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ABSTRACT

"~The objectaves offthe research déscrxbed in this report were to improve
our understanding of solar flares and solar coronal lcops. The specific approach
to the flare objective was to analyze and interpret solar flare data, using
theoretical methods developed as part of the r;search. The specific approach to
the coronal loop objective was to investigate their thermal and
magnetohydrodynamic stability, for various physical models.

The principal result of the flare research was to demonstrate that, in
two well-observed flares, the mechanism of chromospheric evaporation accounts
for the observed amount of flare X-ray plasma. The dominant energy transport
mechanism is thermal conduction. Heating by energetic electrons 1is of secondary
importance.

The principal results of the magnetchydrodynamic stakbility analyses were
demonstrations of the role of radiative energy loss, compressibility, magnetic
field line twist, foot-point magnetic field line tying, and radial plasma

pressure gradient. .
\
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I. TRESEARCH OBJECTIVES

The primary cobjective of this research was to improve our understanding
of solar flares and solar coronal loops.

The scientific approach used during the grant period was to:

(1) Analyze and interpret solar flare observations

(2) Develop new theoretical methods of value in the analysis and
interpretation of the solar flare observations,

(3) Evaluate the thermal and magnetohydrodynamic stability of coronal

loops, for various physical models.

II. RESEARCH ACCOMPLISHMENTS

a) Solar Flare Observations and Interpretation

In 1980 we obtained particularly good coordinated observations of both
coronal and chromospheric aspects of flares, by means of NASA's Solar Maximum
Mission (SMM) and Sacramento Peak Observatory. The two papers in this section
constitute analysis of these data and interpretation in terms of the most
important flare energy transport processes. The key element of the aralysis was
theoretical Ha profiles, discussed in IIb (below).

The questions of common interest addressed in these papers are:

1. Can chromospheric evaporation (the heating of T =~ 104K
chromospheric material to T = 107K) account for the observed amount of flare X-
ray plasma?

2. what physical process causes this chromospheric evaporation?

3. Is there evidence for substantial penetration of energetic

particles into the chromosphere?
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The conclusion of this research was that in these two flares
chromospheric evaporation can account for the observed amount of X-ray emitting
plasma. Heating by both nonthermal electrons and thermal conduction gives rise
to chromospheric evaporation, but the latter dominates. Although evidence was
found for penetration of nonthermal electrons into the flare chromosphere, it is

not the dominant source of heating that leads to chromospheric evaporation.
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ABSTRACT

We have analyzed the solar flare of 1522 UT 24 June 1980
using simultaneous observations in hard X-rays, soft X-rays, and
BHa line profiles. The X-ray observations were made with
instruments aboard the Solar Maximum Mission satellite, and the
Ha profiles were taken with a CCD detector at Sacramento Peak
Observatory. We used the theoretical profiles of Canfield,
Gunkler, and Ricchiazzi (1984) to analyze the Ha data. We studied
various flare phenomena, including heating of the chromosphere by
nonthermal electrons, enhanced coronal pressure, enhanced
thermal conduction, chromospheric evaporation, and mass motion.
wWe find that we can make a consistent picture of the flare in

coronal and chromospheric processes.

We interpret the flare morphology in terms of a model where
the energy release occurs at the site of the interaction of two
large loop systems. The manifestations of the energy release were
heating of the corona to ~15 x 106 K and acceleration of
nonthermal electrons, evidenced by both hard X-ray emission and
Ha profiles. The electrons produced penetrative heating and
expansion of the flare chromosphere. The maximum f£flux of
nonthermal electrons above 20 keV was estimated, from both Ha and
hard X-ray data, to be ~1011 ergs cm-2 s-1, Electrons
penetrated at both footpoints of one loop system, giving evidence

for bidirectional beaming. Ha and soft X-ray estimates of the




coronal pressure match well, with typical values of 400-

1000 dynes cm- 2 over Ha footpoints.

The amounts of chromospheric evaporation by conduction and
by nonthermal electrons were calculated from observed quantities,
Both mechanisms can account for significant amounts of
evaporation, but nonthermal electrons are at least 2-3 times less
effective than conduction. The extent of evaporation was also
calculated from the observed soft X-ray mass flux. Sufficient
chromospheric evaporation was inferred by both methods to explain

the observed increase in the coronal density.

Subject Headings: Sun: chromosphere —— Sun: corona —-

Sun: flares -- Sun: X-rays




I. INTRODUCTION

a) Motivation

There are a number of important questions concerning the
nature of the physical processes involved in solar flares. In
particular: Are fast electrons accelerated in the corona and
beamed into the chromosphere? What accounts for the increase in
soft X-ray emission and higher coronal pressure? To what extent
is the top of the chromosphere evaporated, hence providing
coronal plasma? What are the role and extent of thermal
conduction in flares? Where does the energy release take place,
and what is its physical form? Using recent theoretical advances,
these processes can now be studied through chromospheric, as well
as coronal, observations. Nonthermal electrons, enhanced coronal
pressure, and enhanced thermal conduction each have identifiable
effects on the Ha line profile. This allows us to test theories
regarding the physics of solar flares. For example, it has been

| suggested (see, e.g., Chubb et al. 1966) that the hard X-ray emission
during the impulsive phase of flares is thermal bremsstrahlung
from a super-hot ('1‘e - 108 K) coronal plasma. This would result
in greatly enhanced thermal conduction into the chromosphere.
This is in contrast to the scenario in which chromospheric
heating is by beams of nonthermal electrons (Brown 1971) and

coronal temperatures are 10-30 x 106 K.




In addition, some authors (Dere and Cook 1979, Acton ef al
1982 ) have suggested that there may be a discrepancy between the
coronal and the chromospheric or transition region pressures.
This discrepancy, plus other measurements within a system
generally assumed to be in pressure equilibrium, led Cheng,
Feldman, and Doschek (1981) to question the importance of
chromospheric evaporation. Our new techniques allow more accurate
measurements of the chromospheric pressure, for comparison with

estimates of the coronal pressure from soft X-ray data.

Finally, our ability to measure the flare parameters with
our Ha spatial resolution of 2':56 allows us to make intelligent
guesses about the energization process. There are several
opposing theories that can be tested. For example, in the model
described by Sturrock (1974) and others, energy release takes
place at the top of a single loop system, due to reconnection of
open field lines. Another single-loop theory is that of Spicer
(1977), where reconnection occurs between sheared field lines
throughout the loop. These can be contrasted with the emerging
flux theory (Heyvaerts, Priest, and Rust 1977), in which magnetic
reconnection occurs at the interaction site between two magnetic
loop sytems. while the study of just one flare cannot rule out the

possibility of different types of flares, it serves to guide and

constrain flare modeling in the future.




D) Previous Work

In a previous paper (Acton e a. 1982, hereafter Paper I) we
es..uated the amount of chromospheric evaporation by comparing
our observed Ha profiles with the computed profiles of Dinh
(1980). He constructed a grid of empirical atmospheres from the
observation of 2 number of atomic lines during several flares,
and computed Ha line profiles for each atmosphere. Using the
column depth of the transition region (the number of atoms in a
cm?2 column above the chromosphere) for each atmosphere, we were
able to assign a value of the evaporated mass to each of his
profile types. These estimates of the amount of evaporated
material were compared with the observed increase in the soft X-
ray emission measure to show that we could see the change of state

of the upper chromosphere during a flare.

Since comp etion of Paper 1, we have improved on the work of
Dinh by computing a large grid of flare atmospheres, treating the
coronal pressure and the energy fluxes of nonthermal electrons
and thermal conduction as parameters. Unlike Dinh's atmospheres,
our atmospheres were computed assuming specific physical flare
mechanisms, solving the equations of steady state energy balance,
radiative transfer, statistical equilibrium, and hydrostatic
equilibrium. This grid of models, with its more physical
approach, offers significant improvement over the empirical

models of Dinh.




In the following section, we give the methods of obtaining
and analyzing the data. The morphology of the event is described
in Section III. In Section IV, we use our methods to examine the
coronal and chromospheric evidence for beams of nonthermal
electrons, chromospheric evaporation, pressure balance, and mass
motion. It will be shown that the observations strongly suggest a

scenario in which two large magnetic loop systems interact to

provide the flare energy.

II. METHOD

a) Observational

Simultaneous data were taken in X-rays and Ha by instruments
aboard the Solar Maximum Mission (SMM) spacecraft and ground-
based instruments at Sacramento Peak Observatory {SPO). A summary
of the instrumental characteristics is given in Table 1. The SPO
data consist of 50x50 pixels within a small region on the solar
surface. The Ha profile for each pixel is obtained as the
spectrograph slit is scanned across the field of view. Data
outside the time interval 15:20 to 15:26 UT were affected by
guiding difficulties caused by passing clouds. Profiles were
observed outside this interval, but the spatial location and
absolute intensity were difficult to determine accurately.
Portunately, the main flare effects occurred during the cloud-

free period. Details of the SPO observational method can be found
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in Paper I.

The Hard X-Ray Burst Spectrometer (HXRBS), described by
Orwig, Frost, and Dennis (1980), is a large-area scintillation
counter which measures the total solar flux in hard X-rays with
excellent time resolution. The Hard X-Ray Imaging Spectrometer

(HXIS, van Beek ef a. 1980) has overlapping fine and coarse fields

of view, which give images of the flare in both soft and hard X-
rays. The Flat Crystal Spectrometer (FCS) of the X-Ray
Polychromator (XRP, Acton et a. 1980) was operated in its

polychromatic raster mode to provide soft X-ray images in six

resonance lines sensitive to electron temperatures in the range
2 x 106 = Te < 50 X 106 K. Prior to 15:21:50 UT, a 4’ x 4'
region was scanned with 15" resolution. A 20" resolution quick-
scan was then done to 1locate the brightest area, and from
15:22:36 UT to the end of the flare, a 2' x 2' region was scanned
with 15" resolution. The Bent Crystal Spectrometer (BCS) of XRP :

provides soft X-ray spectra with good time resolution.

Co—alignment of the images from SMM and SPO, to an accuracy
of “5", was done using sunspot images made by FCS, Big Bear Solar
o

o
Observatory (BBSO) at Ha + 2 A, and SPO at Ha + 4.8 A. We used

the known relationship between HXIS and PCS pointings for co-

alignment of the hard X-ray images. Line—center spectroheliograms
of the SPO data were compared to line-center BBSO pictures, with

the known spatial scales of both images and typical Ha features

ST T -~ e e e g e o = -m-4




(filaments, plages, etc.) being used to establish the co-

registration.

b) Theoretical

The primary theoretical advance since Paper I has been the
development of a large grid of theoretical Ha profiles by
Canfield, Gunkler, and Ricchiazzi (1984, hereafter CGR). These
profiles, computed for static flare model atmospheres, show the
effects of varying the coronal pressure and the fluxes of heat and
nonthermal electrons on the columnar distribution of temperature
and density. Three general results emerged from this study: only
sufficiently high fluxes of nonthermal electrons produce
pronounced Stark Ha wings; only sufficiently high values of the
coronal pressure remove the central reversal of the Ha profiles;
and the extent of chromospheric evaporation is determined

Primarily by the value of the conductive flux.

We can give quantitative estimates of several physical
parameters by comparing the observed Ha profiles to the grid of
calculated profiles. We estimate the pressure by visually
comparing the central reversals of observed profiles to those of
theoretical profiles, such as those shown in Figure la. This plot
shows the effect of varying the pressure while holding all other
parameters fixed. The value of the pressure can be estimated to

within a factor of “2-3 by this method. Once the pressure has been
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determined, a set of profiles with this pressure and a range of
values of on (the energy flux of electrons above 20 keV) is used
to determine the nonthermal electron flux. Examples of these
theoretical profiles are shown in Figure 1b. Again, observed
profiles are visually compared to the theoretical grid, paying
attention this time to the angle of the profile wings. This
naturally requires that the observed profiles be plotted with the
same proportion between the vertical and horizontal scales as the
theoretical profiles. The accuracy of on measurements is also a

factor of "2-3.

We can also use the work of Hummer and Rybicki (1968) to
provide qualitative velocity information. Their work shows that
profiles with bright red peaks indicate differentially expanding
atmospheres, while profiles with bright blue peaks indicate that
the atmogphere is being compressed. The magnitude of the
velocities near the top of the chromosphere (where the Ha profile
core is formed) can be estimated by the Doppler shift of line

center.

Coronal measurements of the parameters come primarily from
the soft X-ray data. The run of emission measure (’ne2v, where
n, = coronal electron density, V = volume of the soft X-ray
plasma) with temperature Te is calculated in the fashion
described in Paper 1. This differential emission measure can be

used to get the (total thermal energy)x(density), which is
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'3neszeV. To get coronal pressures and densities from these, a
volume must be estimated. We assume that the flare plasma 1is
contained in magnetic loops with their footpoints in the
photosphere. We can estimate the cross—sectional area of the
loops by measuring the area of chromospheric brightenings, and
the loop lengths are great enough to be resolved by the imaging

detectors.

The peak power of nonthermal electrons is calculated from
the flux and spectrum of hard X-rays, as measured by the HXRBS
instrument. It is assumed that the hard X-ray radiation 1is
generated by thick-target nonthermal bremsstrahlung. We divide
this total power by an estimate of the beam area to get a value of

P,o- This estimate comes from the number of Ha pixels that show

the signature of electron beam heating.

III. FLARE MORPHOLOGY

This flare took place in NOAA active region 2522, at S29 W1S.
The central distance was 0,56, Solar-Geophysical Date (1980) assigned
an Ha importance of SB, and the X-ray importance was Ml. The major
flare Ha features are sketched and labeled in FPigure 2a, along
with the SPO and PCS fields of view and the photospheric magnetic
neutral lines from Kitt Peak National Observatory magnetograms.

Note that parts of the flare are outside the SPO field of view.

The Ha flare can be divided into four main regions of interest.
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The north (N) region and east (E) region are compact brightenings
with the same magnetic polarity, while the west (W) and central
(C) regions form a long, thin strand in a region of opposite
polarity. We divide the strand into two regions on the basis of
off-band Big Bear Solar Observatory (BBSO) pictures, magnetic
connections suggested in Ha, and profile differences observed by
SPO. In particular, large postflare loops unambiguously show the
connection between the east and central regions, and preflare
fibrils and the photospheric magnetic field configuration
strongly suggest that field lines connect the north and west
regions. A fifth region, just east of the north kernel, appears

later in the flare, but never gets very bright.

There is evidence that the flare was set off by the
interaction of the two large loop systems, which we sketch in
Figure 2b. The bulk of the soft X-ray emission is from the region
where the loops come close to each other, over the eastern end of
the Ha strand. We will call this region the "interaction site”,.
The soft X-ray emitting material was observed to spread out east
and west from this site, as the loop systems filled with flare
plasma. Other evidence for interaction between the 1loops,
particularly chromospheric heating by nonthermal electrons at the
footpoints, will be presented later. The N-W loops (those
connecting the north and west Ha regions) were outside the HXIS

fine field of view, thus limiting the X-ray spatial resolution




there to 15", the FCS resolution. Most of the E-C loop system was
within the fine field of view, however, so we were able to define
the coronal loop geometry to a resolution of 8", The location of

the loop seen in HXIS was the same as that of the postflare Ha

loops connecting the east and central regions, observed 30

minutes after the impulsive phase. A surge was observed in Ha just

east of the interaction site, possibly within the E—C loops, even

before the impulsive phase. The maximum velocity of the Ha-
absorbing material, seen at the beginning of the impulsive phase,
was measured at 120 km s-1, The maximum velocity seen by the BCS
was "~300 km s-1., (The velocities quoted in this paper will
always be line-of-sight). These results will be presented in

detail later, during the discussion of chromospheric evaporation.

IV. PHYSICAL INTERPRETATION

a) Nonthermal Electrons

The hard X-ray burst began at 15:21:50 UT, as shown in the
top light curve of Figure 3. Significantly, it is in our first
observation after this time that we first notice enhancements of
the Ha profile wings in a number of pixels. As mentioned before,
Stark wings are the signature of penetration of fast electrons
into the chromosphere. These extensive wings last until
~15:24 UT, roughly the end of the impulsive phase. The hard X-ray

emission after that time is likely to be the tail of the thermal




X-ray emission from the coronal plasma. The Ha wings are seen most
strongly in the north region, with a number of pixels in the west
and central regions also affected. It should be noted that the
hard X-ray resolution from HXIS (32") and the microwave
resolution from VLA data (28", Kundu e a/. 1984) in this area were
too low for identification of electron beaming locations. An
example of the temporal development of the profile from a pixel in
the north region during the flare is shown in the left column of
Figure 4, showing enhanced wings during the impulsive phase. The
greater enhancement of the red wing is a well-known phenomenon
( see, eg., Svestka 1976), but its physical origin 1s
controversial. We defer further discussion of the red asymmetry
to a future paper, and only the blue wing will be used in this

current study when measuring wing enhancements.

The power of electrons with energy above 20 keV was
calculated from the HXRBS data, under the collisional thick-
target assumption. The peak power, at 15:22:50 UT, was
5.0 x 1028 ergs per second, with a number flux of 1.4 x 1036
electrons per second. The spectral index was at its minimum value
of 5.5 at this time, compared with “6.5 during the rest of the
impulsive phase. The power can be converted to a flux by
estimating the beam area from the number of Ha pixels showing
extensive blue wing enhancements. Assuming that the part of the

long strand outside the SPO field of view had similar

S osoooeno=e o e — '—1**’-'-’-“"*-‘@4
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characteristics to the part we saw, we estimate that between 6 and
15 pixels received beamed electrons at maximum. An assumed area
of 10 pixels gives us a flux of
P,o = 1.45 x 1011 ergs cm-2 s-1. In comparison, the value of
on estimated from the Ha profiles is roughly

1011l ergs cm-2 s-1, which agrees with the HXRBS data to within

our margin of error.

Many of the Ha pixels in the north, west, and central regions
show the signature of differential chromospheric expansion,
brighter red Ha peaks than blue. The north pixel profiles in
Figure 4 near 15:23:17 UT show this feature clearly. Only a very
small number of pixels show a compression signature, and then
only for a brief time during the impulsive phase. The expansion is
consistent with the idea that the chromosphere at this site is
being heated by nonthermal particles. Had the primary flare
effect been just enhanced thermal conduction, no such expansion
would have been expected. Conduction is relatively ineffective in
the chromosphere, where the temperature and the temperature
gradient are very low compared to the transition region and low
corona. The main effect of turning on enhanced thermal conduction
is to evaporate off the top of the chromosphere, leaving the rest
unperturbed. Beamed electrons can heat the entire flare
chromosphere, leading to broad Ha 1lines and expansion. The

signature of expansion, like the extensive wings, disappears at
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the end of the hard X-ray burst.

It should be mentioned that a number of published flare
simulations with nonthermal electron heating indicate a
compression of the residual chromosphere, rather than expansion.
This is due to the evaporation of the top of the chromosphere, and
the dramatic pressure increase that results., However, most of

these calculations only model ~10 s of the flare, and many turn

off the nonthermal electrons after just a few seconds (e.g., Somov,
Spektor, and Syrovatskii 1977). The 15 s temporal resolution of
our Ha data largely precludes observations on these time scales.
Kostyuk and Pikel'ner (1975), on the other hand, modeled the
heating of the solar chromosphere with a nonthermal electron beam
of 100 s duration, which is more applicable to this flare. They
found a differentially expanding chromosphere, like we observed,
after 40 s. Prior to that time, however, their velocity signal

was mixed, making it difficult to predict the Ha response.

Some recent flare simulations are more sophisticated,

particularly with regard to radiative transfer effects and the
ability to resolve steep gradients by regridding schemes. Some
calculations based on the work of Fisher, Canfield, and McClymont
(1984) indicate that chromospheric compression should exist only
for 10-15 s for the high fluxes of nonthermal electrons observed
in this flare, and should not exist at all for much lower fluxes

(P,, € 1010 ergs cm-2 s-1). An expansion phase would follow

e e —— 1
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the compression phase. Indeed, after only a few seconds, the
magnitude of the compression velocity would be below what we can
see with our Ha profiles (°5-10 km s-1). Given our time
resolution, it is not s8urprising that we see 80 1little
compression. Hopefully, future observational work will address

this question more completely.

It should be noted that there was no evidence for
unidirecticnal beaming of the nonthermal electrons. Indeed, the
chromospheric response at the footpoints shows that roughly equal
numbers of electrons traveled in each direction within the N-W
loop system. Any differences in the fluxes between the north
region and the strand can plausibly be explained by the greater
area of the strand (Figure 2b). The east region did not show any
signature of electron beam heating, but this is understandable in
view of the amount of material fast electrons would have to
traverse coming from the loop interaction site. The east region
is separated from the rest of the flare by more than an arc-
minute. It is at the end of a system of long loops, estimated at
75,000 km in length (assuming semi-circular loops). It brightens
45-60 seconds after the first brightenings in the strand (see
Pigure 3). The lack of observable Stark wings in the Ha profiles
guarantees that the nonthermal electron flux is at leﬁst a factor
of 10 below its value in the other regions. Given the loop density

of 3 x 1010 cm-3, as calculated from the soft X-ray emission

i~ o -~*~~~~w‘t#r—ﬁ—q----dhk__.a‘.‘
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measure and a volume estimate from Ha, the total column number in
the loop is over 2 x 1020 cm-2. The stopping depth for
monoenergetic electrons of energy E (in keV) is -1017 x E2,
Thus, only those few electrons with energy greater than 45 kev
would reach the chromosphere. It would have been very informative
if hard X-ray emission had been detectable coming from this loop.
Unfortunately, although the loop is easily seen by HXIS in its low
energy channels, the counting statistics in the 22-30 kev
channels are too low for unambiguous identification as nonthermal

emission.

b) Enhanced Coronal Pressure

At least 2 minutes Dbefore the impulsive phase, a
statistically significant rise in the soft X-ray flux is seen.
This subsides temporarily, but begins to rise again “20-30 s
before the hard X-rays begin. In addition, the total Ha flux from
a number of pixels near the loop interaction site begins to
increase "1 minute prior to the impulsive phase (see Figure 3),
The Ha increase is probably due to a small enhancement of the
overlying coronal pressure. As stated previously, values of the
pressure can be estimated from the depth of the Ha central
reversal. The pressure increases dramatically during the
impulsive phase, with the enhancement over the Ha strand leading
the enhancement over the north region by "1 minute. This increase

is easily seen in the time sequence of profiles in Figure 4. Note
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particularly the strand pixel. Prior to the flare, Ha is an
abgorption line. By 15:22:17 UT, it is in emission, and the
central reversal has disappeared by 15:22:47 UT. There is also an
expansion signature, like that discussed earlier for the north
pixel profiles. The lack of central reversal is seen in a few
strand pixels from very near the impulsive onset, and is a common
feature to all the strand within a minute. This signature of high
pressure lasts for minutes, certainly well past our Ha data
cutoff at 15:26 UT. Notice the contrast in the depth of the
central reversal between the strand pixel and the north pixel
during the impulsive phase. The reversal fills in much more

slowly in the north pixel, remaining until 15:24:17 UT.

Using the theoretical grid of profiles, such as those shown
in Figure 1, we estimate the maximum pressure over the strand to
be roughly 400-1000 dynes cm~2, The pressure over the north
region also reaches these values at the end of the impulsive
phase. These pressures can also be calculated from the soft X-ray
data once the loop volume has been estimated. An upper limit on
the north-south extent of the loop footpoints can be established
by the fact that only one row of Ha pixels is affected. This gives
a maximum north-south extent of 2?56. The strand is long enough to
cross an entire 15" PCS pixel. Assigning a rough figure of 15" to
the length of a loop ingside an PCS pixel gives a volume of

2.56x15"x15", or 2.2 x 1026 cm3. Combined with the emission
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measure and (thermal energy)x(density) measurements, this gives a
lower limit on the pressure over the strand of ~200 dynes cm-2.
The lower limit on the coronal density in this loop system can be
computed from the same volume estimate to be “1011 cm-3. The true
pressure would be larger if the filling factor for the Ha pixels
were less than 1, so the coronal and chromospheric pressure

estimates match fairly well.

