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The research I planned to report on is unfortunately not yet

completed. So the -.ollowing is only an outline of the problem.

It has been around for a long time without receiving a defini-

tive solution. It occupies quite a central position in system

theory and has been frequently misinterpreted. It is not in the

least controversial but it is unsolved.

As perhaps the only algebraist at this meeting, it is safer

for me if I use a reasonably nontechnical language. In such

terms, the topic of my paper is: What is the relation between

partial realizations and positivity?

Evidently I must now define "partial realization" and (in

relation to it) "positivity".

To take the simplest (scalar) case, consider an arbitrary

sequence of numbers from a fixed field k,
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() al ,  a 2 . .. at ,  . .

This sequence may be interpreted as an element

(2) O(Z- 1 ) = S O asz-S

of the ring of formal power series z- k[[z-]]. (We shall al-

ways adhere to the normalization convention that a = 0.)0

Consider now any (irreducible) rational fraction written

formally as 7t(z)/xt(z), with coefficients in k, with

Xt = monic, and with deg n t < deg Xt. Attached to each such

fraction there is a (unique) formal power series which we write as

(3) t(z)/xt(z) = so bsZ-s

(Another normalization convention is that polynomials are written

with indeterminate z while the corresponding power series are

written with indeterminate z -)

Let t be fixed or variable. We say that (t' Xt) is a

partial realization of (1) of order t iff

(4) as =ib s= , ..., t.

There is a rather complete theory of partial realizations

without any conditions on the sequence (1). An elementary ac-

count of this theory, sufficient for the present purposes, is in

KALMAN [1979]. (A complete mathematical treatment will appear

as KALMAN [1983].)

Assume that the field k is specialized to the reals R.

Assume also that the sequence (1) is replaced (change of notation

to avoid conceptual confusion) by the sequence

(5) c0 , cI, c2, ... , ct,.

or, equivalently,

-s
(6) C = S;O C s z

To emphasize the conceptual difference between (1) and (5) we
shall normalize the latter by setting c = 1 (contrary to

a - 0).0
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We want to regard (5) as defined via the covariance function of

a stationary random sequence {y T with zero mean. That is,

(7) E(y =: cov(y y+) cs = C-s

s = 0, ± 1, ± 2,....

(By stationarity, the left-hand side of (6) is independent of

T.) Each sequence (5) defines a sequence of Topelitz matrices

c I  ... t

cI 1 ... c _

(8) Tt :

tt
c t  ct-i 1

Directly from the defining properties of "covariance", we see

that (5) is a "covariance sequence", that is, defined by (7),

if and only if each member of the infinite sequence

To, ..., Tt, ... is positive definite. This is the "positivity"

property of the sequence (5) which we wish to study and which

justifies the normalization c = 1.o

In other words, our basic problem will be: What happens to

the theory of partial realizations if the sequence (5) is sub-

jected to the additional condition Tt > 0?

In general, questions of "positivity" constitute an underde-

veloped area of mathematics. Positivity is extremely important

for system theory because it is directly related to questions of

stochastic realization. The "identifiability" of noise and of

stochastic effects comes about through the mathematical implica-

tions of positivity. (For some preliminary results along these

lines, see KALMAN [1982].) Thus each theorem about positivity

gives rise to a system-theoretic result. But more frequently, a

system-theoretic question poses an (open) mathematical problem.
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The classical results concerning "positivity" in relation to

the sequence (5) were first elucidated in the study of orthogo-

nal polynomials. Our favorite recent reference for this

material is GERONIMUS [1961].

As in the theory of orthogonal polynomials, it is useful for

us to introduce the sequence

(9) r = (rI , r 2, ... . rt , .... )

sometimes called SCHUR parameters, defined from (5) by

cI  c2  . ct 1  c1 c I  ... ct-2 ctlj

(10) r (- ) (det Tt)1 det

ct-2 ct-3 ... 1 1

For any positive infinite sequence (5), the infinite sequence r

is well defined. The classical result is that (5) is a positive

sequence if and only if Irtl < 1 for all t = 1, 2.....

