| UPPER ROOT RESERVOIR (U) CORPS OF ENGINEERS WALTHAM MA |
| NEW ENGLAND DIV MAR 81 |

UNCLASSIFIED F/G 13/13 NL
Housatonic River Basin
Lenox, Massachusetts

Upper Root Reservoir Dam
MA 00019

Phase I Inspection Report
National Dam Inspection Program

Department of the Army
New England Division, Corps of Engineers
Waltham, Mass. 02154

March, 1981

84 09 05 066
Title: Upper Root Reservoir Dam

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

Authors: U.S. Army Corps of Engineers

Performing Organization: New England Division

Report Date: March 1981

Number of Pages: 65

Abstract:

Upper Root Reservoir Dam is an earth embankment gravity dam with a concrete core wall. The dam has a length of 840 ft. and a maximum hydraulic height of 39.5 feet. Based on engineering judgement and past performance of the dam and outlet works, the project is considered to be in fair condition at the present time. Because the dam is classified as small size and high hazard potential, the test flood was selected as the PMF.
Dear Governor King:

Inclosed is a copy of the Upper Root Reservoir Dam (MA-00019) Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Department of Environmental Quality Engineering, the cooperating agency for the Commonwealth of Massachusetts. In addition, a copy of the report has also been furnished the owner, Town of Lenox, Department of Public Works, ATTN: Mr. Allen R. Sykes, Water Department, 31 Main Street, Lenox, Massachusetts 01240.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Quality Engineering for your cooperation in carrying out this program.

Sincerely,

Incl C. E. Edgar, III
As stated Colonel, Corps of Engineers
Division Engineer
UPPER ROOT RESERVOIR DAM
MA 00019

HOUSATONIC RIVER BASIN
LENNOX, MASSACHUSETTS

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT

Identification No.: MA 00019
Name of Dam: UPPER ROOT RESERVOIR DAM
Town: LENOX
County and State: BERKSHIRE, MASSACHUSETTS
Stream: LENOX MOUNTAIN BROOK
Date of Inspection: 16, 17 NOVEMBER 1980

BRIEF ASSESSMENT

Upper Root Reservoir Dam is an earth embankment gravity dam with a concrete core wall which impounds an 18-acre water supply reservoir for the Town of Lenox. The dam has a length of 840 feet and a maximum hydraulic height of 39.5 feet. The embankment has a top width of 10 feet and side slopes of approximately 2.5H to 1V. The top and downstream slope are vegetated while the upstream face is riprapped to an elevation about 3.5 feet lower than the top of dam. The normal full pool elevation for the reservoir is (at the top of flashboards) 3.5 below the top of dam. There is a 30-foot wide concrete overflow spillway at the east abutment. The crest of the concrete spillway is 6.5 feet lower than the top of dam. The spillway discharges into a 10-foot wide by 3-feet deep concrete channel which conveys the flow around the east end of the dam.

There is a 16-inch low-level outlet conduit and a 12-inch high-level outlet. The reservoir can be drained by the 16-inch conduit.

The reservoir storage capacity is currently being enlarged by excavation. The capacity of the reservoir at the flashboards is expected to be approximately 270 acre-feet (90 million gallons).

Based on engineering judgment and past performance of the dam and outlet works, the project is considered to be in fair condition at the present time. The project does, however, have a number of deficiencies which, if not remedied, have the potential for developing into serious conditions.

Because the dam is classified as small size and high hazard potential, the test flood was selected as the Probable Maximum Flood (PMF). The PMF inflow for Upper Root Reservoir Dam, having a drainage area of 650 acres, was estimated to be 2400 cfs. Without the flashboards the routed test flood outflow would be approximately 2100 cfs at an elevation equivalent to about 1 foot to 1.5 foot above the existing low areas in the dam's crest. The low areas are most pronounced near the spillway walls.

The flashboards supports are embedded in the spillway crest and do not appear to have been designed as yielding supports.

The capacity of the spillway without flashboards with water at the existing low point in the dam is about 1250 cfs which is 61% of the routed test flood outflow. With Flashboards, the spillway capacity is approximately 690 cfs.
A major breach of the dam would cause loss of the town water supply system. Loss of more than a few lives would also be likely as a result of a major dam break.

A number of recommendations are given in Section 7.2 for implementation by the owner. These recommendations should be implemented within 12 months of receipt of this Phase I Inspection Report with the exception that the owner should retain a qualified Registered Professional Engineer immediately upon receipt of this report to investigate, and design any necessary repairs for conditions causing a localized depression at the upstream slope of the dam near the 12-inch outlet. This condition should be remedied before the reservoir is allowed to fill again to the level of the flashboards unless the depression is found not to pose a threat to the structure. The engineer should inspect the dam during and after filling of the reservoir.

Other recommendations in general are as follows:

Retain a qualified Registered Professional Engineer to:

- Design repairs to the gully at the easterly downstream toe and set up a monitoring program to monitor this area and other areas along the toe for possible unusual seepage.

- Design repairs to restore the crest elevation to a uniform grade, particularly low areas adjacent to the spillway walls. Repairs of wheel ruts on the downstream should be designed.

- Investigate and design repairs for areas of possible undermining of the floor of the spillway channel and backfill of the spillway walls.

- Investigate replacement of existing flashboards supports with yielding type supports. This investigation should also consider relocating the flashboards upstream of the expansion joints of the spillway walls.

- Design methods to extend the slope protection to a higher elevation on the upstream slope in order to halt undercutting of the crest.

- Investigate the condition and adequacy of the existing toe drainage system, particularly in light of recent construction activity in this area.

- Design procedures and supervise removal of trees within 25 feet of the spillway discharge channel.

In addition, the owner should also implement the recommended remedial program listed in Section 7.3 including servicing of valves, control of the Upper Root Reservoir Dam.
burrowing animal population, filling of existing animal burrows, establishment of a formal operation and maintenance program and a formal written surveillance and downstream warning program. A qualified Registered Professional Engineer should be engaged to make a comprehensive technical inspection of the dam once a year.

John F. Cysz
Project Manager
MA P.E. No. 28841

Upper Root Reservoir Dam
This Phase I Inspection Report on Upper Root Reservoir Dam (MA-00019) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval.

JOSEPH W. FINEGAN, JR. MEMBER
Water Control Branch
Engineering Division

ARAMAST MAHTESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, CHAIRMAN
Design Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

Phase I Investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td>i</td>
</tr>
<tr>
<td>Brief Assessment</td>
<td></td>
</tr>
<tr>
<td>Review Board Page</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>ii-iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>Overview Photo</td>
<td>vi</td>
</tr>
<tr>
<td>Location Map</td>
<td></td>
</tr>
</tbody>
</table>

REPORT

1. **PROJECT INFORMATION**

1.1 **General**

 a. Authority 1-1
 b. Purpose of Inspection 1-1

1.2 **Description of Project**

 a. Location 1-1
 b. Description of Dam and Appurtenances 1-1
 c. Size Classification 1-3
 d. Hazard Classification 1-3
 e. Ownership 1-3
 f. Operator 1-3
 g. Purpose of Dam 1-3
 h. Design and Construction History 1-3
 i. Normal Operation Procedures 1-4

1.3 **Pertinent Data**

 a. Drainage Area 1-4
 b. Discharge at Damsite 1-5
 c. Elevation 1-5
 d. Reservoir 1-6
 e. Storage 1-6
 f. Reservoir Surface 1-6
 g. Dam 1-6
 h. Diversion and Regulating Tunnel 1-7
 i. Spillway 1-7
 j. Regulating Outlets 1-7

Upper Root Reservoir Dam
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. ENGINEERING DATA</td>
<td></td>
</tr>
<tr>
<td>2.1 Design Data</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Construction Data</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Operation Data</td>
<td>2-1</td>
</tr>
<tr>
<td>2.4 Evaluation of Data</td>
<td>2-1</td>
</tr>
<tr>
<td>a. Availability</td>
<td>2-1</td>
</tr>
<tr>
<td>b. Adequacy</td>
<td>2-1</td>
</tr>
<tr>
<td>c. Validity</td>
<td>2-1</td>
</tr>
<tr>
<td>3. VISUAL INSPECTION</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Findings</td>
<td></td>
</tr>
<tr>
<td>a. General</td>
<td>3-1</td>
</tr>
<tr>
<td>b. Dam</td>
<td>3-1</td>
</tr>
<tr>
<td>c. Appurtenant Structures</td>
<td>3-3</td>
</tr>
<tr>
<td>d. Reservoir Area</td>
<td>3-3</td>
</tr>
<tr>
<td>e. Downstream Channel</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2 Evaluation</td>
<td>3-3</td>
</tr>
<tr>
<td>4. OPERATIONAL AND MAINTENANCE PROCEDURES</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Operational Procedures</td>
<td></td>
</tr>
<tr>
<td>a. General</td>
<td>4-1</td>
</tr>
<tr>
<td>b. Description of any Warning System in Effect</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Maintenance Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>a. General</td>
<td>4-1</td>
</tr>
<tr>
<td>b. Operating Facilities</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Evaluation</td>
<td>4-1</td>
</tr>
<tr>
<td>5. EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 General</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Design Data</td>
<td>5-1</td>
</tr>
<tr>
<td>5.3 Experience Data</td>
<td>5-1</td>
</tr>
<tr>
<td>5.4 Test Flood Analysis</td>
<td>5-1</td>
</tr>
<tr>
<td>5.5 Dam Failure Analysis</td>
<td>5-2</td>
</tr>
</tbody>
</table>

Upper Root Reservoir Dam
Section	Page
6. EVALUATION OF STRUCTURAL STABILITY | 6-1
 6.1 Visual Observations | 6-1
 6.2 Design and Construction Data | 6-1
 6.3 Post-Construction Changes | 6-1
 6.4 Seismic Stability | 6-1
7. RECOMMENDATIONS | 7-1
 7.1 Dam Assessment | 7-1
 a. Condition | 7-1
 b. Adequacy | 7-1
 c. Urgency | 7-1
 7.2 Recommendations | 7-1
 7.3 Remedial Measures | 7-2
 a. Operation and Maintenance Procedures | 7-2
 7.4 Alternatives | 7-3

APPENDICES

APPENDIX A - INSPECTION CHECKLIST
APPENDIX B - ENGINEERING DATA
APPENDIX C - PHOTOGRAPHS
APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS
APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS
OVERVIEW OF UPPER ROOT RESERVOIR DAM
1.1 GENERAL

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising Inspection of Dams within the New England region. Robert G. Brown & Associates, Inc. has been retained by the New England Division to inspect and report on selected dams in the Commonwealth of Massachusetts and State of Vermont. Authorization and notice to proceed were issued to Robert G. Brown & Associates, Inc. under a letter of 23 October 1980 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract Number DACW33-81-C-0004 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection

(1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten public safety and thus permit correction in a timely manner by non-Federal interests.

