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Errata Sheet 
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p. fi Line 17 

Change h, = (3.5<T/2a)1/2 to A, = (3.Sa/ay/2 )1/2. 

p. 9 Equation (2.16) 

Replace \/^aJT with y/(25.5/y/2 )aj^. 

p. 9 Line 19 

Replace 20-percent with 60-percent, 

p. 11  Equation (2.17) 

Move the power of 2 outside right bracket, 

p. 13 Line 12 

Add dr to right side of equation for Nig,!:). 

p. 16 Second equation 

Add the explanatory comment "where w is spectral frequency.", 

p. 16 Third equation 

k k 
Change E to E • 

p. 17 Equation (4.2) 

Chance — to — in second term. 6   2       ft 
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1. INTRODUCTION 

The derivative of a function can be defined as the limit of a sequence of divided 
differences. Consequently, it is independent of any finite number of values of this 
sequence, i.e., it cannot be obtained from a finite set of observed functional values without 
additional assumptions. For instance, suppose we compute 

2-* 

and obtain Rik) = 0 for A: = 1,2,..., n for an arbitrary but finite «. Can we conclude that 
/(O) - 0? Certainly not, since yit) - sin 2mnt with integer m > n would also yield Rik) = 
Ofork = 1,2, ..., n. Yet we have y(0) - r* which we can make as large as we please by 
selecting a sufficiendy large integer m. 

However, we can approximate the derivative of a tabular function if we make 
certain assumptions about the derivative or the tabular function. Different assumptions 
lead to alvariety of numerical methods. Until the 1960's litde research was done on this 
problem. However, during the last two decades quite a few research papers on the subject 
have been published. The purpose of this report is to discuss certain classical and recently 
developed methods for estimating derivatives from discrete data. The methods range 
from divided differences, through smoothing by splines and by regularization procedures 
to the autoregressive approach. Another purpose is to show that these methods can be 
arranged in the order of subsequent refinements or generalizations, although most of them 
were developed from independendy selected assumptions. Such an arrangement can be 
used as an indication of improved ability to approximate unknown derivatives at the cost 
of increasing complexity of the method. 

It should, though, be emphasized that no method can be best in every case For 
instance, suppose we observe two functions y.U) = 0 and y£t) - sin 120^ at the points 
tn -0.2«,«-0,l,2,...,6 and that our observations are exact. Then the observed values are 
all zeros in both cases. Hence,even though a method M produces good values of y'itn\ 
i.e., all close to zero, it will give inadequate estimates of y2%) all of which are equafto 
120- ir. 

E. Issacson and H. B. Keller. Analysis of Numerical Methods. John Wiley, New York (1966) 
pp 288-294. 



This example shows that a good method should also provide information about the 
trequency components whose contributions to the derivative cannot be detected from the 
data^The spectral analysis method^ and autoregressive approach3 provide this explicitly 
the first by deriving the spectrum of the underlying function, the second by determining 
all the frequencies compatible with the data and by indicating those for which the 
amplitudes can be determined from the data with sufficient accuracy. 

Section 2 of this report begins with a discussion of classical methods of divided 
differences, polynomial interpolation, and regression methods, including their refinement 
by application of splines. Section 3 shows that the regularization procedure4'5 can be 
interpreted as a refinement of the spline approach. Section 4 shows that the autoregressive 
method   is a refinement of the regularization procedure. 

The numerical rngthod for computing the derivative of an analytic function by J. N 
Lyness and C. B. Moler is not discussed here since it requires evaluation of the function 
tor complex values of its argument. Although frequently an observed function may be 
assumed to be analytic, its continuation into a complex domain from a finite set of 
observed values in a real domain is even more difficult than evaluation of its derivative 
Thus, this method cannot be applied to evaluate a derivative from a finite set of observed 
values corresponding to real values of the independent variable. 

2 

3 

R. S. Anderssen and P. Bloomfield, "A Time Series Approach to Numerical Differentiation " 
Technometrics. 16 (1) (1974), pp 69-75. 

4 

C. Masaitis and G. Francis. "Numerical Differentiation of Noisy Data," BRL Memorandum 
Report 3126, Aug 81 (AD A104631). 

A.  N   Tickonov,   "Solution  of Incorrectly Formulated Problems and the Regularization 
Method," Soviet Math. Dokl. 4 (1963), pp 1035-1038. 

