,-,\ -. v T \ II "Again, control returns to the
,equation-adapted cell- integrator, which now employs any

\,-N combination of the three integration
schemes. Detection, clustering,
attribution, and recognition are then
repeated. Such cycling continues until no

I change in the adaptation strategies result
from the above sub-processes.

Lastly, the equations are integrated
until a final desired convergence level is

grid daped cll- reached.

Figure 1. Typical flowfield.

A conceptual flowchart Of such an - Embedded Mesh
Integrating procedure (the MITOSIS program) - Special Cells
is shown in figure 2. Each of the blocks in
the flowchart will be briefly described in
order to provide an overall view of the
scheme; details follow in subsequent - Detection
sections.

- Clustering
The process begins by initially - Attribution

assuming that there are no adapted regions
present. A global grid is generated and the
equations are integrated Using the basic
(non-adapted) Integrator for all cells.Reone
Integration continues until features begin A--Rcgie_2
to form, as measured by a given level ofAdpA: 

tconvergence. At this point, a detection Aduatn A dp
algorithm searches for the nodes whose EutosGi
variaio.n (for example, gradient or
truncation error) of a key variable (forFiue2Cocpalfwhrt
example, density or entropy) are well aboveFiue2Cocpalfwhrt
the average over the whole domain. All
cells which are adjacent to those detected
nodes (if any) are then diidd resulting Initialization
in embedded grid cells.

A body-fitted global grid (called theControl then returns to the level 0 grid) which remains fixed throughout
Integrator, which now employs the the solution procedure is generated by any
appropriate combination of grid- and non- convenient procedure (algebraic, PDE, etc.).
adapted algorithms. The detection algorithm Since the Integration will involve a finite-
is again applied after the features have volume formulation, there is no requirement
reformed. On this and subsequent cycles, that grid metrics be computed. The data
detected nodes are clustered so that those structure, which consists of a cell oriented
associated with a specific physical feature pointer system with solution variables
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stored at the cell corners E203, is
initialized. The data structure is ne
described In detail below.

F
The basic integrator employs a

multiple-grid accelerator for additional nw
efficiency. This requires the generation of
level -1 grids which are twice as coarse as
the global (level 0) grid. Figure 3
illustrates the relationship of such cells.
The level -1 grid was generated by wse
eliminating every other line of the level 0
grid. Since cells on level 0 and -1 share y sw
nodes, the data structure (which exploits a
this fact) allows for an easy coupling of
Information on various multiple grid levels.
Still coarser levels (-2, -3, etc,) are set
up in a similar manner. Initially, all x

level 0 cells are considered basic (non- Figure 4. Basic cell with fluxes.
adapted) cells.

VFw -Fe F3 -Fn 3 (2)

a level 0 levl 0/ '- / :where Fdenotes the contravarlant flux

/ ,through each given face. .t denotes the
pseudo-time step, and LV the cell volume.
The contravariant fluxes are computed by

leve -1trapezoidal integration along each cell
level -i face; for example, the contravariant flux

through the eastern face is given by
Figure 3. Cells on two multiple-grid levels.

F (y y) G) e +G ne( ) (3)
ne-se - 2 ne se

Integration - Basic Solver Equations (2) and (3) together are called
the cell flux balance.

For non-adapted cells, integration of The distribution formulae serve to
the governing equation Is performed using transfer this "change" from the center of
Ni's multiple-grid algorithm E283. This the cell to the four corner nodes. The
scheme is composed of two parts -- a finite- formulae are derived from the first two
volume form of a standard single-step, Lax- terms In a Taylor series expansion of U
Hendroff integration applied on a fine mesh, (with respect to time), and are given by
and a coarse grid accelerator which operates
on residuals transported from the fine mesh
solver. In both parts a "change" is SU : % AU "t LF "t eG 3 (4)
computed in the center of each cell and then 4 -

transferred to the adjacent nodes by means
of "distribution formulae". where

An essential point for present 6F = 1 AU and AG = .G (U
purposes is that NI's scheme is cell-based; 3u 3U

i.e., each cell can be integrated
independently. The governing equations are are the unsteady fluxes based upon the
approximated on the cell and the appropriate Jacobians of F and G evaluated at the center
changes at each of the cell's nodes are of the cell. The first term in equation (4)
computed. In this way, cells communicate (A U) is the first-order-change-in-time for
with each other only through the dependent the Taylor series expansion while the last
variable quantities at the shared nodes from two terms represent a second-order-change-
the previous explicit pseudo-time step, or in-time which is necessary for stability.
through changes at the nodes computed at the These terms bias the distribution of the
current pseudo-time level. This property is "change" in the windward direction, which is
the basis of the data structure form. somewhat similar to the stabilizing effects

of upwind differencing r293.

Consider the fine mesh cell shown in
figure 4. To calculate the "change" in the Integration of the diffusive terms is
dependent variables at the center of this performed by using a forward-time, centered-
cell, the divergence theorem is applied to spaced scheme applied on staggered cells
the convection terms of the governing centered around nodes. One such staggered
equations, giving cell is shown by dashed lines In figure 5.
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transportation operation is simple to
implement, since in the previous sweep on
the fine mesh (shown by dashed lines in
figure 6), the "changes* at node C were

3 computed and stored; thus only access to
this node is required. Note that the coarse
grid scheme has no effect on the final,
converged results since it operates on fine

1mesh residuals which vanish at convergence.

"The distribution of the convective
1 change on the coarse grid is again

accomplished by using the distribution
sw formulae (equations (4) and (5)). Since

Figure 5. convective terms dominate over diffusive
Staggered cell for diffusive terms. ones in problems of interest, the latter are

neglected on the coarse mesh, as suggested
by Johnson C313. No smoothing is applied in

Each base cell (for example, cell the coarse mesh accelerator.
SW-SE-NE-NW) contributes a first difference
at its own cell center (for example, at node
1) toward the second derivative at the base
node (for example, node NE). These
contributions are calculated by centered,
first differences in each base cell and are
transferred to the base node by means of the

In practice, equations (4) and (6) are sw I

combined and evaluated simultaneously.
Since only the steady state solution is of Figure 6. Coarse grid cell.
interest, the first order time accuracy of
the forward-time, centered-space scheme is
of no consequence.