The east region also shows the signature of enhanced coronal
pressure, after some delay. Brief increases in pressure values
are seen starting at 40 s after the hard X-ray onset, but long-
lasting pressure effects are not seen until 2-3 minutes into the
impulsive phase. The maximum pressure, as measured by both Ha and k
soft X-ray data at ~15:25 UT, was ~100 dynes cm-2, An increase
in the coronal density was observed, as well as an increase in the
temperature, but it is not possible to determine whether the
material was evaporated from the east region or was transported |
from the central region through the long loops. We speculate that
coronal plasma is initially heated over the west and central Ha
regiong, and a thermal conduction front or hydrodynamic shock

transports energy through magnetic loops to other regions,

It is instructive to calculate typical velocities and get
the time scales for pressure equilibrium to be established in the
loops. The sound speed in the <corona is given by

lZSV(Te/los) km s-1, Taking the temperature to be 15 x 106 K,

. . . - . _ . L U
e
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we get ¢, = 500 km s~ 1. Combining this with the loop lengths
that we have estimated, we expect pressure differences between
the east and central regions to exist for over two minutes, and
between the north and west.regions for -1 minute. This is exactly
the behavior observed in Ha. Although the velocities of
conduction fronts and hydrodynamic shocks are difficult to
calculate accurately without knowing the exact plasma conditions,
typical Mach values for each are 2 or 3. This is consistent with
the propagation time for the disturbance that caused the
chromospheric response in the east region. However, fast
electrons may have also played a role in this, even though they

did not penetrate the chromosphere there in significant numbers.

In the decay phase of the flare, a drop in the coronal
pressure was noted in both soft X-ray and Ha data as the plasma
cooled. By 15:45 UT, roughly half an hour after the impulsive
phase, the plasma in the long E-C loop system had cooled to the
point that it was absorbing Ha. These postflare loops persisted
for at least an hour, as shown by BBSO Ha movies. No obvious

postflare loops were seen connecting the north and west regions.

c) Chromospheric Evaporation by Thermal

conductjon and Nonthermal Electrons

The temperature of the coronal plasma at the 1loop

interaction site increased to ~15 x 106 X at the time of the

— -




flare. This value comes from the peak of the high temperature part
of the differential emission measure curve. A temperature
increase leads to enhanced thermal conduction, which may
evaporate enough of the chromosphere to provide the observed
increases in the coronal density and pressure. To calculate the
density enhancement due to evaporation, we must estimate the
change in the transition region column depth. The rate of
evaporation can be estimated by assuming that all the conductive
flux goes into heating and expanding the evaporated material,
ignoring radiation. Thus, the conductive flux would be equal to
the enthalpy flux. Using a loop scaling law to relate the
conductive flux to the apex temperature, An e a. (1983) and

Antiochos and Sturrock (1978) have derived the following:

T7/

2 L
A /(L/2) = SkTANtr .

Ko

Thus,

5/2
N = AN, sdt = k,T,"" "/[5k(L/2)] (1)
and the total number of evaporated atoms will be
N__ = N_ At , (2)

(TA-apex temperature, L=total loop length, N r-transition region

t
column depth in cm-2, k,«10-6, k=1.38x10-16, At=time from flare
start to time of maximum loop density). The length of the N-W

loops is ~30,000 km, and the maximum density was reached

——— ., - - . Lo e e am——— A o - —
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2 minutes after flare start. For these parameters, we get:

*
- 17 -2 g-1
Ntr 8.42 x 10 cm s

- - 20 '2
and Ntr Ntr x 1208 1.01 x 10 cm- <,

giving a density of
n =N L/2 = 6.7 X ]()10 cm'3
tr/( / ) . .

This should be compared with the observed density in these loops
of 1011 cm-3. Radiative losses can be shown to be only a few
percent of the conductive flux, but the above calculations are
very sensitive to the coronal temperature. Since we used a
relatively low temperature, perhaps the amount of evaporation

given above should be considered a lower limit.

We can also estimate the evaporation due to -he nonthermal
electrons. McClymont, Canfield, and Fisher (1984) have derived
the following formula for the transition region column depth,
assuming that evaporation continues until nonthermal electron

heating is balanced by radiation at 105 K:

2/8

N, = [C(8)F /(P +MgN, )] (3)

where C(0) = [kT5(°-2)8(6/2,1/3)/(3f5)] NC(O/Z - 1).

(PA is the apex gas pressure, M=1,56m

H’ g is solar gravity, Fc is

the electron energy flux above a sharp cutoff, T5-105 X, 8 is the

m— - er—e———
A-SSor s et ¢
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spectral index of the electron number spectrum, B is the complete
beta function, f5 (the radiative 1loss <coefficient at
105 K)=7x10-22 erxgs cmd s-1, N, (the stopping depth for
electrons at the cutoff energy)= 9.16x1015(£c/1 kev)? ). If

Ntr < Nc. then this formula gives an upper limit.

This can be solved easily by successive approximations,
usually with less than 10 1terations. For this flare we assume an
energy cutoff of 20 keVv, and get an upper limit on the amount of
evaporation by choosing a lower limit for the apex pressure of
100 dynes cm- 2, Using the observed quantities 6=6.5,

F,o,=1011 ergs cm-2 s-1, and L=3x107 cm, we get:

N P 19 -2
tr 4.1 x 10 cm

and n £ 2.7 x 1010 em-3,

The correct density is probably within a factor of 2-3 of this

upper limit.

We see that evaporation by fast electrons can be
significant, but is less important than evaporation by thermal
conduction. Equations (1) through (3) can be used to show that in
smaller, hotter flares, the difference between the two can be
more than an order of magnitude. Since this is a relatively large,
cool flare, we would expect thermal conduction to usually

dominate the evaporation process.




25

In Paper I, we had estimated the amount of evaporation by
comparing observed Ha profiles to those of empirical flare
models. This was based on a relationship inferred from the work of
Dinh (1980) between the Ha central reversal and the column depth
of the transition region. However, Dinh had assumed that the apex
gas pressure (PA=2nokTA) was negligible compared to the
gravitational pressure (mgNtr)' In fact, the gas pressure term
often dominates the total pressure. Thus, we feel that the
chromespheric evaporation argument advanced in the present paper

is on a sounder physical basis than that of Paper I.
d) Evaporation Estimate from X-Ray Blue Shifts

Another way to address the chromospheric evaporation
question is through observed mass flux of the hot plasma.
Velocities are determined from the BCS Ca XIX spectra. A
Gaugsian,centered on the rest position of the line, is fit to the
red side, and the mean wavelength shift of the blue excess gives
the velocity. This velocity, the total blue excess flux, and the
flux inside the Gaussian are plotted in Figure 5. Velocities
before ~15:22:24 UT are uncertain due to poor count statistics.
The velocity of the blue-shifted material during the impulsive
phase is ~200-300 km s8-1, During this time, the observed Ca XIX
line profile is extremely nonGaussian and blue asymmetric. The
red wing is enhanced as well, probably due to turbulence. The

velocity drops after the impulsive phase, but it is significant
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to note that there are still velocities of "150 km s-~1 at least 2
minutes after the majority of the nonthermal electron heating. We
have already shown that pressure equilibrium can be established
in the N-W loops, where most of the evaporation is taking place,
in "1 minute. Thus, we believe that evaporation is still taking
place after the end of the impulsive phase, driven by thermal

conduction from the hot plasma created earlier.

With the typical loop lengths in this flare of ~30,000 km,
and the velocities given above, the movement of a given parcel of
material cannot exist for more than "1 minute. Thus, we sum the
emission measures of the blue-shifted component minute by minute
through the period of significant blue shift. This gives a total
emission measure of ~3 x 1049 cm-3 for the uypward-moving
material. This matches the emission measure of the stationary
material, measured by FCS to be ~1050 cm-3, to within the factor
of 5-10 uncertainty for this method. Thus, in agreement with
Feldman et a/. (1980) and Antonucci et &. (1982), the BCS results
are consistent with the evaporation picture in which
chromospheric material is heated to coronal temperatures and
expands upward into the overlying loops, providing the observed

density enhancement there.

—_
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V. CONCLUSIONS

The data for this flare, both coronal and chromospheric,
point towards a release of energy due to the interaction of two
loop systems. Although we cannot determine whether magnetic
reconnection took place between the loops, or whether each loop
separately underwent instability, the simultaneity of energy
release in the loops is strongly indicative of some interaction.
The initial, and strongest, soft X-ray flux increase takes place
at the interaction site. Enhanced pressure and chromospheric
evaporation are seen at the footpoints of both sets of loops, and
the corona and chromosphere are approximately in pressure
balance. Chromospheric evaporation can provide the observed
coronal density enhancement, with thermal conduction dominating
over nonthermal electrons in the evaporation process. Strong
evidence is seen in the wings of Ha for the penetration of fast
electrons into the chromosphere, and the nonthermal
bremsstrahlung radiation expected from the electron energy flux
inferred from Ha matches the observed power in hard X-rays. There
is no need for a ~108 X plasma component to provide additional
hard X-rays. Electrons were apparently beamed in both directions
within one loop system, and no evidence for unidirectional
particle beaming was seen anywhere in the flare. Plare energy was
transported to remote regions, away from the interaction site, by

fast particles and either thermal conduction or hydrodynamic
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flows. As is often the case in solar flares (Svestka 1976), a
moderate amount of energy release took place before the existence

of a large flux of impulsive nonthermal electrons.

Two interesting possibilities for future work arose from the
study of this flare. Our limited Ha time resolution prevented us
from studying the temporal development of chromospheric
compression and expansion in more detail. Fortunately, advances
in the observational instumentation at SPO will allow us to
obtain spectra every few seconds. This should permit us to see the
first stages of chromospheric heating and find the time
dependence of any observed velocities. Also, this higher time
resolution will make it possible to look for the signature of
impulsive heating. A second question arose concerning the
mechanism of the enhanced red wing of Ha. This effect can be seen
in a number of the flares we observed during May and June 1980. We
will explore the time development, morphology, and theory of this

phenomenon in a future paper.

The authors wish to thank a number of individuals whose
contributions were invaluable to the study of this flare. Dr.
Harold 2irin provided Ha movies, the HXIS team provided X-ray
images and analysis, Dr. John W. Harvey of Kitt Peak National
Observatory provided magnetograms, and Mr. Horst Mauter and Mr.

Philip Wiborg were particularly helpful at SPO.
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Fig. 1.—— The effects of various physical processes

on theoretical Ha profiles (from CGR).

(a) As the coronal pressure (Po) is increased, the
central reversal disappearsgs. The conductive flux at
105 K (ps) and the energy flux of nonthermal electrons

(on) are held fixed.

(b) As the flux of nonthermal electrons above 20 keV 1is
increased, the Ha profile develops extensive Stark
wings. The amount of central reversal is not greatly
affected. The conductive flux and coronal pressure are

held fixed.

Fig. 2a.—- Sketch of the Ha flare along with the SPO
and FCS fields of view and the photospheric magnetic
neutral lines (dashed lines). The bright Ba regions are
outlined and labeled, and a dark filament is drawn for
reference. The squares in the lower right-hand corner of

each field of view show the respective pixel sizes.

Fig. 2b.—— Hypothesized coronal loop structure, ?

showing two large arcades of loops. The loops connecting

g m eae

the east and central Ha regions were seen as postflare
Ha loops. The loops connecting the north and west

regions were seen as preflare fibrils. Note that the

e o o= = m———n o= L . —— o o
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north Ha region was displaced upward to make the field

lines clearer.

Fig. 3.— Light curves for hard X-rays (top panel),
soft X-rays (middle panel), and Ba excess relative to
preflare (averages of pixels in the north (N), strand

(S). and east (E) regions, bottom panel).

Fig. 4.-— Ha profiles from the SPO observations.
Each column is a time sequence of profiles from a single
pixel. The left column is a pixel from the north Ha
region, and the right column is a pixel in the strand,
near the west-central interface. The spectral range is
Ha t 4.8 i, and the distance between tick marks
represents half the gquiet sun continuum intensity. Each
profile extends from the left vertical line to the small
vertical dash at the right. A straight line connects the
right end of each profile to the I/IC = 1.0 point for
that profile. Times during the impulsive phase are

underlined.

Pig. 5.-— The unshifted Gaussian soft X-ray flux in
the Ca XIX line (thin curve), the excess to this

Gausgsian on the blue side of the line (thick curve), and

the velocity of the blue-shifted material (broken curve).

o
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ABSTRACT

Prom the Solar Maximum Mission (SMM) and Sacramento Peak Observatory (SPO)
we observed the compact solar flare of 7 May, 1980, previously studied by Acton e
al. (1982) and Simnett (1983), with spatial, spectral and temporal resolution in
both X-~rays and Ha profiles, throughout the impulsive phase. We have compared
the observed flare Ha profiles to theoretical Ha profiles based on physical
models of chromospheric flare processes and mcdel parameters inferred from the
X—-ray observations.

WNe find that:

(1) The rbserwved Ha profiles show the theoretically predicted =2nhanced-
v1ag signature of nonthermal electrons, well correlated in space and time with
hard X-ray emission, for values of electron energy flux in agreement with the
thick-target interpretation of the observed hard X-ray emission;

(2) Coronal pressure values inferred from the observed central reversals
of the kernel Ha profiles agree well with the values inferred from the analysis
of soft X~-ray data, at the end of the impulsive phase (the approximate time of
maximum thermal X-ray emission measure);

(3) The dominant chromospheric evaporation mechanism is thermal
conduction. This process successfully accounts for the measured coronal
pressure at the time of maximum emission measure. Chromospheric evaporation

driven by thick-target nonthermal electron heating is insufficient.

Sub-2ct headings: line profiles -- Sun: chromosphere -- Sun: flares




I. INTRODUCTION

There is no doubt that energetic electrons (with characteristic enerqgy
nuch greater than that of the 1-2 keV thermal flare electrons) exist during solar
flares; well-known observational consequences include nonthermal hard X-rays
and microwave radiation and the presence of the electrons themselves in
interplanetary space. The physical mechanisms and morphology of the
icceleration and transport of these electrons are topbics of considerable
1nt2rest 1n current 3solar flare research. It is believed that these electrzns
are accelerated in the corona and produce hard X-ray radiation by nonthermal
bremsstrahlung as they are stopped at the feet of coronal loops (the so-called
thick-tarjet mcdel, Brown 19371). Hard X-ray imaging dkserwvations (at 2nergles
qreater than about 20 keV) tend to support this picture in flares in which the
hard X-ray emission is impulsive (Duijveman and Hoyng 1983; Ohki et al. 1983).
Substantial hard X-ray emission appears to come from 2 or more points, which can
be 1dentified with the feet of coronal loops, relatively low in the atmosphere,

when limb events have been observed (Ohki ef ai. 1983)

From the point of view of particle transport theory, it is important to
know whether the primary mechanism for stopping these fast particles 1is
collisional, re. Coulomb collisions with the ambient solar atmosphere, or whether
noncollisional (say wave-particle) effects significantly modify the particle
transport. Hard X-ray direct imaging observations, which presently claim spatial
resolution of 7-8" (5000-6000 km at the sun), are not adequate to spatially

rasolve the distribution of emission if the stcepping occurs in the chromosphere,

whose density scale height 1s an order of magnitude smaller than the




instrumental resolution. Up to the present time, the most Qquantitative
observational test of the collisional thick-target hypothesis is 2-spacecraft
observation of nonimaged X-rays (Kane et al. 1983). These measurements of X-rays
above 100 keV, simultaneously from 2 spacecraft, of flares partially occulted
(by the solar limb) from one of the spacecraft, agree approximately with the
predicted altitude dependence of collisional thick-target emission (Brown and

McClymont 1975).

an i1ndependent test of the collisional thick-target model 1s to look for
the heat:ing effects of the collisions in chromospheric line profiles. A&n
improved application of this approcach is enabled by recent physical models of
chrcmosgheric energy balance during solar flares. Ricchiazzl and cCanfield
(1283) snlved the equations of static energy balance, hydrostatic equilibrium,
radiative transfer and atomic statistical equilibrium in a l-dimensional
theoretical model chromosphere. To make the problem computationally more
tractible, and conceptually more simple, they neglected dynamic effects, on the
grounds that such effects are of second-order importance for a*+ least some, but
certainly not all, of the chromospheric phenomena of interest. Their models show
the effects of collisional heating by energetic nonthermal electrons, classical
thermal conduction, and enhanced <coronal pressure. Using these model
atmospheres, as well as impulsive model atmospheres that apply only for the
first few seconds of impulsive bursts, before significant chromospheric mass
motions can develop, Canfield, Gunkler, and Ricchiazzi (1984), henceforth CGR,
determined the theoretical Ha spectral signatures of these processes. Hence, we
can examine observations of profiles of the Ha line during impulsive hard X-ray

flares to see whether or not they show the predicted Ha profile response to any
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of these processes, We then see 1if the chromospheric response is consistent with
the thermal and nonthermal X-ray observations and the collisional thick-target

model.

In this paper we extend our previous analysis of chromospheric evaporation
in the flare of 7 May, 1980 (Acton et al. 1982, henceforth Paper I) in which we
showed, wusing empirical flare chromospheric mcdels, that chromospheric
avaporation can account for the thermal X-ray plasma of this flare. Recent work
by Kiplinger et al. (1983) confirms that the hard X-ray emission of this flare was
highly 1impulsive and nonthermal, 1leading us to believe that there might be
acnthermal electron heating effects 1n the chrcomesphere. Hard X-ray images of
this flare are available (Paper I and Simnett, 1383), so we have observational
sonstralnts on where these effects should appear. In this paper we also return to
the 1ssue of chromospheric evaporation, but for the 1interpretation we use
physical model atmospheres, not empirical ones. We conclude that the imbalance
between chromospheric and coronal pressures found in Paper I is due to a problem
with the empirical models; pressure imbalance 1is not implied when the

observations are interpreted using the physical models.

II. NONTHERMAL ELECTRON HEATING

We beqgin by discussing the way the Ha profile should respond to thick-
target nonthermal electron heating, using previous theoretical modeling. We
show that broad Stark wings are the theoretically expected response, above moderately
high values of the input nonthermal-electron energy flux. Then, in § b), we

examine the observed spatial and temporal behavior of Ha profiles and hard X-
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rays during the impulsive phase, concluding that broad Ha wings are closely i
. 8 .

related observationally to hard X-rays. Finally, > €). we show that the observed wath

of impulsive phase Ha wings supports the thick-target nonthermal electron

heating picture.

a) Theoretical Ha Profiles

In CGR we modeled the effects of nonthermal =2lectron heating on the

profile of the Ha line in 2 static approximations. We showed that in both the

hydrostatic and impulsive models, only high wvalues of the input flux of
ncnthermal electrons produce Ha profiles with obvicus broad 5tark wings., The
nonthermal electron flux is measured by on, the enerqgy flux above 20 keV at the
point of injection. We measure the column number density (the number of hydrogen
auclei per unit area) from this point, assumed to be the loop apex. The absence
of such wings precludes heating with values of on 2 1010 ergs cm-2 s-1. The
calculations show Stark wings both in the impulsive approximation, which applies
for the first few seconds, and in the hydrostatic approximation, which applies

after chromospheric mass motions have died out (after at least several tens of

seconds). Approximately isotropic mass motions directly observed 1in

chromospheric line profiles during flares are not large enough to account for Ha
wings as broad as those observed (see Canfield 1982, and below). We therefore
expect that the presence of such wings is the signature of nonthermal electron

heating throughout the temporal development of flares.

Figure 1 shows theoret:ically predicted Ha profiles, from CGR, for varicus

7alues of Foo: The upper panel shows profiles in the impulsive approximation,




for 4 different values of on, and a fixed value, F o2f the conductive flux at

g
105 K. The lower panel shows profiles in the hydrostatic approximation, for 3
d1fferent values of qu, and fixed values of P5 and the coronal apex pressure,
Pa' These calculations lead us to believe that 1f nonthermal electrons of
sufficient intensity are present 1n the chromosphere during flares, we should
axpect broad Ha wings at points in space and time associated with sufficiently

1nzense hard X-rays. The figure shows that Ha will have broad wings, with flare

2xces33es at the level of 10% or more, 2xtending 1nts> tha

14

Xtreme Wing re3ion

(beyond 3 A).

b) Iopulsive-Prase Jkszervi-icns

The xey X-ray observations for this 3study of nonthermal =lectron heating
are the SMM hard X-ray observations of the Hard X-Ray Burst 3pectrometer (HXRBS,
Or+13, Frost, and Dennis 1980) and the Hard X-Ray Imaging Spectrometer (HXIS,
van Beek ef al. 1980). The HXRBS is a large-area proportional counter sensitive to
spat:ially unresolved solar X-radiation in the energy range 28-470 keV, with an
instrumental time resolution of 128 ms. The HXIS is an array of mini-
proportional counters that provides simultaneocus spatial and spectral
information in spatial pixels of 8" half-width in six energy bands from 3.5 to

30 keV.

Our impulsive-phase Ha line profile observations were obtained using a
sharge-coupled device (CCD) array of 100 by 100 pixels in the focal plane of the
Echelle Spectrograph of the vacuum Tower Telescope (Dunn 1363, 1371) at SPO. The

flare was observed with 2" x 2.67 spectroheliogram 1image pixels; each 1is




observed for 0.25 s at 25.6 s 1intervals. Por each image pixel there are 50
@ o
spectral pixels of width 204 mA over a 10 A window centered on Ha. Further

details of the Ha data acquisition are given in the Appendix of Paper I.

The temporal relationship between the SPO Ha and HXRBS X-ray measurements
1S shown in Figure 2. The impulsive hard X-ray phase of this flare consisted of 2
periods of multiple impulsive bursts. The first extended from 145603 to
135612 UT and the second from 1345624 to 145647. The t:mes of Ha profile
measurement, shown by open circles, include 145616, between the 2 burst periods,

and 145642, during the second burst period.

The spatial relationship between the 3P0 Ha pixkels and HXIS X-ray pixels
15 shown 1n Pigure 3. The two large contiguous squares, one above the other,
which *%ogether appear to frame each panel, are the 2 HXIS pixels in which
somewhat over half of the 16-30 keV X-rays were detected. As in Paper I, we
censider the impulsive phase as a whole, to accumulate higher photon counts. The
alignment of Ha and HXIS pixels 1s that of Paper I, in which it was shown that
38+3% of the impulsive phase 16-30 XeV photons came from the southern (lower)
HXI3 pixel, 15+2% from the northern, and the balance predominantly at the level
of roughly 6-8% from surrounding pixels. The 2 HXIS pixels shown in Figurxe 3 are
pixels 5 and 8 of Paper I. A spatially deconvolved image, removing the effect of
a triangular point response function of 8" full-width half-maximum, has been
published by Simnett (1983); these same two pixels are his pixels 197 and 196,

respectively.

We now focus our attention on those SPO Ha pixels that show substantial Ha

wing enhancement. The Ha line profiles of all such pixels are shown in Figure 3,




2long with a few other less~disturbed pixels for ccmparison. The profiles of
2ach pixel are plotted within the small rectangle that represents the pixel
(both location and dimensions) in the spectroheliogram. This information is
3iven at five indicated times spanning the impulsive hard X-ray burst period.
fach Ha pixel contains not only the profile observed at the given time, but aiso
( lighter dotted curve) the profile observed in that pixel at 145525, 38 s before
the start of the first impulsive hard X-ray burst period. The Ha flare kernels
ir2 :nd:icated by the shaded pixels in Fiqure 3; they were defined as 2ll pixels
whose peak Ha power (measured by integrating over -5 = AN = +5;) reached or
2xceeded half that of the brightest pixel. This, c<f course, need nct have
anything 3directly to do with nonthermal electrzsn heating or the precence of
wings. At 145616 UT North kernel pixel (40,42) shows relatively little wing
developrment, while pixel (37,45), outside the 3outh kernel, shows about the same

core intensity but much more extensive wings.

Neglecting, for the moment, the matter of wing development, one might ask
what we find to be the relationship between the relative power output of the 2
kxernels in Ha and hard X-rays. The observed ratio of impulsive south kernel to
north kernel brightness in 16-30 keV X-rays (see above) is in the range 2.1-3.2,
based on the count statistics derived in Paper I. The impulsive phase south-to-
north ratio in Ha, at the time of simultaneous impulsive X-ray emission and Ha
observation (145642 UT), is 2.9. Hence, the observed power ratios in the two J
different emissions agree to within observational uncertainty. In view of the
sensitivity of Ha power to pressure (see Figure 4), we feel that this agreement
18 of little direct relevance to the ncnthermal elactron heating of the

chromosphere,

B
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It is interesting to note that the relationship between Ha kernel size

and wing development is the same as that found by Neidig (1981); the larger

xernel shows stronger wing development. Neidig interpreted this in terms of an
asymmetric loop, in which electrons mirror akove the chromosphere at the end at
which the magnetic field lines are more strongly convergent, but enter the
shromeosphere and are stopped at the other end, producing Ha wings there. In this
£lire we 322 3upporting evidence for thls picture, £rom both the HA mng and hard X-ray
emission. The magnetic field morphology that one would infer from the relationship
between footpoint locations and their proximity to sunspots supports thils
Dicture. We axgect field lines to diverge away from the weaker North Ha kernel,

which is located closer to the nearby sunspot.

c) Comparaison of Phvsical Mcdels and Observation

Both the timing and the relative energetics of the relationship between
hard X-ray emission and spectrally integrated Ha emission suggests that fast
a2lectron heating is closely related to the creation of Ha photons. However, what
do we see when we make a direct comparison of the observed profiles to the
theoretical profiles? One must bear in mind that both image motion and small sky
transparency variations may affect the Ha data. Image motion is certainly the
more important of these two effects, and our Ha data show evidence of either
image motion combined with steep intensity gradients or real brightness
variation on time scales much less than 1 second, during the impulsive phase (ct.
Paper ). Por this reason, one must always consider the effect of simply shifting

the whole spectrum up or down at all wavelengths, in order to approximate the




11

2ffect of spatial displacement of the pixel of 1nterest on the background

continuum 1ntensity.