J. Cullum. "Numerical Differentiation and Regularization," SIAM J. Numer. Anal. 8 (1971) 
pp 254-265. ~ 

J. N. Lyness and C. B. Moler. "Numerical Differentiation of Analytic Functions," SIAM J 
Numer. Anal. 4 (1966), pp 202-210.  '~ 



2. POLYNOMIAL AND REGRESSION METHODS 

Let x„ be an observed value of an unknown function y(t) at the point tn - nh for 
some A > 0 and n=l,2, ..., N. Assume that yithc2 and that the error of observation is 
£„, i.e., 

xn-y(nh) + €n , (2.1) 

with 

c  < ■=« (2.2) 

The simplest way of obtaining an approximation xn' of the derivative yXnh) is by the 
divided difference: 

x" ^ ' (2-3) 

i.e., in view of (2.1) 

2A + 2A • (;-4> 

By Taylor's formula we have: 

yUH+l) ~y(tn-{) + 2hy'iTn), (2.5) 

with rw_j < T„ < rfl+1. 

It follows from (2.4) and (2.5) that 

** -y{T„) + — • (2.6) 

If the error term i€n+1 - e^/lh is negligible we get from (2.6): x„'~y(T ), Le    th 
approximation equates the derivative at the midpoint between /„_, and tn+] to itsvalue at i 
certain unknown intermediate point TneIn  where In is the interval itn-.h tn+]) .  Thus, 
have * 

is 

a 
we 



y(U-v-y(0-y(Tn)-
6"+*  ^ , (2.7) 

or, in view of (2.2), the error of this estimate is bounded as follows: 

b'OJ-Vl < l/^WCOI + l . (2.8) 

Again, by Taylor's formula we have 
i 

/('j-yco + K-^vw). (2.9) 

•where Tn' is an intermediate value between rn and *„, i.e., ?„_, < T„' < fn+1 . Obviously 
|T„ -r„ | < 2/i. Since we assume that y"U) is continuous it is bounded by, say, M„ on the 
interval [tH^lttn+l]. Therefore we obtain from (2.8) and (2.9): 

ly'CrJ-VUa^+l • (2.10) 

If we know the bound M ^M„ of the second derivative in the interval [tx,tN] and the 
bound 8 we can choose the step size h equal to, say, h0 which minimizes the error of the 
estimate (2.3). The value of h0 is obtained by minimizing the right-hand side of (2,10) 
with Mn replaced by M. Thus, 

*»"Vw  • (2.11) 2M 

We can use this optimal step size if we know M and 8 before observations are made. If 
we have to differentiate already collected data then we can use (2.11) provided the step 
size of the observations h <h0.ln this case.we use the data with the step size h'~kh with 
k being a positive integer such that kh is as close as possible to h0. 

This choice of h0 minimizes the error of the estimate (2.3) in the worst case, 
namely when the absolute value of the second derivative is equal to its upper bound and 
the error is equal to its bound 8. In a practical situation such a case may never occur since 
the observation errors may be relatively small where the second derivative is exceptionally 
large. 

Furthermore, it may be much more important to have an average error, such as the 
root mean square error (RMSE) small, even at the expense of larger errors in an extreme 



case. By assuming that observation errors are mutually independent and have zero means 
an^ MQV stochastic process independent of observation errors we get from (2.7) 
and \jL.y)'. 

4y(,j - v)2] - 4rn - ,jy'Vn')] + 
2h- 

where a-2 is the variance of en. 

Since \T„ -tn\ ^2h WQ have 

(2.12) 

4(y'iO-xn')
2]<4h>E[y"Hrn')] + 

2h' 

Let ^[|y"(T„')j j -M„2 . Then the expected value of the 
minimized by 

(2.13) 

square of the estimated error is 

hn = 8-1/4 

M„ (2.14) 

Suppose now that the observed data are distance traveled by a vehicle with maximum 
acceleration a m/s2 and that all values of acceleration are equally likely. Then M2 = 1/2 ^ 
and, thus, by (2.13) and (2.14) the error bound is «      /   « 

[v'(r)-v]' 
11/2 

<J2ai (2.15) 

Let us assume that observation errors are normally distributed and that we make 
about 00 observations. Then a reasonable bound of the error is 8 = 3.5<r. In this case the 
opnmal value of H given by (2.11) is H0 -OSr/la)* This value substituted ^11) 
yields v-    . ' 

[v'(0-v]2     <y/ 3.5 (2.16) 

i.e., an error bound 20-percent higher than that in (2.15). This simple case illustrates that 

T,™1,^      err0r 0f the WOrSt Case does not produce the ^ approximation in terms ol the RMS or some other average. 