In cases for which additional One cycle of the Ni multiple-grid
artificial viscosity is required, a integration scheme is shown in figure 7. It
spatially first order accurate smoothing consists of the following operations:
term

1. Initialize: Changes in the dependentS (U +U ) variables stored at each node are set to

zero at the beginning of each multiple-
grid cycle.

is added to the right hand side of the
governing equations. In the current scheme,
the above terms are combined with the 2. Flux baac and distribute on level 0:diffusive terms in equation (), resulting Cell by cell operations are performed as

in an effective viscosity coefficient with described above.
two contributions -- the true viscosity and
the (varying) smoothing viscosity. Though 3. AppV +U conditions s e a level 0:
implemented differently than the smoothing Characteristic boundary conditions are
suggested by Ni, the effect of the two applied at each boundary node. The
forfulations is identical. As before, the boundary condition formulation treats
effective diffusion is evaluated characteristic waves which enter and
simultaneously with the convective exit the computational domain
distribution. differently, similar to Chakravarthys

development 1323. For those

Consider now the coarse grid cell characteristics which exit the domain,
depicted in figure 6. The "change" at the it is assumed that the change of the
center of this cell could again be performed characteristic variable is properly
by a flux balance, but with less accuracy predicted by the distributuion formulae.
than for the fine mesh flux balance due to The characteristic variables
the larger spatial discretization. To corresponding to waves which enter the
circumvent this problem, Ni uses the domain are kept unchanged from their
multiqrid concept of "transporting" the previous values. Finally, the changes
changes previously calculated from the finer in the characteristic variables from
meshes E303. The residual transfer then above are recombined to give the
results in fine mesh accuracy. The conservation variable changes.
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Level 0 Level -i the scheme be explicit and expressible on a
cell-by-cell basis. As will be seen
however, the similarity of the fine and

flux balance coarse solvers in Ni's scheme greatly
& distributeI simplifies the formulation of the adaptive

grid integration.

apply boundary I  Integration z Embedded Grid Procedure
conditions

For grid-adapted cells, the embedded

transport mesh procedure of Usab and Murman r203 is
updatedistribute used. This is a straightforward combination

of the fine and coarse techniques used for
non-adapted cells. Consider the geometry

ginterpolate shown in figure 8. The unshaded cells are
apply boundary apply bounadry fine whereas those shaded are coarse (since

conditions conditions they coexist with finer cells). The
appropriate fine or coarse operation
outlined above is applied to each cell.

update Thus, two consecutive cells on the same
level may be integrated by different

Figure 7. Ni multiple-grid cycle, procedures. Away from the fine/coarse
interface, the integration proceeds as
usual, with one more multlple-grid level in

4. Update on level 0: The change at each the embedded region.

node is added to the dependent variable
at the node. Since time accuracy is not
of interest, the time step for this level 1 _11l _/cell
update is computed locally based upon a
global CFL number and the local solution l el C
behavior. The convergence to steady I/ /F
state is measured by the largest change level 0 1 9 10 11
in SU at any node on level 0. 8 1 - - A, net ii l ... v •; . .

nw I
cell A le 5C . 7

S. Transport from level 0 to level - and cell BCDE
distribute: Cell by cell calculations s's
are performed as described above. : 4

Figure 8.

6. Apply boundary conditions on level I: Embedded grid -- coarse/fine interface.

Same as in step 3. Using the multiple-grid accelerator to

couple the global and embedded meshes was
7. Interpolate from level -1 to level Q: first suggested by Brandt 1333 and has been

Changes at the side and center nodes implemented by Brown for the full potential
must be interpolated based upon the equation r343. Hith this technique, waves
recently computed corner changes. This can propagate through the embedded regions
is accomplished by bilinear at coarse grid speeds. Usab has shown that
interpolation. A shifted "distributionformula" which does not generate the this coupling results in convergence rates
smoothing errors associated with simple which are as fast as coarse-grid-alone

solutions E203. This is significant when
interpolation is another possibility; one considers the consequences of simply
this however requires significantly more coupling global and embedded regions at the
operations than the bilinear scheme and interface C21J. In the latter technique,
has not yet proven to yield superior wave propagation is restricted to the

convergence rates for all cases, embedded (fine) grid speed, resulting in

slower convergence rates.
8. A boundary conditions on level 0:

Again the procedure in step 3 is
applied, this time to ensure that values Points at the edge of the embedded
interpolated onto boundaries satisfy the domain must be carefully treated in order to
boundary conditions, maintain global conservation and

computational stability. In the present
scheme, nodes 2, 5, and 9 are considered

9. U 2n levl 2: The level -1 changes part of the fine domain. Thus the flux
determined either from the distribution balance and distribution formulae can be
in step 5 or the interpolation in step 7 applied as usual to the level 1 cells (B, C.
are added to the solution dependent D, and E). Although the changes in the
variables, dependent variables are computed at nodes 2,

5, and 9 due to cells B and D, the changes
must not be applied when operating on level

The use of Ni's integration scheme as 1. Instead, they must be stored and applied
the non-adapted cell integrator is not only after the (explicit) flux balance has
imperative; the only requirements are that been performed on cell A.
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Since cell A is a fine cell on level and strength. This includes a flux balance
0, the appropriate integration consists of a and application of the distribution
flux balance and distribution. Each of formulae. The second part consists of
these steps must be modified due to the updating the discontinuity location and
presence of node 5. For this cellL the strength. This two step procedure, which
contravariant fluxes, F , F , and F are was first suggested by de Neef C221, is
given in equation (3), buf the nflux through consistent with the explicit nature of the
the eastern edge is given by overall scheme.

G (y G e t For illustrative purposes, consider
e- (X -x the case of a shock In a quasi-one-
2 e se e se 7) dimensional cell, as shown in figure 9. For

F +F 0 +G an assumed shock location and strength, the
+ -'(Yne-Ye) - 2 (xne-Xe) flux balance for this cell may be written as

6U At E( F (F -F ) +(F -F )3 10
If one assumes that node 5 is at the mid- AU - L[F1 -F + 3 (10)
point of the eastern edge (as it is by
construction), then equation (7) takes the where the first and last terms in
simpler form

parentheses represent the flux balance to
F +2 F +F the left and right of the shock,

F= se e ne y) respectively. The flux balance (F2 -F )
e 4 (8) represents the flux balance across the

G +2 G + shock, which is zero for equations written
se e ne (x x) in conservation form. Equation (10) may be

4 ne se rewritten in the simpler form

The distribution formulae given by AU "a (F-F4) +

equation (4) still are valid for cell A. Ax 1 4 + 2

However, the change at the center of the
cell must also be distributed to node 5. where the first parentheses represents the
Presently, this is accomplished by averaging flux balance for a non-adapted cell and the
the distribution to nodes 2 and 9, or in latter may be interpreted as a correction
general due to the shock jump. The one dimensional

form of the distribution formulae (4) are

= 1 C AU + " IF I then applied to the change given by equation
4 - Ax (11). The Jacoblan required in the

and (9) distribution is computed based on the
average value of U over the cell.

