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Total Positivity: A Review

by

Jee Soo Kim and Frank Proschan

Y

{ ABSTRACT .

This paper is an invited entry for the Encvclopedia of Statistical

Sciences, edited by N. L. Johnson and S. Kotz and published by John Wiley

FE S}

and Sons. The main objective is to review the concepts of total positivity,

which plays an important role in various domains of mathematics and

statistics. This article describes the power and scope of total posi-

e+ e
¢

tivity, and samples the great variety of fields of its applications.

1. Introduction.

The theory of total positivity has been extensively applied in several

domains of mathematics, statistics, economics, and mechanics. In statistics, '

totally positive functions are fundamental in permitting characterizations
of best statistical procedures for decision problems. The scope and power - 11
of this concept extend to ascertaining optimal policy for inventory and

system supply problems, to clarifving the structure of stochastic processes

with continuous path functions, to evaluating the reliability of c¢oherent

systems, and to understanding notions of statistical dependency.
In recent years Samuel Karlin has made brilliant contributions in

i
developing the intrinsic relevance and significance of the concept of total ’;




to

positivity to probability and to statistical theory. In 1968, Karlin wrote

a classical book devoted to this vast subject. This remarkable book presents

a comprehensive, detailed treatment of the analvtic structure of totally

positive functions, and conveys the breadth of the great variety of fields of

it applications. This book, together with Karlin's other fundamental papers,

inspired many new developments and discoveries in many areas of statistical
applications. Frydman and Singer "8 obtained a complete solution to the
embedding problem for the class of continuous-time Markov chains: The class
of transition matrices for the finite state time-inhomogeneous birth und
death processes coincides with the class of non-singular totally positive
stochastic matrices. Keilson and Kester "21. emploved total positivity to
characterize a class of stochastically monotone Markov chains which has the
property that the expectation of unimodal functions of the chain is itself
unimodal in the initial state. To help unify the area of stochastic com-
parisons Hollander, Proschan and Sethuraman ~9  introduced the concept of
functions decreasing in transposition (DT). In the bivariate case, a ftunc-
Xx,) 1s said to have the DT property if

tion f(kl, AL X

~

(a) f(\l, XZ: X:y X5) = f(\z, \ X xl) and (b) \1 - \:, XN

imply that ft(» A5 X

1 X,) = f(& Yot Xa, xllz i.c., transposing from

the natural order (xl, x:) to (XZ' xl) decreases the value of the tunction.
In their paper, total positivity is essential in showing that T rR=r'. the
probability of rank order A, is a DT function.

Karlin and Rinott 7187, (197 extended the theory to multivariate
cases. Multivariate total positivity properties arc instrumental in 18’
and [19] for the results which are applied to obtain positive dependence

of random vector components and related probability inequalities.

e A
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For an excellent global view of the theory, as well as for pertinent

-

references, the reader may consult Karlin [137.

2. Definition and Basic Properties.

tJ

.1. Definition of Totally Positive Function.

A function f(x,y) of two real variables ranging over linearly ordered one-

dimensional sets X and Y, respectively, is said to be totally positive of order

k (TPk) if for all Xp € Xy S el X, VPt Yy e S Y (x; in X: ¥, oin Yi,

and all 1 < m < Kk,

Fxp,yy) FOxpyy) - Flxpayg) |
f(x..,)'l) f(xs,Va) .o f(xwv.\'m) '
) - - - |
( XpsXgs wee X -0,
f = ‘
§
{ Yp7Yor o Y | '
t(xm,yl) t(xm,yz) e f(xm.ym) F (1

Typically, X and Y are either intervals of the real line or a countable <et of

discrete values on the real line, such as the set of all integers or the set

of nonnegative integers. When X or Y is a set of integers, the term "<equence”

rather than "function” is used. If f(x,v) is TPk for all positive integers

k=1, 2, ... , then f{x,v) is said to he totally positive of order », written
) I O >

TP or TP.
@
A related, weaker property is that of sign regularity. A function fix.\)
is sign regular of order k (SRy) if for every T N S

B!