The approximation (2.3) is exact for the polynomials of the first degree, provided 
the data are exact. A straightforward generalization is an approximation that produces 
exact derivatives for polynomials of degree k or less, assuming exact data. Obviously 
differentiation of an interpolating polynomial is such a procedure. An interpolating 
polynomial 1S given by either Lagrange's, Newton's, Gauss's or any other polynomS 
interpolation formula. Instead of differentiating an interpolating polynomial we caLbtain 
the same estimate by an iterative procedure such as that described by D. B Hunted or H 
C. Hershey et al. 

According to Weierstrass' theorem, a continuous function can be approximated 
arbitrarily closely by polynomials of increasing degree. However, approbations of 
derivatives obtained by differentiating these polynomials may be very poor If the data are 
interpolated by Bernstein polynomials Bk of increasing degree k then a uniform 
approximation of the function by Bk and of its derivative by Bk' is obtained9 However 
even small observation errors may affect the derivatives Bk' drastically and, thus caus^ 
large errors in the estimates of yW. Besides, round-off errors in computing coefficients of 
these polynomials for large values of k are very substantial. Therefore, in practice the 
degree of an interpolating polynomial is chosen equal two or three. Even in this casi the 
resulting errors may be very large. 

In view of this, instead of differentiating interpolating polynomials, derivatives are 
estimated by differentiating a low degree polynomial that is obtained by a least squares 
approximation of a sequence of data points located symmetrically on both sides of the 
point where the value of derivative is estimated.10 This is a common procedure of movin. 
polynomial arcs and it provides a degree of smoothing of the observation errors by 
averaging their effects over several data points. This averaging becomes more effective as 
the number of data points fitted by a single polynomial increases. However, the larger the 
span the less accurate is the representation of the data. Hence we must choose a 
compromise between the degree of smoothing and the faithfulness to the data 

7 
fjn^""^' nAn Iterative Method & Numerical Differentiation," Comp. ./. 3 (1960). pp 

o 

v fv ^f' i ^Lakin' and R Simha' Numerical Differentiation of Equally Spaced and 
Not Equally Spaced Experimental Data." Ind. Ens. Chem. Found 6 (1967), pp 413-421. 

9 
P. J. Davis. "Interpolation and Approximation," Blaisdell Publishing Company (1963), p. 113. 

S. Wold, "Spline Functions in Data Analysis," Technometrics. 16 (1974), pp 1-11. 

10 



A polynomial fitted to a span of the data is a linear combination of the powers of 
the independent variable. This procedure can be refined in two ways. First, we may 
transform the data and then fit by a polynomial. For instance, if we observe yit)- ce^ 
then log yit) can be fitted by a first degree polynomial. Second, we can fit the data by a 
linear combination of functions other than powers of the independent variable, such as 
exponentials, trigonometric functions and others.11 Such fits are called linear regression 
models and a polynomial fit is a special case of such a representation. 

Since a spline function can be represented as a linear combination of so-called B- 
splines an approximation by a spline function can be interpreted as a refinement of the 
linear regression approach. The refinement is obtained by adding a condition to the 
approximation criterion, namely, a requirement to minimize certain combinations of 
approximation errors and the L2 norm of the second derivative of the approximating 
function. This added condition is included by the following considerations. It can be shown 
that, of all the functions interpolating the data, a cubic spline has second derivatives with 
the minimal L2 norm. Consequently, when data are fitted instead of interpolated, it is 
natural to select a function/(?) that represents the data with sufficient accuracy and at the 
same time minimizes 

dt, 

i.e., to minimize J subject to the constraint 

«=ir J (2.17) 

where 5 is a measure of desired accuracy. C. M. Reinsch12 has shown that the solution of 
this minimization problem is a cubic spline with the nodes t^t2...,tN .   This function 
obtained by minimizing 

is 

jf [/"' (?)] dt +p L  ViO-xJ 
«=! L J N + z-S 

11 
R. S. Anderssen and P. Bloomfield, "Numerical Differentiation Procedures for Non Exact 
Data," Numer. Math. 22 (1974), pp 157-182. 