Finally, when we compare the observed and theoretical Ha profiles, we must

also bear in mind that the theoretical profiles are symmetric, whereas in some
cases the cbserved profiles are quite asymmetric. It has been known for a
considerable period of time that the Ha line in flares shows a bright red wing
f3vestka 1976). Neither the relationship of this asymmetry to the X-ray flare
ncrx <he <heoretical mechanism of 1t35 origin 15 well understscd, although a
recent paper by Ichimoto and Kurokawa (1984) concludes that 1t 1s a consequence
2t downward motion driven by imgulsive heating due to either an energetic

2lsc=rzan Zeam or thermal conducticn.

Do cbserved Ha profiles show brcad wings that have a direct temporal
relaticn3ship to impulsive hard X-ray emissicn? Referring to Figure 1, we see
that at 145551 UT, 14 s before the start of impulsive X-ray emission, the Ha
profiles show no blue-wing emissiorn that extends more than about 1-2 g from line
center. We i1gnore the red wing emission, since it may be enhanced by hydrodynamic
motions, as discussed above. At 135616, between the 2 impulsive burst periods,
pixel (37,45) shows excess blue emission all the way to A\ = -5 i, and the
emission in pixels (37,44) and (42,42) extends blueward more than 33. If we
adopt as a working criterion of wing enhancement an excess that extends farther
to the blue than about 3&, even taking into account any possible image motion
effects by shifting the entire spectrum up or down, we find that 3 pixels show
broad blue wings at 145616, 8 at 145642, 5 at 154707, 2 at 145733, and only 1

(40,42) during the next 3 spectroheliograms. After that time, no profiles show

. . - — e e o DDl prsiomeec “ AP ‘-“——w'm——-e-w"m——‘
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such blue-wing enhancement. Hence, the temporal behavior of the wing enhancement
beyond -3 A from line center closely matches the temporal behavior of impulsive
hard X-rays. The blue wings are broadest, and more pixels show broad blue wings,

it the time (145642) that coincides most nearly with hard X-ray emission.

The 1mpulsive-phase energetics must also be examined; we find that they,
too, tend to support the collisional thick-target mcdel. The analysis of the
HXRBS data of Paper I split the flare 1nto 2.56 s time intervals. In the interwval
2ncompassing <he 145542 spectroheliogram, using the power-law thick-target
nccdel, we found a power P, =7 x 1028 erg s-! 1in electrons above 20 keV and a
photon spectral index ¥ = 4.8. If we estimate the flare area based on the number
5I pixels rhat show broad blue wings at this time (3), and assume them to be
fully and «aniformly filled, we conclude that the electron impact area was
2.3 x 1017 cm2, Combining the power and area estimates implies a value of on =
3 x 10!l exgs cm-2 s~ 1. This value is certainly sufficiently large that we
would exgpect to see a broad-wing nonthermal electron signature, out to the %5 i
edge of our spectral field of view. Figure 3 shows that this is what is observed

in these pixels at this time.

Combining timing and energetics, we see that in both respects there is a
close relationship between the value of Py inferred from on and the flare
kernel area, on one hand, and the presence of Hx wings, on the other. Given that
Fo,p =3 X% 10ll erqgs cm-2 g-1 at 145642 UT, we infer from the hard X-ray light
curve given 1in Figure 2 that qu significantly exceeds 1010 ergs cm-2 s-1!

Juring the 3 times of Ha profile observations underlined in Figure 3. These are

the times at which at least several pixels show extensive Ha wings. During the
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post-impulsive period for which only 1 pixel shows extensive wings, we infer
10 10
from Pigqure 2 that F,o ~ 10 ergs cm~2 s- 1. Hence, whenever F,q = 10 ergs
cm-2 s-1, the number of pixels showing broad Ha wings appears to track hard X-
ray emission quite directly. Our calculations in CGR show that the column depth
at which the specific Ha wing emission reaches a peak 1s in the lower
-2 . . . .
chromosphere (column depth N = 102l cm ), where the radiative cooling time is
short (tR << 1 s). Thus the close temporal correlaticn is to be expected, if the

icminant heating mechanism 15 direct Icllisicns with nenthermal 2lectrons.

It 13 1nteresting that this approaches the upper l:imit imposed by return
current considerations (Kindel and Kennel 1971, Duzijveman ef al. 1981). Duijveman
2t M. (1282) sShow that 1Lf Te < Tl, return Jurrant snability requir2s that the
ambient electron density ne exceeds Pe/O.Sve, where Pe 1s the beam elecltron
flux and ve 13 the ambient electron thermal veloc:ity. The data permit only a
rcugh analysis, since we cannot be sure to what extent 'I‘e # TL' or how far the
electron spectrum extends below 20 keV. However, 30 kxeV as the mean electron
energy, 20 keV as the mean electron energy, 20 keV as their low-energy cut off,
and 3 x 107 X as the ambient temperature, we f:nd that ng > 6 x 10? cm-3 is
required for stability. The soft X-ray observations of Paper I imply a preflare
electron density of about 101l cm-3. Hence, only if T,/T; »>> 1 and the low-

energy cutoff energy is much less than 20 keV do return-current stability

considerations appear as a potential inconsistency.

In summary, the temporal, spectral, and spatial characteristics of the

~ombined Ha and hard X-ray data set support the hypothesis that nonthermal

electrons are heating the flare chromosphere during the impulsive phase of this
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flare, in numbers consistent with the thick target hard X-ray model.

III. PRE3SURE BALANCE

A puzzling inconsistency arose in Paper I; the analysis carried out there
implied a lack of pressure balance between the top of the chromosphere and the
corona, even several hydrodynamic scale times after the impulsive phase. The X-
ray coronal pressure was found to be 5-8 times greater than the wupper
chromospheric pressure arcund the time of maximum X-ray emission pressure. In
Paper I we speculated that part of the problem arose from the use of Ha profiles
based on 2mpirical model atmospheres. As we see belcw, if we use the CGR physical
models to interpret the observed Ha profiles, instead of empirical models, no

such pressure imbalance is implied.

a) Coronal Pressure from X-Rays

The pressure in the soft X-ray emitting corona is based on temperature
and density estimates. In Paper I, the characteristic coronal temperature was
obtained from the SMM X-Ray Polychromator (XRP) data by the
satellite-to-resonance-line technique, using the observed lines of Ca XIX and Fe
XXV (Culhane et al. 1981 ). These temperatures were 107 and 6 x 106 K at 145712 and
145944 UT respectively. Also using the XRP data, the density was estimated from
the total soft X-ray emission measure (all material at T > 2 x 106 K) and the
estimated X-ray source volume. The density so inferred was 2 x 10ll cm_a. with

an uncertainty of about a factor of 2. Inferred pressures were thus - 400 dyne

- . -2
cm ¢ at 1457 UT, near the end of the impulsive phase, and ~ 250 dyne cCm 3
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minutes later, spanning the period of maximum emisslon measure.

Independent estimates of the coronal pressure have been made by Simnett
(1983). Using the X-ray continuum spectra in the range 3.5-30 keV observed from
HXIS, he derived values of temperature and emission measure 1n sSix time
intervals during the flare. His method is based on a 2-temperature model of the
X-ray plasma, and the spectra predicted by the model are fitted to the data. For
the zool compornent, Simnett derives T = 6.6 x 106 X during 145649-145729 UT, T
= 5.6 x .08 K during 145729-145854 UT, and T = 6.4 x 10% X during 135854~
150031 UT. For the hot component, he derives 21, 22 and 23 x 1086 K
respectively, during these same 3 intervals. On the basis of the HXIS 1mage at
£lire maximum, Simnett derives a volume virtually idenrntical %o that of Paper I,
but emissSion measures roughly 3 times larger. His derived densities for the cool

11 -3

component are 5.8, 5.9, and 4.6 x 10 cm -, during the 3 time 1i1ntervals of

interest. The corresponding pressure values are thus 1.3, 1.3 and 1.0 x 103
-2 .
dyne cm respectively. FPor the hot component, one can Jdo no better than use the
- L 10
same volume, obtaining densities 9.8, 6.7 and 3.2 x 10 cm-3, and pressures

-2
5.7, 4.0and 2.0 x 102 dynes cm , respectively.

When we make a comparison, we see that the HXIS and XRP measures of
coronal pressure during the period 1457-1500 UT, immediately following the
impulsive phase, agree to within a factor of 3-4. The difference between the XRP

and HXI3S values accrues mainly from different 1nferred values of the emission




measure.

b) Coronal Pressure from H

By comparing theoretical Ha profiles to our obserwvations, we can infer
the coronal pressure. In CGR we showed that in hydrostatic equilibrium, the
amplitude of the central reversal is a measure of the coronal pressure, Po.
F:gure 4 shcws that as Pn is 1ncreased, the central reversal (measured by the
ratio Io/Imax) increases, reaching 1 between 102 and 103 dynes cm-z- CGR showed
that the primary reason for this pressure dependence, at high values of
prassure, 15 collisional creation of Ha photons in the region near unit line-
center Ha optical depth. We note that although we do not know what value of FS to
associate with the observations, values of FS > 107 erqs cm~? s- ! (which we
would expect from the measured value of the coronal temperature, the inferred
loop length, and the coronal scaling laws of Craig, McClymont, and Underwood
(13478)), would lead primarily to a reduction in the intensity of Ha, but not an
increase in the central reversal. For given PB, but higher PS, the radiation at

line center would come from an even denser region than it does in Figure 4, ie., we

wculd expect a reduction in total intensity and even less central reversal.

In order to credibly compare the Ha profiles of Figure 4 to the
observations, we must be convinced of the plausibility of various assumptions.
In particular, there must have been sufficient time after the major period of
heating (which we identify as the impulsive phase, 1456-57 UT) for the mass

motions necessary to establish equilibrium to take place. On the basis of the
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sbserved temperatures at 1457 UT (see above), and the length of a loop
cecnnecting the north and south kernels (length = 11,000 xm), the sound transit
time throughout the loop is about 30 3. Hence, by 145730 UT, we can plausibly

compare the hydrostatic profiles to the data.

The Ha observations during the post-impulsive period of maximum X-ray
2m.3s10on measure show only weakly reversed and unreversed profiles in the flare
vernels, which we 1dentify as the footpoints of the arches that contain the s0ft
X-ray plasma. In the south kernel, the central reversal is weak throughout this
oeriod. In the north kernel, it is even weaker. When we Compare the amplitude of
=“re reversal with the theoret:ical profiles 1in Figure 4, we 2snclude that in both
the south and north kernels, the implied coronal pressure is in the range 100-

1CcO dynes c:r\_2

It 1s noteworthy that none of the observed Ha profiles are as intense as
the theoretical Pn = 103 dynes cm-z profile in Figure 4. It must be kept in mind
that 1n creating the model flare chromosphere on which the theoretical flare Ha
profiles are based, the set of values of Foor Fg and P, are not required to be
consistent with any particular coronal structure. We believe that the major
reason for the lower intensity of the of the observed profiles is that, for the
specified value of Po, a physically consistent value of PS should be larger than
the value F, =107 ergs cm-2 s-1 illustrated in Figure 4. Craig, McClymont and
Inderwood (1978 ) show that the flux at the base of a purely conducting loop 1is

2 7/2

1/
= -1 .
Fbase 7.5 x 10 8 T /L (1)

S "m—‘ e me SRRt
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where 8 = 1 for nonesoteric heating functions, T, is the coronal (loop apex)

temperature, and L is the loop half-length, all in CGS units. For the purely
conducting model to be reasonable., we cannot apply it at temperatures less than a

value T , below which radiation begins to become significant. Clearly T

base base

>> 105 K, where Fg measures the conductive flux. To relate Fs to Fbase we must
take into account the effect of radiation at temperatures between 105 K and
Tbase' Fisher (1984) has shown that 1f one adopts a radiative loss funct:ion
inversely proportional to temperature in this range (which is a reasonably good
agprorimation to the functional dependence of the effective radiative cooling
functicsn, see McClymont and Canfield 1983), the balance between conductive flux
divergence and radiation that determines the transition region temperature
structure leads to

/4

FC(T) = 0.18 Tl P (2)

5°

where F (T) is the conductive flux at a temperature T within the transition

region. Since the conducting coronal part of the loop 1s nearly isothermal, we

equate the base and apex temperatures. Combining (1) and (2), we have

P = 4.2 x 10° 2%

5 ° / L. (3)

If we use the observed range of coronal temperatures, and the loop dimension

inferred from “he obserwvations, we obtain 8 x 107 = F‘,S = 6 x 109 ergs cm-2

s-l, [As an aside, we note that such transition-region flux values, though

IR e s, o -




large, do not exceed the saturated-flux limit (roughly one-sixth the energy

carried by free-streaming electrons), because the transition region densities

implied by the observed coronal pressure values are so high. For a coronal

pressure of 103 dyne cm-2, the saturated flux limit at 105 K 15 1.3 x 1010 erg

cm-2 g-1
cm s-1.] In CGR we showed that such values of F. are in the range that

sensitively affects the total Ha intensity, for coronal pressures in the range

-2
102 = P, = 103 dynes cm in the flare kernels. Hence, from the CGR models, we

wC1ld 2xpect observed 1ntansities %o e less “han tntse shown wn the nheorevticad

ncdels of Figure 4.

We can now compare X-ray and Ha estimates Af the coronal pressures. From
the X-ray spectra in Paper I we Qderived P, = 250-400 dynes cm-z during the
immediate postimpulsive time period of maximum emisslon measure (1457-1500 UT).
simnett (1983) derived 1.0-1.3 X 103 dynes cm_z during this same period. From
the da spectra, we infer 102 ¢ Py < 103 dynes cm—z in the flare kernels. Hence wé
conclude that within their apparent uncertainty, the two approaches give values

that agree.

The speculation in Paper I that the apparent pressure imbalance found
there night be due to the use of the empirical models of Dinh (1980) now seems
confirmed. The problem seems to be that Dinh assumes that the coronal (apex) gas
pressure 1s negligible in comparison to the gravitational pressure at the top of
the ~hromosphere. The CGR models show that this 1s not true for values of P, in

the range impl.ed by our observations of this flare.




The order-of-magnitude agreement of these 2 measures of coronal pressure
has implications for the volume filling factor in the coronal part of the flare
losp plasma. The Ha profile method does not make any assumption about coronal
volume filling factor; it is only necessary that the observed flare profiles
reflect the conditions at the footpoints of the coronal loops, in equilibrium.
On the other hand, the X-ray pressure does depend on the assumption that the soft
X-ray emitting volume is fully filled, so the derived pressure PO < v_l/z. The
order-of-magnitude agreement of the Ha and soft X-ray pressure estimates
supports the assertion that the soft X-ray volume filling factor is greater than

-2
azproximately 10 .

IV. CHROMOSPHERIC EVAPORATION

We use the term chromospheric evaporaton to describe the process in which
enhanced heating is sufficient to drive the temperature of chromospheric
material up to T = 105 K, above which the plasma is thermally unstable. As a
result, its temperature jumps dramatically, typically to T »»> 106 K, where it is
effectively stabilized by thermal conduction (Field 1965). Observed flare X-ray
spectral lines are blue-shifted (Feldman et a. 190, Antonucci et a. 1982) by
amounts corresponding to up-flow velocities of under the coronal sound speed.
These motions are commonly (though not universally) ascribed to the transient
prassure excess associated with evaporated chromospheric material (for a
review, see Doschek et a. 1984). Two basic issues arise below. First, can

chromospheric evaporation account for the amount of high-temperature material
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(T =2 106 K) 1in the thermal X-ray flare plasma? Second, 1is chromospheric
evaporat:on driven primarily through thermal conduction from the hot flare
corona or through direct collisional heating of the chromosphere by nonthermal

2lectrons?

In this paper we approach these questions differently from Paper I.
There, the amcunt of material evaporated £rcm the chromosphere was estimated
from the observed Ha profiles by comparing them with a grid of empwricai modef
chromospheres created by Dinh (1980). These models do not distinguish between 2

d1f€arent contributors to the pressure at +<he top of the chrcmesphere,

7]

cacifically +he coronal loop agex (csconfinement; pressure and gravitational
pressure. On the other hand, the physical model chromospneres of CGR do make thas
distinction and hence permit us to take a difierent approach to estimating the
amount of evaporation through interpretation of the Ha 1line profile
observations. In this paper we address these questions by estimating the extent
to which the 2 different evaporation mechanisms, acting alone, displace the
flare transition region to column numbers N1 that are greater than the preflare

value N and then compare N1 for the 2 mechanisms to the value required to

0’




explain the observations.

a) Evaporation by Nonthermal Electrons

In Paper I we estimated the column deéih of evaporation through direct
collisional heating by the thick-target fast electrons associated with the
observed hard X-ray emission. We used an expression, derived by Lin and Hudson
{1976), based on the physical assumption that at the flare transition region
collisional heating 1s balanced by radiation, bearing in mind that the peak
abil:ty of the solar plasma to radiate is at T - 105 K. The estimate of the
column density of the evaporated material given in Paper I should be revised for
2 reascns. Most importantly, the Lin and dudson (1376) expression neglects th
dominant contributor to the transition region pressure in closed loops, re. the
loop apex pressure. Second, in § II above we showed that the Ha wings imply a
ncnthermal electron impact area about a factor of 2 greater than that used in
Paper I (there we used only the south kernel area). Hence, we now derive a

revised estimate of the amount of evaporation by direct collisional heating.

McClymont, Canfield and Fisher (1984) take into account loop apex
pressure in their consideration of direct collisional heating by nonthermal
electrong. They use the analytical scattering approach of Brown (1973), assuming
heating by Coulomb collisions only, in a vertical column of fully ionized plasma
in which the power-law distribution of electron energies has a lower cutoff
energy Ec that corresponds to stopping above the flare transition region. They
show that transition region energy balance ketween radiation and collisional

heating can be expressed as
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1-6/2 Gr2z

((Py + r7“5“,)/}<1"1 £, = ([(6-2) B(6/2,1/3))/(6 N, 1 oEN, T (4)
The left-hand side is the specific (per H nucleus) radiative loss rate; the
right-hand side is the specific collisional heating rate. The density at the
flare trapnsition region 1is given by (Pu + EgNI)/kT’(, where ﬁgN1 is the
gravitational c¢ontribution, and 'I‘r 15 taken to be the temperature of the un-
1onized preflare chremeosphere, in the case where the time scale is so shor* that
material has insufficient time to change its density, or 2Ts in the hydrostatic
case, where T, = 10% K and full :onization 13 assumed. The constant f, 13 the

s . - -22
reak value cf the specific rad:ative cooling Zunction, at T = 105 X, 7 x 10

1
rg cm3 s . On the right-hand side, 6 (6 = v + 1 for a thick target) 1is the

[

spectral index of the nonthermal electron power law, B(X,y) is the complete beta
function, Nc is the stopping column number of electrons with the cutoff energy

1f E

Ec, and E‘C is the enexgy flux of nonthermal electrons above energy Ec (on' e

= 20 xeV), at N =0, If we define a coefficient C(§) by

1-6/2

C(8) = (kT (0-2) 3(0/2, 1/3))/[6 £4N, 1.

then the column depth of chromospheric evaporation by direct collisional heating

by flare electrons is the solution of the equation

N, = [C(8) P /(Ry + moN 1120, (5)

which can conveniently be solved numerically by the method of successive

approximationg. If the solution of (5) is a value N, « Nc' then the value of N,
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1S an upper limit.

Por this flare, we can determine the depth of direct collisional
avaporation from the inferred values of the parameters of equation (5): 920 =
3 x 10!l ergs cm-2 s-1, and 6 = 5.8. By 1457 UT, the end of the impulsive
phase, one can plausibly argue that there has been sufficient time to set up
ipprox.mate pressure balance in this small locp (the hydrodynamic time scale ~

-2 _
12 s,. If we adopt Po = 70 dynes o , the prerflare value from Paper I, we then
13 -2 . L.
obtain N = 7 x 10 cm . This 1s certainly based on a lower limit to the

. -2
Drassure; 31 more appropriate value 13 300 dynes =m ~, which leads to N = ¢ x 1019

[ o

om-2. 31nce N_ = 4 x 1019 cm-2 £5r £_ = 20 k&Y. our result is insensitive to E,
unless E_ >> 20 keVv, in which case this N value 1s an upper limit. In any case,
<

jirect collisional evaporation cannot plausibly be argued to extend to column

depths N = 7 x 1019 cm-2, whatever the value of E.-

As an aside, were we to (inconsistently) neglect Po' as dcne in Paper I,
- . 20 -2 . i
w2 would obtain N 1.7 x 10 cm . If we were to (inconsistently) use the
*
impulsive model at 1457 UT, adopting T = 6000 K as the temperature of the

preflare chromosphere at the column depth of the flare transition region, we

would obtain N < 2 ¥ 1019 cmcz. Below we will ccmpare these values of Nx to those
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ippropriate to conductive heating.

b} Conduction-Driven Evaporation

Heat deposited 1in the coronal part §f a high-temperature loop is
efficiently transported toward the chromospheric foot points by thermal
conduction. In time-dependent numerical simulations of energy transport in
lcops whose flare heating was due solely to energetic electrons, Fisher,
*anfi2.d, irnd Mcllymont (1984) showed zthat only Z>r the first second or so 15
2viporation Jominated by direct coll:isional heating. In the case they
considered, e, a constant collisional heating rate, a quasisteady equilibrium
w43 =2s5<ablished 2n which oconduction rove chremespheric =2vaporaticn  as

descrized by An et al. (1983):

F. =5 kT, dN_/dt + J’Nz R AN, (6)
1 1 1 Ny

where R 1s the radiative loss rate per H nucleus. Here the subscripts 1 and 2
refer respectively to the coronal and chromospheric boundaries of the flare
transition region; le/dt i5 the rate of addition of material to the corona, ‘e,
the rate of chromospheric evaporation. Identifying Fl with the base of a purely-
conducting coronal loop, and neglecting radiation, we combine equations (1) and

(6) to obtain

S
le/dt = Kkq Ty /2/(5 k L). (7)

0

our 3imulations of conduction-driven evaporation in Xopp ef al. {(1284) shcw that

for F, - 109 ergs cm-2 s-1, the radiation term of equation (6) is comparable to

-




the enthalpy term. Hence, we estimate that equation (7) 1s accurate to a factor
of 2 or better, since P1 is probably substantially higher in th e flare of
interest here, and therefore transition-region radiation is probably even less

significant.

To determine the amount of conduction-driven evaporation at 1457 UT, we
nead only know the evolution of temperature during the impulsive phase. This
1niormation is available from Simnett (1983). As before, we i1dentify the flare
lcop with his hot component. Simnett derives temperatures that start at
36 x 106 K at 145600-145606 UT, and gradually fall thereafter, reaching

/2 over the 60 s

21 x 106 K :n the interwval 145649-145729. Weighting by ’I'O
1nterval before the time of interest at the end of the impulsive phase

(1457 UT), we see that conduct:ive-driven evaporation will have reached a column

20
depth of approximately N1 “ 8 x 10 , with an uncertainty of a factor of 2.

c) Comparison with Observations

In order to ascertain whether either fast electron heating or thermal
conduction could account for the measured evaporation in this flare, we note
. 3 37
that the X-ray observations require neV to be approximately 3 x 10 (Paper I)
37 . . . 16
to 7 x 10 {Simnett ). Given a cross-sectional area of 6.3 x 10 cm? (Paper 1),

the required values of evaporated column density (at each footpoint) are 2.4-

0 -2 .
5.6 X 102 cm ©. We have seen above that fast electron heating can account for

19 0

-2 . 2
at most 7 x 10 cm , while conduction can account for as much as 8 x 10

cm—z. We therefore conclude that of these two alternatives, only conductively-

iom L Tozimrmomoomeem g e R i e *'md
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driven chromospheric evaporation accounts for the thermal X-ray plasma obserxved

1n this flare, at the time of maximum emission measure.