< ym, and 1 < m < k, the sign f v depends on m ialone




Many well known families of density functions (both continuous and discrete)
are totally positive. It should be noted that TP2 is the order of TP-ness
which has found greatest application. In the context of statistics, the TP,
property is referred to as the monotone likelihood ratio property. Higher
order TP-ness is hardly used in application except for the occasional use of
TP..

>

Some examples of functions that possess the TP property are:

XY is TP in X,ye(-»,x), so that f(x,v) = x’ is TP in Xe (0, )

(1) f(x,y)

and ye€(-=,»),

e troe)K/k1] is TP in te(0,®) and k {0, 1, 2, ...>.

"1 if a
0 if a

2.2. PFk as Special Case of Interest. i

(i)  f(k,t)

A IA
IA A

(1ii) f(x,y)

P

<
IA A
~

The concepts of TP, and TP, densities are familiar ones. Every density is

1

TPI; while the TP2 densities are those having a monotone likelihood ratio.
A further important specialization occurs if a ™y function may be written

as a function f(x,v) = f(x-v) of the difference of x and v, where x and v

traverse the entire real line; f(u) is then said to be a Pélyva frequency tfunction

of order KﬁPFk). Note that a P6lya frequency function is not necessarily a 1]
probability frequency function in that [i‘f(u)du nced not be 1 nor even finite.
The class of PF, functions is particularly important and has vich appli-

cations to decision theory [10], 7117, 7123, 71821, reliability theory "3, and

the stochastic theory of inventory control models [1], ll6].

V(X)) ihere ¢ (x) is convex. On the

Every PF, function is of the form e
other hand, there exists no such simple representation for PF ., k = 3. Prob- 't

ability densities which are PF, abound.

-

For other properties and examples




of PF, densities, see the entry "P6lya Type 2 Frequency Distributions."
Probability densities which decrease to zero at an algebraic rate in

the tails are rnot PFZ' For example, (i) Weibull with shape parameter

< 1l: f(x) = a\(kx)a-lexp[—(kx)a], X 20, » >0, 0 <o <1, and (ii)

Cauchy: f(x) = 1/[n(1+x2)], -® < X < ®» are not PF,.

-

Intriguing results in the structure theory of PFk functions can be found
in Karlin and Proschan {16], Karlin, Proschan, and Barlow [17], and Barlow

and Marshall [2].

2.3. Variation Diminishing Property.

An important feature of totally positive functions of finite or infinite

order is their variation diminishing property: [If f(x,v) is TP and giv)

changes sign at most j < k-1 times, then h(x} = [ f({x,v) g(v) dv changes sign at

most j times; moreover, if h{x) actually changes sign j times, then it must

change sign in the same order as g(y). It is this distinctive property which
makes TP so useful. The variation diminishing property is essentially cquiva-
lent to the determinantal inequalities (1). Greater generality in stating

this property is possible. The interested reader is referred to Chapter 1,
Karlin [13]. A more direct approach to the theory is taken by Brown et al. 757,

giving appropriate definitions and criteria for checking directly whether a

family of densities possesses variation diminishing property.

2.4. Composition and Preservation Properties.

Many of the structural properties of TPk functions are deducible from

the following basic identity which is an indispensiblie tool in the study of
total positivity.

Basic Composition Formula. Let h(x,t) = f f{x,v) g(v,t) do(y) converge abso-




lutely, where do(y) is a sigma-finite measure. Then

X)sXss .l.,xn] f X10Xgs oeasXpy
h | = e [ £ )
tl,tz, ...,th . ) [}’1,\’2, ...,_\'n
yl e )’n J
yl)yz) ""yn]
g do(v,) ...do(y¥_). (2
tl’tZ’ ...,tn 1 n
A direct consequence of the composition formula is: If f(x,y) is TPm

and g(y,t) is TPn, then h(x,t) = f f(x,v) g(y,t) do(y) (the convolution of f

and g) is TP In many statistical applications this consequence is

min{m,n} "

exploited principally in the case when f and g are Pélya frequencyv densities.