(2) To encourage and prepare the states to initiate quickly effective dam safety programs for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.

1.2 DESCRIPTION OF PROJECT

a. Location

Upper Root Reservoir Dam is located in the Town of Lenox, Massachusetts. The dam is on Lenox Mountain Brook approximately 3.6 miles upstream from the brook's confluence with Shaker Mill Pond, the headwaters of the Williams River. The dam impounds Upper Root Reservoir which is one of the two water supply reservoirs for the Town of Lenox. Upper Root Reservoir Dam is shown on the USGS Stockbridge, Mass. quadrangle at latitude 42° 22.2' and longitude 73° 19.6'. Access to the damsite is from Reservoir Road. Upper Root Reservoir is also known as Upper Lenox Reservoir.

b. Description of Dam and Appurtenances

Upper Root Reservoir Dam is an earthfill dam, with a concrete core wall, approximately 840 feet long, with a maximum hydraulic height of about 39.5 feet, measured from the top of the dam to the outlet of the 16" lower intake conduit. The top of the dam is vegetated and has a width of about 10 feet. The axis of the dam is oriented in roughly an east/west direction.

The downstream face of the embankment is vegetated and has a slope of approximately 2.5H:1V. The upstream face has a 2.5H:1V slope and is covered with dumped riprap to within 3.5 feet vertical distance of the top of the dam.
The earth embankment, according to the record plans, is comprised of random glacial till. A 12-inch wide reinforced concrete core wall in the center of the embankment extends from the foundation to a height of 5.5 feet below the top of dam and about 2 feet below the top of flashboards. The concrete core wall sets on a reinforced concrete step footing built on a glacial till foundation (see boring data on sheet 2 of 5 in Record Plans). The maximum height of the core wall is 47 feet at station 8 + 75.

There is a 16-inch diameter cast iron mechanical joint conduit which serves as a low-level outlet. The 16-inch conduit is located near the center of the dam and is regulated by a gate valve set in a 4-foot diameter concrete block manhole positioned near the downstream toe. The inlet to this conduit originally was a concrete headwall with a bar rack. The inlet has recently been modified to include a 5-foot high riser pipe to allow water to be drawn off above the reservoir bottom. The conduit discharges beyond the toe of the dam into a pool formed by the remains of an 1878 stone dam. There is a 12" gate valve approximately 10 feet to the east of the 16-inch conduit. This valving is for a bypass of the 16-inch valve.

There is a 12-inch diameter, mechanical joint, cast iron pipe which acts as a high-level outlet for the reservoir. This conduit is located approximately 190 feet east of the low-level outlet. The inlet of the 12-inch conduit is 15 feet higher than the inlet elevation of the 16-inch conduit. There is a concrete headwall with a bar rack at the upstream end of this conduit. The 12-inch outlet is regulated by a gate valve contained in a 4-foot diameter, concrete block manhole on the downstream slope of the embankment. The 12-inch conduit discharges to the spillway channel.

According to the record plan for this dam, there are no anti-seep collars for either conduit other than the concrete core wall. The conduits are shown as passing through the core wall in lead jointed wall sleeves. Flexible Dresser couplings are shown on the conduits at each side of the core wall.

There is a 30-foot long reinforced concrete overflow spillway at the easterly abutment. The concrete spillway crest is 6.5 feet below the top of dam and has provisions for 3 feet of flashboard height. The flashboards are supported by 4-inch deep steel H-beams, 7.5 feet on-center, embedded in the concrete spillway crest. The flashboards are supported at the spillway walls by 4-inch channels.

The spillway approach channel has a rock and gravel floor leading to the concrete crest (see Appendix C, Photograph 2).

The spillway discharge is conveyed downstream of the dam in a 10-foot wide, 3-foot deep concrete chute channel. The channel has a length of 350 feet (horizontal projection) and a slope of 10%. There is a channel bucket at the end of the spillway chute channel to deflect the discharge upward. The spillway channel discharges about 50 feet upstream of Reservoir Road and downstream of the remains of the 1878 stone dam. After passing under Reservoir Road the spillway discharge enters Lower Root Reservoir.

There are 3-inch diameter drain holes in the side walls of the spillway channel. These holes were drilled during the 1978 repair program. A 12" sand and gravel bed beneath the floor of the spillway channel is shown on the record plan.
There is an internal drainage system for the earth embankment as shown on Sheet 5 of 5 in the Record Plans (see Appendix B-18). The drainage system consists of a series of 6-inch diameter perforated vitrified clay pipes surrounded by washed gravel. The drainage system appears to have been intended for drainage of the foundation/embankment downstream of the core wall. There are two outlets for the drainage system at the toe of the dam. The drain ending at the outlet closest to the east end of the dam appears to have been added during construction, possibly to intercept a spring, but this could not be confirmed. There appears to be an inconsistency in record elevations for the drain inverts.

c. Size Classification
The dam has a maximum hydraulic height of 39.5 feet and a top of dam storage of 350 acre-feet. Based on height and storage criteria (less than 40 feet high; less than 1000 acre-feet storage) specified in the Recommended Guidelines for Safety Inspection of Dams, the structure is classified as small size.

d. Hazard Classification
The dam is in a high hazard category because a major breach of the dam could cause destruction of property and loss of more than a few lives in the Lenox Road area 0.9 mile downstream of the dam. In addition, a critical source of water for the Town of Lenox would be lost as a result of a dam breach (see Section 5.5).

e. Ownership
The dam is owned by: Town of Lenox
Department of Public Works
Water Department
31 Main Street
Lenox, MA
Tel: (413) 637-0815
Mr. Allen R. Sykes, Superintendent

f. Operator
Day-to-day operation of the dam is assigned to Water Department personnel on a rotating basis. The personnel are dispatched from the Water Department office, 31 Main Street, Lenox, MA, Tel. (413) 637-0815.

g. Purpose of Dam
The dam impounds Upper Root Reservoir which is one of the two water supply reservoirs for the Town of Lenox. The original capacity of 60 million gallons was increased to over 90 million gallons by excavating additional storage in 1980. The excavation program was in progress at the time of this inspection.

h. Design and Construction History
Upper Root Reservoir Dam was constructed on Lenox Mountain Brook immediately upstream of Lower Root Reservoir in 1959 and 1960. Plans dated April 1959 were prepared by Whitman and Howard, Inc. Engineers, 89 Broad Street, Boston, Mass. and are on file at the Lenox Water Department. Copies of significant portions of the plans are included in Appendix B. No specifications, design calculations or construction records were available from the engineer or the owner. The dam was built by T & T Construction of Medford, MA.

1 - 3

Upper Root Reservoir Dam
In 1978, repairs were made to the concrete spillway. Plans and specifications for this work were prepared by Whitman and Howard, Inc. Engineers, and are on file at the Water Department and with the engineers. The repairs consisted of plugging existing weep holes at the base of the spillway channel walls, cutting new weep holes midway up the walls of the spillway channel, construction of 4-foot by 3-foot gravel and crushed stone drains behind each new weep hole, and replacement of fillers in the joints in the spillway walls and floor. The purpose of the repairs was to control seepage which had reportedly begun to erode around and under the spillway. This work was performed by Peter Francese and Son Inc., Lenox, MA.

In 1980, improvements to the reservoir and dam were designed by J.F. Moynihan & Associates, Inc., Route 102, Lee, MA. The work consisted of excavating approximately 150,000 cubic yards of material from the reservoir bottom to increase the storage capacity from the original design of 60 million gallons to over 90 million gallons. The 16" diameter lower intake was also modified by constructing a 5-foot high 16" diameter riser inlet with a 16" gate valve upstream to act as a pond drain. The work is being performed by Petricca Construction Company, 444 Merrill Road, Pittsfield, MA. This work was underway but not completed at the time of the field inspection for this report. Additional water supply piping and cutting back of trees around the reservoir are being planned.

i. Normal Operation Procedures

Water Department personnel, on a rotating basis, are responsible for checking the reservoir dams daily. The dams are also checked before and during heavy storms, and the water level may be adjusted by operating the gate valves.

The flashboards are removed in the fall and replaced in the spring to prevent ice damage. The dam is mowed at least once a year. No fertilization of vegetation on the embankment is performed.

The upper and lower pipe intakes are operated as required according to the water level in the reservoir. The water is drawn off and directed into the Lower Reservoir where the intake for the town’s water distribution system is located. Both gate valves are normally closed except when in use. They are generally used each year. There is no formal written emergency preparedness or downstream warning system in effect for this structure.

1.3 Pertinent Data

a. Drainage Area

The drainage area contributing to Upper Root Reservoir is 1.02 square miles. The drainage area is oriented with its long axis in a northerly direction and has a length of approximately 1.7 miles and an average width of approximately 0.6 miles. Approximately 98% of the watershed lies in the Town of Lenox with the remaining 2% lying in the Town of Richmond. The drainage area is drained by Lenox Mountain Brook and an un-named tributary which join about 1/2 mile upstream of the dam.

The entire drainage area is wooded and undeveloped. The Town of Lenox owns most of the area. Topography consists of moderately steep to rolling terrain with some upland marsh in the upper reaches and steep valley walls in the lower reaches. Elevations range from 1454 at the toe of the dam to 2123 near the Lenox Lookout Tower at the extreme northern end of the drainage area.
Upper Root Reservoir is the only significant body of open water in the drainage area. Upland marshes cover about 15 acres and the reservoir itself has a surface area of 18 acres, which combined make up about 5% of the total drainage area.

b. Discharge at Damsite
Discharge at the damsite is over the concrete spillway which is regulated with flashboards, and two pipe intakes, a 12" diameter upper intake and a 16" diameter lower intake. The concrete spillway is 30 feet long and 6.5 feet high at the centerline of the dam. Flashboard channels are provided for 3 feet above the spillway floor. Three flashboards each 11" high are normally used. The elevation datum used on the construction plans is U.S.G.S. with the crest elevation being 1487.0 NGVD.

(1) Outlet Works -
a. 12-inch upper intake - regulated by 12" gate valve at downstream toe of dam. Discharge capacity at top of dam 8 cfs. Invert of outlet - 1472.0.

b. 16-inch lower intake - regulated by 16" gate valve in manhole at downstream toe of dam. Discharge capacity at top of dam 28 cfs. Invert of outlet - 1454.0. (Inlet modified in December 1980 by adding a 5' high 16" riser pipe on a tee with a 16" gate valve upstream to act as a pond drain.)