SU CAU 4G
4 Y 4

Density 3

The scheme maintains global conservation
since the flux balances exactly cancel at
the fine/coarse interface, and no additional
mass is created as a result of equation (9). 1

Cell BCDE is treated the same as any Position
other coarse cell interior to the embedded/
region. This yields an apparent Assumed shock position
inconsistency at nodes 2, 5, and 9 due to
the absence of a coarse cell underlying cell
A. At convergence however, the residuals
transferred to BCDE do vanish as do the 1 213 4
inconsistencies.

Intearation = Special Cells
One-dimensional cell

Recall that equation adaptation is Figure 9. Shock fitting nomenclature.
used in cases where the local dominant
physics can be applied to a collapsed region
to yield a discontinuous solution. For such To compute the proper shock location
cells, the integration scheme must integrate and strength, the characteristics (Riemann
the basic governing equations on each side variables) which coalesce to form the shock
of the discontinuity (which is free to move are integrated to the new time and the
to any location in the cell) and also be appropriate shock speed and strength
capable of computing the discontinuity determined. Figure 10 shows time versus
location and strength consistent with the position away from the shock. The
collapsed physical model. The present horizontal axis represents the time level
scheme accomplishes this in two steps, from the previous multiple-grid cycle. The
First, the equations are integrated over the characteristics a, b, and c are downstream
cell, with an assumed discontinuity location running from the supersonic flow, while d is



the upwind running characteristic from the indicating that adaptation is necessary.
subsonic flow. After point e is located Determining which nodes are detected is a
(based upon the maximum at allowed by the two step process. First, the variation must
CFL condition and the cell size), the be computed at each node; then, a threshold
intersections of the four characteristics must be set to separate the signal (detected
emanating from e and the horizontal axis are nodes) from the background noise.
determined. The characteristic variables at
those points are determined (by
interpolation of the conservation The *variation" can be computed in a
variables), and integrated forward to point variety of ways. Popular choices include
e. The a, b, and c characteristic variables gradient 13J, Laplacian (second derivative)
uniquely determine the conditions just 173, and truncation error r18J. To be
upstream of the shock, and hence its useful, the gradient calculation should be
strength. With this strength and the known performed in the computational domain (a
characteristic variable (from d) jus t after first difference in the physical domain) to
the shock, the shock speed can be determined account for the effect of the smaller grid
iteratively. The speed is then integrated spacing associated with adaptation.
to give a new shock location. For the Gradient and Laplacian are relatively simple
converged solution, the shock speed to compute and are therefore the most
vanishes, and thus the shock remains popular. Berger C163 has developed a method
stationary. which directly measures the truncation error

Tm FlwDrcin through the use of a Richardson
Tie FlwDietin extrapolation. This method is more

complicated to compute than the others but

is laimed to be problem and integrator
e ~inrdepen~dent.

The choice of the "key variable" Is
apparent for scalar equations. However, in
problems involving a set of governing

is not obvious. For example, choices for
the Euler equations include density,

a b cd momentum, velocity, vorticity, and entropy.
Z x It is possible that there may be more than

one "key variable" for certain problems.
-s 4..9.The important consideration In choosing the

Supersonic jSubsonic key variable(s) is that it(they) vary in all

Old the expected feature types; the most
Shock appropriate "key variable" for the Euler

Location equations has not yet been identified.

Figure 10. Characteristic integration. The second step of detection is the
determination of an appropriate threshold,

The shock speed and strength are only above which points are detected. The
computed based upon the fine grid and are thresholding algorithm should be general
thus frozen throughout the multiple-grid enough to work under a variety of
acceleration cycle. By this means, not only circumstances. If the threshold Is too low,
is the fine grid accuracy maintained, but too many points are detected, resulting in
also the multiple-grid cycle converges as wasted adaptation. On the other hand, if
rapidly as if the shock was absent. This the threshold is set too high, important
result Is very similar to the results stated features may be Missed.
by Boerstoel and Kassies 1353.

Figure 11 shows the effect of
Care must be taken when a solution selecting various thresholds; the fraction

discontinuity passes from one cell to of points with ".variation" above the
another. The dependent variable at the node threshold is plotted versus threshold level.
over which the discontinuity passes must As can be seen, over a large range of
then be adjusted and a new cell designated threshold, the fraction of thresholded
as an equation-adapted cell. The change in points is constant. However, if the
dependent variables which results from a threshold is reduced below that value, nodes
discontinuity passing a node must not be in the "noise" are accepted. Thus the
Included however In the change transported threshold is set to find the "knee" In Such
to coarser multiple-grid levels, since a a plot.
very large change (i.e., the discontinuity
jump) is inconsistent with changes resulting Teeaecsswihcnan n

fromthefluxbalnce nd istrbutonfeatures and thus no adaptation is desired.

Featre etecionIn these, the threshold plot will not have a
"knee" and additional constraints are
neoessary to properly set the threshold.

Detected nodes are points in the Adequate constraints are easily formulated
computational domain at which the by setting a lower bound on the threshold
"variation" of some "key variable" Is large, (typically 20 percent above the average
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"variation*) as well as a limit on the o If all assigned nodes belong to the same
number of nodes detected on any pass cluster, Associate the remaining nodes
(typically 30 percent). In all computed with the cluster, flag the cell as
cases shown in the results section, these member of the cluster, and continue on
values were Used and found to be sufficient. to the next cell.

In an evolving field computation, ' In the event that more than one cluster
features may move or be narrowed by previous is associated with this cell, then merge
adaptations. Thus, a "contraction all of the pertinent Clusters into one,
threshold" is set so that unnecessary and continue as if all the nodes
adaptation may be eliminated. This value is belonged to the same Cluster.
typically 25 percent of the average
*variation'.

From the above, it can be seen that

1.0 -the clustering is accomplished in a single
pass, with the exception of the merging
operation which simply requires reassigning
cluster numbers. The resulting Clustering
algorithm has been found to execute very
rapidly, resulting in insignificant computer
times when compared with the integration
time.

Frcio f noise Attribution
points above

threholdOnce clusters have been formed, the
attributes of the cluster must be determined
as a first step in the recognition process.
Initially, the orientation of each cluster

mutbe determined. By compdring the
orientatin and location of each cluster, it
is possible to determine if more than one
contiguous physical featur- is likely to be

0.0 present. Since, In genera- features Will
Threshold not abruptly change orientation, any

significant orientation change is Used to
Figure 11. Signal/noise discriminator, break a cluster into sub-clusters. For

example, this algorithm would break up the
intersection Of a shock and a boundary layer

Clusteringt into four features (figure 12).