V. CONCLUSICNS

The primary conclusion of this paper is that there is consistent evidence
for heating of the chromosphere by nonthermal enerqgetic electrons during the
tmpulsive ghase of this flare, although 1t 1s not heating by these electrons that
produces the bulk of the soft X-ray plasma through chromospheric evaporation. It
acpears that *there 1s satisfactory order-of-magnitude agreement between the
sbserved Ha wing development and the theoret:cal Ha wings expected from the
spectrum of nonthermal electrons inferred from observed hard X-rays. From the
point of view of transport theory, it appears that collisional stopping of the
energetic electrons provides a satisfactory theoretical interpretation of the
observations. However, it seems that thermal conduction, not heating by
energetic electrons, i3 the preferred mechanism for production of the thermal X-

ray plasma maximum emission measure, just after the 2nd of the impulsive hard X-

ray phase,
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FIGURE CAPTIONS

Fig. l.--Theoretically predicted Ha profile signatures of nonthermal
electron heating, from CGR. Top: Impulsive approximation. Bottom:

Hydrostatic approximation. The unit of intensity, I is that of

continuum’

the quiet sun in the vicinity of Ha.

Pi1g. 2.-—Temporal development of hard X-ray counts and Ha energy output of
the flare of 7 May, 1980 from Paper I. The hard X-ray data sum all counts
at energies above 30 keV. The H& data sum all power within 5 ; of preflare
line center, subtracting the average value during a preflare reference
period. For the Ha data, <circles indicate wvalues and times of
observations. The heavy solid curve indicates the integrated Ha £ 5 R
energy output (left scale). Percentage contributions of the south and
north Xernels (see Figure 3) are indicated by the light solid and dashed

lines respectively (right scale).

Fig. 3.--Ha profile observations at times spanning the impulsive hard X-
ray phase. The 2 large contiguous squares that appear to frame each panel
indicate 2 relevant 8" x 8" HXIS pixels; the smaller rectangles indicate
relevant 2" x 2?67 Ha pixels. The location of the Ha pixel in the
spectrohelioqram is indicated by its (row,column) index (i,3j). In each Ha
pixel 2 spectra are plotted in units of Ic, the observed quiet sun
continuum intensity near the flare site. The heavier spectrum is that at

the indicated time; the lighter spectrum 1s that of 145525 UT, before the
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impulsive phase. The values of (i,]) are the (row,column) 1indices of the
pixels in the Ha spectroheliogram. The shaded pixels are the north and
south kernel pixels of Papar I. Times underlined are those for which qu >

10
10 ergs cm~-2 g- 1,

Fig. 4.--Theoretically predicted Ha profiles for 4 values of the coronal
pressure, P“, and fixed values of nonthermal electron energy flux on and

conductive flux at 105 X, Fg.

Pig. S.-—-Ha profile observations at times spanning the post-impulsive

period of maximum emission measure (1457-1500 UT). Same format as

Figure 3.
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b) Theoretical Modeling of Flare Energy Transport

In order to analyze and 1interpret our flare observations, we have
Jeveloped methods for efficient and realistic treatments of radiative transfer,
We have then used these methods to construct physically self-consistent model
tlare atmospheres. Finally, we have calculated Ha spectral line profiles for
various model flare atmospheres, and thereby demonstrated how the Ha 1line
profile responds to energetic electrons, thermal conduction and coronal

v

19

23dre,

The flare model atmospheres show that the chromosphere responds quite
i:ff2rently to these three different processes. The amount of evaporated
miteri1al Jepends on all three processes cons:.deredl. However, only thermal

dlcsion fan account  for sufficient chromospheric evaporation 1in small
“lir2s. Z2nly energetic electrons can give heating of the residual flare
hronosphere.

Similarly, the Ha line profile responds quite differently to these three
Jifferent processes. The most important effects, from the point of view of the
1nterpretation of our observations, are: .

1. Only high values of the flux of energetic electrons produce Ha
profiles with obvious wide Stark wings;

2. Only high valu2s of coronal pressure can cause flare Ha emission
profilesg that are not centrally reversed (a relative minimum at line center).
These Ha signatures are the key to the analysis of the data in the

previous section (IIa).
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Abstract. We have developed a computationaily efficient method for
highly nonlinear problems in which radiative transfer is an .mportant
aspect of the heating and cooling of the medium. I|n this paper we sum-
marize all essential aspects of the method. We gerive an approximate
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1 INTRODUCTION

Probabilistic methods of radiative ‘ransfer have 'wo basic ‘eatures that
make them desirable—ease of understanding and computational speed. Their ease of
understanding comes through analytical, rather than numer:cal, treatment of frequency
integration. This approach recognizes that in many radiative transfer problems. the
detarled atomic physics can be decoupled conceptually from the description of the
effects of photon propagation. The computational speed of the unique method dis-
cussed in this paper accrues from three factors: (1) anaiytic frequency integration
reduces the number of equations to be solved numer:ically. (2) the radiative transter
equation 1s cast in first-order differential form, (3) no elaborate auxihary equations are
required.

Analytical frequency integration has substantial computational benefits.
The usual approach of frequency-dependent radiative transfer, i.e. the simuitaneous
numerical solution of the radiative transfer equation at many discrete frequencies within
a spectral line or continuum, is reduced to solution of a frequency-integrated equation
at a single reterence frequency. In practice, this reduces the number of radiative
transfer equations per spectral teature (line or continuum) by an order of magmitude or
more. Typically the computing time required to solve the system of equations in a com-
plete linearization approach scales as the number of equations {0 a power of between
two and three on parallei-processing computers, or three on scalar processors. Hence,
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highly nontinear problems in which radiative transfer i1s an mportant
aspect of the heating and cocling of the medium. In this paper we sum-
marize all essential aspects of the method. We derive an approximate
probabilistic radiative transfer equation for one-dimensional plane-
parallel atmospheres of fimite or semi-infinite extent, for both spectral
lines and bound-free continua. We also discuss boundary conditions,
accuracy, escape probabilities, and practical aspects of complete tineari-
zation, which 1s a key element of the method. Our method is accurate to
a few tens of percent for a wide variety of realistic problems in which fre-
quency redistribution of scattered photons dominates the transfer and
escace of radiation

1 INTRODUCTION

Probabilistic methods of radiative transfer have two basic features that
make them desirable—ease of understanding and computational speed. Their ease of
understanding comes through analytical, rather than numer:cal, treatment of frequency
integration. This approach recogmzes that in many radiative transfer problems, the
detalled atomic physics can be decoupled conceptually from the description of the
effects of photon propagation. The computational speed of the unigue method dis-
cussed in this paper accrues from three factors: (1) analytic frequency integration
reduces the number of equations to He solved numer:cally. (2) the radiative trans'er
equation is cast in first-order differential form. (3} no elaborate auxiiary equations are
required.

Anatytical frequency integration has substantial computational benefits.
The usual approach of frequency-dependent radiative transfer, ie. the simultaneous
numerical solution of the radiative transfer equation at many discrete frequencies within
a spectral line or continuum, is reduced to solution of a frequency-integrated equation
at a single reference frequency. In practice, this reduces the number of radiative
transfer equations per spectral feature (line or continuum) by an order of magnitude or
more. Typically the computing time required to solve the system of equations in a com-
plete linearization approac: scales as the number of equations to a power of between

two and three on parallel-processing computers, or three on scalar processors. Hence.
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the analytic frequency integration translates into a speed gain of at least two orders of
magnitude on parailel processors, or three on scalar machines.

Because our equation is a first order differential equation, rather than an
integra! equation, it relates only adjacent spatial points, rather than all points in the
atmosphere. Hence, 't has the same advantage over integral methods as the well-known
Feautrier {1964) method used in frequency-dependent radiative transfer; one has to
solve only band matrices, not full matrices, to obtain a simultaneous numerical solution
of the full set of equations. This leads to a further speed gain. by a factor on the order
of the number of equations in the numerical grid, relative to integral equation tech-
niques.

Many interesting applications of raciative transter theory invoive systems
of equations of varous types. rather than just a single equation that describes. say,
radiative transfer in an idealized atom with only a single radiative transition. Two quite
different approaches have commonly been taken to the solution of such systems. For
example. let us caonsider the usual steady-state multiievei-atom radiative transfer prob-
fem. One approach to solving this system of equations 1s to solve for the source func-
tion in equivalent two-'evel atom ‘orm. The numerical techmque that 's commonly used
is successive substitution (see, for example, Athay 1972). The second approach uses
the equations in prirmtive form, which has the advantage of avoiding the elaborate and
time-consuming evaluation of the auxiliary equations of the eguivalent two-level atom
form. The primitive equations are usually solved by complete linearization, using a
Newton-Raphson procedure. This method was pioneered by Auer & Mihaias (1969), and
is described in a very readable fashion in Mihalas’ (1978) book.

The assumptions made to obtain the advantages of probabilistic radiative
transter are common to all techniques that use a frequency-integrated radiative transfer
equation and escape probabilities alone, without further refinement. These assumptions
break down above certain limits on the gradients of properties of the medium. Aithough
our experience thus far indicates that these limits are not reached in many problems of
astrophysical interest, they obviously must be kept in mind. Also, at present, probabilis-
tic methods have not been fully developed for treating overlapping spectral features
(say, the overtapping continua of M~ and atomic hydrogen) or partial frequency coher-
ence of scattered photons. The reasons for these various limitations will become clear
in appropriate sections below.

A key advance in radiative transfer theory was the derivation of a
differential frequency-integrated radiative transfer equation. Such an equation was
derived by Frisch & Frisch (1975), hereafter FF, in two-ievel atom form. Their equation
was subsequently cast into primitive form by Canfield et al. (1981 a), henceforth CPR,
and subséquently generalized by Puetter et al. (1982}, henceforth PHRC.

T e e e c———— - o,
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The approach to radiative transfer described in this paper has recently
been applied to a wide range of solar and astrophysical problems at UCSD. Applica-
tions have included coupled radiative transfer and gas dynamics {McClymont & Cantield
1983 a.b. Canfield et al. 1983, An et al. 1983), coupled static energy balance and multi-
element radiative transfer (Ricchiazzi 1982, Ricchiazzi & Canfieid 1983), and steady-
state muitilevel-atom radiative transfer for interiocked lines and continua (Canfield et al.
1981 b, Puetter & LeVan 1982).

QOur methods are a synthesis of the numerical approach of Auer &
Mihalas (1969) and the analiytical approach of lvanov (1973). We have tried to write
this paper for a reader who s familiar with stellar atmospheres theory at the 'evel of,
say, Mihalas' (1978) book. We have not elaborated on finite difference methods. since
many suitable descriptions are readily avallabte {eg. Richtmyer & Morton 1867 Ames
1969, Potter 1973), and limited space preciudes a complete description here.

The methods discussed here are oriented toward both spectral lines and
continua, 'n ptane-paratlel atmospheres. We begin, in Section 2. by discussing the
atomic population equations and cooling rates. After introducing the radiative transfer
equation in :ts usual monochromatic (frequency-cdecencent) form in Section 3 we take
two different approaches to probabilistic {frequency-integrated) radiative transfer in
Sections 4 and 5. In the latter we split the radiation field into two oppositely-directed
streams. while in the former we do not. The interrelated questions of boundary condi-
ticns and accuracy are discussed in Sections 6 and 7. The fundamental topic of
escape probabilities for various types of absorption and emission coetficient profites i1s
treated in Section 8. Finally, in Section 9. we discuss numerical methods. with
emphasis on techniques for comptete linearization. which strongly motivate our entire

apprecach.

2 ATOMIC POPULATION EQUATICNS AND COCLING RATES
Before discussing probabilistic radiative transfer methods we will first
discuss the atomic population equations and the expression for the radiative cooling
rate, since these equations in a large measure determine the particular radiative transfer
quantities that shall interest us in later sections. The atomic population equations can

be written
an,/ot=-n YR +XnR, (2.1}
j= |=
where fori > j
R,=C,+A, ~B " 22)
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andfori < j
R,=C, + B, J2. (2.3)
We define
Jstim Efdy J, ¥, (2.4)
2
and
o= [au . (25)
3

In the above equations, A, 8, for v > |, ana B, for 1 < | are the Einstein coefficients for
spontaneous emission. stimulated emission. and absorption respectively for transitions
from level 1 to ), C, is the colfisionai rate coefficient from 'evet ( to (, ¥, and P, are

respectively the normanzed emission and absorption coefticient  profiles
(fdv¥v = f dv d = 1) and J s the moncchrematic Tean :ntensity at ‘requency v
3 3

We will typically assume that ‘¥, = $_for spectral ines and :gnore stimutated process
in the bound-free continua. This assumption will be important to our results belc:  and
1s discussed further in Section 3. Note also that the values of the Einstein 8's e oyed
here are defined per unit mean intensity, and not per umit energy density, which s
another common form.

QOften it will be desirable to separate J, inta a diffuse component, J,, ans-
ing from the local emission in the gas. and an incident component, J "¢ arising outside

the atmosphere. Hence the total mean intensity is wnitten
J.(r) = J {7) = J, "o{e) (26)

We distinguish these components of the total mean intensity by italics

An important alternative form of equations (2.1 —25) 1s obtained by rear-
ranging the radiative rates into net radiative downward rates. When this is done equa-
tion (2.1) remains identical but, if i > j

R,=C, +A, p, @2n
where

py=(n A +n B "™ ~n B, U0/ nA,. 28
and 1 < j

R,=C, . (29

-ty = em e - b ~ = - --r-----.:'w—-‘-—,-*-'_t_-_—J
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The quantity p has been given various names. It has been termed the net radiative
bracket by Thomas & Athay (1961) and the flux divergence coefficient by Canfield &
Puetter (1981). At times we will indicate, using subscripts, the specific transition to
which p applies.

Assuming that we can define an effective mean intensity J such that

J = J8ma gaos (2.10)

we find for the transition between the upper level, u, and the lower level, | #
p,=1-J/S, . (211}

where
S,=n,A,. nB,-n,B.) 212)

The other important consideration for our probabilistic raciative transfer
scheme s the expression for the cocling rate. It foilows trom equation (2 8) that the flux

divergence (radiative cooling rate) per umt volume Q. in transition u—I is

Q =nhe,n, A p, 12.13)
for lines. and

Qo = hw, Ne Ag, S (2.14)
for bound-free continua, where

PE= 1 = (U <ulvy>,) (S, <vivy,>,) . (2.15)
The factors that account for the difference between the absorption-weighted and

emission-weighted average frequencies respectively are t

<vlvy,>, E ) dv wivy) @, 12.16)

oy

and

o ¥

Svlvg>¢ = ) dv W/ve) W, . (217)
The distinction between the photon flux divergence coefficient p, which is used to cal-
culate radiative rates in equation (2 8), and the energy flux divergence coeflficient, pE. ¥
which is used to calculate the cooling rates, is necessary for bound-free continua
because of their large frequency bandwidth. For lines we have to a good approximation
<ufve>4 = <vivy>4 = 1, 80 the distinction 1s unnecessary.
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3 THE RADIATIVE TRANSFER EQUATION

For ptane parailet atmospheres, the equation of radiative transfer at fre-

quency v can be written

w Ol Vox = —x, 1{u)+j,

or
wally Vor =~=¢, {L(u)~8]
where
S =) «
and
dr = x, dx .

(3.1)

(3.2)

(33)

(34)

where x i1s the distance into the atmesphere. . 'S the cosine of the angle between the

direction of radiation propagation and the inward normal to the atmosphere. I { 4 } s the

scec:tic ntens:ty of r22:atcn at the ‘requency . ard propazating n direction 4. «, 1S the

cpacity per umit 'ength at frequency «, j, 'S the emissivity per unit valume at frequency v.

+ 1s the line center optical depth {optical depth at the onization edge for bound-tree

continua), 4 is the abscrction ceeffic.ent prefie scaied ‘0 unity at line center 'ioniza-

tion 2cge). and S, is the source function.
For spectral /tnes the volume em:ssivity 1S

t
o=hen ALY =

and the linear opacity 18

fa2%
x, =mnB, b -n, B ¥ —
Lo

and thus

S, = n A%V, '(nhB,d ~n B8 V).

\

where we have counted the stimulated emissions as negative absorptions.

the relationships between the Einstein coetfic:ents for spectral lines
A, / Bm - 2“"03/(:2

and

(38)

(36}

37

Emploving

(38)

(39}

e s
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we can write equation (3.7) as

S, = 2hw¥c?) (gom/gn, =¥, /@) 'V, /.. (3.10)
If ¥, =, then

S, =8, . (311}
where

So = (2hv,¥c) (g, n, " g n,— 17", 312)

Here v, .s the line center frequency and g, and g, are the statistical weights of the
upper ard lower ‘evels. Replacing v, ' &, by 1 1s adequate for many spectral lines
This apz-cximation may become nadequate, however. for an accurate treatment of cool-
ing by weakly interiocked resonance lines (like hydrogen Lya), since wing scatterng in
these iines 1s coherent and the majority of line photons resuit from scattered radiation

For bound-‘ree continua. «, s Simply Given by
« =n 7.0 (313)

where n s the level pcpulation of the ‘ower 'evel and « (v} 1s the cross-section for radi-
ative transitions at frequency v between level | and the continuum, ¢. Thus the pho-

toionizat.on rate can be written (Mihaias 1978 p 130)
NBed=drn [ avd o) m 314
3

Assumirg that

g ) =g ) s, (315)
where

b o= ()%, i3'6)
which. a“ter normatization. becomes

®, = ls=1)Vu,) b, . 317)

we find

nBcJd=larn s ) hs-Dlhe, [dvd d, ' h 318)
2
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Here we have defined, by analogy to spectral tines. the absorption rate coefficient, B,
as

B. = 4m s lvy)/ his-1) (3.19)
and the effective mean intensity, J, as

J=hw, [avd, b N (3.20)
]

By detalled batance we can obtain an expression for the spontaneous
recombination rate coetficient A_{v) = A_, V(). where

AL=87g g.c?r ley) e E, -la) 1321)

W) = wiey)33e™ Y By pla) (322)

a = he, kT . 1323)
and

ge = 22 mkT h°)= - 2U. n, . 324)

(as shown by Osterbrock 1974, Appendix T}. Here v, s the .omzation edge frequency.
U 15 the statistical weight of the 'on, m s the mass of the eiectron, E.(x) 1s the exponen-

tial integral of order n
EJfx)= | att™"e ™, 1325)
/
and T .s the electron temperature.

Thus the source function for bound-free cortinua. 'gnoring stimulated

recompinahon. can be written

S =) 'k, =twn A ¥ 'nB.b (326)
or

S, = (20, %c (g n g n) e eg)de T 327
or

S, =S, biv) W,/ d, . {328)
where

S,=1(2n, et igon gnd T (s-tie B, fa) 1329
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4  ONE-STREAM PROBABILISTIC RADIATIVE TRANSFER
The formal solution to equation (3.2} 1n the absence of incident radiation,
and assuming ®, and ¥, do not vary with optical depth, is

L lur) = dvus, e ™" u>o0 (4.1)
[+]

.
Vs, =—f dus, e 1u<0 (4.2)

where [~ and |~ are the radiation fields propagating nto and out of the atmosphere
respectively. In the equations abcve, - :5 the optical depth at frequency v, which s

given by
r=rd, . (4.3)

where - s the line center (photoionization edge, for bound-free continual optical depth
and T, i1s the total depth of the slab at frequency v (note T, 's infinite for semi-infinite
atmospheres)

To gerive the expression for the mean ntensity
Jle) = tum fan ) (44)
or

2 1
Jte=ta [ dut e )= 0 [ ou () 1451
-1 2

we use equations (4 1) and (4 2} to obtain

Jv(.-A>=-<';)j“:“.far“s e 7"

o 4 6)
- (’lz)fdu.f dt'u S PO
2 Bl
or using equation {3.25)
T.r ..
4ir) = () [ dtS, Ett=r) ~ () [ at'S, Elr,-t) (4.7)
[ o
Qr
Je)=tafots Ed == ) 148
b]

‘ T e - 23 ot > we ety e vt e L rm——
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To get an expression for the effective mean intensity, which since we

assume WV, = is
o = fdv o, (4.9)
Q
we use equation (4 8) to obtain
x T
e mta) favd, fate, S Elit~ria,) . (a.10)
2 [+]

Since for both tines and continua we are assuming we can write

S =S, b . a1
we find
T o
v =0 fats,w [ave W ECL s ). 412
k] 3
If we zefine
Kid =02 fave v El o), a13)
bl
then
.
Je) = [t S0 K, t-7) (4.14)
2

where : and t now measure line center (ionization edge) optical depths and we have
chosen to write the kernel function in equation (4.14) as K, in keeping with common
notation. However, note that many authors define K, in slightly different ways. For
examr 2, this definition is "2 that given by Ivanov (1973). Other common modifications
to these formulas and definitions result from using mean optical depth rather than line
center (ionization edge) optical depth.

The fundamental assumptions of equation (4.14) are: (1) the atmosphere
is pfane paraile/ and (2) tne propagation of photons from one point to another depends
only on their optical depth diiterence, and not upon the conditions at the individual
points (through the assumption that &, and ¥, do not depend upon r). The second
assumption is a good approximation as long as there is sufficiently little variation of the
atmospheric parameters within a photon mean free path We return to this point in the
discussion of escape probabilities below.
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The value for the frequency integrated mean intensity given in equation
{4.14) is, of course. only the diffuse component of the total intensity. The incident com-
ponent must be added to this value to obtain the total value of J(r):

JF) = J(z) = Jnelz) (4.15)

where

.
J6) = [ 3t S, K, (t-r) (4.16)
2

I =t favb foutturm0te
2 2

~z':.‘j-dr D_j.;‘u[ "‘4'=T\E>' I
3

Here we see that we need oe concerned with calculating only the diffuse
comporent of the rac:ation ‘ield. since the .ncicent zontrputon can be expressed n
c'ased f‘orm  Thus. .n derving Qur probabihistic ragiative transfer equation. we shatl

~Crk from equation 14 3 assurirg that J s zerc Frst we srhal aggiy the Jperater
f d- S,i7) 5.9 (418)
2

to both sides of equation (4.14) and obtain
J a5, 080608 = [ 0 Syte1 5 a0 [ at S Koas) (419)
2 3 2

which can be written
f ar 8.{7) 3uls) 3r =f dr S.ir) 3 4- f at S, Ko it—+)
° ’ ’ (4 20)

24 T
+ [ or Sotr) 3787 [ dt S, K, lt=7)
o r

One can show that the first term of the nght hand side of equation (4 2Q) s \dentically
zero since K,(t—r} = K,(r-t). In the second term. since 0 < r < ¢ <t < T and the
integrand vanishes for r—t >> 1, we can write S{z) 3 S(t) = S{o). If S s slowly varying,
ie (dInSy/ dInt) << 1, we obtain

) * T
J a7 8,00 806197 = 8,30 [ ar 3.3 f atK,it-r) (@21
2 o) 4

= e —— o
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From the definition of the single flight escape probability p, (see Section 8. ang the
relationship between E,(x) and E,(x) (see. e.g.. Abramowitz & Stegun 1964)

J at K, = 04(0) = pylr) = "2 — pyr) (4 22)
<

Thus we also have the relation

T

J atK,tt=r) = plo=1) = p(T-7) (423
and hence

faraar fatk-s=p,00 -0, T -2 5 -0, 7o £24

2 r

Supstituting equation {4 24) :nto equation (4 21) appiy-rj the operator
S, ) 3 Ao 425
10 'he -esult and then reciacing r Mth r we na.e

3487 = 2 (pal0) = pgtT) = p (s} — paiT—- 135S, 3+

-'8,8.37 pals) = 0, T=)] 2o
This equation can be expressed in a numper of forms. Snce p,:0) = 2,

4J 57 = {1 - 20,1138, 37 - S, 50, 5- {427
or

S, =) dr =58, 3r = 21p,) 44 2,0 S, ] (4 28)
or

287 = 0P AT ~ 12Dg ~p) 3 INS, ., 47 . (429
where

p=1-J/S, (4 30)
and

Do (1) = Polr) + po(T—2) — pu(T) . {4.31)

It is important to remember that since the probabilistic differential equations given

above were derived for the diffuse radiation tie!ds. the values of » given by these equa-
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tions are the values for the diffuse radiation fields. The contributions of the incident
radiation tields must be added to these values.
One can also write the probabilistic radiative transter equation (for

steady state problems) in equivalent two-ievet atom form:
S,3/9r (g + €] ~ (2D, + €l 5S, 97 = 3/37 (B} 432

where we have written the source function in the well-known two-levet atom form (¢f
Mihalas 1978. p. 376 Jefferres 1968. p. 181)

S,=U~eB] [1-¢] 4 33)

The sole approximation of the derivation of cur probabilistic rac:atve
transter aquaten ‘rom (4 141 .8 that S, varies sicwily cempared 0 K. S.nce K.t-. sares
like the derivative of p,{7). it 1s necessary that the absolute valueof d InS, "dIn< << 1
for the approximation to be valid funiess the value of - :s very smatl)

The various forms of ‘he grobamiistic raciative ‘ransfer equation 4 27)
through 14 29) and 14 32V are usetut for aitferent apprications. Since the covious .ntent
of zur agcrcach s to ce.ecp a rac.at..e transter 2guation that s usefu! as gart of an
extensive set of equations, i4 27} througn 4 29) are much more useful. they do not
requ.re the evaluation of € and B. which is very time-consuming. For simple problems

which e and B are Yixed, equation 14 32} 1s the obvious choice

S TWO-STREAM PRQOBABIL!STIC RADIATIVE TRANSFER

The equations deveicped in Section 4 treat the radiation field ‘n a 'one-
stream’ approach For finite slab atmospheres a two-stream approach to the radiation
field has the advantage that :t ailows specification of the mean intensity at each of the
atmosphere boundaries {ie. the ditfuse radiation field propagating into the slab is «den-
tically zero at each boundary). Since the results of this approach are important to
understanding the boundary condition problem presented n the next section, we will
now develop these equations.