12 
C. H. Reinsch, "Smoothing by Spline Functions," Numer. Math. 10 (1967), pp 177-183. 

11 



where z is a slack variable and p is a Lagrange multiplier. By the method of calculus of 
variations it can be shown that z=0. Thus, the problem is to minimize 

(2.18) 

and the solution to this problem is a cubic spline, as stated above. 

3.  REGULARIZATION 

Minimization of (2.18) by the standard methods of calculus of variations expresses 
p as a monotone function of S. Thus, we can choose 5 and determine the corresponding a 
or choose p and compute S. We may do the latter since, in practice, we do not know how 
closely the data can be fitted. With p = Oconst and a - 1/p the function, /, that minimizes 
A(f,P) is obtained by minimizing 

1  ^  f 12 ^ r 12 

When a (and hence p) is specified in advance, S is constant (dependent on a) Hence it 
can be omitted from the expression to be minimized. Therefore for a fixed a f v& 
obtained by minimizing ' 

*A«)--^E [AO-xJ2 + a/[ra)I2<ft (3.1) 

The inte^-al in this relation can be interpreted as the square of a seminorm in a Banach 
space of functions with square integrable second derivatives. If this seminorm is replaced 
by another seminorm involving first and second derivatives we obtain/ by minimizing 

*/>)-■££    [/"(O-x^ + a / [rcofdf+j-fra)]2* (3.2) 

Here the integration limits have been changed to 0 and 1 which we can always do bv 
rescaling the independent variable t. 

12 



Let 

t i 

0 0 

where hit) is the Heaviside step function. Then/'(f) =.?(?) and/"(f) = ^'(0. Thus, (3.2) 
can be written as follows: 

-,      .      l   ^ 
Shitn -T)gir)dT-xn 
0 

+ a /[gWfrfT+J^wfl/T (3.3) 

and g{t) is obtained by minimizing (3.3). Thus, replacing the seminorm 

/[rcof (A 

1/2 

by 

/[ro)]2dif+/[ro)]2* 
1/2 

reduces the spline approximation to the computation of a derivative by the regularization 
procedures of A. N. Tikhonov,   provided we represent his functional 

Nig,x)-S 
0 
i hit -T)giT)-xit) 
0 

dt 

in a discrete form, as we must since xit) is given only at a set of discrete values of t    If 
we replace the first term of (3.3) by iV(^,x),we get Tikhonov's regularizing functional: 

Cig,a)-S 
0 

S hit-r)giT)dT-xit) 
0 

dt + a UgiTWdr+hg'irWdr 
0 0 

(3.4) 

13 



By equating the variation of C(g,a) with respect to g to zero we obtain the following 
necessary condition on g for the minimum of C(^a): ^ 

i i ! 

SSh(9-r)hi9-t)giT)drde-Shi9-t)xi9)de+agit)-ag'W-0 .        (3.5) 

Transversality conditions yield: 

*'(0W'(i)-o. (36) 

(3.5) can be written in the form: 

,    1 T 1 

g'Xt) -g(t)+ j-ff gie) dedT-±S x(e) 

Substituting f = 1 in (3.7) gives: 

d9 ■ (3 7) 

^(l)-^(i)+lj^)^ . (38) 

We differentiate (3.7) with respect to t and obtain: 

g"'(t)-g'it) + ±x(t)-±-fgie)de . (3.9) 
o 

When/ = 1 (3.9) yields: 

^(l)-^(l)+^x(l)-l/^)^. (310) 

We eliminate the integral from (3.8) and (3.10) and obtain: 

*'"(!)+*"(1)-*(1) +-1*0) . (3H) 

In view of (3.6), substitution oft=0 in (3.9) gives 

14 



*"'(0)-lx(0). ai2) 