By elementary arguments based on (8) and (10) it can be shown

that there is a bijective correspondence, for each t > 0,

between positive partial sequences

cI , ..., ct } <-> {rl, ..., r t

Any partial realization problem may be viewed as looking for

an infinite continuation of a finite sequence. By the bijection

between c and r, the solution of the positive partial reali-

zation problem is then equivalent to finding a continuation of

(9) by rt+ I, rt+ 2 , ... so that Irt+ul < 1 for all

u = 1, 2, ..... It is not clear, however, what continuations of

r correspond (via the bijection) to rational continuations of

c as required in the definition of the partial realization

problem.

There is just one well-known fact concerning such

continuations. The special continuation given

b rs = 0 for all s = t + 1, t + 2, ... is a rational

I
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positive continuation of 1, cl, ... , ct and corresponds to a

solution of the partial realization problem with deg Xt = t.

This would seem to provide a solution to our problem. In

fact, although the trick described above is mathematically

quite trivial, the realization corresponding to r = 0, s > t,

has been glorified by physicists by naming it the MAXIMUM

ENTROPY PRINCIPLE. (See LEVINE and TRIBUS [1978] for recent

speculations and references.) The terminology is due to the

fact that continuation of (5) with r = 0 maximizes the clas-s

sical (SHANNON) value of entropy. See (17-18) and below.

In mathematical terms, big talk like "maximum entropy"

PRINCIPLE would seem to imply that the solution of the partial

realization problem afforded by the above trick has some "natu-

ral" attributes. Unfortunately, this is far from true. There

is a misunderstanding on the part of the physicists. SHANNON

entropy does not represent the correct "information" measure for

the realization problem discussed here. (Of course, SHANNON

never claimed such a thing. The confusion arises from identi-

fying "entropy" as technically defined by SHANNON with the word

"information" and then wildly extrapolating the intuitive mea-

ning of the latter.)

That the conventional application of the "maximum entropy"

idea is incorrect in this context is easily seen from the fact

that the preceding solution of the positive partial realization

problem is not minimal, in the sense that nt := deg Xt is not

necessarily minimal among the family of all (rational) continua-

tions of the sequence 1, cl, ... , ct . Nonminimal realizations

are objectionable from the system-theoretic viewpoint as they do

not provide the "simplest" explanation of the given data
1, Cl, ... , c t .
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To make these statements more precise, we now define the

polynomials

c1  c ---

(11a) (t(z) := (det Ttl)-l det 1 1 (0o(Z) = 1),
t t-oo

1z ... z~ j
and

* -1g t

(llb) 0 (z) := z d t(z-1
t t

These polynomials arise naturally in the well-known recursion

relations in the theory of orthogonal polynomials, namely
*

(12a) t+l(Z) = zt (z) - rt+l4t(z),
* *

(12b) 4) t+l(z) = - r t+l t(z) + Dt(z).

Next, we need a little algebra. Let

(13) (c, n) I--> <c, 7> := (c1 )oth coefficient

be an abstract inner product between power series and polynomials;

the product cn is to be taken in the usual sense. Inserting

(13) into the determinant defining Dt gives <c, 4Dt> = 0 for

all t. More generally,

<c, z t-l >

(14) rt = , = - Pt(0);
<c, 4 tl>

<'0t-l>

this follows immediately by applying the identity <c, ft> a 0

to (12a). Formula (14) is mildly original.

Now it is easy to see what the condition r = 0, s > t,

amounts to.

By formula (14), we get

(15) <c, zO > = 0 for s > t.
s

By induction, this implies

- --- -. ~
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(16) <c, zU 4 t> = 0 for u = 1, 2,

Using also (11a), relations (16) express the fact that t is a

recursion polynomial for the sequence 1, cI , ... , ct extended

to an infinite sequence by the assumption r = 0, s > t. De-

fining Xt := t gives a solution of the positive partial reali-

zation problem.