Equation {4.7) shows that the mean intensity J, can be written in two
parts, which we shall call J.* and J,”, correspanding to |, and |,”. By integrating these
quantities over frequency we obtain the expressions for the diffuse contribution to both
J* and J™ (cf. 4.14):

36 = [ ds, K t-r) (5.1)
2

.
() = [ at Syit) K, (t==) 52
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where r is again the line center {photoionization edge) optical depth and K, is given by
equation (4.13). We now proceed in a manner nearly identical to Section 4 and apply

the operator

LA

JIEECACERE (5.3)
Q
to equation (5.1) to obtain
farsyra0mtnrae = [ ar s s [ ot s, Ket-n) (5.4)
3 2 bl
or
J a8, 50760 97 = [ ar S0 5 87 [ at S0 Kt-r)
2 2 2
S 5)

| —[c,- S.0r1 5 a—j"c: S, K. t-5)

Again ,ust as n Secior 4 ne 3.mmelry of K. Z3.32s the Yrst c 3ht-nanc ‘erm 0 san-

1sh, with the result

f dr Sz ad it 4 = f d- 8.7 4 f at S, K, t-+) (5 6)
> > v

Assuming that S, varies slowly :n comparison to K.{t--1, we find

J ar 8,61 50700 80 = { ar Sin1 5 57 S
2 >

Using equation (4 23) we obtain

A f otk t=s). 5.7

J 98,1407 37 = [ 05 S, 5 87 S0) Tpale~s) - poi)] . (58)
k=) bl

or since p,(0) = "

J ar 8,280 ()97 = = 09 [ ar 8,0 38,01 3
-] 3

+ f dr S4(r) 8737 (S,(r) pylo—r] .
0

. e

(5.9)

B T T e
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It we now further assume that S, vanes sic«~!y on the scale of p, then we can write

§ dr syl a4 t173r = = () [ ar 38,2GV/ar
° . ° (5.10
+ So2lo) f 07 3yl =rVar

o

This last assumption s apparently more restrictive than assuming S, varies siowly in
comparison to K,. However, the resuiting equations are very similar. After evaluating
the right hand side of equation (5.10) we apply the operator

S, ) 3. 3 {511
and by replacing r #Ith - we mmecate'y ga:n the resu't

Fd7(r) A7 = {p,10) ~ 20,(=3] AS, (=) 47 — S,(=) Ap,{=)5r 1512)
Applying the operator

Jozesvase 5°

’

)

to equation (5 2) and using a similar ine of reasoning we obtamn
Ad7lr) A7 = [p,10) — 20,0 T—-1] 4S,1=' A= — S,is) D, (T—=! §r 54
The above equations for J~ and J~, when acdced together. give the resuit:

Fdls) Ay =9 A7 [UT1r) = U7 (5] = 2 [p,(0) = polr) — p(T--11 43S, 4r .
\
= 8,8 47 [p,(s) = py(T~-1]

This result 1s nearly identical to equation 4 26). The oniy difference between the two
equations s the appearance of the term 20.(T) 4S, 4- n equaticn 4 26). which van-
ishes for large T Nonetheless. we fee! that equation ‘4 26) 1s shgnhtly preferatie to
equation {§.15) since we did not need to assume that S, vary siowly in comparison to p,
to derive this equation. We can. however, easily make both sets of equations the same

by defining
Pa” = Palr} — pg(T): 2 (516}
Pe” ™ PelT—7) — pa(TV/2 . 517
to obtasn
AJT(r) §r = [1 - 20,7124] 4S,(2) 32 — S,(:) 5D, () §+= 518)

3d7(:03r = [1 = 20,7()]1 38,(:) 37 = S,(:1 5p." (=) 37 (5+9)

e
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The other forms of the two-stream radiative transfer equation can aiso be obtained by
defining p~ and p~ in the appropriate manner:

p* == JT'S, (5.20)
p~='2~J"S, . (521)

and thus obtain

AS,~J ) ar = 3(p=S,1 97 =2 (p.") - 4 47 {(py™) " S,) (5.22)

NS,-d L ar =40p°S, v 4 = 2p,7) A A7 llp, ) Sil 1523)
angd

Ap 87 = 3Pa" 37 ~ (20," - p7) A InS,; ' J= (524)

Ao AT =3Py At = (20,7 —p A0S, g7 1525)

The ‘'wo-stream acgroach, while apcarertly Qu:te similar to ‘he ore-
51723am 31C0rCach, nas ore Jery 3,87 23Nt 3Cvantage to3'saSs taC Touncary cIrgitins

This advantage will be discussed ‘urther :n Section 6 pelow.

8  BCUNDARY CCNCITICNS

We now turn to the questron of boundary conditions. for both the one-
stream and two-stream approaches. and for both semi-.nfinite and finite plane-parailel
atmospheres.

For semi-nfinite atmospheres. for which one-stream radiative transfer s
of well-known accuracy, the bouncary cona:tion reflects the fact that the probability of
photon escape approaches zero deep n the atmosphere. Hence. both the effective
intensity and the line center source ‘unction approach the effective Planck function

J{r=x) = S (=2} = Blr=x) , 6 1)
where
8=fa 80 6 2)
9

in effect, thhs boundary condition (s adequate because it follows tnivially from the
equivalent boundary condition for a semi-infimte atmosphere in the two-stream

approach

Jlr=mo) = J (reo) =B (r=»), 2 6.3)
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Clearly these boundary conditions can be implemented accurately in a numerical calcu-
lation, in which a finite number of gnd points are used to represent a semi-infinite atmo-
sphere, only by ensuring that the opticat depth of the deepest point in the mode! atmo-
sphere is sufficiently large.

The question of appropnate boundary conditions for a one-stream
approach to finite atmospheres has recently been discussed by PHRC and Hummer &
Rybicki (1982). Both of these papers treat time-independent atmospheres using an
effective two-level atom approach in which the values of ¢ and B are held fixed, and the
boundary conditions discussed in them are most useful for such problems (see Section
7 below). Also, several of these expressions are of limited usefuiness either becayse
they are only approximate or they oniy establish uoper and lower ‘imits. Hence. we wll
not discuss them further here. The exception s the global energy balance ccnaition
suggested by Hummer & Rybicki. This conaition. which can be written

j‘d.-p5=j.drpes‘ 6 4)
bl 3

reguires that *he excess of *he ~umeer >f 2~ ssions sver the numcer =f aosoratens te
2gual 0 the number of escaping photons, 'ntegrated over the atmosphere. Hubbarg &
Puetter (1983) have successfully used this bouncary condition for a multitevel atom
racdiative transfer prcbiem in a finite atmoscnere.

For finite atmospheres it may be Dbetter to use two-stream radiative
transfer. because exact and fixed boundary conditicns are available. 1e. there 's no

diffuse radiation coming into either sice:
J=0)=J0(=T)=0 . 16 5)

On the other hand. one could aiso use a one-stream approach
T
Jegh= [t W K-y 66
3

where r, is the optical depth at the point where the boundary condition 1s imposed.
However, this has the significant disadvantage that the vaiue of J(-,) changes from
iteration to iteration. Hubbard & Puetter (1983) found the global energy balance condi-
tion, equation (6.4), superior to equation (6.6).
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7 ACCURACY OF THE SOLUTIONS

The accuracy of probabulistic radiative transfer methods depends on both
the equation itself and on the boundary condition. In the case of semi-infinite atmo-
spheres, both the one and two-stream boundary conditions can be approximated to arbi-
trartly high accuracy, and FF have adequately discussed the accuracy of the raaiative
transfer equation itself. They showed that the one-stream probabilistic radiative transfer
equation gives results accurate to a few tens of percent unless the effective Planck
function varies on an unrealistically small spatial scale. The FF discussion shows that
probabilistic techniques will prove useful for a wide range of problems of physical
interest. Qur expernence 1s that even models that appear to have very steep Planck-
function grad:ents. such 3s the semi-empir:ical sclar model chromospheres of Vernazza

et al 11281), yieid source functions whose gracierts 20 ~ot violate the assumgtions of

one-stream probabthistic radiative transfer
For finite atmospheres. the accuracy of the comoination ot one-stream

propamilistic raaiative transfer and the bcoungary corcitions of PHRC and Hummer &
Rybick) (19821 is a matter that must he estabi'sned. since the boundary ccnaitions are
ot 2xact These authors have sncwn that ther merrecs are 'yp.cally accurate 0 30°%:
or petter. in the cases they examined

On the other hand. there 1s no question of accuracy of boundary condi-
tions for finite atmospheres when two-stream radiative ‘ransfer s used. only the accu-

racy of the probabilistic radiative transter equation itself need be determined.

8  PHOTON ESCAPE PROBABILITIES

From the sections above. it :s clear that photon escape probabilities play
a central role in probabilistic radiative transfer. Hence. in order to model nature accu-
rately, we must employ escape probabilities that rest on a sound mathematical and
physical foundation. Furthermore, having developed an efhcient computational tech-
nique, we are interested in expressions for the photon escape probability that wil not
compromise computational speed. in this section we will deveiop simpte and efficient
expressions for the single flight photon escape probability for a vanety of physical
processes.

Qur probabilistic radiative transfer equation assumes that the atmo-
sphere is plane-paraliel and that the kernel given in equation (4.13) can be represented
adequately as a difference kernel, i.e. that the propagation of photons trom one point to
another depends only on their optical depth difference. and does not depend on other
physical conditions at the points themselves. The escape probabilities are defined on
the same assumptions. If one wants to treat atmospheres with significant velocity gra-
dients, for example, it is then necessary to derive both an appropnate transfer equation

R e ——— -
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and apnroprate escape probabilities. We will begin with a description of the static
escape probabitities that we use, and return later in this section to the question of the
range of their validity in atmospheres with butk flow velocities.

The probabudity that a photon will escape the medium n a single tlight i1s
given by

Pelr) = "2} dufdu W, e 7. (8.1)
o >

which can be written

out-1= : [ de ¥ Elrn] (82)
2
For spectral lines, if we assume that the iine profile 1s symmetric, change the variable of
integration to displacement from hine center x = (p—;-.) N5, where A5 s the Doprter
width, and assume :hat :he emission anc itsorgtien zcef! cient profiles are .centical.
this reduces to

Duis = f ax v & sl 83
b)
or
pa(s) = Mf dx si(x) E,lratx] | (8 4)
2

where M is the normalization constant defined by
¢ =Ms, . (895)

In order to achieve high computational speed. it 1S usually necessary to
employ approximate expressions for the photon escape probabilities. However. these
expressions can be made to have surprisingly good accuracy over a wide range of opti-
cal depths. This is usuaily done by using a simple analytical expression for the escape
probability that incorporates exact asymptotic escape probabilities that have the proper
behavior as the optical depth approaches infinity. Below, we will derive such exact
asymptotic forms of the escape probability, which we denote by P, for a variety of com-
mon absorption coefficient profiles.

Before we proceed. it 's instructive to examine an approximate expres-
sion for P, which gives one some physical understanding for how the functionatl form of
the escape probability anses. For purposes of iitustration, we will derive an approximate
asymptotic form for Doppler absorption profiles. Fotlowing the development of
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Osterbrock (1962), we assume that only photons with optical depths less than unity

escape the atmosphere. Under this assumption
Balr) = [ ax dix) 82)

where

robg) =1 . 8.7)
For a Dogpier absorption coeffic:ent profite,

Bix) =77 »ix)=7 expl—x7) 8 8)
As - gces ‘o rhimty so cces <. and we ‘ind

(7 x.) expl=¢.?) 189)

i

Balr)

This reducas o

t
.
i

[y
]
.

2
.

g 1C

As we shall see petow, Osterbrock’'s approximation gives the correct functional form of
B for a Dopoler absorption coefficient prohie. though the numerical factor s in error by
a factor of two. The reason this accroximation s successful is that redistribution of
photons In frequency, which it takes :nto account, 1s very important. and onty photons
emitted at nearly optically thin frequenc:es escape.

We will now turn to the derivation of the exact asymptotic expression.
Following the 'ead of ivanov (1973 § 28). in wnhase notation the probability that a photon
escapes the atmosphere in a single ‘lignt 1s K, ' 2, we shall change the variable of
integration in equation (8.4) to z = 1,4(x). and thus obtain

D,(r)ij“dzz"x(z! E;{r2) . 811)
1
where x'(z) 1s the derivative of x with respect to z. Lettingy = r/z we get
Polr) = M f dy y~' x'(='y) €,ly) | (8.12)
)
which we rewrite as

Bulr) = Mx'(r) [ dy y" E,ly) xlr y)ix (o) (8.13)
9
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We are now ready to derive the asymptotic form of p, (ie we let r—co in eq. 8.13). For

many functional forms of $(x) we have

limit (xle/y) [ ' (e)] = y&*

(8.14)
T—00
and hence the exact asymptotic form of p, is
Balr) = Mx'lr) [ dy y#' Eyly) (8.15)
3
By the defimition of E.(x) we have
Butrd = Mx (o) oy [attZexcityr 816
) H
or. reversing the order of integration,
Bulr) = Mxe) [ ate? [y y exoiotyi 817)
Again changing varabtes. (s time ‘etting u = ty, we find
5_,(.‘)=Mx‘r)f:tt‘3"5 fdu ut T expl-u) '8 18)

J

Noting that the first integral 1s easily evaluated and the second .s a gamma function, we

finaity obtain
Pelrl = ML(28) x(7) ' (28 - 1) 8.13)

Having derived the exact asymptotic form of p,, we can aiso write the
expression for the asymptotic expression for X. Since

Ki(r) = — dpg / o7 , (8.20)
{see equation (4.13)), we immediately find
Kylr~—oco) = — MT{28) x"() / (25 + 1) . (8.21)

Equation (8.19) gives the following exact asymptotic expression in the
case of pure Doppler broadening:

Balr) = (A7 7 In" )" (822)

ORT-5
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while for line absorption coetficient profiles varying fike ®{x) = a ' x4 with 8 > 1, equa-
tion (8.21} gives the exact asymptotic resuit

Dolr) = a8 MB-B F(3—1)/8] r-8-"V8 /) (23-1) . (8.23)

From equation (8.23) we can calculate the asymptotic escape probability for a wide

range of physical processes, as done by Puetter (1981) and Puetter & Hubbard (1982).
in the radiative and collisional damping wings ot strongly interlocked

resonance lines, which have a Lorentz profile, ie. ®(x) = a/ wx~2, the asymptotically

exact expression is
Belr) = (1/3) @/ mw'7) ", (8 24)

where a=[ (47 Sv-) and I s the total damping wiCcth of the trans:hion (Mihalas 1978,
p. 278).

It linear Stark Dbroacening (we assume a Hoitsmark profiie
®ix) = a, x 7 ) dominates the absorption ccefficient profile. we aobtain the exact

asymptotic escape propability for hydrogenic ons

Boird = (dag a3 235133 823
where
= 69x1073Z7%(n, 0¥ T, 40, 8 261

In equation (8 26} n, and n. are the principal quantum number of the upoer and lower
levels, =05 f n,=n+1 and =10 otherwise, T,=T, 10*K,
n.,=n, 102 cm”? (we assume that n, = n,), and Z 1s the charge on the on.

Lya and other weakly :nterlocked resonance lines cannot be treated.
using the methods described in this paper, without turther approximation, since we
know that the emission and absorption coetficient profiles differ. This is Decause wing
scattering 1s coherent in the atom’'s frame and Ly emission 1s almost always dommnated
by scattering. Adams (1972) has shown that diffusion of photons in space and fre-
quency 1s critically important to the escape of Lya. and has estimated an eventual
escape probability that takes these processes into account. An upper fimit to the single
flight escape probability pe 1s given by this eventual escape probabiiity, r.e.

Pelr) € 1/ (37" 7). 8.27)

To apply probabilistic radiative transfer to Lya and similar lines. one can make either of
two approximations. On one hand, one can assume that frequency redistnbution 1$
confined to the Doppler core, and the damping wings play no role, je. one can use a

pure Doppler escape probability. Milkey and Mihalas (1973) showed, for a solar model

p———
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atmosphere, that this is a reasonably good approximation. On the other hand, one can
adopt equation (8.27) as an equality, and use it as an effective singie-flight escape
probability. Although these two different approaches are based on much different phys-
ical mechanisms, they do not give dramatically different values of the Lya escape prob-
abulity.

It Stark brcadening dcminates wing photon emussion in Lya. but the
damping wings domunate wing photon apsorption, we find the asymptoticaily exact

expression
Balr) = {2:7) 7283 4 a3t 2 (8 28)
In oraer to treat single flight @scape :n the oound-tfree contin e Tust
take nto account the 3fzrence between the em'sson ccefficent pro ~=~ the

apsorption coefficient profiie. An accurate treatment of the photon escape ~r~ bty
unforturately requires numer:cal .ntegration of equation (8.2). For many appiications.
hcowever. apcrox:mate vaiues ‘¢r the cholcn 2scace preocaviiity are acequate Further-
more. approximate express.ens for o, are mere expedient cemputationally  For these
+23s¢ns Carfe 2 & Rccnzzz T 330 ZerveC tte 'CIa ~g IpCUoximate form fer o, .n

bound-free continua.

D.r) = 123) T exp ~-3% = gt €29
where

3= max "3zt ‘8 3C)

and « s definea in equaticn 1323) This expressicn uses the fact that at 'ow tempera-
tures the Boltzmann factor cuts off sharply the contribution of eiectrons beyena the .on-
1zation edge. As long as a 1s significantly 'arger than 1 and 3 1S not much farger than 1,
a2quation (829) s a reascraply accurate apgroximation to g, Thus, equation 829)
gives good values for the photon escape protbabilities between - = 0 and reascnably
large values of ».

Having now evaluated the exact asymptotic escape probabihties under
various circumstances, we need a procedure to join the various regimes. since in gen-
eral the absorption coefficient profile will not be totally dominated by the Doppler.
damping, or Stark component. Obviously an exact calculation is not in the spirit of the
techniques discussed above since it would compromise computational speed. For-
tunately, it is often adequate to express the absorption coefficient profile as the sum of
vanous parts (a sum of the Coppler profile and a Lorentz profile 1s a expedient approxi-
mation to the exact Voigt profie. for example} This is the aporoximation we have used

in applications (see, for example, Canfieild & Puetter 1981 ab. Canfield et a/ 1981 b,
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Puetter & LeVan 1982). One must take care, however, that the individual terms .n the
sum are well behaved outside of their region of dominance. The exact asymptotic
expressions typically diverge as - approaches zero, obviously steps must be taken, for
example, to ensure that p, takes the value of "2 at r = 0.

It 1s clear that static escape probabilities and our basic raciative transfer
equation begin to break down significantly at certain :dentifiaple imits on the gracients
of Doppler width and bulk flow velocity. Useful gu:delines are given by Hummer &
Rybicki (1980), based on general expressions from Sobeolev (1957). Hummer and
Rybicki show that for a given value of the flow-veicc:ity gracient y = dv  dr v :n units
of the thermal sefocityl. the expression for the static escape crebatiity hoids agproxi-
Tately for atl salues of line center optical depth ‘ess than a critical satue . which
cepends only 3n v and the form of b For Decpoer profles - =3 {1 2'av 0 Fo-

Lorentz profiles -. = 8 y?

3 NUMERICAL METHCDS
Cur aocrecach to raciative ‘rarsfer was decelcced for apcicatcns n
ancn -aciat..e trarsfer s tut sre 3f severat ascecis Ifthe pruscaloricem ot mrerest
Hence, the method anuc:pates the simuitaneous sciuticn of 2 set of many coupled non-
linear equations. #mch may nc'ude time cependence. For sciution on a ggital com-
outer, *hese contnucus equations must be rep'aced by a “nte set ot eguatcns on a

discrete grid, wnhich may e written as

i =0 . 9.1

wnere each comgorent x, fi=1..N) of X represerts one of the physical varab'es at
some point in space.

Some considerations are unique to time-dependent prcblems. Noniinear
time-dependent equations may be integrated using either exciicit or impiicit formula-
tions of the finite difference equations (Richtmyer & Morton 19367, p. 17). In an exphcit
formulation. the variables to be determined at a future time occur only in the finear time
derivatives. However. explicit formulations have the great disadvantage that numerical
instability can limit the time step to an impractically smalil value. Any physicatly impor-
tant diffusion mechanism (e.g. thermal conduction) or "stiff" process, whose time scale
is short compared to the typical time scale of interest (e.g. atomic transition rates). lim-
its the time step to the time scale of that phenomenon. (If the time scale depends on 2
scale length the relevant length 1s the spatial separation of pcints on the finite

difference grid)

PL
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To overcome thig problem. we use a fully :mplicit formutation of the finite
ditferance equations, 1n which the undetermined variables appear also in the nonhinear
terms of the equations. This method is numerically stable for all time steps. The solu-
tion of steady state nonlinear equations 1S necessariy a tully imphicit probiem.

The system of nontinear eguations represented by (3 1) can be solved
only by iteration. Two basic methods are recognized. complete hinearization and suc-
cessive substitution. White neither method (s guaranteed {0 converge, a successive
substitution scheme possessing a large radius of convergence can sometimes be de-
vised on the basis of pnysical reasoning. Such a scheme may converge refiably but
with agoniz:ng slowness. The compiete iinearzation. ar Newton-Raphson. method. on
the other hand, ccnverges ragigly. orcv.deg the mtal est:mate of the soluticn :s clcse
encugh ‘o the true sciuticn The s:ze of the 2ore ot corvergence arcurd the soiut on
ccint ¥ ray be est:imated by Kantorovich's convergence ‘heorem fHenrict 1963}

In *he comp.ete nearzancn —ened. '@ 7) § exparcec about the current

estimate T of the sctuten ¥

R 1= 4F a0 R-T V=Tt -8 0 =T =3 e
Thus a ‘rst oroer .rearizec) apprex.maticn X7 o tre sciutieh T 5 3ven By
EEEEEE SEICLET (A VO ‘93

Given an .nit:ai estimate X °' of the sofution, (9 31 .s appred .teratively for success:ive |.
untif some estimate of the remaining error X —X 's consicered neghgble Our experi-
ence indicates ‘hat the radiwus of ccnvergence can Ce 'arge. so that convergence s
sttaineg withcut gifficulty. However circumstances can arse :n which the raciys of
convergence 's extremely small {for which a physica!l reason :s often apparent). 'n these
cases we have peen forced to use a successive substitution approach.

in the successive subshtutcn methcod. each cyc'e of the terat on s Hro-
ken down nto 3 seguence of steps First. a subset of the equations is chesen and
solved (by Newton-Raphson iteration. if the equations are nonlinear) for a subset of the
variables. Next, another subset of the equations 1s solved for another subset of van-
ables: the most recent values of the remaining vanables are used. r.e. the newly caicu-
lated variables of the first subset together with the "previous generation” of the other
vanables. This procedure is repeated until updated values of all the variables have
been calculated, then another iteration cycle may begin. In contrast to the well-defined
mathematical procedure of the Newton-Raphson iteration. the construction of a suc-
cessful successive substitution scheme is an art. That s, the choice of subsets and the
order in which they are solved reiies on ins:ight nto the particular physics and

mathematics of the problem.
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In several applications we have tound that a hybrid of complete 'ineariza-
tion and successive substitution has computational advantages. Perhaps the simplest
example of a hybnd method arises in connection with the optical depths, which are
dependent vanables in our ‘requency-integrated radiative transfer method. The optical
depth equation for each transition can be included n the system of simuitaneously
solved equations. along with the radiative transfer equation. Ricchiazzi & Canfield
(1983) devised an alternative method 1n which optical depths are removed from the set
of linearized variables: in this stable, yet rapidly converging, hybrid scheme, consistent
optical depths are computed from the remaining 'Inear:zed var:ables after each iteration
of the tinearization cyc'e. This has the obvious benefit of near'y halving the !ength of
the band matrix. These authors also found that the convergence properties of the
nybr d metnod were not matenally a.f‘erent from thcse of the full set of equations.