Detected nodes which are contiguous Once features have been properly
are assumed to be part of a single physical subdivided, the "width' of the feature
phenomenon, and thus should be Clustered normal to the feature orientation can be
together. Standard hierarchical and non- measured at various locations. If these
hierarchical Clustering techniques E363 are widths are smaller than the local global
generally iterative in nature, requiring grid spacing, the feature is designated as
many passes through the detected nodes. "collapsible". Note that the width is
This is primarily due to the fact that these measured only with respect to detected
techniques have no & Priori basis for nodes, and thus for a discontinuity such as
measuring contiguousness. a shock, it continually becomes thinner with

repeated adaptations.

Since the grid can be used to measure
contiguousness, a new clustering technique
has been developed which uses grid structure
information. In the new technique, which
can cluster the detected nodes in a single
pass, the cells are scanned and the shock
following operations are performed:

o If no nodes have been previously
assigned to any cluster, then-- outgoing

If one or more of the nodes areineatorgon budylyr

detected, associate this cell with a incoming-
new cluster, mark all the nodes as boundary layer
members of the cluster, and continue
on to the next cell.

Otherwise, continue on to the next Figure 12. Four features from one cluster.
cell.
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Recognitionz 7 9

Collapsible features are now compared D C
with standard patterns to determine if an
associated set of local physics is5
consistent with the feature. Such a pattern 4 6
for a shock may assume the form: incoming,
supersonic normal Mach number; outgoing, AB
subsonic normal Mach number; entropy
increase; etc. Recognized features then
are tagged as to type.12

g Division and Contraction

Processes are needed to accomplish Nodes. 1 2 3 4 5 6
grid division and contraction for both grid- - - -

and equation adaptation. In grid Cells: A B C D ...
adaptation, the cells surrounding a detected -w 1 2 -
node are subdivided, as long as the cell to S

be divided is not already at the edge of an se 2 3 6 5
embedded region. Such a restriction is n
embedded region would otherwise be described ne L 8 7
by four or more nodes along a single edge;-
this eventuality could cause considerable Figure 13. Data structure.
difficulties in the basic and embedded grid
solvers.

Data Structure

In each algorithm described above, the
computations are performed cell by cell.
There is no requirement that the nodes be
stored in any specific order as long as A-
those associated with each cell are known.
This, coupled with the complex arrangement
of nodes which may result from successive
grid adaptations, leads to the requirement
for a flexible data structure. Usab has
developed a pointer system [37J which offers
such flexibility.

Figure 14.
The data structure is ahown in figure Global grid with complex topology.

13. Node information is stored in a single
array with the arrangement of node numbers
arbitrary. For each node, its location, the Two additional arrays are required to
dependent variables, and the changes in complete the data structure. The first is a
those dependent variables are stored, boundary condition array, which ccntains

nodes numbers for all boundary nodes, the
adjoining cells used in boundary condition

Connectivity or cell arrays contain calculations, and the boundary condition
the numbers of the nine nodes associated type (solid wall, free stream, etc.). For
with each cell (0 if a node does not exist). pca elteohrarycnan
Thus, all interior nodes are accessed b; sfealr cyes, theothern arrayt contins.
f our cells on level 0 (the global level). r ye n icniut aus
Because of the multi-le-grid structure, each
node is actually accessed on each level of Though the data structure may seem
which it is a member. Also included for complicated, utility routines have been
each cell is a special word which contains written which make grid manipulation simple.
information about the cell's location For example, a grid division routine creates
relative to the domain boundary and edge of the required nodes and cells and readjusts
an embedded region; this word also includes all indicators which contain edge-of-
a tag Indicating the type of Integrator embedded region information. Such routines
(non-adapted, grid-adapted, or equation- are problem independent.
adapted) used for the cell. This cell
information is stored in one long array, ONE-DIMENSIONAL EULER EQUATION
organized so that all cells of the same
level are stored contiguously. A set of The first set of results illustrate
level pointers are used to indicate the both grid- and equation-adaptation applied
first and last cell on each level. This to the quasi-one-dimensional Euler flow
type of organization makes even complicated through a converging-diverging nozzle.
global topologies as shown In figure 14 very Cases with and without shocks are
easy to Implement. considered.



GovrnngEquation and Boundary Conditions Computed Results

The one-dimensional Euler equations in The first Case is a choked flow, with
conservation form are given by a shock In the expanding section. Figure

15a shows the duct geometry with the global
grid superimposed. The global grid is

G equally spaced here, although this is not a
*t F Ax (12) requirement. The computed axial Mach number

I I distribution is plotted In figure 16a. Note
where that the captured shock extends over

approximately three cells, The entropy
ID m change distribution (figure 17a) shows that

3_yL2 +(ythe added artificial viscosity that was
U = a F 2 -1(~) E necessary tc control oscillations near the

shock results in a significant entropy rise
E E~ rn m in adjacent regions and hence the Incorrect

2 2 placement of the shock. As a result Of
capturing the shock, the computed entropy
rise across the shock is approximately 21

a percent too small as compared with the

m2analytical value associated with this
C- -incident Mach number. The mass flow rate

distribution (figure 18a), indicates that

E .Em the added artificial viscosity causes
appreciable mass creation and destruction
before and after the shock; the peaks do
not cancel exactly in this case, resulting

Thethre euatons repeset cnsevaton in a 0.6 percent residual mass flow rateThe hre eqatios rpreent onsrvaionerror after the shock.of mass, momentum, and internal energy,
respectively. The source terms are due to
the area change along the duct. Since the added artificial viscosity
Characteristic boundary conditions applied is proportional to the local mesh spacing,
at the inlet and exit of the duct assume it is expected that finer mesh resolution
those characteristics which exit the domain will result in both better shock resolution
are correctly predicted by the distribution and placement. Figure 15b depicts the
formulae, while for those entering, the geometry after dividing each global cell
characteristic variables remain unchanged. into quarters. The resulting Mach number,
The cases shown all have a subsonic inlet at entropy, and mass distributions are shown in
which two boundary conditions are prescribed figures 16b, 17b, and lob, respectively.
and a subsonic exit for which only one is Note that the shock has moved downstream
given, relative to the non-adapted solution as a