Note that 0t is a recursion polynomial for the finite se-

quence ct I , ct- 2 1 ... , cO , c I , ... , ct for each t.

The entropy associated with a covariance of length t is

defined in the sense of SHANNON as
1

(17) Ht := log det T

Note that det Tt/det Tt_1 = <c, t> by (lla). Then, using

(12b), we get immediately

det Tt+ 1  2 det Tt
(18) det Tt (1 r t+l)det Ttl

This shows that r = 0 for s > t is indeed that continuation
s

of r I , ... , rt which maximizes SHANNON's entropy

Ht+ I , Ht+2' .....
Let us investigate the simplest special cases of this re-

sult.

Case t = i. Here the application of partial realization

theory is trivial: all minimal partial realizations of the se-

quence 1, cI are given by the fraction z/(z - cI). From for-

mula (lla) we see that Xl(z) = (z - cl) is identical with

01(ZW of the maximum entropy realization. (This is just a lucky

coincidence.) The positivity condition on the minimal partial

realization is Iril = ICil < 1. Since the parameter cl is

"free" in the minimal partial realization problem, here the po-

sitivity requirement does not interfere with the minimality re-

quirement. (In the fraction for the partial realization the fac-

tor z is due to the different normalization of (5) vs. (M).)
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It would be a great mistake, however, to imagine that this

is typical of the general situation.

Case t = 3. Here we study positive minimal partial reali-
2

zations of the partial sequence 1, c, c c3. If c2 # c 1

then the minimal realization problem has a "jump" of size 1 at

t = 2 (see KALMAN [1979]), c3 is a free parameter, and

n 3  = 2. (If c2 = c2 but c3 # c3 then the minimal partial

realization problem has a jump of size 2 at t = 3, so that now
min

c4 and c5  are free parameters, and n5  = 3. This case is

already rather difficult to analyze.)

We assume c2 # c2 which is equivalent to r2 # 0. Then

the minimal partial realization is given by the finite continued

fraction

(19) z 2
r 2 (l - r)

z -r - r3  2

z + rr -(1 -r
1 2 r 2  r2

The conditions

(20) Irll < 1, Ir2 1 < i, r3 1 < 1

are obviously necessary for the partial sequence 1, cl, c2, c3
to be positive, irrespective of the assumed jump pattern. These

positivity conditions can be easily satisfied without conflict-

ing with the minimality requirements of the partial realization;

r 1and r3 are free parameters and the condition r2 # 0 does

not interact with Ir2 1 < i

But (20) is not sufficient to insure that the infinite se-

quence generated by (19) is positive! The necessary and suffi-

cient condition for the latter requirement is (after rather ex-

tensive calculations) found to be

(21) Ir3  i Ir2 1 1
<_
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This is much stronger than Ir31 < 1. Thus, the positivi-y con-

ditions on a partial sequence are not sufficient to guarantee

that the corresponding minimal partial realizations generate a

positive (infinite) sequence.

When r3 does not satisfy (21), the minimal partial reali-

zation of 1, c, c c3 (assuming c2 # c ) is not positive;

conversely, the minimal positive partial realization of this se-

quence is then at least of degree 3 (but not higher, because of

the existence of the maximum entropy realization).

The preceding investigation, which is of course mathemati-

cally rigorous, shows that for t = 3 the maximum entropy reali-

zation is not necessarily a "natural" realization since there

may exist a minimal realization of degree 2. (if 1, c!, c2, c3

corresponds to r1 , 0, 0 then 43 (z) = z2 1 (z) so that the

maximum entropy principle does provide the unique minimal reali-

zation of degree 1. But this is just another lucky accident.)

If it is true that the maximum entropy principle fails to

reliably select the simplest (here "minimal") realization, then

this alleged organizing principle of nature must contain some

extraneous assumptions (which I propose to designate by the

technical term prejudice, as in KALMAN [1982]). What are these

extraneous assumptions? Where does the prejudice come in?