(2) Maximum Flood at Damsite - No flood of record available. Dam has not been overtopped.

(3) Ungated Spillway Capacity at Top of Dam - (at existing low point of embankment) - 425 cfs at 1492.5 NGVD (with flashboards), 1250 cfs at 1492.5 NGVD (without flashboards).

(4) Ungated Spillway Capacity at PMF Test Flood Elevation - 770 cfs at 1493.8 NGVD (with flashboards), 1650 cfs at 1493.8 (without flashboards).

(5) Gated Spillway Capacity at Normal Pool Elevation - not applicable.

(6) Gated Spillway Capacity at Test Flood Elevation - not applicable.

(7) Total Spillway Capacity at Test Flood Elevation - 770 cfs at 1493.8 NGVD (with flashboards), 1650 cfs at 1493.8 NGVD (without flashboards).

(8) Total Project Discharge at Top of Dam - 425 cfs at 1492.5 NGVD (with flashboards), 1250 cfs at 1492.5 (without flashboards).

(9) Total Project Discharge at PMF Test Flood Elevation - 2100 cfs at 1493.8 without flashboards.

c. Elevation (Datum is feet above sea level NGVD)
(1) Streambed at toe of dam - 1454.

(2) Bottom of Cutoff - 1447 (bottom of core wall east of center).
(3) Maximum Tailwater - unknown.

(4) Normal Pool - 1489.8 - with flashboards, 1487.0 - without flashboards.

(5) Full Flood Control Pool - not applicable.

(6) Spillway Crest - 1487.0 without flashboards.

(7) Design Surcharge (Original Design) - design data not available.

(8) Top of dam - 1493.5 by design, 1492.5± at existing low area behind spillway walls.

(9) Test Flood Surcharge - 1493.8 (PMF).

d. Reservoir (length in feet)

(1) Normal Pool - 1400 without flashboards; 1440 with flashboards.

(2) Flood Control Pool - not applicable.

(3) Spillway Crest Pool - 1400.

(4) Top of Dam - 1600.

(5) Test Flood Pool - 1600.

e. Storage (acre-feet)

(1) Normal Pool - top of flashboards - 270 (90 million gallons)

(2) Flood Control Pool - not applicable.

(3) Spillway Crest Pool - 211 (70 million gallons)

(4) Top of Dam - 350.

(5) Test Flood Pool - 355.

f. Reservoir Surface (acres)

(1) Normal Pool - top of flashboards - 20.

(2) Flood Control Pool - not applicable.

(3) Spillway Crest - 18.

(4) Top of Dam - 22.

(5) Test Flood Pool - 22.

g. Dam

(1) Type - earth fill gravity dam with concrete core wall.

(2) Length - 840 feet.
(3) Height - 39.5 feet.
(4) Top Width - 10 feet.
(5) Side Slopes - 2.5H:1V.
(6) Zoning - all fill shown as random glacial till on plan.
(7) Impervious Core - 12" wide reinforced concrete core wall with step footing.
(8) Cutoff - concrete core wall base at 1447: NGVD east of center. Top of core wall at 1488 NGVD.
(9) Grout Curtain - none shown on record plan.

h. Diversion and Regulating Tunnel - not applicable (see j.)

i. Spillway
 (1) Type - reinforced concrete, overflow weir.
 (2) Length of Weir - 30 feet.
 (3) Crest Elevation - 1487.0 without flashboards, 1489.7 with flashboards.
 (4) Gates - none.
 (5) U/S Channel - Upper Root Reservoir.
 (6) D/S Channel - Spillway discharge 10 feet wide concrete chute which discharges into a pool downstream of the dam. Lip of spillway channel bucket elevation - 1454.0. After passing under Reservoir Road in two 3-foot diameter culverts, the discharge enters Lower Root Reservoir (with crest elevation 1456).

j. Regulating Outlets
 (1) Invert - 1454.0 approximate elevation of low-level outlet. 1472.0 approximate elevation of high-level outlet.
 (2) Size - low-level outlet 16" diameter - high-level outlet 12" diameter.
 (3) Description - pipe conduits through dam. Bar screens at inlets. New 5'H 16" diameter riser on low-level intake.
 (4) Control Mechanisms - gate valves in concrete block manholes on downstream slope of dam. Valve manholes have standard cast iron frames and covers.
 (5) Other - none.
SECTION 2
ENGINEERING DATA

2.1 DESIGN DATA

No design data for original construction other than the record plans were available for Upper Root Reservoir Dam. Plans and specifications for repairs made in 1978 were made available by the owner and are on file with the Lenox Department of Public Works.

2.2 CONSTRUCTION DATA

No construction records other than a set of plans for the original construction were available either through the owner or the designer. The record plans indicate that a drain was added during construction near the east end of the dam, possibly to intercept a spring, but this could not be confirmed.

2.3 OPERATION DATA

According to the Superintendent of the Lenox Department of Public Works, the damsite is visited daily by Water Department personnel. During storm conditions the dam is checked more often.

The embankment is mowed on an annual basis. Flashboards are removed in the fall and reinstalled in the spring. There is no written operation or maintenance program for Upper Root Reservoir Dam.

2.4 EVALUATION OF DATA

a. Availability

No engineering data for the original design or construction of the dam are available. Direct contact with the Lenox Department of Public Works, the designer, and a search of files of the Berkshire County Commissioners and Massachusetts Department of Public Works revealed no data other than the construction record plans. No construction specifications were available. Copies of previous inspection reports and sketches prepared by the Massachusetts Department of Public Works are included in Appendix B-2.

b. Adequacy

The final assessments and recommendations of this investigation are based on the visual inspection and the hydrologic and hydraulic calculations.

c. Validity

No engineering design data for the original construction were available to validate. Based on the visual inspection it appears that all work called for on the 1959 construction plans and 1978 repair plans was completed. The top of the riprap appears to be about one foot lower than the Record Plans indicate.
SECTION 3
VISUAL INSPECTION

3.1 FINDINGS

a. General

Upper Root Reservoir Dam was inspected on November 16 and 17, 1989. The weather on both days was clear and the ground free of snow cover.

At the time of inspection the reservoir was drained and excavation in the reservoir area was in progress.

A floating pump was positioned at the 16-inch low-level outlet to keep the reservoir drained. There was a temporary extension attached to the outlet of the 16-inch conduit to divert the pumped water around the Lower Root Reservoir (see Appendix C, Photographs 4 and 10), in order to prevent silt laden, water from entering into the Town's water distribution system.

A recent excavation had been made near the downstream toe of the dam (see Appendix C, Photograph 4), for the purpose of removing sediment from behind the 1878 dam.

b. Dam

The general layout of the dam with inspection notes is shown in Appendix B. Photographs showing features and conditions are included in Appendix C.

There is about a 75-foot long low area in the crest near the center of the dam. The crest in this area is approximately 1 to 1 foot lower than the top of dam in general. Settlement of the crest has also occurred behind the spillway walls.

The riprap on the upstream face overall is in good condition except that there is an area to the west of the dam center where the riprap surface appears warped, possibly as a result of down-slope creep. The warped area is about 40 feet by 75 feet. The top of riprap is approximately at the same elevation as the top of flashboards and there is a wave bench above the riprap where the water has undercut the embankment crest by up to about 12 inches during times when the water level is at or above the top of flashboards (see Photograph 2, Appendix C).

The vegetation on the top and downstream slope appear to be well established. It is reported that the embankment was not mowed this year because of the on-going reservoir excavation program. There are minor wheel ruts in the dam crest and some 4 to 6-inch deep more recent ruts and wheel tracks on the downstream slope and at the top of the dam. The recent ruts are a result of equipment excavating the area near the toe of the dam. This rutting is considered to be significant because of its potential for causing erosion of the embankment. Also there is potential for the 6-inch toe drains to become broken or plugged as a result of heavy vehicle passage over the toe area. During the preliminary site visit prior to the formal inspection, a total of 2 drain outlets were observed at the toe of the dam. During the inspection, one of the drain outlets was not visible due to construction activities. The owner reports, however, that the second drain outlet has now been uncovered.

There are areas of anomalous vegetation (see Overview Photograph) on the downstream slope which should be monitored for wetness after the reservoir is filled. A couple of small (4 to 6-inch) active animal burrows were noted on the downstream slope.
At the easterly downstream toe of the embankment there is a 1-foot wide by 2-feet deep erosion gully which is largely obscured by matted vegetation. This gully has a length of approximately 120 feet and appears to be an active feature. The cause of this gully is not known. Its presence was not reported in the most recent inspection of the Massachusetts Department of Public Works.

Approximately 7 feet to the north of the headwall for the 12-inch high level outlet at the upstream face of the dam, there is a localized depression 30" diameter and 14 inches deep (see Photographs 7 and 8, Appendix C). This feature appears to be near the intersection of the original ground and the embankment fill slope. The owner reports that this condition is undergoing engineering study at present.

Overall the concrete spillway works are in fair condition. The spillway walls at the crest appear in good horizontal and vertical alignment. There is an expansion joint in these walls exactly at the flashboards. Both expansion joints have recently been caulked and thin concrete patches have been made to repair spalled areas at the ends of the flashboards (see Photographs 13-14, Appendix C). According to the public works superintendent, the patches were made in 1978 in an attempt to prevent water from passing through the expansion joint and undermining the foundation and backfill for the spillway. During the inspection, it was possible to probe along the west wall of the spillway to a depth of 4 feet near the expansion joint. The backfill for both the east and the west walls has settled (see Photograph 12, Appendix C). Weep holes in the spillway walls as shown on the record plans were plugged in 1978. The record plans show no cutoffs or projections for the full height of the spillway walls. The core wall for the main embankment is shown as being extended beneath the spillway floor and 4 feet beyond the easterly spillway wall. The core wall extends vertically to elevation 1488 which is 1 foot above the spillway crest and 2 feet below the top of flashboards. Water marks on the spillway walls indicate that the reservoir is maintained at the top of flashboard elevation for lengthy periods.

The approach channel for the spillway is satisfactory with no obstructions noted. The riprap floor for spillway approach is about 1 foot lower than the concrete spillway crest (see Photograph 2, Appendix C). The riprap should be graded up to the concrete to form a smoother transition at this point.

The spillway chute channel which conveys the spillway discharge around the east end of the dam shows evidence of recent repairs including caulking of the expansion joints and plugging of old weep holes. There are 3-inch diameter drilled weep holes in both sides of the spillway channel which were part of the 1978 work. The new drain holes are about midway up the sides of the channel walls whereas the plugged original 3-inch drains are located at the bottom of the walls (see Photograph 6, Appendix C).