(a) non-adapted i.00(

(b) fine global50

V.71.'I PCH rP

(c) adapted grid 1. fl_ _______

MACH NO

(d) full adaptation 1. 500

AIAFL P051TICN AY.IPL P031T21N

Figure 15. Grid distribution. Figure 16. Mach number distribution.
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result of the lesser entropy rise ahead of Equation adaptation was initiated and
the shock which followed from the smaller previously embedded cells were deleted.
added artificial viscosity. The computed After advancing the solution and applying
entropy rise across the shock is now within detection again, no further adaptation was
4 percent of its theoretical value while the required. The artificial viscosity
Mass flow rate error has been reduced to 0.4 parameter was reduced (since it is
percent. unnecessary to fit the shock) and the

solution advanced to final convergence. The
ability to decrease the artificial viscosity

Figures 15c, 16c, 17c, and 18c contain parameter is important in obtaining an
results for grid adaptation alone. Note overall accurate result.
that the shock width has been reduced.
although it still extends over three cells.
The artificial viscosity in the large Figure 19 shows convergence histories
(non-adapted) cells ahead of the embedded for each of the above four cases. The
region again causes the shock to be logarithm of the average change in momentum
incorrectly located even though the entropy over the whole domain is shown as a function
rise across the captured shock is now only of the number of multiple-grid cycles.
about 6 percent low. This error, which is Figure 20 similarly shows the convergence
approximately the same as the fine global histories versus work units, which are the
grid case (b), is appreciably smaller than accumulated CPU time on the system clock
that for the non-adapted case (a). normalized by the CPU time required for the

non-adapted case. This work measure
includes any time used by the detection,Full (i.e., both grid and equation) adaptation, etc. algorithms. The dotted

adaptation results are shown in figures 15d, lines in the two figures show the
16d,17d and18d Her, bth te sockconvergence of the non-adapted calculation.

position and entropy rise are correctly Note that the fully embedded grid
predicted. Note also that since the shock (dot/dashed line) requires more than 2.5
is fit (not captured), virtually no mass times as many cycles with an even more
flow error exists. The results were dramatic work difference due to the
obtained from the following sequence of lengthier calculation required for the
operations: first, a non-adapted solution larger number of grid points.
was computed until a shock formed. Since
the detected cluster was not collapsible
(spread over 2 global cells) grid-adaptation The adapted grid results (dashed line)
was performed. The integration continued shows some interesting results. The
until the effects of adaptation had been convergence history is identical to the non-
established. The detected nodes then adapted case until the first grid
extended aver two fine (adapted) cells with adaptation, corresponding to the abrupt rise
a total width less than one global cell, in the residual. In the work plot, the rise

occurs over a relatively small region,

(a) non-adapted 0.020 1 .020

ENTROPT I5

(b) fine global 0.020 1 . . .020

ENTROT.. . . . . . . . .....

(c) adapted grid .00.... 1. 020

0.000 0. 980

(d) full adaptation 0.02a 1. 02N

E14THOPI MR55 ~---

0. 00r- n. 930
AXIA~L P03-IT3IN AXIAL P031TION

Figure 17. Entropy distribution. Figure 18. Mass flow rate distribution.
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log (residual) A fifth case was computed with an a
Priori embedded grid Identical to the final
grid from the adapted grid results, yielding
the same solution (as expected). The a

-3.0 IPriori embedding required 6 percent fewer-3.0-multiple-grid cycles, since the residual
I rises associated with adaptation were not

present. However, the total computational
P work required for the a priori embedding was

x~V.:*4 percent greater, owing primarily to the
less expensive computation per cycle before
adaptation; this is analogous to the
efficiency gains resulting from coarse/fine

-5.0 -full adaptation sequencing.

fe global
To demonstrate that a specified level

adapted grid Of residual is an appropriate measure of
1% feature formation, figure 21 shows the

development of the Mach number distribution
non-adapted versus residual. After the residual has

-7.0 decreased about two decades, the shock
0. 400. 800. location and strength are fairly well

established, with only small adjustments
Multiple-grid cycles over the last two decades. Sinve adaptation

Figure 19. changes the fine structure near the feature
Convergence histories - multiple-grid cycles, anyway, significant savings can be realized

if the adaptation is performed after the
residual drops only two decades.

log (residual)

-3.0

S full adaptation1 \...

-5.0- fine global -.

Nadapted grid-.0.-

-70 non-adapt 'ed -7.0~ Mutle-qrid cycles
0.0 2.0 4.0 6.0

Figure 21. Mach number distributionComputational work for selected residual levels.

Figure 20.
Convergence histories - computational work.

indicating that the adaptation calculations
are very inexpensive compared to the The second test case assumes the same
integration time. The second abrupt rise geometry, but this time with insufficient
corresponds to the second grid adaptation. back pressure to choke the flow. The
The differences in the slopes between the results are shown in figure 22. The
cycle plot (figure 19) and the work plot detection process correctly found no nodes
(figure 20) is due the presence of more and adaptation was not performed.
nodes after adaptation. The fully-adapted
solution is shown by the solid line andAfia on-mesnl tst ce
again shows two abrupt rises, the first due considered the nozzle with a wavy wall
to the grid adaptation and the second due to upstream of the throat. By this means, two
the equation adaptation. Again the distinct features were included (one at the
adaptation time is negligible compared with shock and one due to the wavy geometry)
the Integration time. The more negative which were found and treated independently.
slope In the work plot (as compared with The shock was automatically recognized and
grid adaptation alone) after equation the equations adapted for shock fitting;
adaptation is due to the reduced number of the geometrically generated feature was
computational nodes, detected but not recognized, resulting only
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In grid adaptation. These results, which appreciable complexity. The second
are shown In figure 23, demonstrate the complication arises from the presence of
flexibility and generality of the present diffusive terms. If modeled by a centered
method. second difference split between two

different scale cells, the coarse/fine
interface condition must be carefully
modified. The equation Is a good model
equation for the Navier Stokes equations
excepting f or Its scalar nature. The latterIT I Tis the major justification for using BurgersI equation, namely rapid computation with the

esent ial contents Of a two-dimensional

Machl Governing EquatIon and Boundary Conditions

Burgers equation in two dimensions and
conservation form is given by

+t 1 xU) + i (0)y r~ U xC U1 +UyyJ1 (13)

Characteristic boundary conditions
have been applied as derived from the
convective terms. It is assumed that the

-. .*~ *convective terms dominate at entrance and
Axial position exit regions. No added artificial viscosity

is used in any of the computed
Figure 22. Unchoked nozzle. two-dimensional results.