JAYNES [19681 describes the principle as follows:

"The (prior probability assignment] that describes

the available information but is maximally noncom-

mittal with regard to the unavailable information

is the one with maximum entropy (my italics)."

It is hard to quarrel with this statement on intuitive grounds.

Everything hinges on the meaning given to the word "information".

JAYNES and his followers apparently blindly accept that SHANNON

entropy = information. But entropy is never a measure of "avail-

able information" of the mathematical type.
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In the literature (see, for example, ULRYCH and BISHOP

[1975]) the maximum-entropy realization is regarded as equivalent

to estimation by the autoregressive (AR) method. (This is in

fact easily proved with the help of the machinery developed

here.) Thus "maximum entropy" becomes a "higher" justification

for the AR method or vice versa. But the AR method is also ob-

jectionable; it implies the tacit assumption (prejudice) that the

partial realization problem consists of one concentrated jump---

which is a highly nongeneric case.

The problem of attempting to apply the maximum entropy dic-

tum of JAYNES via formulas (17-18) is simply that the SHANNON

entropy does not correctly measure the "available information"

provided by values of r I , ... , r t. This is not a question of

probabilities; the computation of t(z) is based on the exact

knowledge of rI , .... rt.

Consider again (19). If r2 # 0 but Ir2 1 is small then

by (20) Ir3 1 must be small also and therefore X2 (z), the de-

nominator of (19) viewed as an ordinary fraction, is very close

to 1 (z) = z - r This means that the correct (minimal) solu-

tion of the partial realization problem is very similar to the

case where the only data is rI , even though r2 and r3 are

not exactly zero.

On the other hand, if Ir 2 1 is nearly 1 then X2 (z) will

differ from 02 (z) only by a term bounded by 1 - Ir 2 1 while

Ir31, far from being required to be zero as by the maximum

entropy method, can be almost as large as 1/2.

We see that the realizations provided by the maximum entropy

prejudice are approximately valid in a much wider range then the

rigid assumption that Irs I 0 for s > t. To see whether

Dtl(W, t( I < t is approximately valid for the sequence

1, c I , ... , ctl, ..., ct we need certain bounds on Irtl+ 1 1,
Irt , ... which guarantee that the infinite continuation of

the sequence by a partial realization of order t1 is still



341

positive. It is these missing bounds which constitute the un-

solved mathematical problem. Results of the writer at present

are limited to (19) and its corresponding bound (21). In gene-

ral, if Irs is sufficiently small for tI < s < t, we may

expect to get positive partial realizations that are much more

efficient than the maximum entropy realization. Thus, to cor-

rectly implement JAYNES' intuitive principle, it is necessary

to know the values of the {rs. On the other hand, the con-

ventional application of the maximum entropy principle (desig-

nating D (z) as the recursion polynomial) uses the classical

entropy formula (17) which requires only the "information" that

1rsI < 1 for 1< s < t; the actual values of r are used

in constructing Dt(z) but not in applying (17).

Thus the prescription r = 0, s > t, should be regardeds

only as a realization of "last resort", precisely because in

doing so we have not exploited all available information.

As soon as the mathematical problem posed here is solved, we

would be in a position to implement JAYNES' desideratum of not

throwing away any information concerning the sequence

rI , ..., rt. By working backward, we would then replace formula

(17) by a different expression which would correctly measure

"information" as it is relevant to the realization problem.

Evidently the correct measure of "information" for a mathemati-

cal problem will not be the same as the measure of entropy for

a physical problem.

"Entropy" is the measure of the lack of organization

(structure) in a physical situation; it has nothing to do with

the "system aspect" of things and therefore entropy is useless

not only as a technical tool but also as a conceptual crutch.

Were Nature so constituted that simple principles explain every-

thing, "maximum entropy" would be one of the deep insights and

we would not need Mathematics. But Nature, if sometimes simple,

is often complicated and therefore Mathematics is indispensable.

i
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