By differentiating (3.9) with respect to t we get: 

givit)-g"{t) + ±gU)-±-xXt) . (313) 

Thus, the optimizing function *(,) satisfies differential equation (3.13) with the boundary 
conditions (3.6), (3.11), and (3.12). Eigenvalues of (3.13) can be easily expressed in terms 
ot «. Denote these eigenvalues by ±X and ±M . Then Green's function of (3.13) is 

G(r'T) 'ix^-^^-^^ - ^'^ + ^^^1 • (3.14) 

The general solution of (3.13) is: 

git) - A** + A*-* + A** + Ate-* + / GU,r) x'(r) dr 
0 

We integrate the last integral by parts and obtain: 

gM-AyeK+A^+A^+Af-v+fGtitrfxirtdT , (3 15) 
0 

where Gf(r,T) is the derivative of G(M-) with respect to t and 

GtU,T) = —    coshX(/ - T) - cosh M? - T)! . 

The constants of integration Alt A2, A^ and AA are determined by the boundary conditions 
(3.6), (3.11), and (3.12). The integral in (3.15) can be approximated by a numerical 
quadrature formula such as trapezoidal or Simpson's rule and with the observed values 
xn -x(tn) . Thus, (3.15) determines an approximation of the derivative git ) for a given 
a. With the exact values of x(t), git) given by (3.15) converges to x'it) as a - 0 When 
only a finite number of values xn =*(,„) are available and when these values contain 
observation errors the best approximation of x'it) is obtained from a > 0 as shown by 
examples of ^e artificial data with exact values x'it) obtainable by direct analytic 
differentiation. In the case of real data, i.e., when x'it) is not known, the "best" value of 
a must be selected by an empirical criterion. Wahba proposes a cross-validation procedure 

15 



i 

by which approximation g(t) and hence 

t 

f(t)-SgU)dt 
o 

is determined from part of the data, say, with every 10th point omitted.13 The resulting 
values of fit) for omitted points are compared with the omitted data. The value of alpha 
that produces the least RMS of these differences is defined as the "best" a. 

An alternative procedure was proposed by R. S. Anderssen and P. Bloomfield.11 It 
is based on the assumption that the spectrum of observations is in the form 

b +bl a[(W/)2 + (W/)4J 

where / = {tN —tiy/jf. The parameter a can be determined by approximating the spectrum 
of the data obtained from the Fourier transform. This process is based on the assumption 
that xit) is a stochastic process and that spectra of x{t) and observation errors €„ do not 
overlap. 

4.  AUTOREGRESSIVE APPROACH 

As stated in the preceding section, the regularization procedure is a refinement of 
the spline approximation. A further refinement of these methods is provided by an 
autoregressive approach. This approach is based on the assumptions which imply that an 
approximating derivative satisfies a linear homogeneous differential equation with constant 
coefficients: 

t=\ 

For any a ^ 0 this equation can be written in the form: 

L fl/ir
(')(f) + J-*0)-^(r). (4.1) 

r-l <* « 

Since git) approximates x'it), (4.1) is approximated by 

13 
G. Wahba, "Period Splines for Spectral Density Estimation:  The Use of Cross Validation for 
Determining the Degree of Smoothing," Commun. in Statistics 4 (1975). pp 125-141. 

16 



r(')+^)-i 
/-I 2 a 
La/^ + I^O-i-x'Cr) (4.2) 

which is a generalization of (3.13). Thus, the autoregressive approach is a refinement of 
regulanzanon that Responds to A: -4. ai -^ -0. «2 - -l, and a4 = l. Instead of using a 
T^ T H u~ J^ ^ coefficients, the autoregressive approach determines the 

order k and the coefficient a, from the observations. Usually the data allow more than one 
choice of k and a,'*. An empirical criterion is selected to assign relative weights to every 
set of allowable values of * and *,.'s. These weights express a compromise between the 
fauhfulness of the data representation and the stability of the corresponding autoregressive 
model. The approximation of the derivative is the weighted average of these 
approximations. Since this approach selects an approximation on the basis of the data 
instead of an a priori model as indicated by (3.13), the approximation of the derivative 
obtained by this approach is more accurate, in most cases, than that of any of the other 
methods described above. 

17 
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