The floor of the spillway channel shows vertical displacement of approximately 1" at expansion joints within about 60 feet of the spillway crest (see Photograph 13, Appendix C). There is also about a 1/4-inch vertical displacement of the channel walls within this area.

The floor of the spillway channel at its transition with the spillway crest has a 12-foot long longitudinal crack near the center. The crack is tight and there is no exposed reinforcing steel.
There is vertical cracking (about 1/8 inch wide) with efflorescence in the walls of the spillway channel, particularly on the east side (see Photograph 6, Appendix C). These cracks are widest near the bases of two large Maple trees growing near the channel as shown in the above referenced photograph. The point where the 12-inch high-level outlet enters the spillway channel is satisfactory with no erosion of the concrete floor. Some dampness was noted at the junction between the west wall and floor of the spillway channel.

Recent excavation work has been done at the end of the spillway channel. Because the spillway was not in operation during the inspection, discharge conditions at the end of the spillway channel could not be observed. There is no riprap at the end of the concrete channel and the plans show no cutoff or header curb at the end of the chute. No undercutting of the channel was noted.

The discharge from the spillway channel enters a small pool and then passes through 2 culverts, 3 feet in diameter, beneath Reservoir Road and then enters Lower Root Reservoir. Backwater from these culverts could submerge the end of the spillway channel during high flows and create a stilling basin effect, particularly when Lower Root Reservoir is full.

c. Appurtenant Structures

The 12-inch high-level outlet, and the 16-inch low-level outlet are both reported to be fully operable. The valve manholes on the downstream slope of the dam are approximately 6 feet deep, 4 feet in diameter. Both manholes have standard 2-foot diameter cast iron covers. The manholes are made of circular, concrete barrel blocks. Courses of blocks are displaced with mortar missing. There is sediment in the bottom of the manholes and the valve bodies are rusted. Backwater from the 1878 dam about 50 feet downstream of the 16-inch outlet could cause submergence of the outlet and bottom of the valve manhole. At the time of inspection there was no water behind the 1878 dam.

The water supply intake and chlorinator for the town distribution system are located at Lower Root Reservoir.

d. Reservoir Area

The entire reservoir area was drained and a program to excavate sediment was on-going at the time of inspection. There are no structures around the reservoir which would be subject to back-flooding. There are no unstable slopes upstream of the dam which would cause any adverse effects.

e. Downstream Channel

Discharges from the damsite pass under Reservoir Road through 2 culverts and then enter Lower Root Reservoir. The culverts are submerged when water in Lower Root Reservoir is at its spillway crest. The area near the inlet of the road culverts has recently been excavated as part of the current work program (see Photograph 4, Appendix C). The two existing culverts under Reservoir Road were installed in 1978 and replaced two older culverts.

3.2 EVALUATION

Based on the visual inspection, Upper Root Reservoir Dam is in fair condition. The low areas in the crest are serious in that they could cause the dam to overtop and erode during high flows. The areas adjacent to the spillway walls are particularly vulnerable.
The localized depression on the upstream slope of the dam near the inlet for the 12-inch conduit is being investigated by the owner. This condition should be closely monitored and the investigation continued until the cause of the depression is determined. The presence of anomalous vegetation on the downstream slope and the presence of a deep erosion gully at the toe of the dam might indicate unusual seepage and should be investigated further. The record plans indicate that a drain was constructed in this area during construction, possibly to intercept a spring, but this could not be confirmed. Construction records might yield information on reason for this drain.

An inspection report dated 1971 indicated seepage in the same area of the toe as the existing gully. Subsequent inspection reports did not.

The riprap on the upstream face does not provide sufficient protection to the embankment against wave erosion when the reservoir is at or above the top of flashboards. This condition should be corrected.

The concrete core wall at the spillway extends to elevation 1488 which is about 2 feet below the top of flashboards. In addition, the 1959 plans do not show any anti-seep cutoffs behind the spillway walls. When the reservoir is maintained at top of flashlight elevation, the potential exists for seepage and piping behind the spillway walls.

The settlement of the embankment adjacent to the spillway walls (see Photograph 12, Appendix C) and the erosion gully at the easterly downstream toe may be an indication of this condition and should be investigated.

The flashboards are positioned at the expansion joints in the spillway walls. The thin concrete patches placed to seal these joints are beginning to crack. This condition will require continual maintenance and monitoring to prevent water from eroding the spillway foundation and backfill. The possibility for relocating the flashboards upstream of this joint should be evaluated.

A complete listing of Recommendations and Remedial Measures are given in Section 7.
SECTION 4
OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 OPERATIONAL PROCEDURES

a. General
Operational procedures for the project are not formally established but are based on the experience of the operating personnel.

b. Description of any Warning System in Effect
There is no written surveillance or warning system in effect. According to the Superintendent of the Lenox Department of Public Works, the dam is visited daily and is observed during storm periods.

4.2 MAINTENANCE PROCEDURES

a. General
There is no formal maintenance manual for the project. Maintenance is carried out as needed.

b. Operating Facilities
Mowing and removal of brush from embankments is done annually. The last repairs to the dam were completed in 1978. Repair plans were prepared by Whitman and Howard Inc., designers of the dam. A current program to increase the reservoir storage by excavation is on-going.

4.3 EVALUATION

A formal written operational and maintenance plan, including an annual comprehensive technical inspection by a qualified Registered Professional Engineer, should be developed to ensure that problems that are encountered can be remedied within a reasonable period of time. A formal written surveillance and downstream warning (emergency preparedness program) plan should be established for this structure.
SECTION 5
EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 GENERAL

Upper Root Reservoir is located on the upper reach of Lenox Mountain Brook. The total drainage area contributing to Upper Root Reservoir Dam is about 650 acres. The watershed is moderately steep to rolling terrain with mostly hardwood forest cover. The reservoir lies in an apparent bedrock valley mantled by glacial debris of variable thickness. The glacial till has been documented by twelve borings taken in 1959 in connection with dam construction.

5.2 DESIGN DATA

No hydraulic or hydrologic design data or criteria were available from either the owner or the designer of the dam. An effort should be made by the owner and designer to recover the original design data for future reference.

5.3 EXPERIENCE DATA

The dam reportedly has not overtopped at any time since its construction in 1960. Work on the spillway in 1978 was required to stop water from entering the embankment through joints and weep holes in the spillway walls. There has been no apparent damage to the spillway as a result of any floods at the damsite.

5.4 TEST FLOOD ANALYSIS

Upper Root Reservoir Dam is classified as small size having a hydraulic height of 39.5 feet and a top of dam storage of 350 acre-feet. The dam was determined to have a high hazard classification. Using the Recommended Guidelines for Safety Inspection of Dams, the test flood range is 50% to 100% of the Probable Maximum Flood (PMF).

Because the dam height is at the upper end of the range for height criteria, the PMF was selected as the Test Flood. The PMF was estimated using methods contained in "Preliminary Guidance for Estimating Maximum probable Discharges in Phase I Dam Safety Investigations" issued by the New England Division Corps of Engineers. The curve for mountainous terrain was used in this estimate. The PMF test flood inflow for the 1.02 square mile drainage area was estimated to be 2400 cfs. Storage effects would reduce the test flood inflow to a routed test flood outflow of 2100 cfs.

Since the flashboard supports are of the non-yielding type, the hydraulic analysis considered spillway performance both with and without flashboards.

During test flood conditions without flashboards in-place, water would rise to elevation 1493.8 which is 0.3 feet above the design top of dam and about 1 foot above the low areas in the existing crest. This assumes the reservoir at elevation 1487 at the start of the test flood.

With flashboards, a flood equal to 50% of the test flood inflow would cause water to rise to elevation 1493.5 which is the design top of dam. Under the existing conditions, however, the dam would be overtopped at the low areas near the
center of the dam and behind the spillway walls. The estimated depth of overtopping would be between 1/2 foot and 1 foot.

Both analyses assume that the 12-inch outlet is open. Since the 16-inch outlet would normally be closed and may be inaccessible under test flood conditions, no flow was assumed from this conduit.

The overtopping of the dam could cause serious erosion of the embankment at its highest point which could lead to a breach in the dam.

5.5 DAM FAILURE ANALYSIS

The impact of failure of the dam was assessed using Corps of Engineers "Rule of Thumb Guidance for Estimating Downstream Dam Failure Hydrographs." The estimate assumes:

a. the reservoir surface is at the top of the dam at the time of the breach, and

b. a breach of 40% of the dam length at mid-height occurs (180 feet).

The estimated discharge resulting from the breach would be 73,700 cfs. The addition of spillway flow would cause a total breach flow of 75,250 cfs.

Under the assumed breach conditions, Lower Root Reservoir Dam would be overtopped (see Photograph 4, Appendix C). The intake system for the town water distribution would probably be destroyed.

Downstream of Lower Root Reservoir, the brook is contained in a narrow valley which drops 140 feet in 3300 feet. There are no large natural storage areas within this reach which would provide for any significant attenuation of the flood wave.

Approximately 0.9 miles downstream of the dam site, Lenox Mountain Brook crosses beneath Lenox Road in a 4-foot diameter culvert with approximately 1.5 feet of earth cover at its upstream end. The flood wave would cause water to pass over the road at an estimated depth of 13 feet. There are 2 to 4 homes in this area which have floor elevations about 5 feet to 8 feet above the low point in the road. These homes would be damaged or destroyed by impact and flooding. Prior to the breach, water would be passing over the low point in the road at an estimated depth of 3 feet.

Because of the potential for loss of more than a few lives in the downstream area, Upper Root Reservoir Dam was classified High Hazard.
SECTION 6
EVALUATION OF STRUCTURAL STABILITY

6.1 VISUAL OBSERVATIONS

The most significant visual observations about this dam are the low areas at the crest, particularly adjacent to the spillway walls. Also, the local depression at the upstream slope of the dam near the 12-inch conduit warrants further investigation, as do the areas of anomalous vegetation and the deep gully at the easterly downstream toe. The cause of this gully is not known. Its presence was not reported in the most recent inspection of the Massachusetts Department of Public Works.

The cracked floor of the spillway channel could be caused by undermining of its base and should be monitored on a continuing basis.

Animal burrows are a threat to any earth embankment dam. Control of the rodent population near the damsite should be part of the normal maintenance program.

6.2 DESIGN AND CONSTRUCTION DATA

No design or construction records for the original construction were available, other than a set of record plans on file with the Lenox Department of Public Works. Copies of record plans are included in Appendix B.