Computed Results

The non-linear convective terms in
equation (13) allow for a discontinuity; a

testccase was computed with such a curved
shock". The final adapted grid and a

contour plot of UI are shown in figure 24.
The adapted equation algorithmi is not yet
Included in the two-dimensional code and
theref ore the discontinuity has been
captured, but not fit. The irregular shape

Mach of the embedded region necessary for this
feature is an essential capability of the
algorithm for a still broader class of

0 descriptions. The flexibility of the
approach and the inh~.rent data structure
make the computation of this case no more
complicated than any other.

MownZ gr As a demonstration of the effect of
gid adaptation, a horizontal cut has been

made across the domain, and both non-adapted
poiton24c. It is clear that the grid adaptation

Axil ostin ieds much better resolution of the
discontinuity.

Figure 23. Multiple features.

Tesecond two dimensional case
considers a situation in which diffusion Is
important. A perturbation at the lower left
corner of a rectangular domain (figure 25)

TWO-DIMENJSIONAL BURGERS EQUATION propagates up and to the right and at the
same time diffuses. Again it is of some

Similar concepts have been used to Importance that the embedded region is
extend the grid adaptation procedure to two- irregularly shaped. Note that the solution
dimensional models based on the Burgers smoothly traverses the edge of the embedded
equation, offering two new complications, region. Even though the diffusion is

In contrast to the one-dimensional case for important here (approximately equal to a
which clustering Is almost trivial and the Reynolds number of 10 based upon the domain
coarse/fine Interface Is relatively easy to length), the characteristic boundary
Implement, a second dimension Introduces conditions based only upon convective terms



seem to be effective and proved satisfactory
since a singular perturbation lboundary
layer) was not present.

Currently, program MITOSIS is being
extended to two-dimensional Navier-Stokes
equations with both grid and equation HH4- Iadaptation. Although quite general and in I i I

principle extendable to three dimensions,
such efforts will require some care. *,-- I I I

::j
(a) computational grid

(a) computational grid

A. -.

U (b) contours of U.!! j ,/

b(b) contours of U of 7

non-adapted Figure 25.
Burgers equation - diffusive field.

o Irregular embedded grid regions which
track features are an essential
component for multi-dimensional
problems.

(c) Section A-A
Figure 24. o The compt" tional work (both direct andBurgers equation - curved "shock". indirect) associated with adaptation is

small compared with that saved by the

increased efficiency of the adaptation.

o A new, single-pass clustering algorithm
has been developed.

CONCLUSIONS
o A flexible data base system is essential

for effective combination of adaptive
o A single algorithm has been developed grid and equation algorithms.

which combines adaptive grid and
equation techniques, yielding both
significant time savings and accuracy ACXNOWLEDGEMENTS
improvements.
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APPENDIX B - Part 2

ADAPTATION OF EQUATIONS AND GRIDS FOR 2-D EULER SYSTEMS

1. Background

The preceding Part 1 presents the essentials of the present adaption conceot
but with a focus on one-dimensional applications both by way of illustration and
as a first test of its utility. In two dimensions it was to be expected that
multiple parameters and equations will require modification of the procedure.
The essential changes, however, are:

1) The possibility of having directly interacting, effectiveli over-

lapping, features, and

2) A reduction in the proportion of the global domain in which dominant

features will acpear.

The first is the crimary 'ifficulty for adaptive equations but perhars less so
for adaptive grids; i.e. equation adaptation will require special clustering
algorithms to separate intersecting features. The second suggests that the
gains in two dimensions will be greater than those already experienced for one
dimension. During the latter part of this year the research has been limited
to two-dimensional Euler equations and therefore adaptation to large disturbance
regions and discontinuities as features. The intended extension to Navier-Stckes
systems effectively will increase the number and kinds of interactions.

The two-dimensional studies have again used the Ni solver for the global
algorithm. Density gradient was employed as the fundamental measure of feature
presence, and has proven to be adequate in fields with and without discontinu-
ities. A precise level at which adaptation steps are to be taken to improve
an evolving field has not been established, but threshold studies have indicated
that distributions of field gradients are very good indicators of possible cut-
offs that define proper feature scales. Their role and limitations will be
apparent in the test solutions to be presented.

2. Threshold Definition of 2-Dimensional Feature

The adaptation procedure is designed to recognize nonuniformities across
the domain, for which spatial rate of change provides one measure of scale.
Equivalently, local errors often provide similar information for a discrete
numerical method. The distribution of relative rates of change, i.e. local
values referred to an average over the global domain, has proven to be a re-
liable indication of feature locations in two dimensions. Each such threshold
level corresponds to a certain portion of the domain (fraction of nodes) which
exceed that level. Suitable cutoff criteria were explored by study of actual
distributions that were obtained from global solutions.

Figures Bl(a) and B2(a) show typical distributions that correspond to
transonic and supersonic flowfields generated by the Ni method for a circular
arc section in a channel. Relatively few of the nodes (approximately, 20%)
in these pre-adaption cases are associated with above average gradients. The
"knee" in such distributions appears close to the point for a slop;e of -0.2
[indicated by the square symbol], while other controls are the 1.25 threshold
level [hexagon] and the 25% of all nodes marker [triangle]. The consequences
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of a specific choice of level are shown in the remaining portions of Figures Bl
and B2. The 0.50 threshold includes a relatively large number of nodes and
makes quite evident the centered and downstream oriented disturbances that are
present at transonic and supersonic speeds. The essential point is that higher
thresholds raoidly disclose such primarl, features as shocks and interactions.
Imposing limits such as: those nodes for which gradients are at least 1.25,
or the flagging of no more than a 0.23 proportion of the total number, together
W4 h a knee approximation, together imply a rational decision basis for grid
adactation. The transonic case focuses in on the relatively weak shock at a
threshold level between 1.0 and 2.0; in the supersonic case the several dis-
continuities, reflection, and intersections near the trailing edge are very
clearly defined above a threshold of 1.5.

A similar definition of relevant subdomains takes place during any sub-
sequent search for feature locations. The evolving solution, when based on a
first level grid adaptation as in Figures Bl and B2, finds sharper discon-
tinuities, results in threshold distributions with clearer knee locations
(as in the supersonic example), and suggests a length scale for the next
embedded grid.

Lastly, the 0.5 threshold marker [cross] in the figures is included as a
measure of that portion of the domain affected very little by disturbances.
The influence for a subsonic flow extends over virtually the entire domain.
A large upstream, supersonic region is essentially undisturbed (vigure B2)
and a characteristic plateau appears.

3. Smoothing

The present solver requires the explicit addition of artificial viscosit-y,
even for cases without any adaptation. The viscosity is necessary globally
in order to smooth out those high frequency errors which arise during the
interpolation phase of the multiple-grid cycles. A significantly larger
amount of smoothing is also required in the vicinity of a shock in order for
it to be properly captured.