That is, if f(x) is PFm and g(x) is PFn, then h(x) = f f(x-t) g(t)dt is

F . . i 3 i 5 VS .
P min(m,n) From this we can obtain a key result as follows

Theorem 1. Let fl’ f,, ... be density functions of nonnegative random vari-
ables with each f.1 a PF. Then g(n,x) = fl ol fn(x) (* indicates
convolution) is PTk in the variables n and x, where n ranges over 1, 2, ... and

X traverses the positive real line. X
The case when the random variables are not restricted to be nonnegative

is discussed in Karlin and Proschan {161]. These composition and preservation

properties allow us to generate other totally positive functions, thus making y

it easy to enlarge the TP or PF classes and to determine whether the TP pro-

perty holds.

2.5. Unimodality and Smoothness Properties.

A function totally positive or more generally sign regular is endowed with
certain structural properties pertaining to unimodality and smoothening

properties. From the definition of PF2 can be derived




£(x;-y) -f‘(xl—y)

hY
<
-
wn
~

F(x5-y)  -F (x,-)

for X <X, and v arbitrary.
In the event that f (ug) = 0 the above inequality implies that f (u) 2 0 for
usugand £ (u} 20 for u > ug. Thi: clearly implies that if f(u) is PF:

then f(u) is unimodal. In particular, every PF2 density is a unimodal density.
We note that the unimodality result is valid in case f is a PF2 sequence.

We now describe a smoothening property possessed by the transformation

under which convexity in g(x) is carried over into convexity in h(x}, viz.

h(n) = f f(n)(x)g(x)dx for n=1, 2, ..., ($
where f(n)(x\ is the n-fold convolution of f. To make this notion precise
assume f(x) is PF3 and g(x) is convex. Let u = f xf(x)dx. Note that for arbi-

trary real constants a, and ay,

[ 1T gwxra Dy £ (0dx = hin) - (agnea)). ()

“

Since g(x) is convex, then g(x)-f(ao/u)x+81] has at most 2 changes of sign

and if 2 changes of sign actually occur, they occur in the order + - + as x
traverses the real axis from -= to + =, Since f is PFS, f(n)(x) is TP3 in

the variables n and x by Theorem 1. The variation diminishing property implies
that h(n) - (a n+al) will have at most 2 changes of sign. Moreover, if

h(n) - (aon+a1) has exactly 2 changes of sign, then these will occur in the
same order as those of g(x) - [(ao/u)x+alj, namely + - +. Since a,» a; are
arbitrary, we easily infer that h(n) is a convex function of n. Similar

results apply for concavity.




3. Applications to Statistical Decision Theory.

Historically this is perhaps the first area of statistics benefiting

trom the application of TP due to the great papers of Karlin (102, "112, "12°.
We consider the problem of testing a null hypothesis against its alternative
hyvpothesis, i.e., a 2-action statistical decision problem. There exist two

loss functions L1 and L, on the parameter space where L;(3) is the loss

incurred if action i is taken when 9 is the true parameter value. The set in

which Ll(e) < {») L,{(%) is the set in which action 1 (action 2) is preterred
when A is the true state of nature. The two actions are inditfferent at all

other points. We shall assume that Ll(e) - LZ(S) changes sign exactly n times

at 8, 2,5, ..., @

2 n’

Let % be a randomized decision procedure which is the probability of
taking action 2 (accepting the alternative hyvpothesis) if x is the observed

value of the random varibale X. Let Cn be the class of all monotone randomi:zed

decision procedures defined by

l
1 £ < - n !
OT X5, < X X5i,10 L =0, 1, , (5] H
d(x) = \i for x = xi, 0 < Xj <1, i =1,2, ..., n (6) .
i
0 elsewhere, |
e
_ . i
where [a] denotes the greatest integer < a and x . = - ‘

0 . |
Using the variation diminishing property, Karlin [11] obtained the main |

results, which state:

Theorem 2. Let f(x,08) be a strictly TP density and o0(5,¢) = f C(1 - ¢(xM ﬂ

n+l

Ll(e) + 6(x) Lz(e)] f(x,8) du(x). Then for any randomized decision procedure ¢
not in Cn there exists a unique ¢O such that f(8,¢0) < f(8,4) with inequalities

everywhere except for 6 = el, 82,...,8n.




o

Theorem 3. If ¢ and y are two procedures in Cn and t is strictly Tpn*l then

F o) -v(x) 1 £(x,2) du(x) has less than n zeros counting multiplicities.
Assume f{x,3) is strictly TP:. For a one-sided testing problem, existence

of a uniformly most powerful level o test can be easily established by Theoren

2 and Theorem 3.