6.3 POST-CONSTRUCTION CHANGES

There have been no post-construction changes to this structure according to the public works superintendent. The last repairs to the dam were made in 1978 and consisted of work on the concrete spillway to halt suspected erosion of the spillway channel floor and spillway wall backfill. Old weep holes at the base of the spillway channel walls were filled and new 3-inch drain holes in the walls of the spillway channel were drilled in 1978. This work was performed by Peter Francese and Son Inc. based on specifications prepared by Whitman and Howard, Inc., designers of the dam.

A 5-foot high riser pipe has recently been added to the upstream end of the 16-inch outlet to allow water to be drawn off above the reservoir bottom.

There is a program, which is near completion, to enlarge the reservoir storage capacity. The new storage volumes were taken into account during preparation of this inspection report. The current work is being performed by Petricca Construction Company of Pittsfield, MA under the supervision of J. F. Moynihan & Associates of Lee, MA.

6.4 SEISMIC STABILITY

The dam is located in Seismic Zone No. 2 and in accordance with recommended Phase I guidelines, does not warrant seismic analysis.
SECTION 7
ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Condition
The Phase I visual inspection of Upper Root Reservoir Dam indicates that the dam is in fair condition. However, a number of deficiencies were observed, which if not remedied, could develop into hazardous conditions.

b. Adequacy of Information
The lack of in-depth engineering data did not allow for a definitive review. Therefore, the condition of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and sound engineering judgment.

c. Urgency
The recommendations and remedial measures described in Paragraphs 7.2 and 7.3 should be implemented by the owner within 12 months after receipt of this Phase I Inspection Report except as noted.

7.2 RECOMMENDATIONS

The owner should retain a qualified Registered Professional Engineer to:

(1) Investigate and design any necessary repairs for conditions causing the depression at the upstream slope of the dam near the 12-inch outlet. This should be done immediately upon receipt of this report. The reservoir should not be allowed to refill without the recommendation of the engineer based on his evaluation of this condition. The engineer should inspect the dam during and after filling of the reservoir.

(2) Investigate the cause and design repairs for the gully at the easterly downstream toe of the dam and set up a program to monitor this area and other areas along the toe for possible unusual seepage.

(3) Design repairs to rutted areas on the downstream slope and at the toe of the dam.

(4) Design repairs to restore the crest elevation of the dam to a uniform grade of at least the design elevation. Permanent reference points should be established to allow future checks on possible movements in the crest, particularly near the spillway walls and also the riprap surface on the upstream slope, westerly end.

(5) Investigate the spillway channel for possible undermining and/or seepage, particularly where the floor is cracked downstream of the spillway crest. This investigation should include the walls of the spillway and spillway channel where settlement has been noted.
(6) Investigate replacement of existing flashboard supports with yielding type supports. This investigation should also consider relocating the flashboards upstream of the expansion joints of the spillway walls.

(7) Design methods to extend the slope protection to a higher elevation on the upstream face in order to halt undercutting of the embankment.

(8) Investigate the condition and adequacy of the existing toe drainage system, particularly in light of recent construction activity in this area. The drain outlets should be located and their locations permanently referenced, and protected with small animal guards. Repairs should be designed to the drains as necessary. A means should be designed to allow discharges from the drains to be gaged. The engineer should establish a method and schedule for recording these discharges and the reservoir elevation at the time of observation.

(9) Design procedures and supervise removal of trees within 25 feet of the spillway discharge channel.

The owner should carry out all the recommendations made by the engineer. All work should be done under supervision of the engineer.

7.3 REMEDIAL MEASURES

a. Operation and Maintenance Procedures

The owner should implement the following remedial measures:

(1) Clean out valve manholes on downstream slope, and clean and lubricate valve bodies to insure operability.

(2) Establish a formal written program for operation and maintenance.

(3) Provide round-the-clock surveillance during the periods of unusually heavy precipitation.

(4) Develop a formal written program for warning downstream residents in case of emergency (emergency preparedness program).

(5) Engage a qualified Registered Professional Engineer to make comprehensive technical inspection once a year.

(6) Control the population of burrowing animals and fill in all existing animal burrows.

7 - 2

Upper Root Reservoir Dam
(7) Recover construction data and original data and criteria used in the design of the dam; in particular, information about the drain added at the east end of the dam.

(2) Seal all cracks in the spillway walls and floor, and walls of the spillway channel.

(9) Record discharges from toe drain outlet in accordance with the schedule and methods specified by the engineer.

7.4 ALTERNATIVES

There are no practical alternatives to the above recommendations.
VISUAL INSPECTION PARTY ORGANIZATION

NATIONAL DAM INSPECTION PROGRAM

<table>
<thead>
<tr>
<th>DAM: Upper Root Reservoir MA 00019</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE: November 16 & 17, 1980</td>
</tr>
<tr>
<td>TIME: 10:30 a.m. (11/16/80)</td>
</tr>
<tr>
<td>WEATHER: Clear, sunny 40°F</td>
</tr>
<tr>
<td>W.S. ELEV. level U.S. DN.S. outlet</td>
</tr>
<tr>
<td>ELEV. DATUM: Water surface elevation (NGVD) on Record Plans. Note: Reservoir being dredged at time of inspection</td>
</tr>
</tbody>
</table>

INSPECTION PARTY:

1. J.F. Cysz, P.E. (11/16; 11/17)
2. J.E. Walsh, P.E. (Baystate Environmental Consultants, Inc.) (11/16)
4. L.D. Zwingelstein (11/17)
5.
6.

OTHERS PRESENT DURING INSPECTION:

2.
3.
4.

A-1
Visual Inspection Checklist

DAM: Upper Root Reservoir MA 00019
DATE: November 16 & 17, 1980

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>Embankment crest elevation is between 1493.5 and 1492.5±.</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>Reservoir is drained at present. Normal pool is 1490 which is top of flashboards. Spillway crest is 1487.</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown - water mark 5" over flash boards.</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None observed, several animal burrows on d/s slope.</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>Not paved</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>Sag about 1' near dam center, settlement 1' behind spillway walls.</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None visible</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Sag about 1' near dam ctr. 1' low areas behind spillway walls.</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>OK</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Settlement and voids behind spillway abutments and downstream walls (for spillway chute)</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>No structural items on slope, concrete headwalls for outlet pipes are OK.</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>Vehicle tracks on crest and at right downstream toe and construction activity at d/s toe near center</td>
</tr>
<tr>
<td>Vegetation on Slopes</td>
<td>Thick grass, matted areas of anomalous vegetation, appears mowed.</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td>No sloughing visible on d/s. Erosion gully (see Appendix C) at left d/s toe. Erosion wave bench at normal pool on u/s face.</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>Warping and thin areas of riprap on u/s slope. Riprap is dumped, graded-max. 18" size.</td>
</tr>
</tbody>
</table>

A-2
VISUAL INSPECTION CHECKLIST

DAM: Upper Root Reservoir
DATE: November 16-17, 1980

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM EMBANKMENT (cont'd.)</td>
<td></td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toes</td>
<td>No cracking observed. 2' deep x 1' wide gully at left d/s toe.</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>Reservoir drawn down for several months prior to inspection; areas of anomalous vegetation noted.</td>
</tr>
<tr>
<td>Piping or Boils</td>
<td>14-inch deep, 2½' diam. sink hole 7' northeast of 12" high level outlet, on upstream slope.</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>Foundation drain outlet noted at toe to the east of dam center. Flow about 1/4 gpm, no animal guard, drain requires maintenance. Rust color sediment at drain outlet. No drain outlet visible to west of center (area of recent excavation). (Second drain outlet shown on record plan.)</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>2" stone fill observed in excavation. Rock toe drain may have been disturbed by recent excavation activity.</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>None</td>
</tr>
</tbody>
</table>
VISUAL INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE</td>
<td>2 pipe outlets. 16" CI low level (about 28' below crest of flashboards). 12" CI high level outlet about 13' below crest of flashboards.</td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td>OK. No formal approach channel</td>
</tr>
<tr>
<td>Slope Conditions</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Log Boom</td>
<td>None</td>
</tr>
<tr>
<td>Debris</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td>Not applicable</td>
</tr>
<tr>
<td>b. Intake Structure</td>
<td>Concrete headwalls with steel grates</td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td>Good</td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td>No stop logs or slots</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>OUTLET WORKS - CONTROL TOWER</td>
<td>No control tower; outlets controlled by horizontal mount gate valves in concrete block manholes at toe of downstream slope - manholes about 6' deep, 4' diameter. Both a. and b. on this sheet apply to the manholes (valve pits).</td>
</tr>
<tr>
<td>a. Concrete and Structural</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Poor</td>
</tr>
<tr>
<td>Condition of Joints</td>
<td>Poor - courses of block displaced; mortar missing; cover manhole frame not anchored.</td>
</tr>
<tr>
<td>Spalling</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Rusting or Staining of Concrete</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>Reservoir drawn down. Sediment in bottom of valve pit.</td>
</tr>
<tr>
<td>Joint Alignment</td>
<td>Poor - courses of concrete block out of alignment.</td>
</tr>
<tr>
<td>Unusual Seepage or Leaks in Gate Chamber</td>
<td>Reservoir drawn down. Sediment in bottom of valve pit.</td>
</tr>
</tbody>
</table>

Could be backwater in manhole bottoms from 1878 dam. No water behind 1878 dam at time of inspection.
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - CONTROL TOWER (cont'd.)</td>
<td>16"</td>
</tr>
<tr>
<td>Cracks</td>
<td>Courses of block displaced; mortar missing; cover manhole frame not anchored.</td>
</tr>
<tr>
<td></td>
<td>Courses of concrete block out of alignment.</td>
</tr>
<tr>
<td>Rusting or Corrosion of Steel</td>
<td>Gate valve and outlet pipe rusted.</td>
</tr>
<tr>
<td>b. Mechanical and Electrical</td>
<td></td>
</tr>
<tr>
<td>Air Vents</td>
<td>None</td>
</tr>
<tr>
<td>Float Wells</td>
<td>None</td>
</tr>
<tr>
<td>Crane Hoist</td>
<td>None</td>
</tr>
<tr>
<td>Elevator</td>
<td>No steps in manholes</td>
</tr>
<tr>
<td>Hydraulic System</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Service Gates</td>
<td>Rusted - no handwheel. Valve nut only.</td>
</tr>
<tr>
<td>Emergency Gates</td>
<td>None</td>
</tr>
<tr>
<td>Lightning Protection System</td>
<td>None</td>
</tr>
<tr>
<td>Emergency Power System</td>
<td>None</td>
</tr>
<tr>
<td>Wiring and Lighting System in Gate Chamber</td>
<td>None</td>
</tr>
</tbody>
</table>