Another hybrid scheme that achieves a speed increase and reduces
storage requirements was used successfully by Canfield et a/. (1981 b) and Puetter &
LaVan 11332" Trey ot 2nly "emoved the optical depths from the «nearization. but they
also solved the combired atomic sopulat'on equations and radiative transfer equations
at Zny Ire 3Cata 3rC ST 2t a tme us g the values at the gnd point te'cw t as
pouncary cond:itions. Qur experience with this scheme indicates that convergence s
not rapid .Nitially. tut that once convergence begins, it 1s essentially as rapid as com-
piete wreanzaton

Regargd'ess of the method of solution. it 1s advantageous to reduce the
number of linearized variables to the mimimum set (see. e.g. Mihalas 1978, Chapter 7)
In the ~ork of McCiymont & Canfield (1983 al, the solution of the basic set of equations
was speeded up by a ‘factor of approximately three by using the hydrodynamic con-
tinuity equation and the atomic rate equations to express the linearized changes in den-
sity, position and atomic populations in terms of the remaining variables.

Substant:al economies in computing hime and space can be achieved by
the use of optimal spatial and temporal grids. It s straightforward to maintain optimal
temporal resolution simply by monitoring the changes in key physical variabies from one
time step to the next. Optimal spatiat resolution takes a bit more etfort. It is essential to
maintain enough spatial grid resotution to properly represent the smallest scales, vet it
is uneconomical to use a finer spatial grid than necessary. Certainly some problems
can be treated with a uniform spatial grid in an appropriate variable, say optical depth.
However, in a hydrodynamic calculation in which both radiative transfer and thermal
conduction were important. and large thermal fluxes were present, McClymont &
Canfield (1983 a) found it necessary to use an adaptive nonuniform Lagrangian grid in
which grid points were automatically inserted and deleted to maintain optimum spatial
resolution in the key variables. The use of this method has two slight drawbacks; first.
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the finite difterence tormulae are more comphicated than on the usual uniform grid. ang
secondly, the insertion or detetion of gnd points nevitably excites small hygrodynamic
oscilations. However, alternative methods using moving finite difference grids are not
well developed at this ime (see, e.g. Tscharnuter & Winkler 1979. Gelinas ot al/. 1980)

Whether the method of soiution s complete linearization, successive sub-
sntution or a hybrid, attention to the physics descnbed by the equations 15 essential It
1S tmportant that the equations, bouncary conditions and firite difference formulation
are all self-consistent. Two areas, in particular. must be considered carefully' the
evaluation of the derivatives 3f 3X and the self-consistency of the solut:on at the end of
an iteration cyc'e Each of these points s discussed be'ow

In our n:t:al attemnts (o apply the Newtcn-Raphson method. we
avafuated the matrix of Jervatves 31 4% numercally. Dy ocerturtirg 2ach varratie and
evaluating the change 'n each equation. The resuiting dernvatives were found 1o vary
wildly and convergence was not opbta:ned. In certain regions. the equations are ‘suff’.
re the solution s Jetermined Dy the smatl ~et ''erence tetween wo compet:ng
processes (eg. ‘crmzation equ:ibrium s the result of compet'tion between :cnizations
a~d recompinat crst  Urger these C:rCuLMSiances. ary 2frors 3 rCsns stenly celween
the denvatives ot the competing processes. with rescect to the variables on which they
depend, drastically aiters the apparent dependence of the important net difference on
these variables. Mence. ‘he steration wilf never ccnverge This problem was overcome
by deriving analytic expressions for all derivatives (a tecious process)

We have also found that convergence 1s more rapid when the varables
%" describe a seif-consistent and physically realizable situation at the beginming of
each iteration cycle. Therefore, after each iteration cycle, we perform what amounts to a
successive substitution step. In the radiative hydrodynamic calculation (McCiymont &
Cantield 1983 a), for instance. we discard the linearzed corrections to the density,
atomic poputations, and ogtical depths. and recompute these from the continuity, atomic
rate and opacity equations, using the hinearly corrected values of temperature, velocity,
and mean intensities. This technique can also be viewed as reducing the dimensional-

et

ity of the space to be searched for the solution. After solving (93), X hhes in the tull
N-dimensional solution space: before beginning the next :teration it is projected back

into a subspace of self-consistent solutions.

10 CONCLUSION AND OVERVIEW
We have described a computationally etficrent technique tor including
the transfer of radiation. not just its escape, among the physical effects treated in a
variety of compiex nonlinear problems in the dynamics and equilhibrna of radiating gases
We have found that these techniques provide a method for including radiative transter
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eftects «n complex probiems that otherwise would exclude it because of limitations on
computing resources. We feel that many interesting problems currently under con-
sideration in solar physics and astrophysics fall into this class, inciuding the specific
examples cited above and obvious extensions of these problems. We expect that these
techniques will become more common and more refined in the future.

While the above techniques can already find use in a number of interest-
ing problems, there are several aspects that might be improved and thereby result 1n
even greater usefulness. At the time this paper was written, the accuracy of the two-
stream approach had nct yet been studied thoroughly. and the relative benetits of one-
stream and two-stream raciative transfer were not yet clear Another aspect that wculd
benefit ‘rom further stucy 1s the incorporation of the at:hity to hangle arbitranly arge
grac:ents of both Ocpcier and outk How verocities .nto a ‘requency-integrated proba-
Biistic raciative transfer scheme. A second :mportant srobiem that one cannot attack
~ith present probabilistic methods s partial ‘requency redistribution If the treatment of
these phenomena could e ncorporated in a useful way. then the techniques of proba-
bilistic radiative transfer would be able to attack an extremely 'arge range of probiems

‘Ne wsn ‘e thank Gene Huppard. Paul LaVan arg Payt Ricchazzi aho
nave colfapcrateq ~ith us n Jeveioping ana apply.ng Tany 3t the tecnr:ques gescr ced
above. We also wish to thank Woifgang Kalkofen. wno has made many suggestions that
have enhanced the value of ‘*his manuscr ot This research has been suoported by
grants ATM81-12866 from the National Science Foundation, NAGW-30 from the
National Aeronautics and Space Administration, and AFCSR 82-0092 from the United
States Air Force Cffice of Scientific Research. Air Force Systems Command. Computing
facilities for the development of these methods have been provided by the National
Center for Atmospheric Sesearch, which 1s supported by the National Science Founda-
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ABSTRACT

We have modeled the response of the solar chromosphere to several flare processes: nonthermal
electrons, thermal conduction, and coronal pressure. The equations of steadv state energy balance,
hydrostatic equlibrium, radiative transfer. and atomuc statistical equihbnum are solved simulta-
neously by finite difference methods, using linearzauon and eraton. It o ussumed that the
atmospheric response is confined to one dimension by 4 strong vertical maznetic ficld The radiative
transfer equation is solved for the most important optically thuck transitions of hvdrogen, mag-
nestum. and calcium. Radiative loss due to H "L the EUV und X-ray lines of heavier tons, and
free-free bremsstrahlung is included in an optically thin manner.

Our theoretical atmospheres elucidate the role of various physical processes in establishung the
structure of flare chromospheres. At low coronal pressures. conduction s more :mportant than
nonthermal electrons in establishing the position of the tranmtion region. Only thermal conduction
<an account for sufficient chromospheric evaporation in compact flares Of the mechanisms consid-
:red, only nonthermal electrons cause significant heating helow the flare trunsitio nrezion. Collivnal
ionization by nonthermal electrons significantly enhances the wnized fraction in the lower chre 10-
sphere. This, combined with the heating effects of the nonthermal electrons. influences the tempera-
ture and density structure there. This relates to the controversy over the mechanism for temperature
minimum heating during flares, and implies that semiempincal models of chromospherie structure

during the impulsive phase must take into account nonthermal :omzation

Subyect headings: hydromagnetics — radiative transfer — Sun: chromosphere — Sun: flares

1. INTRODUCTION

The thick target model for the generation of flare
hard X-rays has been adopted by many authors as an
explanation for the observed enhancements in chromo-
spheric emission during flares (Lin and Hudson 1971:
Sturrock 1968). This idea seems to be supported by the
observed simultaneity of hard X-ray (HXR) bursts and
the sudden brightenings of small Ha kernels during the
impulsive phase (de Jager 1967; Vorpahl and Zirin
1970; Vorpahl 1972). It has even been suggested that the
bulk of the energy release in some flares goes into the
acceleration of energetic electrons and that virtually all
flare enhancements are powered by them (Lin and
Hudson 1976). Opposing this point of view. several
authors have suggested that thermal conduction alone is
sufficient to explain ail the chromosphenic manifesta-
tons of solar flares (Svestka 1973: Machado and Emslie
{979; Shmeleva and Syrovatskii 1973).

In this paper we present a steady state calculation of
the chromospheric response to nonthermal electrons,
cnpanced thermal conduction, and enhanced gas pres-
sure from the corona. The results of this calculation will
show how the chromospheric effects of these mecha-

Now at Institute for Astronomsy, Univeraty of Hawan

nisms compare over a wide range of physical conditions.
A natural outcome of this investigation will be an est-
mate of the relauve importance of thermal clectron
conduction and nonthermal electron thick-target heating
in the process of chromosphenc evaporation. Observa-
tions of chromosphenc spectral bines and continua, to-
gether with predictions of hine profiles based on our
theoretical flare chromospheres, can help set limits on
the energy spectrum of nonthermal electrons present in
the chromosghere duning flares.

Two basic approaches have been used to understand
and interpret the chromospheric response to flare energy
release: senuempirical and synhetic.

The semiempirical method makes no assumption
about the mode of energy transport in the flare. The
temperature structure of the chromosphere and photo-
sphere (which are assumed to be homogeneous. plane-
parallel. and 1n hyvdrostatic equilibnum) 1s deduced by
trial and error fitting of the computed spectral features
to the observations.

In the sunthetic method, which iv applied in ths
paper. the generated model atmospheres are solutions to
specific physical equations, such as those describing
energy balance, pressure equilibnum, and. in the more
sophisticated medels. radiative transfer. If the physics of
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by Swnsucal Equilibrium Equanions

In terms of the population fractions. x,, the statistical
equilibnum equations can be wnitten

Z,\-‘Z,,=.\-,Zz Coa=1s. (5)
] = -

where the Z, are the sum of the radiative and collisional
rate coefficients from state 1 to state y, and s 1s the total
number of levels included in the model atom. A linearly
independent set is obtained by replacing one of the
equations by a particle conservation constraint,

Y x=v(m). (6)
=1

where v(m) 1s the relative number abundance of cle-
ment m with respect to hyvdrogen
For bound-bound transitions the Z  are given by

Z =C ~BJ (upward transitions).

Z =C -8B J~4 (downward transitions).

()

where B.,. B,. and 4, are respectivelv the Einsten
probabilities of absorption. stimulated emission. and
spontancous emussion. and €, and ¢ are the upward
and downward collisional rate coefficients In the
bound-free case we ignore stimulated recombinations. so
the Z  are given by

Z. =C_ +~ R _(iomzation),

Z =C, ~R_ (recombination). ()
where R and R are the photoionizanon and photore-
combination rates (of. Jeffenes 196%). R s directiv
proportional to the bound-free continuum mean inten-
sitv integrated over the photoionization cross section

The references for the various rates which enter into
the atomic rate equations are as follows. The values for
the radiative transition probabilities are given bv Wiese,
Smith, and Miles (1969). The phototomzation coefficient
is given by Mihalas (1978) for hydrogen, by Milkey and
Mihalas (1974) for Mg 11. and by Shine and Linskv
(1974) for Ca 1. Convenient forms for the collisional
rates are

C =nQ (T)e " *7 (upward transitions).

C,=nlg/8)Q (T) (downward transitions),

(9)

where Q is the collision strength of the transition The
collision strengths are based on the results of Johnson
(1972) for hyvdrogen. on Shine and Linsky (1974) for
calcium, and on Milkev and Mihalas (1974) for mug-
nesium.

An aualiary statistical equiibrium equation not in-
cluded in equation (5) is the charge conservation equa-
tion

X, =X +X_. (10)

where x,=n,/ny. x,is the ionized fraction of hvdro-
gen. and x, is the metal (i.e.. non-hvdrogemc) contnbu-
ton to the electron fraction. We have set 1, = & < 10

in all calculations in this paper.

In the statistical equilibrium equations. we have
limited the calculation to the first and second bound
level and the continuum of hvdrogen. the 3« (ground
statey and 3p bound levels and continuum of singh
tonized magnesium. and the 45 (ground state), 34, and
4p bound levels and conunuum of singlv ionized calcium
The radiative transfer equation is solved for all transi-
tions within each model atom.

The 4p and 2d states of Ca 11 and the 3p state of
Mz 11 are actually composed of a small number of
substates with nearly equal energies In solving the
statistical equilibrium equations. it is assumed that these
substates are populated relative to each other according
to their statistical weights. Shine and Linskv 11974) have
investigated the effects of neglecting the separate rate
equations for the fine structure levels of Ca . They find
that grouping the substates in this wav intreduces onlv 4
modest error.

¢y Collistonal Tonization by Nonthermal Elecrrons

Nonthermal electrons not only heat the chromosphere
through Coulomb collisions: they also alter ity state by
direct collisional ionization (Hudson 1972: Lin and
Hudson 1976). To appraise the importance of this effect
w¢ include expheit nonthermal iomization and excitation
terms 1in the statistical equilibrium equations.

The caleulation of the collisional ionization rate due
to a nonthermal distribution of electrons is nontrivial
because the imposed nonthermal distribution is altered
by the production of energetic secondary electrons which
also contribute to the ionization rate. This problem has
been treated in detail by Dalgarno and Griffing (1958)
for the case of a neutral hydrogen target. Theyv found
that, for an initial beam energy above 200 ¢V per
electron, the mean number of ion pairs produced is
simplv equal to 378 x 10° erg ' times the total energs
loss of the beam electrons. Our case differs slightlv from
theirs. since the chromosphere is not completely neutral
In the chromospheric case. the beam energy lost through
collintons with ambient electrons will have no direct
effect on the collisional 1onization rate. We can allow for
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this by relating the ionization rate, dn_/dr, to the rate at
which beam energy is lost to the neutral particles:

dn_/dt =378 10°dF,/dz =C'n;,  (11)

where C!!" is the collisional ionization rate from the first
level. The quantity dF, /dz is the rate at which collisions
with neutral particles remove energy from the beam. It
can be related to the total energy deposition rate of the
beam electrons dF, /dz by

dF,/dz =dF /dz[(1-x) X'/ v], (12)

where x is the ionized fraction, y = Ax + A’(1 ~ x). and
A and .\" are respectively the Coulomb logarithms for
collistons with ambient ¢lectrons and neutral particles.
Combining this with equation (11) and setting n, = (1 -
v iny. we find

C,, =3.78X10°dF,/d=( \'/nyy). (13)

In addition to causing ionization from the ground
state. collisions with nonthermal electrons also directly
excite line transitions and cause ionizations from other
hound levels. To estimate the nonthermal collisional
effects for these other transitions, we have included in
the statistical equilibrium equations nonthermal colli-
sional rates which do not include the contribution from
secondary electrons. These rates are computed directly
from an integration of the collision cross section and
velocity over the energy distribution of primary elec-
trons.

The electrons which penetrate into the chromosphere
have energies in excess of 20 keV—much larger than the
lonization energies of hvdrogen or singly ionized mag-
nesium or calcium. At these energies it is appropriate to
use asvmptotic high-energy approximations for the colli-
sional cross sections. These are based on simple scaling
laws and the Born approximation, and have the form

o=na[pla(e)+~q](e—1)/€, (14)

where o is the collisional cross section, e is the ratio of
electron energy to ionization/excitation energy, na* is
the area of the first Bobr orbit, and p and ¢ are
constants for each transition. Using this approximation
for the collisional cross section, the nonthermal colli-
sional rate (not including secondaries) can be written

. E* dF, E
=263x10°|083pIln|—|~+ £ 1
G, 63x 10 [ P n( E, ) ‘I] & (yng)

(15)

where E, is the energy of the transition (Ricchiazzi
{982). The quantity E* is the cutoff injection energy of
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beam electrons at the column depth .V, t.e., no electrons
with energy less than £* can penetrate to depth V. It
can be written

E*=(2me'[2+B/2)yN/o) ", (16)

where B=(Ax+(1- )\~ \))/y and p, is the
pitch angle cosine of the injected electrons. The defini-
tions of the quantities A, A’, and A” are given by
Emslie (1978). The quantities p and g for the transitions
of interest here are provided by Ricchiazzi (1982).

d) Hvdrostatic Equilibrium

In our physical model of the flare chromosphere a
strong vertical magnetic field 1s assumed to confine the
redistnibution of chromospheric matenial within a veru-
cal column of constant cross section. The gas pressure at
some point in this column is the sum of the total weight
of the material above that point and the gas pressure at
the top of the column. We can write the gas pressure P
as

P=P ~mgf nd:'=P - mg\. (1)
<)

where P, is the gas pressure at the top of the column, m
is the mean mass per nucleon (which we take to be | 4
umes the proton mass), g is the solar gravitauonal
acceleration, : is the distance measured from the loop
apex. and V is the column number density of nucler
X-ray observations of postflare coronal loops imply
coronal loop pressures between | and 10° dvn ¢m " *
(Feldman. Cheng, and Doschek 1982: Underwood er al.
1978).

In terms of microscopic quantites. the gas pressure
can also be written

P=ngkT(1.1+x,)~inyme}, {(18)

where x, is the electron density fraction n, /ny and ¢, is
the microturbulent velocity. The factor 1.1 is used to
account for the number density contribution of helium
and other metals. We used the v, (V) distribution of
provided by VAL in their model F, in all our model
calculations. The nonthermal pressure component in
equation (18) provides a small and roughly constant
fraction of the gas pressure throughout most of the
preflare atmosphere (Model F). However, the much
larger thermal pressures in the flare model atmospheres
dominate over the nonthermal component.

e) Energy Bulunce

The condition of energy balance requres that the
total heating rate be equal to the net radiative energy
loss rate. In terms of the energy flux of ponthermal
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electrons, F., (for electrons with E > 20 keV), and the
thermal conducuve flux, F., this condition can be wnt-
ten

R=Q - (dF /d: ~ dF,/dz)/ny. (19)

where R is the specific radiative loss rate (i.e., per
hydrogen atom) and Q is the preflare specific heating
rate. The latter quantty is evaluated by computing the
total radiative loss rate of the preflare atmosphere. This
same specific ambient (preflare) energy input 1s main-
tained at each column depth point in the flare atmo-
sphere.

/) Rudianve Energy Loss
The specific radiative loss rate in an optically thick
transilion is Ziven by

A, {20)

AT

R(j,1)=hvx/pl

The quantities x and p are determined by a solution of
the combined equations of radiative transfer and statis-
tical equilibnum discussed previously. Our probabilistic
radiative transfer equation can be expected to produce
mean ‘ntensittes and lesel populations that are within
about 0% of those produced by the more complete
frequency-dependent methods (Frsch and Frisch 1978).
Ricchiazzi (1982) has shown that as long as p > 0 the
radiative loss rate is known to about the same 350%
accuracy because it depends only on a good estimate of
the neutral fraction. Only in regions of the atmosphere
where p <0 and - p is comparable to the destruction
probability p, is knowledge of the actual value of p
critical.

Radiative loss from the optically thin transitions of
the H ~ ion, the EUV lines and continua of metal ions,
and free-free bremsstrahlung all play an important role
in the energy balance at some point in the solar transi-
uon region, chromosphere, and upper photosphere. The
approximations used for these important radiative loss
mechanisms are as follows. We have adopted the H -
radiative energy loss rate formula given by Henoux and
Nakagawa (1977):

Ry-=1.5x10~Yn,x,T =% T [ 14— (4170)"].
#3))

This expression is based on the assumption that H -
ionization is in LTE and that the emission is in an
optically thin region. The validity of these assumptions
1s supported by a comparison of the H ~ radiative loss
rate using this equation with the H ~ loss rates tabulated
by VAL. Throughout the chromosphere of VAL model
C the loss rate computed with equation (21) agrees with
the more rigorous treatment of VAL to within 20%.
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As an aside, we pote that Allen (1974) presents a
tabulation of the H ™ absorption coefficient per unit
neutral hvdrogen pressure and unit electron density
averaged over a blackbody radiation profile. Between
4000 K and 1.1 x 10% K this quantity is roughly propor-
tional to the fourth power of the local temperature.
Several authors have taken advantage of this result 1o
write the H ™ radiative "~ss as

Ry =221x10"%n x,T. (22)

This approximation yields radiative losses which are up
to a factor of S5 umes larger than the VAL results in
regions of the chromosphere in which H ~ radiative loss
is important. Furthermore, this formula is clearly inap-
propriate to describe the H ~ radiative loss at the tem-
perature mummum where equation (21) and the results
of VAL indicate that H ~ heats the atmosphere.
Raymond (1981) has calculated the radiative loss rate
of a low-density plasma composed of He, C, N, O, Ne,
Si. S. Fe. and Ni. Ravmond’s calculations include the
effects of forbidden and semuforbidden line transitions,
dielectric recombination, and two-photon continua. The
specific power radiated by these transitions is given by

Ry =n. 01T, (23)

meta)
For temperatures below 10* K. ®(T) is given by
¢(T)=Cexp(-C,/T), {24)

where ¢, =3.708x10 " ** and C, = 67172 K. C, and C,
are chosen to match Raymond’s #(7T) at T=10* K and
10*' K. which mimics the temperature dependence of
the collisional excitation rate. The function ®(T) is
plotted, along with our low-temperature extrapolation.
in Figure 1.

The bremsstrahlunz radiative loss rate used in these
calculauons is nonst.adard in that absorption of the
photospheric radiation is included. While in the corona.
the absorption rate due to this process is very small
compared to the loss rate, this is not the case at the
lower temperatures of the chromosphere.

Assuming a photospheric radiation field represented
by a geometrically diluted Planck function with radia-
tion temperature Ty, Ricchiazzi (1982) has shown that
the bremsstrahlung radiative loss rate can be written

Rirem =14x107T"2n x,
X{(1=[¥(1~To/T)=y][To/2T]}. (29

where ¥ is the digamma function. and y is Euler's
constant. The standard result, with no absorpton, is
recovered by setting T, = 0. When the local electron
temperature equals T, absorptions reduce the net radia-
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2) Thermal Conduction
The thermal conductive flux is (Spitzer 1962)

F =-x,T°dT/d:=, (26)

where the value of x, is 1.3x10 7% The contribution
that protons or neutral hydrogen atoms make to the
total heating rate is negligible.

The rate at which conduction heats the plasma is

dF jdz =~ d(x,T**dT/d:)/dz. 2N

Among the parameters which specify the coronal input
into the lower atmosphere is the quantity F;, the con-
Jductive flux at T =10° K. Withbroe (1978) has used the
observed differential emission measure of a large flare to
infer the conductive flux during the heating phase. He
finds that the conductive flux at 10° K steadily drops
from 3x10% ergs cm~? 57!, 15 minutes after flare
maximum. to 6% 107, 3 bours and 38 minutes after
maximum. Using these values as guidelines, we have
explored the effects of varying F; in the range 10° 10 10°

c m- e~
ergsem s

h) Heaung by Nonthermal Electrons

Emslie (1978) has derived a set of formulae for the
energy Jdeposiuon rate of a beam of charged particles
penetrating into a cold hydrogen target. His treatment
gencralizes the results of Brown (1973) and Lin and
Hudson (1976) to include interactions with neutral hy-
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drogen atoms, which will dominate at low chromo-
spheric temperatures.

In terms of the energy flux. F,, (for electrons above
the reference energy. £ = 20 keV). the specific heating
rate is

(5@ = (55 )rervo-00(3.3)

where § is the power law index of the nonthermal
electron number flux and p, is the pitch angle cosine of
the injected clectrons. The other quantities are given by
Emslie (1978).