In the past the high level of smoothing that was required solely near
shocks was imposed globally (e.g. Ni, Usab) and resulted in larger smoothing
errors than was necessary in regions away from discontinuities. In recognition
of this the present research has introduced a globally varying, smoothing co-
efficient which adjusts the imposed smoothing to the smallest acceptable value.

The new smoothing coefficient distribution is generated by determining an
initial coefficient magnitude at each node on the basis of the local density
gradient, which is a measure of the shock presence, and then smoothing these
coefficients using a Laplacian-type operator in order to ensure stability.
For efficient computation the actual implementation involves the integration
of a specially devised partial differential equation which makes use of a
smoothed value of both the coefficient from the previous iteration and a
forcing function based upon the local density gradient of the new iteration.

Use of the spatially varying coefficient requires special care to ensure
that the smoothing does not disturb the global conservation properties of the
inviscid solver. Conservation is obtained in the current research by using
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conservative differencing similar to that discussed by Tong (PhD Thesis, M4IT,
February 1984]. The embedded mesh interface poses no special smoothing problems
as long as post-smoothing is used. Tong points out that for model problems a
post-smoothing procedure in fact results in improved convergence rates over
those obtainable with traditional co-smoothing. Numerical experiments we have
completed corroborate his results for the full two-dimensional Euler equations.

4. Two-Dimensional Shock Fitting

Since we require that the global grid remain fixed, it must be possible
for the shock to "float" through the grid with both its location and orientation
being arbitrary. This results in significant shock/grid interaction problems.

Software has been written to allow interpolation near shocks with the
proper domain of dependence and to track a shock surface as it moves from
iteration to iteration. Such movement can result in node c--ossings as well as
simply adjustment of an oblique shock segment within the cell interior. The
collapsed feature therefore adds to the pointer burden. In order to accommodate
the floating behavior, new elements were added to the pointer system. These
store the shock/grid intersections as a "linked list." Effectively node
locations have been made aware of adjacent cells to permit the inter-cell
transfers. Such transfers may well be few in number after a precise positioning
of the shock by several levels of grid adaptation and removal of the fine meshi.

The equation adaptation for collapsed shocks is still being developed and
is not included in the adaptive embedded solutions discussed next.

3. Two-Dimensional Adaptive Grid Euler Flow

The threshold study offered encouragement for multiple embedding based
on the density variations. Solutions have been completed for subsonic, tran-
sonic and supersonic flow with one and two levels of adaptation. They also
have been obtained without adaptation for an initially coarse grid, and a
globally fine grid which is equivalent in scale to the finest scale with
embedding.

The geometry is that of a 10% thick biconvex, circular arc cascade.
Figures B3 through B6 show the several transonic solutions in terms of the
final grids that were used or adapted, Mach number contours that indicate
the increasing gradient that is developed at the shock (which stand at about
the three-quarter chord location), and the fractional loss of total pressure
contours which are present primarily due to the shock. The coarsest grid
does indicate losses at the leading edge as well (Figure B3) and the two
levels of adaptation lead to the consistent suggestion of the presence of
a relatively larger disturbance there (Figure 85).

The comparison between two-level adaptation and the uniformly fine grid
result is reasonably good, but with some differences in the region opposite
the airfoil which may result from an excessive threshold choice [see Figures
Bl(b)-(d)]. The comparable accuracy corresponds to the convergence histories
shown in Figures B7 and 88. The abscissas are number of iteration cycles and
normalized CPU time respectively, and an appreciable saving (factor of 10) in
machine time is apparent when adapting. It is anticipated that the adaptive
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equation application will result in additional but somewhat lesser savings.

A supersonic flow (M= 1.4) field for the same geometry (4% thick) is shown
in Figure B9 after two levels of adaptation. Reference to Figure B2 suggests
that a high threshold was employed. Nevertheless, the Mach number contours
m~ake quite clear the intersection of the reflected shock and the shock that is
generated at the trailing edge. without adaptation this very essential behavior
is completely overlooked. The sensitivity to threshold level is to be balanced
against the increased precision that should result on collapsing the features.
That capability should be available shortly.
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C-I APPENDIX C

ACCELERATING CON'VERGENCE TO STEADY STATE

1. INTRODUCTION

In many problems of computational fluid dynamics we are

interested in the time independent (steady state) solution. Often,

and for a variety of reasons, the steady state solution is approached

via the explicitly differenced time dependdnt equations. This method

may be very time consuming; for example, when the grid mesh is highly

stretched or if there is present a source term due to chemistry,

combustion etc. The reason for the high computer time expenditure is

the restricted stability criterion necessary to meet time consistancy.

Over the past ten years (at least) some computational fluid dynamicists

used a "super-convergence" method which gave up time consistancy in

order to impose at each grid point a time step based on the maximal

stable Courant number. This approach, though empirical or heuristic

at best, yields good results - convergence to steady state is

markedly accelerated.

With this background in mind a natural question is - can one

determine, rationally and a priori, an optimal distribution of local

Courant numbers? The optimum is defined here to mean a distribution

of Courant numbers so that at each iteration the steady state

residual (or a suitable norm thereof) is diminished by a maximum

amount. We next present analyses for the cases of model

hyperbolic differential equations. We show that one can do much

better than "super convergence".
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2. A SCALAR ONE DIMENSIONAL CASE

2.1 The Linear Case

Consider the linear hyperbolic first order partial differential

equation with variable coefficients:

0-- + )- = a(x)u ; 0 < x < 1 , t ! 0 (1)

u(0,t) = u0

For the moment assume c(x) > 0, z(x) >, 0. The finite difference

approximation will be taken to be a one-sided (up-winch) first order

differencing in x and a simple single level time differencing.

The grid is not necessarily uniform and since we are giving up time

consistency the time step at each grid point j, at each iteration

count n, _t n , will not be a constant over the j's. The finiteii

difference representation of Eq. (1) is, then

Atnc.
u+l n I _- runun + t n .u (2)

J j :.x ' j j- i i i

Define local Courant and source numbers respectively:

S 'atn c.

j 7

- AX.~..L

Eq. (1) becomes:

n+l n - n n n n n (5)uJ ) J -~ 3))

or, more compactly

- .Lu.n (6)3
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the definition of the differencing operation L being clear from

Eqs. (5) and (6).