DAM: Upper Root Reservoir MA 00019

DATE: November 16. 17, 1990

A-6
VISUAL INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - TRANSITION AND CONDUIT</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>16" C.I. outlet conduit discharges at pool, pool formed by old dam d/s of dam.</td>
</tr>
<tr>
<td></td>
<td>12" C.I. outlet conduit discharges into spillway chute, interiors of conduits not visible.</td>
</tr>
<tr>
<td></td>
<td>Recent excavation at discharge end of 16" outlet; erosion of toe at 16" discharge is not known (see photo).</td>
</tr>
<tr>
<td></td>
<td>There is a temporary extension of the 16" outlet to divert outflow away from lower reservoir during excavation in upper reservoir (see photo).</td>
</tr>
<tr>
<td>Rust or Staining on Concrete</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td></td>
</tr>
<tr>
<td>Alignment of Monoliths</td>
<td></td>
</tr>
<tr>
<td>Alignment of Joints</td>
<td></td>
</tr>
<tr>
<td>Numbering of Monoliths</td>
<td></td>
</tr>
</tbody>
</table>
VISUAL INSPECTION CHECKLIST

DAM: Upper Root Reservoir
DATE: November 16 & 17, 1987

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</td>
<td>See previous sheet - no endwalls for 16" outlet.</td>
</tr>
<tr>
<td></td>
<td>12" C.I. outlet discharges to spillway chute.</td>
</tr>
<tr>
<td></td>
<td>16" C.I. outlet discharges to pool behind remains of old dam - (1878): then to 3' diameter CMP culverts at terminus of spillway chute.</td>
</tr>
</tbody>
</table>

General Condition of Concrete

Rust or Staining

Spalling

Erosion

Visible Reinforcing

Any Seepage or Efflorescence

Condition at Joints

Drain holes

Channel

| Loose Rock or Trees Overhanging Channel | None |

| Condition of Discharge Channel | Area of ongoing excavation/construction at discharge area for 16" upstream of old dam. |

Note: There is a valve box with cover about 10' east of manhole for 16" gate valve. This valve is on a 12" C.I. outlet just to the east of the 16" outlet. According to plan, this is a bypass for the 16" valve.
VISUAL INSPECTION CHECKLIST

CAM: Upper Root Reservoir MA 00019 **DATE:** November 16 & 17, 1980

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</td>
<td>Note: Spillway has 2½" wood plank flashboards, 2'-9" high - 4"x4½" - H - beam members @ 7.6' O.C. support flashboards - supports not hinged or knotted (non yielding).</td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td>Sloped riprap and concrete</td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>None</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>Riprap is below concrete floor in approach channel.</td>
</tr>
<tr>
<td>b. Weir and Training Walls</td>
<td>Weir is 2'-9" - height of wood flashboards - there is no concrete weir control section. Flashboards are at expansion joint.</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>Fair - cracked, some joint displacement at floor and walls of discharge chute, thin patches cracked and loose at flashboards where flashboards meet spillway abutments. Vertical alignment of walls satisfactory. Settlement and voids behind spillway abutments and chute walls. 2 large trees near chute walls. Honeycomb concrete at joint between chute walls and chute floor (dampness noted).</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>Yes, at cracks</td>
</tr>
<tr>
<td>Spalling</td>
<td>Yes, near expansion joints of spillway abutments.</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>None</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>Yes - efflorescence at cracks, dampness at joint between chute walls and chute floor.</td>
</tr>
<tr>
<td>Drain Holes</td>
<td>Yes. 3" diameter drilled holes, no pipes visible, backfill type not known.</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OUTLET WORKS - SPILLWAY WEIR, APPROACH</td>
<td>Spillway chute discharges into pool upstream of 2 - 3' diameter C.I.P. road culverts. Road culverts drain into Lower Root Reservoir.</td>
</tr>
<tr>
<td>AND DISCHARGE CHANNELS (continued)</td>
<td></td>
</tr>
<tr>
<td>c. Discharge Channel</td>
<td>General Condition: Active construction/excavation in discharge channel.</td>
</tr>
<tr>
<td></td>
<td>Loose Rock Overhanging Channel</td>
</tr>
<tr>
<td></td>
<td>Trees Overhanging Channel</td>
</tr>
<tr>
<td></td>
<td>Floor of Channel</td>
</tr>
<tr>
<td></td>
<td>Other Obstructions</td>
</tr>
</tbody>
</table>
VISUAL INSPECTION CHECKLIST

DAM: Upper Root Reservoir | **DATE:** November 16 & 17, 1980

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SERVICE BRIDGE</td>
<td>There is no service bridge over spillway.</td>
</tr>
<tr>
<td>a. Super Structure</td>
<td></td>
</tr>
<tr>
<td>- Bearings</td>
<td></td>
</tr>
<tr>
<td>- Anchor Bolts</td>
<td></td>
</tr>
<tr>
<td>- Bridge Seat</td>
<td></td>
</tr>
<tr>
<td>- Longitudinal Members</td>
<td></td>
</tr>
<tr>
<td>- Under Side of Deck</td>
<td></td>
</tr>
<tr>
<td>- Secondary Bracing</td>
<td></td>
</tr>
<tr>
<td>- Deck</td>
<td></td>
</tr>
<tr>
<td>- Drainage System</td>
<td></td>
</tr>
<tr>
<td>- Railings</td>
<td></td>
</tr>
<tr>
<td>- Expansion Joints</td>
<td></td>
</tr>
<tr>
<td>- Paint</td>
<td></td>
</tr>
<tr>
<td>b. Abutment & Piers</td>
<td></td>
</tr>
<tr>
<td>- General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>- Alignment of Abutment</td>
<td></td>
</tr>
<tr>
<td>- Approach to Bridge</td>
<td></td>
</tr>
<tr>
<td>- Condition of Seat & Backwall</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF AVAILABLE DESIGN, CONSTRUCTION AND MAINTENANCE RECORDS</td>
<td>B-1</td>
</tr>
<tr>
<td>PREVIOUS INSPECTION REPORTS</td>
<td>B-2 to B-11</td>
</tr>
<tr>
<td>PLANS, SECTIONS AND PROFILES</td>
<td>B-12 to B-18</td>
</tr>
<tr>
<td>BORING LOGS</td>
<td>B-19 to B-20</td>
</tr>
</tbody>
</table>

Upper Root Reservoir Dam
LIST OF AVAILABLE DESIGN, CONSTRUCTION AND MAINTENANCE RECORDS

A. PLANS AND SPECIFICATIONS

A set of plans with as-built data is on file with the owners, Lenox Water Department, 31 Main Street, Lenox, MA. Reduced copies of significant portions of the plans are included in Appendix A. No specifications were available from either the owner or the design engineer.

B. DESIGN RECORDS

No design records were available from either the owner or the design engineer.

C. CONSTRUCTION RECORDS

No construction records were available.

D. MAINTENANCE

Recent maintenance records are available from the owner.
PREVIOUS INSPECTION REPORTS

A. Inspections of dams were performed by the Massachusetts Department of Public Works, District 1, and reports are on file at District 1 Headquarters, Pittsfield-Lenox Road, Lenox, MA - Latest Report, related correspondence, and 1973 Description of Dam are attached.

B. Earlier inspections of dams were performed by the Berkshire County Engineer for the County Commissioners, and reports are filed at the County Engineer's office, County Court House, Pittsfield, MA - Latest Report is attached.
INSPECTION REPORT - DAMS AND RESERVOIRS

1. Location: City/Town __LENOX__ Dam No. 1-2-156-4
 Name of Dam __Upper Root Reservoir__ Inspected by: __FJORDAN - FDSPANOL__
 Date of Inspection __9-30-76__

2. Owner/s: per: __Assessors__ Prev. Inspection __X__
 Reg. of Deeds __L. ANO__ Pers. Contact ____________

 1. Lenox Water Co. __Lenox, MA__ 637-0421
 Name ____________ St. & No. ____________ City/Town ____________ State ____________ Tel. No. ____________

 2. ____________ ____________ ____________ ____________

 3. ____________ ____________ ____________ ____________

 3. Caretaker [if any] e.g. superintendent, plant manager, appointed by absentee owner, appointed by multi owners.
 Name ____________ St. & No. ____________ City/Town ____________ State ____________ Tel. No. ____________

4. No. of Pictures taken ____________

5. Degree of Hazard: [if dam should fail completely]*
 1. "Minor_ X__________ 2. "Moderate_ X__________
 3. "Severe_ X__________ 4. "Disastrous_ X__________

 *This rating may change as land use changes [future development]

6. Outlet Control: Automatic ____________ Manual ____________
 Operative ____________ yes: ____________ no:
 Comments: __

 upstream face of Dam: Condition:
 1. "Good_ X__________ 2. "Minor Repairs_ X__________
 Comments: __

 B-3

Comments: ___

Comments: __

10. Water level 9 time of inspection: 0.2' ft. above x. below x.

 ton of dam
 principal spillway x
 other

11. Summary of Deficiencies Noted:

 Growth [Trees and Brush] on Embankment
 Animal Burrows and Hasnouts
 Damage to slopes or toe of dam
 Cracked or Damaged Masonry
 Evidence of Slapage
 Evidence of Piping
 Erosion
 Leaks
 Trash and/or debris impeding flow
 Clogged or blocked spillway
 Other
This dam is in good condition and appears to be safe.
For location see Topo Sheet 2-D.

13. Overall Condition:

1. Safe x
2. Minor repairs needed
3. Conditionally safe - major repairs needed
4. Unsafe
5. Reservoir impoundment no longer exists [explain]

Recommend removal from inspection list

B-5
February 17, 1972

Superintendent-Water Department
Town Hall
Lenox, Massachusetts

Re: Inspection of Dam
Lenox
Upper Root Reservoir #2 Dam

Dear Sir:

The Massachusetts Department of Public Works inspected Upper Root Reservoir #2 Dam in the Town of Lenox of which the Town of Lenox is the owner.

The inspection was made in accordance with Chapter 253 of the Massachusetts General Laws, as amended by Chapter 595 of the Acts of 1970.

The results of the inspection indicated that no immediate maintenance or repairs were required; however, the following item was noted that will require your attention in the future:

1. Investigate and correct seepage at toe of dam from flume to approximately 150' west.

We are calling this item to your attention now before it becomes more serious and expensive to correct.

Very truly yours,

FRED. C. SCHWEIM P.E.
Deputy Chief Engineer

IRA:mm
C.c. Dean P. Amidán
DESCRIPTION OF DAM

District: ONE

Submitted by: RD Jordan

Dam No.: 1-2-152-L

Date: 11/9/72

City/Town: Lenox

Name of Dam: Upper Root Reservoir

1. Location: Topo Sheet No. 2-D

Provide 8-1/2" x 11" in clear copy of topo map with location of Dam clearly indicated.