In the thick target model. the nonthermal electron
power law index is related 10 the HXR power law index
bv 8=y ~+1 (Lin and Hudson 1976). The range of
electron spectra implied by the HXR observations
is 3<8§ <8, with § =3 being most probable. In this
paper a standard value of 8 =35 will be assumed for
most of the calculauons. In order to explore tvpically

thevreucal atmosphere with Fy, =10° 10°Y, and 10"
erzsem s

Since the nonthermal electrons transport charge to
decper lavers, an upflowing reverse current, among the
amoient electrons. must be generated to maintain charge
neutrality (¢f. Hovng, Knight, and Spicer 1978). How-
ever. since a vomplete understanding of how the reverse
current affects the heating rate is not yet available, we
have neglected its effects in our calculation.

1) Method of Solution

We have used numerical methods based on the gener-
alized Newton-Raphson (GNR) approach of Auer and
Mihalas (1968) to simultaneously solve the finite-
difference form of equations of radiative transfer, atomic
level statistical equilibrium, pressure balance, and en-
ergy balance. Application of this procedure to the full
set of equations proved to be numerically unstable un-
less the initial guess of the values of the dependent
variables was very pear the final solution. Hence an
intermediate step was inserted in each GNR step. The
successful procedure consisted of the following:

I. Construct a first-guess model atmosphere using a
sirmple radiative loss formula.

2. Holding the temperature and optical depth scales
fixed. determine the density, atomic populations,
and flux divergence coefficients by integrating point-by-
point upward from the fixed lower (subphotospheric)
boundary.

3. Evaluate all optical depths and escape probabilities
from the current values of the atomic populations.
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4. Perform a single GNR step. correcting the full set
of vanables: temperature, density, level populations.
flux divergence coefficients.

5. Same as step 2.

6. Repeat steps 3 through § until no escape probabil-
ity changes by more than 10~*
changes by one part in 10°.

Step S is required to stabilize the procedure. Between
10 and 15 iterations are typically required. Further
details are given by Ricchiazzi (1982).

and no temperature

III. THEORETICAL ATMOSPHERES

The conductive heat flux. the flux of nonthermal
electrons. and the coronal pressure each has a unique
effect on the theoretical atmospheres. In this section we
discuss the mechanisms that underlie these effects.

To streamline the exposition, the values of the
most :mportant parameters used to generate the theoret-
ical atmospheres will be referred to in a shorthand
notation consisting of three aumbers separated by col-
ons. The numbers represent values of log F.,. log F..
and log P,, all in cgs units. For example, the atmosphere
with nonthermal electron emergy flux F.,, =10
erzswm T s 7' conductive flux Fe =107 ergsem s
and coronal pressure Pu=l0: dva cm ™", will be re-
ferred to as 10:7:2. In all atmospheres shown. § and p
are held at fixed values § =35 and ,,) = 1.

u) Upper Chromosphere and Transition Region

The effect that nonthermal electrons have on ‘the
temperature profile is shown in Figures 2a and 26. for
coronal pressures of | and 100 dyn c¢m ™", respectively.
and with a conductive flux of 107 ergs cm™*s ~'. In the
atmospheres shown in Figure 2a the position of the
transition region is completely insensitive to the varia-
tion of the nonthermal electron flux. In these low-
pressure atmospheres the heating rate at temperatures
above 21X 10* K is mainly due to thermal conduction.
On the other hand. the transition regions of the higher
pressure atmospheres plotted in Figure 2b are mod-
erately sensitive to the value of Fy. For this value of the
coronal pressure the importance of conduction for tem-
peratures 10* K < T < 10* K, relative to electron beam
heating is much reduced. Deeper down in the chromo-
sphere, where the total gas pressures are nearly the
same, and | and (00 cm ™ models are practically identi-
cal. The effect of varying the conductive flux is much
different.

The effects of changing the value of F; are invest-
gated in Figures 3a and 36 for Py=1 and 100
dvn cm~?, respectively. In the low-pressure case the
temperature structure of the upper atmosphere is very
sensiuve to the value of F;. On the other hand, in the
high-pressure atmosphere, the temperature structure is
quite insensitive to Fy until F; > 10 *ergsem™ 757"
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These comparisons of high and low coronal pressure
atmospheres illustrate that the relative importance of
thermal conduction depends on the value of the coronal
pressure. To see how this comes about, consider an
atmosphere in which conduction dominates the heating
rate in the temperature range T, < T < T, where T and
T, are the temperatures at the base and top of the
transition region. Since the temperature gradients are
small in the residual chromosphere, one can assume the
conductive flux is negligible for T < 7;,. Ignoring opti-
cally thick radiators for the moment. the energy balance
condition can be wnitten

dF jdz = n*d(T). {29)

If one assumes n =P 'ZkT, this equation can be :n-
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Fi - F(T)=P*\(T), (30)
where

A(r)-(x/2k3)fr‘°’r“¢(r)dr. 31

Now. using the fact that F.(T,) = 0, we find
P=F[AT)] 2 (32)

Since ®(T) is strongly peaked at T=10° K, A(T) is
nearly constant for 7 « 10° K. Thus, as loag as the
temperature at the base of the transition region is much
smaller than 10° K. the pressure of the transition region
is directly proportional to F;. Put another way, if F; is
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kept fixed and P, is increased, the formation depth of
the transition region must decrease such that P = P, -
mgXN is constant. This effect should be manifested in
atmospheres in which thermal conduction domunates
down to relatively low temperatures.

In Table | we bave summarized the physical char-
acteristics of our theoretical atmospheres. Notice that
the values of the total gas pressure at T =10° K (the
column marked P at T=10° K) of the 10:8:0 and the
10:8:2 atmospheres are both about 220 dyn cm™ 2, even
though an additional 99 dyn cm™* has been applied to
the latter atmosphere. The smaller values of the transi-
tion-region column depth that are implied for the atmo-
spheres with larger values of P, will increase the amount
of nonthermal electron heating (because this heating
rate is proportional to NV ~%°). Thus. increasing P,
tends to increase the importance of heating by nonther-
mal electrons relauve to conductive heating. This effect
iy also :lustrated in Figure 4 for atmospheres 10:7:0 and
10:7:1. In this case the total pressure of the transition
region stays constant at about 22 dvn cm™ ? while P, is
increased from | to 10 dvn cm™? As the coronal
pressure is increased further, as in the 10:7:2 and 10:7:3
atmosphere, the upper parts are no longer conduction
dominated. This relaxes the constant-pressure require-
ment. In atmosphere 10:7:3, for example, the total pres-
sure at 10° K is much larger than in atmosphere 10:7:0
because the heating due to beam electroas can supply
the energy for the augmented radiative loss rate. One
can also verify the accuracy of equation (32) by noting
that the transition region pressure of atmospheres 10:8:2
and 10:8:0 are almost precisely a factor of 10 larger
than atmospheres 10:7:0 and 10:7:1.

An interesting feature of the conduction-dominated
models is the small temperature dip that separates the
transition region from the chromosphere. This feature
can be seen at the bottom of the conduction-dominated
regions of atmospheres 11:7:0, 10:7:0, 9:7:0, 0:7:0 in
Figure 2a. 10:8:0 in Figure 3a, and 10:8:2 in Figure 35.
This feature has a simple physical explanation. At the
base of the transition region the conductive flux makes a
negligible contribution to the heating rate. Therefore,
the heating rate at this column depth is the same as in
an atmosphere with an equal value of F,, but a smaller
value of F;. However, the cooling rate at that point is
very different. Since almost all the material above the
base point is ionized in the high conduction case, the
optical depth in the transitions of hydrogen, magnesium,
and calcium is greatly reduced. The temperature drops
because these ions radiate more effectively. (Further
discussion appears below.) At larger depths, the temper-
ature quickly climbs back up to the value found in the
low flux models. This rapid recovery is caused by a
sudden increase of opacity with increased depth. At a
column depth 3 to 4 times larger than the base point, the
optical depth of these radiators attains practically the




No. 2. 1983

CHROMOSPHERIC FLARE HEATING

747

TABLE |
CHARACTERISTICS OF THEORETIC AL MODEL ATMOSPHERES

Log v,* H"” SH,/S Pati* K Toin Log V,°
Model (em™ ) tkm) tkm) (dynem 7 (K; tem” )
0:7.0 ... 20.5 1041 0.26 22 4440 226
970 ... 20.5 [RAK] 029 2 4353 N4
10:7:0 ... . 205 1205 Q26 2 1365 228
1:7:0 ............ 20.5 1400 20300 23 4435 228
10:60 ............. 19.8 2670 1356 5 372 225
10:8:0 215 736 003 216 4376 225
10:7:0 ... 203 1237 125 21 4368 228
10:7:2 193 954 ST 101 300 224
1073 ... 18.9 567 35 1001 4329 226
972 L 189 887 25 101 4348 224
T2 197 1076 135 1032 27 223
T s2 195 43 42 N2 1362 226
N2 213 43 N0l i3 1360 )
1172w, =03 19§ intg X 102 4392 226
11 72.8=13 i93 123x 209 ol 485 Y
lh=28=" 9 979 & IR 4148 2
R 203 1234 ule 22 2329 2%
VAL F 187 2130 11 N3 447 228

*Log of the column depth at T = 10" K point
“He:zht above photosphere of T =107 K point
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F1G. 4. —Effect of varying coronal pressure for fixed values of
F.q and F;. Note that conductive heating is negligible in both the
19 and 10° dyn cm~ ? atmospheres.

same value as they would have had in the low flux
atmosphere.

A surprising result of these calculations is that radia-
tive losses from the optically thick radiators are im-
portant only at the base of a conduction-dominated
region. Thus result is illustrated in Figures §, 6. and 7 for

Thickness of region with temperature between 1% und 10° K
2 f the column Jepth at the remperature monmum oo

nt

maodels 10:6:0, 10:7:0. and 10:8:0. respectivelv. In the
bottom panels of these figures we bhave plotted the
temperature as a function of the optical depth in
the Lva transition. This choice of independent variable
allows us to resolve features in the transition region
more ¢asily. In the next higher panel the net cooling rate
per unit volume is shown. The top three panels show the
relauve contnbutions of the different heating and cool-
ing mechanisms. These three figures illustrate how the
importance of the thick radiators is modulated by the
conductive flux imposed at the top of the model atmo-
sphere. In model 10:6:0 the conductive heating never
contnibutes more than a few percent to the total heating
rate. Consequently the total contribution of hydrogen,
magnesium, and calcium never exceeds 15% of the total
radiative loss rate. On the other hand, conduction
dominates the beating rate in the region 7, <10% in
the 10:7:0 model and 7, < 10* in the 10:8:0 model. In
both these models the contribution of the optically thick
radiators is large. At T=2x10* K, the temperature at
which Lya radiates most efficiently, all of the models
are effectively thin in the Lya transition. Furthermore,
we find that the resonance lines of magnesium and
calcium are effectively thin in the upper chromosphere.
Therefore, the reason for the relatively small radiative
loss from the optically thick radiators in the low conduc-
uve flux atmospheres is not merely a consequence of
enhanced absorption. A thorough examination of how
the relative importance of hvdrogen is modulated by the
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conductive flux is given below. This analysis also applies
to the modulaton of magnesium and calcium.

As long as the flux divergence coefficient is not
negative (which it is not for Lya at 2x10* K), the
radiative energy loss rate of an effectively thin radiator
is well approximated by the energy of the transition
multiplied by the collisional creation rate. Hence we can
write the ratio of hydrogen to metal radiative loss rates
as

Ry _ hvQ,.x,exp(—hv/kT)
R metal @( T)

=G(T)x,,
(33)

where Q, is the collisional strength of the Lya transi-
tion and G(T) is a function of temperature only. Thus,
the ratio of hvdrogen to metal loss at 2 x 10* K varies

from atmosphere to atmosphere only through the varia-
tion of the neutral fraction. This analysis agrees with the
numerical results. The neutral fraction is larger in the
high conductive flux atmospheres because the Lya source
function is depressed by enhanced photon escape in the
thinner transition regions of these atmospheres. Since
the second level population is relatively smaller, the rate
of photoionization in the Balmer continuum is reduced
and a large neutral fraction results.

b) The Lower Chromosphere and Temperature
Minimum Region

In the lower chromosphere the conductive heating
rate is totally negligible. In addition the larger opucal
depth of this region reduces the importance of radiative
loss from hydrogen. magnesium, and calcium. In this
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rezion the temperature structure is determined primarily
by the balance of the optically thin radiative loss mecha-
nisms (metals, bremsstrahlung, and H 7) versus heating
by nonthermal electrons. Even though the radiative loss
due to the optically thick radiators is not important
here. a solution to the radiative transfer and statistical
equilibrium equations for hydrogen is sull required 1o
find the electron deasity on which the optically thin
radiative loss rates depend. It should also be emphasized
that the metal loss rate used in these calculations does
not include any contrnibution from hydrogen. mag-
nesium, or calcium. A calculation based on the metal
loss rate of a plasma of cosmic abundance (for example,
as given by Raymond, Cox, and Smith 1976) will over-
estimate the total radiative loss rate in this region of the
atmosphere.

The response of the lower chromosphere to heating
by nonthermal electrons is shown in Figure 2. In

the column depth range 5% 107" to 10°% ¢m °, the
temperature is enhanced by roughly i0% for each factor
of 10 increase in the electron energy flux above 10°
ergs cm™ > s~'. The temperature tends to its preflare
value at larger column depths. As shown in Table 1,
the minimum temperature for some of the electron-
bombarded atmospheres is actually less than that of the
preflare atmosphere. In the 9:7:0 atmosphere, for exam-
ple, T, is 47 K less than the VAL /F T, . This result
is even more puzzling when one notes that the total
heating rate (and cooling rate) at this column depth is
twice as large as the original preflare heating rate. Part
of the explanation for this phenomenon is the increased
density brought about by increased coronal pressures.
Since the gas pressure of the preflare atmosphere at
N =10 ¢m " 1s on the order of 10* dyn cm™*, the
imposition of a coronal pressure of this same order will
increase the density and consequently increase the radia-
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uve loss rate. This mechanism helps to explain the
extremely low T, of model 10:7:3, but it fails to
explain the small 7 in the low-pressure atmospheres.

The increased radiative efficiency in these models can
be explained by considering how the direct collisional
ionization by nonthermal electrons affects the state of
the gas near the temperature minimum. Throughout
most of the quiet solar chromosphere, photoionization
from the second level and photorecombination to the
bound levels are the dominant rates that determine the
hvdrogen ionized fraction. In an atmosphere bombarded
by nonthermal electrons the ionized fraction is increased
directly as a result of enhanced collisional ionizations
from the first level. Nonthermal electrons also increase
the photoionizations in the Balmer continyum by in-
creasing the second level population through nonther-
mal collisiona] excitations in the Lya transition. Since

the radiative loss near the temperature minimum is
dominated by H~ (e.g.. Fig. S, 6, or 7), the increase in
the radiative loss rate is directly proportional to the
increase in ionized fraction. Hence, the value of T,
decreases in the flare atmospheres because the relative
increase of the ionized fraction is greater than that of
the total heating rate.

In Figure 8 we show two versions of model 10:7:0,
one with nonthermal collisional ionization, one without.
Note that when nonthermal collisions are left out, Toie
is hotter by 164 K. The maximum difference occurs
slightly above the temperature minimum at ¥ = 2 x 10+
cm ™ ? where the atmosphere without nonthermal colli-
sions is 10% hotter. At smaller column depths and larger
temperatures the difference is smaller for two reasons.
First. at higher temperatures the thermal collisional
rates begin to dominate the nonthermal rates. Second. in
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the upper part of the atmosphere the ionized fraction
approaches | in both models. Heace, the relanve dif-
ference in the 1onized fraction decreases.

¢) Corsnal Hergnr Scale

Bv choosing to specify our theoretical atmospheres
parametrically in terms of the quantities F+,. £, and P,.
we have avoided dealing with the coronal temperature
structures that would be consistent with our model. To
place our atmospheres in a more general physical con-
text, below we estimate the coronal height scales that are
implied for several values of the coronal pressure.

[f the loop length is held fixed. the coronal pressure
P, and the depth of the transition region .Vr are related
by the condition of hvdrostatic equilibrium. By making
different choices of P, we are in effect choosing different
corcnal loop lengths. To illustrate this relationship. con-
sider a flux tube of constant cross sectional area. We can
use equation (17) to write

L= jo YakT./( P, ~ mgN) dN, (34)

where L is the arc length from the loop apex to the
transition region. Making the assumption that T, is
constant in the corona, the integral can be evaluated as

L= (2kT./mg)ln(1+ mgN,/F;). (35)

Now inserting a typical coronal flare temperature of 107
K. using the values of ¥ at T=10° K for .V, from Table
1, and adding the height of the transition region to L,
we find the loop length to be 1.3x 10%, 3.6 10%, 6440,
and 790 km for the 1. 10, 100, and 1000 dyn cm” ~ atm,
respectively. Including the effect of a cross sectional
area which expands in the corona will tend to reduce
these estimates.
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The length estimate for the 1000 dyn cm ™! model
implies that the entire loop structure must be containcd
within the preflare chromosphere. Clearly, this situation
does not correspond to the traditional concepts of the
flare structure, though there are no observations that
rule out such small loop lengths. The compact flare
events with coronal pressures as large as 1000 dyn cm~?
are typically observed in structures having lengths of
order 10* km. This is consistent with a transition regjon
which forms at roughly 3% 10%° cm~ 2 If nonthermal
electrons are assumed to dominate the heating rate at
T=10% K, the implied value of Fy, can be found by
setting the electron heating rate equal to the metal
radiative cooling rate at this temperature and column
depth. Using § =5 and u,=1 in equation (32), and
writing n, = ny = (mgN ~ P,)/2k(10° K] in the equa-
tion for R ,,,. we find

Fu=6T2x10 YN (64110 °N = P)).  (26)

Inserting V, = 3x 10" ¢m® and P, = 1000 dyn cm " *. we
find £, =10 ergs cm™* s 7', This value of F., is much
too large to be consistent with the HXR observations.
On the other hand. if conduction drives the evaporatuen.
then by egquation (34) the total zas pressure :n the
transition region should be given by

Py=641x10"ON=pP=22%x10"°F, (37)

where the coefficient of F; was estimated from Table 1.
Inserting ¥ =3x10"° cm~* and P, =1000 dyn ¢m "~ °,
we find F; = $.5% 10" ergs em ™~ s ~'. This value of F is
consistent with the conductive flux estimate made by
Withbroe (1978). Hence, we conclude that plausible
loop lengths follow only if the major process that dnves
chromospheric evaporation is thermal conduction.

IV. DISCUSSION

An important objective of this research is an im-
proved understanding of how the chromosphere and
transition region respond to the altered environment of
a solar flare. Our grid of theoretical atmospheres can be
used to understand the functional relationship between
atmospheric temperature structures and the parameters
Fy, 8, F,, and P,.

A aumber of researchers have produced static semi-
empirical models of solar flare temperature structures.
These semiempirical atmospheres are potentially a good
vardstick against which our theoretical atmospheres can
be compared, in order to infer the nature of the physical
processes that heat flare atmospheres. Unfortunately,
the semiempirical atmospheres have a number of fea-
tures that weaken the significance of this comparison.
For example, most of the observations on which these
model atmospheres are based are made at times long
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after the impulsive phase, ie, at a time when the
electron heaung rate is negligible. Another difficulty is
that seme of the model atmospheres are meant only to
represent the average conditions in flares and are not
based on observations of a single event. perhaps not
even the same kind of event. It is also important to note
that none of the semiempirical atmospheres include the
effects of nonthermal ionization or coronal pressure.
Despite their shortcomings, however, these models have
much to say about the average atmospheric structure
after the umpulsive phase.

a) The Dinh Model

Dinh (1930) has constructed several semiempincal
model atmospheres based on the cooling phase spectra
of three chromospheric flares. Throughout the model the
2a» pressure s set equal to meV Unbike our models. no
avpitait allowance 1» made for the addivonal corenal
pressure.

Afier 1 ial atmosphere is prescnbed the emergent
‘ntensities of the Lvman continuum and Ha line are
caleulated. Dinh finds that these spectral features are
verv sensitive to the choice of transition region thick-
ac s A In models with A as large as 30-30 km the
amount of Lyman contnuum radiation 1> much larger
than observed in the three flares. The observed Lvman
continuum (Lvey flux could be matched with observed
values only when 34 was kept less than or equal to 11
km. We have found a similar behavior for the Lya and
Lvc fluxes produced by our atmospheres. Of course. in
our case. A4 s aot 3 free parameter. [t is instead a
computed result for particular choices of Fyy, 8. F;, and
P,. The flare observations compiled by Machado et uf.
{1981). henceforth MAVN, limit the Lya flux to the
range 10°%-107% ergs em ™" s~ ' Qur calculated Lva
flux is within these observational limits only in those
models that are conduction dominated at a temperature
of 2:<10* K (model 11:7:2, § = 3, is the one exception).
Those atmospheres that are not conduction dominated
produce tco much Lya flux. To understand why this is
0. note that when the value of £ is increased, the total
amount of material with temperatures near 2% 10* K is
decreased because of the larger temperature gradient.
Even though the total gas pressure of the transition
region is increased by the larger transition region depth,
the reduction in emitting volume is sufficient to decrease
the Lya flux. As noted previously, a conduction-
Jdominated atmosphere is a prerequisite to producing a
Lva radiative loss rate that is significant to the total
radiauve loss at T=2x10* K. Thus the effect of an
increased thermal conductive flux is to increase the
relauve tmportance of Lyva loss at 2% 10* K while at the
same time decreasing the total flux of Lya radiation.

Thus result seems to be at odds with the comparisons
of the Lva flux and conductive flux made by Machado
and Emslie (1979) for seven SAviab flares. They claim a
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positive correlation betw een the fluxes, with the conduc-
tve flux always within a factor of 2 of the Lva flux
However, thss finding is open to question. The formula
they used relating the differenuial emission measure to
the conductive flux inveives rough estimates of the flare
area and transition rezon pressure. This could easily
introduce a factor of 3 error in their conductive flux
(Withbroe 1978). Since the highest and lowest conduc-
tive fluxes in their list diifer by a factor of only 10, the
correlation they claim is aot well supported.

[n the chromospheric region Dinh achieves the best
agreement with the obsenned Ha profiles of the 1B flare
of 1974 June 30 with transition region depth NV, = 8.5 x
10°° cm™*, Toyom = 8300 K, and 34 = 3 km. A feature
of thus model which 1s censistent with other semuempin-
cal models is the temperature enhancement inferred in
the residual chromosphere. In this region of his model
the temperature gradiezts are much too ~mall 0 pro-
Jduce any substantial cozductive heating A comparson
to our atmospheres reveals that tus same amount of
temperature enhancemeat 1s closely matched by model
11:7:0. However. the fac: that Dinh's observations were
made 3 min after flare =axmum suggests that heating
by nonthermal electrons :s not the cause of this nferred
remperature enhancemesnt,

b) The MAVN Models

The semiempirical model atmospaeres of Machado
et al. (1980), hereafter MAVN, are based on a large set
of Shylab data which inciudes observations of six flares
during 1973. Their moda!s are meant to represent the
average conditions in these events. They claim that their
models are consistent with the flare observations of the
hvdrogen Lya, LyB, Ha lines, the Lvman and Balmer
continua, the Ca 11 H. K ind infrared triplet lines, the
Mg 11 & and k lines, and the Si 1 AAI325 and 1682 and
C 1 AN 1100 and 1239 conunua.

The MAVN models. like the other semiempirical
models. do not explicitly include the effect of the coronal
containment pressure. The gas pressures in the transi-
tion regions of their models are 8.6 dyn ¢cm ™ ° for F, and
95 dvn cm~ * for F,. These values are consistent with the
coronal pressure estimates of the large-volume flares to
which their model applies.

Like Dinh, they find that a steep temperature rise in
the transition region above 8500 K is necessary to
reproduce the Lyman coatinuum inteasity. The thick-
ness of the transition regon in their models are 4 km for
F, and 1.2 km for F,. As in the Dinh model, tempera-
ture enhancements are inferred for the upper chromo-
sphere. The elevated temperature in the chromosphere
of either of their models is required for consistency with
the observations of the Lva wing and C 1 continua.