More detailed discussions and other decision theoretic applications can

be found in Karlin 7107, 7117, "127 and Karlin and Rubin "20.

4. Applications in Probability and Stochastic Processes.

Let P(t,x,E) be the transition probability funct . of a homogeneous
strong Markov process whose state space is an interv vn the real line and
which possesses a realization in which almost all s: p' paths are continuous.
Karlin and McGregor "14. established the intimate relationship between the
general theory of TP functions and the theory of diffusion stochastic processes.
Their main result shows the transition probability function P(t,x,.EV is
totally positive in variables x and E. That is, if Xp € Xa e X and

El < Ey < ... < En(E.1 < Ey denotes that x < v for every x « E, and y « Eiﬁ.

then det|| P(t,xi,Ej)H > 0 for everv t > 0 and integer n. This relation intro-
duces the concept of a TP set function f(x,E) = P(t,x,E) where t is fixed, x
ranges over a subset of the real line, and E is a member of a given sigma
tield of sets on the line.

If the state space of the process is countably discrete, then continuity
of the path functions means that in every transition of the process the particle
changes '"'position', moving to one of its neighboring states. Thus, discrete
state continuous path processes coincide with the so-called birth-death pro-
cesses (Karlin and McGregor [15]) which is a stationary Markov process whose

transition probability matrix Pij(t) = Pr(x(t) = j | x(0) = i) is totally

positive in the values i and j for every t > 0.

v

o




10

Two concrete illustrations of transition probability funcrions thur
arise trom suitable diffusion processes are 714 :

. bt . . .
(1) Let Lntx) be the usual Laguerre polynomial, normalized so thut Lg =

(n;u)’ and let P{t) be the infinite matrix with elements

. © -Xt, 2 b Ry
Pon(t) = )(Oe Lo Caly (x)x7e Tdx.

Then P(t) is strictly TP for each fixed t > 0 and : > -1. This is up cxamrie

of a transition probability matrix for a birth-death process,
(i1) The Wiener process on the real line is a strong Markov process with

continuous path tunctions. The direct product of n copies of this process

the n-dimensional Wiener process which is known to be a strong Markey rroce--,

Theretore the transition probability function P(t,x,E} = I, ivd-t! ff ey

,
T-(x-y)7/4t7dy is totally positive for t - 0.

5. Applications in Inventory Problem.

Suppose that the probability density t(x) of demand for cach veriod iz

PF;. The policy followed is to maintain the stock size at a ftixed level ¥

which will be suitably chosen so as to minimize appropriate expected costs, or

i

is determined by a fixed capacity restriction. At the end of each period an

order 1s placed to replenish the stock consumed during that period so that
constant stock level is maintained on the books. Delivery takes place n
periods later. The expected cost for a stationmary period as a function or
the lag is

(m)

L(n) = [(S) ns-v) €M ydy + [7 ote-sre™M vdy

where S is fixed, h represents the storage cost function and ¢ the penalty
cost function.

Let h and ¢ be convex increasing functions with h(0) = oi0) = 0.  Then

a

Y

ry
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we Mmay write

Lin)

(e ™ dy,

I
-

IA
n

| his-y) for 0

where r(v) = { i
‘ o(y-S) for S < v,

Now r(v) is a convex function. Hence by the convexity preserving property of

(41, we conclude that Lin) is a convex function. Thus, if the length of lacg

increases, the marginal expected loss increases.