2. Year built: 1959-60

Year/s of subsequent repairs

3. Purpose of Dam: Water Supply x. Recreational

Irrigation Other

4. Drainage Area: 1 sq. mi. 150 acres.

5. Normal Ponding Area: 15 Acres; Avg. Depth

Impoundment: gals; acre ft.

6. No. and type of dwellings located adjacent to pond or reservoir

i.e. summer homes etc. none

7. Dimensions of Dam: Length 850'. Max. Height 36'.

Slopes: Upstream Face earth riprapped 3:1

Downstream Face earth 3:1

Width across top 10'

8. Classification of Dam by Material:

Earth x. Conc. Masonry . Stone Masonry

Timber . Rockfill Other

9. A. Description of present land usage downstream of dam:

100 % rural; % urban.

B. Is there a storage area or flood plain downstream of Dam which could accommodate the impoundment in the event of a complete dam failure

Yes ______. No ______.
10. Risk to life and property in event of complete failure.

No. of people 10
No. of homes 2
No. of Businesses none
No. of Industries
No. of Utilities
Railroads
Other dams Lower Root
Other

11. Attach Sketch of dam to this form showing section and plan on 8-1/2" x 11" sheet.
INSPECTION OF DAMS

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>City or Town of</td>
<td></td>
</tr>
<tr>
<td>Name of Dam</td>
<td></td>
</tr>
<tr>
<td>Owner</td>
<td></td>
</tr>
<tr>
<td>Caretaker</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>North Side Reservoir Road, 1/2 mile west of Deerfield Road and Busky Road intersection.</td>
</tr>
<tr>
<td>Type of Dimensions</td>
<td>Earth comp., core 3% comp., 32' high, 15' for at face.</td>
</tr>
<tr>
<td>Spillway, type and size</td>
<td>Dams, 72' long, 11' door, 12' wide. Last side of dam.</td>
</tr>
<tr>
<td>Outlets, type and size</td>
<td>12' and 12' pipe and gate.</td>
</tr>
<tr>
<td>Flashboards, type and height</td>
<td>12' wood.</td>
</tr>
<tr>
<td>Date Built</td>
<td>1959-60</td>
</tr>
<tr>
<td>Condition</td>
<td>Good</td>
</tr>
<tr>
<td>When last repaired</td>
<td></td>
</tr>
<tr>
<td>By whose orders</td>
<td></td>
</tr>
<tr>
<td>Nature of Repairs</td>
<td></td>
</tr>
<tr>
<td>Purpose of Dam</td>
<td>Town water supply</td>
</tr>
<tr>
<td>Approximate storage of water</td>
<td>15 acres, 50,000 cu ft, Flashboards 45 cu ft.</td>
</tr>
<tr>
<td>Approximate area of water shed</td>
<td>1 square mile.</td>
</tr>
<tr>
<td>Possible damage due to failure of dam</td>
<td>Deerfield Road and opposite Stoney and to Lower Foot Reservoir.</td>
</tr>
<tr>
<td>Remarks</td>
<td>Water 2' over Flashboards, 2' above at top of dam. 3' above to 150' west.</td>
</tr>
<tr>
<td>Recommendations</td>
<td>Investigate repairs.</td>
</tr>
</tbody>
</table>
A. SKETCHES COMPILED DURING PHASE I INSPECTION SHOWING GENERAL LAYOUT OF DAM, TYPICAL SECTIONS AND DETAILS OF SIGNIFICANT FEATURES:

Figure 1. General Plan of Dam site

B. RECORD PLANS:

Cover Sheet
Plan - Sheet 1
Sections - Sheet 3
Spillway - Sheet 4
Details - Sheet 5
Note: Elevation datum taken from plan dated 1959 prepared by Whitman & Howard Inc.
plan and profile of Upper Root Reservoir, concrete crest of spillway elevation 1487 NGVD

APPENDIX B FIGURE 1
GENERAL PLAN

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION
CORPS OF ENGINEERS
ROBERT G. BROWN & ASSOCIATES, INC.
Pittsfield, Massachusetts

NATIONAL PROGRAM FOR
INSPECTION OF NON-FEDERAL DAMS
UPPER ROOT RESERVOIR DAM
MA 00019
LENEX MOUNTAIN BROOK
MASSACHUSETTS

SCALE: NOT TO SCALE DATE: JAN 1981
WATER SUPPLY RESERVOIR

LENOX, MAS

Whitman & Howard, Inc., Engineers
89 Broad St. Boston, Mass.
April, 1959

LOCUS PLAN
Scale: lin. = 1 mi.
OX, MASS.

man & Howard, Inc., Engineers
Broad St. Boston, Mass.
April, 1959
SECTION THRU LOWER INTAKE

Scale: Hor. 1'-0" Vert. 1'-0"

SECTION THRU UPPER INTAKE

Scale: Hor. 1'-0" Vert. 1'-0"

WATER SUPPLY RESERVOIR
DETAILS OF DAM
LENOX, MASS.

Scale: As Noted

Whitman & Howard, Inc., Engineers
Reed & St., Boston, Mass.
TYPICAL BORING LOGS

A. Record Plan, Sheet 2

Upper Root Reservoir Dam
APPENDIX C

PHOTOGRAPHS

<table>
<thead>
<tr>
<th>Photograph Index</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photograph Index</td>
<td>C-1</td>
</tr>
<tr>
<td>Photographs</td>
<td>C-2 to C-10</td>
</tr>
</tbody>
</table>

Upper Root Reservoir Dam
Upper Root Reservoir
(Drained for ongoing excavation project)

Top of Dam Elv.1493.5 NGVD
Top of Crest Elv.1497.0 NGVD
Top of Flashboard Elv.1499.5 NGVD

Wave bench above riprap, embankment undercut up to 12".

Riprap surface warped.

Excavation in crushed stone 1'W x 2'D erosion gully.

Recently excavated areas.

Old 1878 Dam.
3' Dia. Culverts (2).

Bit. Conc. Access Road.

Photo of outlet works for lower root reservoir.

Lower Root Reservoir
Elv. = 1486 NGVD
APPENDIX C-1

PHOTOGRAPH INDEX

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION
CORPS OF ENGINEERS

ROBERT G. BROWN & ASSOCIATES, INC.
Pittsfield, Massachusetts

NATIONAL PROGRAM FOR
INSPECTION OF NON-FEDERAL DAMS
UPPER ROOT
RESERVOIR DAM
MA 00019
LENOX MOUNTAIN BROOK
LENOX, MASSACHUSETTS

SCALE: NOT TO SCALE DATE: JAN 1981
Photograph 1 - Downstream slope and crest looking west.

Photograph 2 - Upstream slope, crest and spillway approach looking west. Note level of water mark in relationship to top of riprap elevation.
Photograph 3 - Spillway looking upstream showing flashboards and spillway channel.

Photograph 4 - Downstream area from top of dam. Note remains of old dam and 2 culverts under Reservoir Road. Lower Root Reservoir is in the background. Areas beyond toe of dam have recently been excavated. Note valve manhole for 16" conduit at toe.

C-3
Upper Root Reservoir Dam
Photograph 5 - Spillway discharge channel looking downstream. Note joints in channel floor and projecting joint fillers in channel walls.

Photograph 6

View of 3-inch diameter drilled weep holes in walls of spillway channel. Note vertical cracks in wall and tree beyond. Note plugged weep hole at base of wall.
Photograph 7 - View of headwall at inlet to 12" high level conduit. Note depression to left of headwall.

Photograph 8 - Close up view of depression shown in Photograph 7.

C-5
Upper Root Reservoir Dam
Photograph 3 - View of wave bench with 12-inch undercutting of embankment above riprap on upstream slope.

Photograph 10 - View of upstream slope showing inlet for 16-inch low level conduit. A 5' riser has since been added at this inlet.
Photograph 11 - View of easterly downstream toe showing area of anomalous vegetation and gully (obscured by matted grass). Excavated area in foreground shows 3" to 4" crushed stone at toe.

Photograph 12 - Typical low area behind spillway walls. Areas are approximately 1 foot lower than the top of dam. There are no cutoffs of projections of the spillway walls.
Photograph 13 - Spillway channel showing vertical displacement in floor and wall. Note recent caulking of expansion joint.

Photograph 14 - Area at end of flashboards showing 1978 concrete thin patch at expansion joint in spillway wall.
Photograph 15 - Area of anomalous vegetation at easterly downstream toe.

Photograph 16 - One of a couple of active animal burrows at the damsite.
Photograph 17 - View of spillway (looking upstream) for Lower Root Reservoir Dam.
APPENDIX D

HYDRAULIC AND HYDROLOGIC COMPUTATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAINAGE AREA MAP</td>
<td>D-1</td>
</tr>
<tr>
<td>COMPUTATIONS</td>
<td>D-2 to D-14</td>
</tr>
</tbody>
</table>

Upper Root Reservoir Dam
Drainage Area: 320 acres

Size: High because of SOP, no.
Height: 35 ft.
Max. movement 18 ft.

Hazard: High because of possible fire loss of more than 5 lives

Test Flow: PMF = PMT x 2
Use PMF because of it is at upper limit.

From Peach guidance curves - Mountainous...2400
Max. 5SM_pmf = 2400 cu./min

Use PMF = 2400 cf/min Test Flow

(Note - this is about 1240 actual flow as estimated by 5SM Mountain Soil Cover Complex - 12/16/70)
Compute stage/discharge curve with flashboards and without flashboards. Assume high level 12" conduit in open position and low level outlet in normally closed position.

Spillway & Over Dam:

\[Q = C L H^{3/2} \]

Use \(C = 3.1 \) for Broad Crest weir.

Conduit Flow:

\[Q = a \sqrt{\frac{2gh}{1 + K_m + K_p l}} \]

- \(n = 0.013 \)
- \(l = 175' \)
- \(K_p = 0.0313 \)
- \(K_m = 1.0 \)
- \(a = \pi d^2 = 0.785 \) less trash bars Say 0.75 ft. net

\[Q = \frac{a \sqrt{2gh}}{(1 + K_m + K_p l)^2} = 0.36 a \sqrt{2gh} = 2.05 l \]
Upper Boot Res.