By steady state we mean that Lun = 0, or equivalently
n+l n J

u. = u. . Consider an iteration level n: usually Lun1 * 0. WeJ J 3
will, however, be satisfied if the L2 - norm will be less than some

specified level; i.e. tJLun12 < E. We assume that this criterion

for steady state is not met after n iterations (if it isthen the

computation is finished). We then ask the question - what is the

distribution of the local X n's such that the norm of the residual
J

at the r.exr iteration, ItLun+l i2 is minimi:ed. This is a standard

least square fit problem, but one has to watch for the boundary

condition u0 = u0 ' We write

n+l _ unll 12(un uLun-1'1 N n
Q = L2  N j-l - Lu

and substituting from (6) and (5) we have

Qn~l 1 (I [n- n n n n] u2

Q nN= l(l., 1 )Lun_n(un_u n 3 un u 2

N n n n n n nu

+- -[UlU-l(u -u) + (7)

Differentiating Qn+l with respect to )Jn (l~j6N) leads to a
3

set of N linear algebraic equations:

2 ,n n il ] _ n )u + Z2 0
(1-a1 ) u -Xl(ul-u0-au)] + (l- 1 (8)

zj+ 1  - (l-a ) . = 0 (2ij N-I) (9)

n

zn = o0 , (10)/N
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where

n n n n n
CU. n_ (ln_ [ujn_ n)+ nnu n n

i i 1 1u i 2 j 1 J- -
- uj- j-(Uj-Uj- 2 ) + 1-ajl~ -i ]  (.13

It is seen immediately that

n

z. = o (2 j.N) . (12)3

n
We can then compute X1  from (8) and the rest of the k.'s recursivelv

from (11). Specifically, we find

An i/= w (13)

and
n

n =s=l s i 0(4jN
= j (2nnnN) (14)

TY W )(u -u - .U
s=l 5 j-l ju3

where

= (1-a.)

If we substitute Xn  from (14) into the governing difference Eq. (5)

we find

us = U/ (1)0 Os
S=l

The R.H.S. of (15) is the steady star:e so;tion of (5) and thus we

find that the least square minimization approach yields the steady

state in one single iteration.
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2.2 A Non-linear Example

If, instead of (1), we have

au 3f+ L- = a(x)u (16)

with f = u2 , the difference equation, by analogy to (2) is

n+l n  n. n2_ n2  n nu = X.( u. -Uj. l) + X cju. (17)

The least square minimization in this case leads to:

1 "2 2- 2

and for j i 2 we have recursively

n
n u j (19)2 2

n n

where

w. C. + v/a!+w 1  (2<jgN)

In this case also it can be demonstrated that with this choice of

An's steady state is achieved after one iteration (n=l)3
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3. EXYAMPLE OF A SYSTEM

Consider the 2x2 linear system (obtained after diagonaiing

more general system)

u t + c(x)u x = a(x)u + b(x)v

c(x), e(x) > 0

v + e(x)v x = A(x)u + B(x)v (20)

The upwind difference equations are:

un~l = un . n [ n[ n a - n v] = n _ X nLn(u,V)i i i tu j.1 }  J i j i i (21)

v. = v n -_ [u-. 1) -((v n. nv = V. - .L(UV)
3 j j-g j j

where n

n Atnc. n A-,e. a.Cx.
J = ; j AX '

bA x. A.jAx. B .1,x

Ln(uv) = (l-a.)u n  un _ - j n

3 ' J j 1 J

M n(u,v) = (1-yj)v n _ vn 1  - u

Notice that not only we advance u. with different tn but the

v n is advanced, even at the same j, with a different "time-step"3
n
3

The analysis in this case is more elaborate but basically we

least-square minimize the norms of Ln I and .n l  The results
.3 2

of this analysis lead to the following expressions for the optimal

"Courant numbers" and hence "time-steps":
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=[ (l-ca) (l-y1)-815j1]vn. (i-a1 )v0 -81u

Xn 1

nn

[(l-al ) u n _- u 0
- 6 , v 

] [(l-_,,)(l-yi)-Sj6,]
(22)

n [ (l'al) (I'Y,) B Ii n (i-aI)Vo" 6Luo

,n. and ij are found recursively as follows:

n [ ( l - c(X ( 1 . , j B j u n ( 1 _Y ) ( u n . n L n  [V .n n M n
L .

jn_ n n
[41-a )u i-ui -6J. (l -3 33-j)-j6]

(23)

and

n n n ] u n Ln

[C-jX n_ [Ij) v- v 3 - n_ fS'U n [(l'a ) ( I ' Y j ) _ j 1]

(24)

4. NUMERICAL EXPERIMENTS

The question that faced us was: will the Xn's, predicted by

the linear theory, be effective in reducing the number of iterations

in the case of a non-linear problem. The non-linear theory basically

requires the same amount of the work to determine the Xnis as to3

solve the steady state non-linear p.d.e.; hence, the motivation to

try the efficacy of the linear theory when applied to the non-linear

case. The case tested was that described by Eq. (17) in the range

0 t x 4 1. The source term was chosen to be:
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i -a(x.- ) 2
a. = - e 

2 3j
01j e

and the mesh was stretched by the transformation

X. (26)

where

= nt(j/N-j)

and v is the grid stretching parameter and N is the number of

grid intervals. The grid stretching is quite sensitive to ,.
For example, for v = 2, 5, 10 and N = 50 the following geometry

emerges:

V AXmax=AX=Axso Lx =min=X21X26 LXmax / 'Xmin

2 .2969 .0050 59.4

5 .40613 .00200 203.1

10 .45180 .00100 451.8

The test problem was run with the parameters: T = 1, a = 4 and

v = 2, 5, 10. Each of the cases was run twice - once with the

local Courant number taken to be unity (X.=1) and once with X'"J 
J

chosen according to the linear theory, Eqs. (13) and (14)

i Jtheory although the problem has a non-linear advection

term. The iterations continue until the L -norm of the steady state

residual decreased below 10 -. The results are summarized in the

following table:
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n n n
=1 j,theory

v iteration count, n. iteration count, n

2 54 4

5 55 5

10 55 6

5. SUMUARY

It is seen that the number of iterations necessary to converge

to steady state of the non-linear model problem with a highly

stretched grid and a source term may be reduced by an order of

magnitude compared to the "superconvergence" method of taking
n = 1 by selecting the local tine steps appropTiately. FurtherJ

work is necessary to establish the limits of applicability of the

linear prediction to non-linear problems. Also the efficacy of the

method in the case of a system or multidimensional problem has to

be explored, even though the extension of the linear theory of

those cases is straightforward if somewhat elaborate. The theory

should also be extended to the case of central finite differences

with boundary conditions specified according to the "inflow" and
"outflow" conditions. This program poses a realistic goal to the

linear theory - its applicability to "real-life" computations will

need careful expioration.
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