Very interesting applications ot total positivity are found in syvstem ;
supply problems. Suppose we wish to determine the intitial spare-parts kit

tor a complex svstem which provides maximum assurance against svstem shutdown

due to shortage of essential components during a period of lenuth t under a '
hudget for spares CU. We assume that a tailed component is instantly re-
nlaced by a spare, if avatlable. Only spares originally provided may be used
tor replacement, i.e., no resupply of spares can occur during the period. The ‘
|
svstem contains di operating components of tyvpe i, i =1, 2, ..., k. The ﬁ
- - .th . .th . .
length of life of the ) operating component of the i type 1s assumed to he
an independent random variable with PFk density fi" =1, 2, ... d. . The
‘ it i
unit cost ot a component of tyvpe i is cy-
Our prohblem is to find n., the number of spares initially provided of the ;
k k |
i tvpe, such that T Pi(ni) is maximized subject to Z nLeyow g and i

i=1 i=1 !
n. =0, 1,2, ... fori=1, 2, ..., k, where Pi(m) = probability of experi- ;

encing < m failures of tvpe 1i. .

In Black and Proschan "4], a detailed discussion of methods is given for !
computing the solution when each 2nPi(m) is concave in m, or equivalently,
when each Pi(n-m) is a TP2 sequence in n and m. To show Pi(n—m\ is a TP:

sequence in n and m, we note:




)
; 1. cii(n). the probability of requiring n replacements of onerating component

i, 7, 1s a PF, sequence in n for each fixed i and j.

-

2. ci(n), the probability of requiring n replacements of tvpe i, is a PF2

sequence in n for each i, since ¢.(n) = c.., * c., * ... * ¢. (n).
i il 12 1di

3. Pi(n-m) is a TP, sequence in n and m for each i, since

[t}

)

(a) Pi(n) m

s{n-mlg(m}, where

-

[{}

q(m)

4

I

fl form=10,1, 2, ... |
Q otherwise,
|

(b} q(m) is a PFm sequence,
and

(¢) the convolution of PFk is PFR'

A procedure for computing the optimal spare parts kit in teorms of Pi(mh
is given in '47: For arbitrary r > 0, for those i such that inPi(l‘-tnPiJU\
rc., define n;(r) = 0; for the remaining i, define n?(r} as 1 + "largest n
such that inPi(n+1) - QnPi(n) > rci7. Compute ¢ n*(r)? = ‘%lcin;(r).

n* is optimal when <y is once of the values assumed b;—c”n*lr]' as r

varies over (0,=).

6. Applications in Reliability and Life Testing.

A life distribution F is said to have increasing (decreasing) tailure
rate, denoted by IFR (DFR), if log [1-F(t)17 = log F(t) is concave (convex on

"0,»)). If F has a density f, then the failure rate at time t is defined by

r(t) = £(t)/F(t) for F(t) < 1. Distributions with monotone failure rate are
of considerable practical interest and such distributions constitute a very

large class.

. \
o .M‘:_ _.L'm. . ¥ = e




The monotonicity properties ot the failure rate tunction rit: are
intimately connected with the theory of total positivity. The statement
that a distribution I has an increasing failure rate is caquivalent to the
statement that F(x—y] is TP, in x and v, or Fix, is P

The concept of TP vields fruittul applications in shock models. We

sav that a distribution F has increasing tailure rate average (IFRV. 07
BUR

(l'ty -log F(ty ™ is increasing in t = 0, or equivalently, Pt is de-

creasing in t > 0. An IFRA distribution provides a natural description

of coherent system life when syvstem components are independent I1FR.  The

IFRA distribution also arises naturally when shocks occur randomly according

th .

to a Poisson process with intensity . The i shock causes a4 random amount

Xi of damage, where Xl, X:, ... dare independently distributed with common
distribution F.

A device fails when the total accumulated damage exceeds a specificed
capacity or threshold x. Let H(t) denote the probability that the device
survives 0,t .

Then > g K
TPel T /KD for 0s t v s

Hit) = 4 (o
!
|

1 for t «~ 0.

. -t K, . - .
Note that ¢ D)7 /k! T represents the Poisson probability that the device

experiences exactly k shocks in [0,t!1, while Pk

probability that the total damage accumulated over the k shocks does not

NSy

X} represents the

exceed the threshold x, with 1 = Fh > Ei > P, >

As key tools in deriving the main result in shock models. the methods

of total positivity are emploved and in particular the variation Jiminishing

property of TP tunctions.