<table>
<thead>
<tr>
<th>Elev.</th>
<th>C</th>
<th>L</th>
<th>H</th>
<th>Q</th>
<th>C.L.H.</th>
<th>Q = CL.H/2</th>
<th>Q-2.05T/H</th>
<th>CONDUIT (4/3"")</th>
<th>FLOW/QUARTER DAY</th>
<th>Q (C.F.)</th>
<th>W. Flushboards</th>
<th>F. Flushboards/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1487</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>483</td>
<td>10.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.5</td>
</tr>
<tr>
<td>1489</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>0</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>483</td>
<td>10.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.5</td>
</tr>
<tr>
<td>1491</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>0</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>483</td>
<td>10.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.5</td>
</tr>
<tr>
<td>1493</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>0</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>483</td>
<td>10.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.5</td>
</tr>
<tr>
<td>1495</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>0</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>483</td>
<td>10.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.5</td>
</tr>
<tr>
<td>1497</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>0</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>483</td>
<td>10.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.5</td>
</tr>
</tbody>
</table>

CALCULATED By:
DATE:

CHECKED By:
DATE:

SCALE:
Stage V. Storage

<table>
<thead>
<tr>
<th>Elev.</th>
<th>Area Ac</th>
<th>Δ Storage Ac-ft</th>
<th>Σ Storage Ac-ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1487</td>
<td>18</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>1490</td>
<td>21</td>
<td>59</td>
<td>270</td>
</tr>
<tr>
<td>1495</td>
<td>23</td>
<td>110</td>
<td>380</td>
</tr>
</tbody>
</table>

Note:
- Original storage at top of flashboards about 600 cubic ft or 180,000 cubic ft. Recent excavation program will increase storage to about 900 cubic ft or 270,000 cubic ft, according to town engineer.

Stage V: Surface Area

MA00019
<table>
<thead>
<tr>
<th>(Q_p = 2400 \text{ cfs})</th>
<th>(Q_p = 2400 \text{ cfs})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{Storage} = 144 \text{ Aft})</td>
<td>(\Delta \text{Storage} = 144 \text{ Aft})</td>
</tr>
<tr>
<td>(144 \times \frac{1}{2} \times \frac{1}{102} = 2.65'')</td>
<td>(144 \times \frac{1}{2} \times \frac{1}{102} = 2.65'')</td>
</tr>
<tr>
<td>(Q_p = Q_p \times (1 - \frac{2.65}{19}))</td>
<td>(Q_p = Q_p \times (1 - \frac{2.65}{19}))</td>
</tr>
<tr>
<td>(Q_p = 2400 \times (1 - \frac{2.65}{19}) = 2065 \text{ cfs})</td>
<td>(Q_p = 2400 \times (1 - \frac{2.65}{19}) = 2065 \text{ cfs})</td>
</tr>
</tbody>
</table>

Table: \(\frac{1}{2} \text{ PMF with Flashboards} \)

<table>
<thead>
<tr>
<th>(Q_p = 1200 \text{ cfs})</th>
<th>(Q_p = 1200 \text{ cfs})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{Storage} = 89 \text{ Aft})</td>
<td>(\Delta \text{Storage} = 89 \text{ Aft})</td>
</tr>
<tr>
<td>(89 \times \frac{1}{102} = 1.64'')</td>
<td>(89 \times \frac{1}{102} = 1.64'')</td>
</tr>
<tr>
<td>(Q_{p1} = 1200 \times (1 - \frac{1.64}{9.5}) = 993 \text{ cfs})</td>
<td>(Q_{p1} = 1200 \times (1 - \frac{1.64}{9.5}) = 993 \text{ cfs})</td>
</tr>
</tbody>
</table>

Table: \(\frac{1}{2} \text{ PMF Test Floor without Flashboards} \)

<table>
<thead>
<tr>
<th>(Q_p = 2400 \text{ cfs})</th>
<th>(Q_p = 2400 \text{ cfs})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{Storage} = 66 \text{ Aft})</td>
<td>(\Delta \text{Storage} = 66 \text{ Aft})</td>
</tr>
<tr>
<td>(79 \times \frac{1}{102} = 1.21'')</td>
<td>(79 \times \frac{1}{102} = 1.21'')</td>
</tr>
<tr>
<td>(Q_{p2} = 1200 \times (1 - \frac{1.21}{9.5}) = 786 \text{ cfs})</td>
<td>(Q_{p2} = 1200 \times (1 - \frac{1.21}{9.5}) = 786 \text{ cfs})</td>
</tr>
</tbody>
</table>

Additional Notes:
- Water at design top of dam w/ flashboards
- Overtops x 0.3 over design top of dam or 1'-1/2' over existing low pts in crest
<table>
<thead>
<tr>
<th></th>
<th>¹/² PNF w/Flash.</th>
<th>PNF w/Flash.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflow</td>
<td>1200 cfs</td>
<td>2400 cfs</td>
</tr>
<tr>
<td>Routed Outflow</td>
<td>690 cfs</td>
<td>2065 cfs</td>
</tr>
<tr>
<td>Flood Elev.</td>
<td>1493.5</td>
<td>1493.8</td>
</tr>
<tr>
<td>Storage at Flood Elev.</td>
<td>350 Aft</td>
<td>355 Aft</td>
</tr>
<tr>
<td>Spillway Cap. at Flood Elev.</td>
<td>690 cfs</td>
<td>1650 cfs</td>
</tr>
<tr>
<td>Design Top of Dam E1.</td>
<td>1493.5</td>
<td></td>
</tr>
<tr>
<td>Low Pt in Existing Top.</td>
<td>1492.5</td>
<td></td>
</tr>
<tr>
<td>Spillway Cap. at Design Top of Dam</td>
<td>690 cfs</td>
<td>1550 cfs</td>
</tr>
<tr>
<td>Spillway Cap. at Existing Low Pt.</td>
<td>425 cfs</td>
<td>1250 cfs</td>
</tr>
<tr>
<td>% Routed Outflow</td>
<td>62%</td>
<td>61%</td>
</tr>
<tr>
<td>(%)^2 Values of crest adjusted to design grades</td>
<td>(100%)</td>
<td>(75%)</td>
</tr>
</tbody>
</table>
Check Yield of Flashboard Supports

Approx. depth 4 1/4"
Approx. width 4"

$S_{xx} = 6.67 \text{ in}^3$
Use $F_y = 33,000 \text{ psi}$

$M_{max} = SF_y = (6.67 \text{ in}^3 \times 33,000 \text{ psi}) = 220,110 \text{ in}-\text{lb}$ (Plastic Hinge)

Supports @ = 7 1/2' o.c. = L

Overflow Condition

$P = \left[\frac{62.5H + 62.5(H+B)}{2} \right] B$

$C = \left[\frac{B(2P_1 + P_2)}{3(P_1 + P_2)} \right] = B \left(\frac{3H + B}{3} \right)$

$M = 12 \times L \times P \times C$; $M = 375B^2L(1 + \frac{3}{4})$

Try $H = 3.8'$ = Top of Dam

$M = (375)(2.7)^2(7.5)(3.8 + \frac{2.3}{3}) = 96,365 \text{ in}-\text{lb}$

Conclude - Flashboard Supports Probably won't yield with water at top of dam

Ref. Eng News Record
Apr 30, '36

FORM 350-1 Available from SAW Inc., Groton, Mass 01450

D-10
Breach Analysis

Assume Breach width = W_b = 40% crest length at mid ht.

\[W_b = 0.4 \times 450' \]
\[W_b = 180' \]

\[Q_p = \frac{8}{27} W_b \sqrt{g} y_o \]

\[y_o = \text{Ht. from stream to pool level at failure} \]
\[y_o = 39^\circ \text{ (Inv out to Top of Dam)} \]

\[Q_p = \left(\frac{8}{27} \times 180 \times 32.2' \times 39^{3/2} \right) = 73,700 \text{ cfs} \]

Antecedent Discharge (Spillway capacity at Top of dam)
\[\text{w/flashbds} = 690 \text{ cfs} \]
\[\text{w/o flashbds} = 1550 \text{ cfs} \]

Storage S at Top of Dam = 350 Acre-ft.

For Total Breach Q use \[Q_p + Q \text{ spillway} = 73,700 + 1550 \text{ cfs} = 75,250 \text{ cfs}. \]
Notes:

Lower Root Reservoir lies immediately downstream of Upper Root Res. Dam is older than Upper Root - is about 600' long, Spillway length 55', 26" Frbel above Spillway Crest, 12 Ac normal surface area.

Storage avail between spillway crest and top of dam = \((26^3) \times \frac{12}{12} = 26\) Ac ft

This storage is small in relationship to S and would not significantly reduce breach Q from Upper Res. Spillway capacity for lower Root is about \(3.2 \times 55 \times 24^{\frac{2}{3}} = 560\) cfs. Flows greater than 72 this would overtop dam first at westerly end.

Below Lower Root, the brook is confined in a narrow valley section. Stream drops 140 ft in about 3300' (S = 4.2%) Stream crosses under Lenox Rd 0.9 Mile downstream of damsite in 4' Diam. CMP culvert with 1.5' earth cover. About 3-4 homes in the area of Lenox Rd could be endangered in this area. Flooding estimated between 1 and 10 feet. Potential for loss of more than a few lives in this area. Hazard High

(See Shvs 1-13)
Note: Class Section Data from USGS Sheet, Not by Survey.

Note - Flows Could Go to Northwest from here.

Rating of Valley Sect At Lenox R.D. 094. DS of Upper Root Res.

<table>
<thead>
<tr>
<th>Elev</th>
<th>C</th>
<th>H</th>
<th>L</th>
<th>Q</th>
<th>H</th>
<th>L</th>
<th>Q</th>
<th>H</th>
<th>L</th>
<th>Q</th>
<th>H</th>
<th>L</th>
<th>Q</th>
<th>Q Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1290</td>
<td>2.8</td>
<td>4</td>
<td>200</td>
<td>4480</td>
<td>1</td>
<td>200</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4480</td>
<td></td>
</tr>
<tr>
<td>1295</td>
<td>"</td>
<td>8</td>
<td>12610</td>
<td>6</td>
<td>"</td>
<td>8230</td>
<td>3</td>
<td>200</td>
<td>2900</td>
<td>3</td>
<td>300</td>
<td>4365</td>
<td>28165</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>"</td>
<td>8</td>
<td>42765</td>
<td>16</td>
<td>"</td>
<td>35840</td>
<td>13</td>
<td>"</td>
<td>26250</td>
<td>13</td>
<td>39370</td>
<td>144225</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note - Neglect Culvert - Capacity = 1000 cfs. Could plug with debris during high flows.
Discharge at Lenox Rd
Breach Q
75,250 cfs

DISCH RATING OF VALLEY
SECTION: 0.9 Mi D.S.
OF UPPER ROOT RES DAM

Elev. in ft NSUSB (From USGS Quad)

Discharge in 1000 cfs
APPENDIX E

INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS

Upper Root Reservoir Dam
NOT AVAILABLE AT THIS TIME