= L/K

It Pk is decreasing in Kk, Fk'i‘ U < & < 1, has at most one sign
change., trom + to - if one occurs. Then it follows from the variation
o N V2 . . : .

diminishing property that H(t)! is decreasing in t, i.e., H is TIFRA.

The following inplications are readily checked:
PF, density -~ [FR distribution - [FRA distribution.

For further discussion and illustrations of the usetfulness of total

positivity in reliability practices we refer to Barlow and Proschan .3°.

-

Multivariate Total Positivity and its Relationship to Qualitative

Notions of Dependency.

The following natural generalization of TP, was introduced and studied

-

by Karlin and Rinott [18].

Definition. Consider a function f(x) defined on X = X,» X_.

1 3 - \’l\ where

each Xi is totally ordered. We say that f(x) is multivariate totally positive

of order 2 or MTP, if

f(i vyl Fo(x A y) D F(x) Fy) for every x, veX, 1o
where x v v = (mnx(xl. yl], max(x:, y:]. ey mux(xn, yn]1 and
XAy = (min(xl, yl), min(x,, ¥4), ..., min(xn, yn\). In order to verity

(1M it suffices to show that t(x) > 0 is TP, in every pair of variables
where the remaining variables are held tixed.

Multivariate normal distributions constitute an important class of MTP,

probability densities. Let X follow the density

-n/2 -1/2 i
£00 = (2 Vs Y Jexpr ~hix-w) Brxu

-1
where L =B = Ilbij[I? iel This density is TP, in each pair of arguments
and hence MTP, if and only if biy €0 forall i = j.

_L' P U - o - L ..s\_.k. ~.u. A -_ .
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In a great manyv situations, the random variables of interest are not
independent. To appropriately model these situations Esary, Proschan and
Walkup "6 introduced the concept of association of random variables. Kandom
. variables N

tor all pairs of increasing functions f and g.

B N Xn are said to be associated if Cov(t(X), giX)» >0

[t can be shown 18 that if X = (Xl, XL, .., Xn] has a joint MTP,
density, the Ers(X)uiXy " = L o0 2ED ixy 0 provided @ oand o are simultancousls
monotone increasing (or decreasing).  PFguivalently, CoviiiXia, .(X1i - 0. Thus

an MTP: random vector X consists of ussociated random variables.

It is well known that the union of independent sets of associated random
variubles produces an enlarged set of associated random variables. (learly
increasing tunctions of associated random variables are again associated. It
tfollows that if X and Y are independent random variables each with associated

components, then the components of 7 = X + Y is associated. Thus, in particular,

- Z )

if X and Y both have MTP, densities, then association of (:1. Sas eees D

retained. towever, I need not have a joint MTP: density.

A key to many of the results on positive dependence and probabilistic
inequalities for the multinormal, multivariate t, and Wishart distributions
obtained by Karlin and Rinott "19] is the degree of MTP: property inherent in
these distributions. Their main theorem delineates a necessary and sufficient
condition that the density of X, = (!Xll, 1X:?, e ;Xn'} where
X = (Xl, X:, e Xn) is governed by N(O, ")} bhe MTP: is that there exists a
diagonal matrix D with diagonal elements +1 such that the off-diagonal elements

i of -Dz_lD are all nonnegative. For an illustration of the power of this theorem

consider |X| = (Xt 160, oo X ]) possessing a joint MTP, density where

P
s
X ~N(0, £). Define s, = Ex;‘, i=1,2, ..., n, where

Xy, L, X ), v 1, 2, L., pare i.i.d. random vectors

Ny
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satistying the condition of the theorem. The random variables Sl’ S, o, Sn

are associated and have the distribution of the diagonal elements of a random

positive definite n»n matrix S where S follows the Wishart distribution

wn(p, I} with p degrees of freedom and parameter . It is established in

n
7197 that Pr(S1 2 ¢, S, 2 Cos s S, 2 ) 2121 Pr(si z¢y) for any positive
©.. For other applications and ramifications of MTP,, see Karlin and Rinott
18], (191,

Fahmy et al. {7] exploited the concept of MTP, to obtain interesting
results on assessing the effect of the sample on the posterior distribution in

the Bavesian context.
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