A feature of the MAVN F, model that is not present
in Dinh's model is the temperature enhancement in the
lower chromosphere. Sizce this model is claimed to
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present the structure of the early stages of bright flares,
thus feature mayv be due to heating by noathermal clec-
trons. Machado, Emslie, and Brown (1978) have
presented theoretical calculations of the temperature
enhancement at the depth of the preflare temperature
minimum (which they take to be 2x 10%? cm ™ ). One of
the implications of their calculation is that nonthermal
electron heating can produce the types of enhancements
found in the MAVN T, . region. In their calculation,
the temperature is found as a solution to a simple energy
balance formula in which radiative losses due to the H~
jon are equated to the heating by the ambient preflare
process and the nonthermal electrons. In their Figure 3
they show that for Fig=10"" ergs cm™* s ! a tempera-
ture increase of 12% is expected {for § = 5). At Fyy =10"
ergs em - s~ they would predict an increase of 50%.
Both of the estimates are much larger than those of our
calculation. At the same depth and the same value of §
we find temperature enhancements of only 3.3% and
18% for F., =10'" and 10" ergs cm™ 25 ™", respectively.
The crudeness of their H™ radiative loss formula
accounts for this overestimate. In this formula they
ignore the hydrogen contribution to the electron deunsity
on the zrounds that the metal contribution. which is
held fixed :n their calculation. is dominant. Our caleula-
uons do not support this assumption. We find that
collisional ionization of hvdrogen by nonthermal and
thermal electrons causes hvdrogen to be the dominant
contnbutor to the ¢lectron density at this column depth.
As noted previously. this additional ionization increases
the radiative loss rate and therebv decreases the net
temperature enhancement. One can only conclude that
the temperature enhancements inferred by MAVN at
N =10 ¢m " ° cannot be explained by electron heating
with reasonable values of F.y and 8.

¢) The Lites und Cook Model

Lites and Cook (1979) analyzed spectra of the 1973
August 9 flare recorded by the ultraviolet spectrograph
aboard Skyviab. They derived a semiempirical model of
the flaring chromosphere based on a solution to the
radiative transfer equation for hydrogen Lyc, Lva, LyB,
and Ha as well as some lines and continua of the ions
C 1, Cu, C ut, and C 1v. Their model atmosphere was
constructed by iteratively adjusting T(N) until the syn-
thetic carbon line profiles and continua matched the UV
data at a time | minute after the flare maximum. The
transition region of this model is set at a column depth
of 13x10™ em~?, where the gas pressure is 8
dyn cm ™% Again, as in the Dinh and MAVN models.
the coronal pressure contribution is not included ex-
plicitly. In this case, however, we are able to obtain an
independent estimate of the coronal gas pressure by
referring to other research on this well-studied flare.
Underwood erual. (1978) have studied the concurrent
X-rav and EUV data for this event. Based on their
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estimates of the emission measure and flare volume
(from the Skylab SXR images), they find coronal pres-
sures in the range 1000-3000 dyn cm ™’ with tempera-
tures of | or 2x 10" K before and up to the time of the
Lites and Cook observations. Since this flare was com-
pact, there should have been plenty of time for this
pressure to be felt at the transition region. Other re-
searchers have estimated that the conductive flux at
10% K is about 6 10° ergs cm™% s~' (Machado and
Emslie 1979) and electron flux is approximately 10°
ergs cm™* s ' (Canfield and Cook 1978) at this same
tume.

None of our energy balance models comes very close
to matching this set of coronal input parameters. How-
ever, in view of the large difference between the coronal
pressures inferred by Underwood eral and the much
lower transition region pressure in Lites and Cook's
semiemptrical atmosphere. it would be unwise to
compare our results at columa depths less than
3x10°* cm ™2, where the high coronal pressure found
by Underwood eral. should dominate over mgVN. The
only meaningful comparison would be at larger depths
where the effects of the coronal pressure and. inciden-
tally, the conductive flux. are negligible. At these depths
L:tes and Cook find zreater temperature increases than
in our atmospheres. But at these column depths and
temperatures other considerations cloud the issue. If it
is assumed that the high-energy electrons inferred bv
Canfield and Cook penetrate into the chromosphere.
then the hvdrogen ionized fraction should be altered by
the additional nonthermal collisional rates. A plausible
explanation for the larger temperature of the Lites and
Cook temperature minimum region is their neglect of
nonthermal ionization. Since their hvdrogen iomzed
fraction is smaller than ours at a given temperature. they
must invoke a larger value of T, to explain the in-
creased emission at the temperature minimum. On the
other hand. the difference may also be explained by our
neglect of other temperature-minimum heating mecha-
nisms in our theoretical model.

V. SUMMARY AND CONCLUSIONS

We have presented an improved theoretical approach
to static energy balance problems involving optically
thick radiative transfer. Our use of a frequency in-
tegrated radiative transfer equation has allowed us to
improve the treatment of the effects of several important
chromospheric radiators, thereby providing a more re-
alistic treatment of radiative cooling than has previously
been used for this problem. With this technique, we have
modeled the response of the solar chromosphere to both
a long-lived flux of nonthermal solar flare electrons and
a large heat flux from the overlying flare corona. In
addition to the more realistic treatment of radiauve
cooling, our model also incorporates the effects of in-
creased coronal pressure (presumably hrought about by
chromospheric evaporation 1nto the coronal parts of the
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flare loop) and nonthermal collisional ionization. Neither
of these mechanisms has been explicidy included in
previous synthetic or semiempirical models of the flare
chromosphere. The theoretical atmospheres we have
generated illustrate a number of interesting phenomena
associated with these mechanisms.

The coronal pressure modulates the relative impor-
tance of heating by nonthermal electrons versus heating
by thermal conduction. For a particular choice of the
energy flux of nonthermal electrons, Fy,, and the ther-
mal conductive flux, F;, the relative importance of heat-
ing by nonthermal electrons is increased as the coronal
pressure is increased. For the high coronal pressure that
is characteristic of a compact flare, thermal conduction
is important in the energy balance only for large values
of F.. All else being equal. the increased radiative ef-
ficiency brought about by the higher pressure causes the
transition region to form at much smaller column depth:
hence less material exists at temperatures greater than
10° K. To reproduce the pressure and emission measure
observed in compact flares without resorting to an un-
acceptably short loop length or large nonthermal elec-
tron flux, it is necessary to assume a thermal conductive
flux greater than 10 ergs cm ™% s~ ",

In the low coronal pressure atmospheres it :s found
that the column depth at which the transition zone
forms is determined primarly by the value of the con-
ductive flux, at least for values of flux greater than 10
ergs em”° s ', Increasing the conductive flux increases
the depth of formation and decreases the thickness of
the transiton zone. This correlation of formation depth
with conductive flux agrees with the results of Machado
and Emslie (1979). However, the thinner transition zone
which is a result of higher conductive flux also has the
effect of reducing the total Lya flux, contradicting their
suggestion that the Lya and conductive fluxes are posi-
tively correlated.

Models with thick transition zones tend to produce
too much Lva flux. Only those models with a large
imposed conductive flux and hence thin transition zones
match the Lya observations. This would seem to indi-
cate that conductive fluxes at least as large as 10’
ergs cm ™% s ™' exist at temperatures of 10° K only a few
minutes after flare onset. This also suggests that conduc-
tive heating at a temperature of 2x 10 K (the region of
peak Lya loss) is important in almost all phases of the
flare evolution, and its effects must be included in all
models of chromospheric flare heating.

Even though a larger value of the conductive flux has
the effect of reducing the Lya flux, it is only in the
conductively dominated atmospheres that the radiative
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cooling from Lya or the lines of Mg 11 or Ca 11 is
important. The thinner transition zones of these conduc-
tively dominated atmospheres produce reduced optical
depths in the upper chromosphere and thereby increase
the radiative efficiency of these optically thick radiators
relative to the optically thin radiative energy loss from
metals.

An increased conductive flux cannot be used to ex-
plain the enhanced chromospheric temperatures inferred
by the semiempirical models. even though it is adequate
to explain the larger depths of the transition zone. This
refutes the suggestion made by some authors that
thermal conduction alone is sufficient to produce
all the observed flare enhancements at all atmospheric
levels (e.g., Machado and Emslie 1979; Shmeleva and
Svrovatskii 1973; Svestka 1973).

The large temperature enhancements inferred for the
flare chromosphere by MAVN and Lites and Cook
{1979) are not evident in our synthetic atmospheres.
Other theoretical treatments of heaung by nonthermal
electrons have predicted larger temperature enhance-
ments in the lower chromosphere (Machado. Emslie and
Brown 1978) for moderate values of Fy, and the electron
power law index. 8. Due to the effects of nonthermal
cellisional ionization. our theoretical models do not
show such temperature enhancements for equivalent
values of F.y and 8. At a given temperature the ionized
fraction and radiative energy loss rate are larger in our
atmospheres. Hence, the energy balance condition re-
qures lower equilibrium temperatures. This suggests
that semiempirical models of flare chromospheres at the
time of heating by nonthermal electrons should also
include the effects of nonthermal collisions in the atomic
statistical equilibnum equations.

The potential that our theoretical method holds has
not been exhausted by the research presented in this
paper. An important future application of our theoreti-
cal atmospheres will be the synthesis of spectral line
profiles that can be directly compared to the observa-
tions. These line profiles will be a direct link between
the observations and the physical processes in the flare.
In a future paper we will present such line profiles.
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ABSTRACT

We have calculated Ha line profiles based primarily on the
static model flare chromospheres of Ricchiazzi and Canfield
(1983), which show the effects of enhanced fluxes of nonthermal
electrons and heat, as well as enhanced pressure, on the
temperature, density, and ionization structure of the
chromosphere. Both hydrostatic and impulsive phase models are
examined. Hydrostatic model atmospheres with substantial
electron heating characteristically produce wide and bright Ha
profiles with a central reversal (measured by the ratio of
central to peak intensity) that is insensitive to the electron
heating rate. In the impulsive atmospheres, however, the central
reversal does depend, to some degree, on the nonthermal electron
heating rate. Enhanced thermal conduction reduces the width and
total intensity of the profiles. High thermal conduction alone
cannot account for flare Ha enhancements. High coronal pressure
dramatically increases the width and total intensity of the Ha

profiles, while reducing the central reversal.

We are able to identify two unique qualitative signatures
among the mechanisms examined. FPirst, only high values of the
flux of energetic electrons (above about 10!0 erg cm-2 s-1!
above 20 keV) produce Ha profiles with obvious broad (Stark)
wings of non-Gaussian form; the absence of such wings precludes

such heating. Second, only high values of coronal pressure (1in




excess of 100 dyne cm-2) produce strong H2 emission profiles

that are not centrally reversed.

I. INTRODUCTION

 vat

During a solar flare, the chromosphere is heated above its
pre—-flare value by various mechanisms. Recent observations of
hard X-ray emission from the footpoints of coronal loops strongly
suggest that energetic electrons are being stopped there. In
addition, measurements of elevated coronal temperatures suggest
that thermal conduction could also play a role. Another process

that affects the chromosphere is enhanced coronal pressure, which

is a direct consequence of the observed increase in both coronal
density and temperature. In a previous paper (Ricchiazzi and
Canfield 1983, henceforth Paper I), we have modeled the response
of the chromosphere to these processes. In this paper we compute
the Ha profiles for various models, thus giving us their Ha
spectral signatures. Other flare processes, such as heating by
energetic nonthermal protons (Lin and Hudson 1976, Emslie 1983)
or soft X-ray irradiation (Henoux and Nakagawa 1977, Machado
1978) have been shown to be of much 1less importance in

chromospheric heating (see, ¢.g., Canfield et al. 1980).

The Ha line is chosen because it is an optically thick line




from the chromosphere. Because 1t 1is optically thick, 1its
spectral profile gives us information about how flare effects are
distributed in column depth. The chromospheric response 1s useful
for discriminating between heating mechanisms; it has the
characteristic that the initial energy deposition profile is not
smeared by thermal conduction like it is in the corona. Although
energy is spread out over a photon mean free path, this is small
enough that the final temperature distribution is sensitive to
the initial deposition profile. Por our purposes the chromosphere
is defined by 1ts temperature structure. We call the chromosphere
that region of the atmosphere above the temperature minimum, but

below 105K.

During the Solar Maximum Mission (SMM) and the Solar
Maximum Year, the extensive 1improvements in simultaneous
multispectral imaging of flares included substantial
improvements in Ha spectroscopy. In particular, the advent of
charge-coupled device (CCD) detectors 1led to gpectroscopic
observations of Ha that have combined temporal and spatial
resolution approcaching previous filtergrams. As a consequence,
there is available a new source of information on flare processes
in addition to the morphological BHa information commonly
available before. Among such spectral observations are those of
Acton et al. (1982) and Gunkler et al. (1984), whose observations

also combine simultaneous Ha and X-ray imaging and spectroscopy.
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Their Ha profiles show a wide variety of line profile types and
suggestive, but ill-understood, relationships to the spatial and
temporal structure of the X-ray emitting part of the flare. The
motivation for this work is to provide a theoretical basis for

interpretation of such observed Ha profiles.

b) Previous Work on Theoretical Ha Profiles

In the past, two different approaches have been taken to the
theoretical interpretation of flare chromospheric line profiles.
Authors who have adopted the semiempirical method have determined
an ad hoc¢ distribution of thermodynamic variables in a flare
chromosphere that is adequate to explain the observed 1line
profile, consistent with known atomic physics and radiative
transfer. On the other hand, authors who have adopted the
synthetic method have supposed specific physical processes. They
have then modeled the effect of these processes on the
distribution of thermodynamic variables in the flare
chromosphere. Such model flare chromospheres can either be
compared to semiempirical model chromosphe;es or, alternatively,
be used to compute theoretical spectra for comparison with

observations. We take the latter approach in this paper.

There have been only a few applications of the synthetic

method to chromospheric flare spectra in the past decade, largely




due to the lack of availability of suitably realistic (yet
expedient ) methods for treating the highly nonlinear theoretical
problem of energy and momentum tranport in a partially opaque
atmosphere. It has been difficult to treat both radiative and
dynamic aspects of the problem simultaneously, because the
problem must be treated numerically, and it is highly demanding
of computational resources. The obvious importance of radiative
energy loss in the radiation-dominated chromosphere has led most
authors to treat the radiative aspects most completely, leaving
the dynamic aspects until later. Such work was first done by Brown
(1973), who modeled the chromospheric heating effects of
steady-state beams of nonthermal electrons. He used a simple
radiative cooling expression that assumed that the Lyman
continuum dominated chromospheric radiative loss. Theoretical Ha
profiles of these model atmospheres were determined by Canfield
(1974). These profiles were all strongly centrally-reversed, and
had very weak wings. In contrast, the highest-quality
observations, such as those of Zirin and Tanaka (1973), Schoolman
and Ganz (1981) and Acton et al. (1982), show both
centrally-reversed and nonreversed profiles, and in the most

intense kernels, pronounced wings,

Nakagawa, Wu and Han (1973) modeled the effects of flare
shocks on the chromosphere, using a kinematic approach for the

gas dynamics and assuming the chromospheric gas was optically




p—

thin. Canfield and Athay (1974) determined Ha profiles for these
model chromospheres at selected times during the shock
propagation, and found that the theoretical profiles not only
were always centrally reversed, but also showed much stronger

asymmetry than typically observed.

Improved models of flare chromospheres heated by nonthermal
electrons were obtained by Brown, Canfield and Robertson (1978),
henceforth BCR. They, like Brown (1973), solved the problem of
the balance between heating by nonthermal electrons and cooling
by radiation, in order to obtain the static temperature and
density structure. They used an approximate source function
scaling-law approach to take optical depth effects into account

in hydrogen cooling, which they assumed was dominated by Ha and

La. Other hydrogen lines and continua were neglected; all other
atomic species were assumed to radiate in an optically thin
manner, cut off rather arbitrarily at low temperatures. BCR then
computed Ha line profiles for their model atmospheres
corresponding to various values of on, the input energy flux of
electrons with initial energies initial energies above 20 keV.
They found Ha profiles with widths comparable to the observations

for high values of F but the profiles consistently had central

20’
reversals. Only by invoking inhomogeneous structure of the

electron injection region and of flare chromospheric motions were

they able to reconcile their synthetic line profiles with the
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observations of 2Zirin and Tanaka (1973), for values of on

suggested by the hard X-ray observations.

Kostyuk (1976) also found that all her electron—heated
atmospheres (taking dynamics into account, but not radiative
.ransfer) produced strongly reversed Ha prnfiles. Like BCR, she
achieved agreement with the unreversed profiles often observed J

only by hypothesizing the superposition of profiles that differed

due to inhomogeneous electron streams, velocity gradients, etc. d
It is interesting to note that more recent work (cf. Canfield
1982, Acton et al. 1982) argues against the presence of such high
broadening velocities. 1n these papers and in the present paper
(below ), mechanisms other than such :i1nhomcgeneities are seen to

give rise to unreversed profiles.

Our recent determination of the structure of flare
chromospheres (Paper I), which forms the basis of most of the Ha
line profiles of this paper, 1s a substantial improvement over

BCR. Pirst, both thermal conduction and high pressure imposed by

the overlying flare corona are taken into account, in addition to
heating by nonthermal electrons. Second, the treatment of
radiation, which is all-important in such computations, includes
radiative transfer effects in all the energetically dominant
chromospheric radiators, not just hydrogen. Third, an improved
probabilistic radiative transfer equation is used in place of

source~function scaling laws.




II. MODEL ATMOSPHERES

This paper is based on static models of flare chromospheres

that have been obtained for two limiting assumptions. For the
majority of the atmospheres, taken from Paper I, it is assumed
that the flare effects have obtained for a sufficiently long
period of time that hydrostatic equilibrium is a good
approximation. To complement these *hydrostatic" model
atmospheres, we have computed a few new atmospheres under the
assumption that the flare heating has Just been turned on and,
although there has been sufficient time to reach energy balance,
the density structure has not yet had time to change
significantly. The latter model atmospheres will be referred to
specifically as "impulsive" in the discussion to follow. Both
cases are, of course, limiting approximations for the actual
time-dependent situation; the static simplifications are useful
for understanding those phenomena that do not depend sensitively
on mass motions. Both models are relevant to flares; in some
flares the energy fluxes in both thermal and nonthermal electrons
are thought to change on characteristic times of one second and
less. In other flares, they change very slowly, with

characteristic times of order one hundred seconds and more.

The methods used to obtain the hydrostatic model
atmospheres are described in detail in Paper I; they will

therefore be described only briefly here. These models were




obtained by numerically solving the equations of steady state
energy balance, hydrostatic equilibrium, radiative transfer, and

atomic statistical equilibrium. It was assumed that the

atmospheric response is confined to one dimension by a strong
vertical magnetic field. In order to obtain the radiative cooling
rate in lines for which optical depth effects are significant,
the probabilistic radiative transfer equation of Canfield,
Puetter, and Ricchiazzi (1981) (see also Canfield, McClymont and
Puetter 1983) was solved for each of the energetically most
important transitions of hydrogen, magnesium and calcium. The
probabilistic radiative loss rates computed here typically agree
with more rigorous methods (Vernazza, Avrett, and Loeser 1981) to
within a factor of two. Radiative losses due to H-, the EUV and
X-ray lines of heavier ions, and free-free bremsstrahlung were
included in an optically thin manner. Because the heating
mechanism of the ambient solar atmosphere is not well known, the
ambient (nonflare) heating rate was assumed to retain the same
distribution as the preflare atmosphere, Model F of Vernazza,
Avrett, and Loeser (1981), which represents the bright elements
of the chromospheric network. It was assumed that this heating
was a function of column depth alone. FPor most of the chromosphere
the flare heating rate by fast electrons far exceeds the ambient

heating rate.

The method for obtaining the impulsive model atmospheres

10




differs from that for the hydrostatic mcdel atmospheres only in
that the equation of hydrostatic equilibrium is not included.
These model atmospheres are thus in energy balance, but not
pressure balance. Their density distribution is that of the

preflare model atmosphere.

Under what circumstances are the two limiting static
assumptions close approximations to the full time-dependent
problem? We can answer *his question by comparing the relevant
characteristic times: the pressure equilibrium timescale tp
(density scale height/sound speed), the flare heating timescale
th (mean thermal energy/flare heating rate), and the radiative
cooling timescale tr (mean thermal energy/net radiative cooling
rate). Our assumption of energy balance will be a reasonable
approximation if the flare effects have obtained for a time much
greater than tr and th. Hydrostatic equilibrium is possible only
1f the elapsed time is much greater than tp. The impulsive models
will be valid only if the elapsed time is much less than tp but
much greater than tr or th. For the models discussed in this
paper, the value of tp is of order 10 s in the chromosphere and
exceeds 60 s in the photosphere. The value of th is much less than
that of tp in the chromosphere, and much greater in the
photosphere. The value of tt exceeds tp only around the

temperature minimum. It is the chromosphere that is of primary

interest to flare Ha profiles, since Ha has no significant

11




opacity near the temperature minimum, and the flare effects
modeled are insignificant in the photosphere. In the chromcsphere
both the heating and cooling times are much less than a second, so
the impulsive models can in effect be plausibly compared to the
observations for the first few seconds; after tens of seconds

only the hydrostatic models are plausible.

In the model chromospheres on which this paper is based, the
flare corona is not included explicitly. Instead, the coronal
flare inputs to the chromosphere are treated parametrically. We
explore these parameters over ranges of values believed to be

relevant to solar flares. The i1nput parameters are:

Nonthermal electron flux (on): The flux of electrons above 20

keV is specified. The electrons are assumed to have a power-law
spectrum given by N(E) « E—b, where N is the number of beamed

electrons of energy E per square centimeter per second, and & 1s

the spectral index. The cosine of the pitch angle of the
nonthermal electrons is called i, where 4 = 1.0 indicates that
the electrons are going straight down into the chromosphere. The
values used were F, = 108, 109, 1010, or 10!! ergcm-2 s-1; 6

=3, 5, 0or7; and £ =1.00r 0.5.

conductive flux (Fs): The thermal energy flux from the corona is
specified where the temperature is 105 K. Values used ranged from

106 to 109 ergcm-2 -1,

12




Coronal pressure (Po): The gas pressure at the top of the loop,
the site of postulated electron acceleration, where the column

depth is zero, 18 specified in the hydrostatic models. Values

used were 1, 10, 100, or 1000 dyne cm- 2, In the impulsive model
atmospheres the coronal pressure is not a parameter; the density

distribution is that of the preflare atmosphere.

III. Ha LINE PROFILES

a) Radiative Transfer Methods

After computing the model atmospheres, the next step is to
generate theoretical Ha line profiles for each model. Taking the
temperature and density structure as fixed, we solve our
probabilistic radiative transfer equation for a 4-level plus
continuum hydrogen atom, again assuming atomic excitation and
ionization equilibrium, Complete redistribution within a pure
Doppler absorption coefficient profile is adopted for the Lyman
lines (following Milkey and Mihalas 1973). The absorption
coefficient profile for all subordinate transitions has a Doppler
core and wings due to both the linear Stark effect (we assume a
Holtsmark profile) and resonance broadening (hydrogen-hydrogen

collisions, see Mihalas 1978).

The use of probabilistic radiative transfer for the

computation of 1line profiles 1is uncommon in the current

13
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literature, because it has developed into a useful working method
only recently. It is clear on various grounds that it is well

suited to the calculation of Ha profiles for our flare model

atmospheres. First, we have already shown that probabilistic
radiative transfer gives total radiative loss rates that are good
to about a factor of two (Canfield and Ricchiazzi 1980). The
computed source functions will be yet more accurate, since
radiative loss rates are more sensitive to small errors than
source functions. Second, as we will show below, the major
challenge in the computation of Ha line profiles is not the
radiative transfer in Ha itself, but rather in the Lyman lines,
owing to the importance of interlocking between the various
hydrogen transitions. Methods of probabilistic radiative
transfer for resonance lines have not yet been developed fully,
owing to the breakdown of the assumption of complete frequency
redistribution within the 1line profile 1in such 1lines under
certain conditions. However, in flare atmospheres the high
collisional transition rate due to the high density of the
Lyman-@ forming region tends to make this line's source function '
frequency independent farther into its wings, and hence make our
calculation of Ha line profiles better for flare atmospheres than
for the quiet sun. Finally, we made a quantitative comparison r
flare profile based on probabililistic radiative transfer to one
given in the most recent semiempirical flare modeling work, that l

of Dinh (1980). Dinh solved a frequency dependent radiative '

14
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transfer equation instead of our frequency-integrated form; he
did not have to ignore the depth dependence of the absorption
coefficient profile, and hence 1in this respect his method is
superior to ours. For computational expedience, however, he
assumed that the Lyman lines were in radiative detailed balance,
an assumption that is inferior to our treatment. Comparision of
our computed Dinh Model 3 Ha profile to his shows satisfactory
quantitative agreement. Our profile has a central intensity which

is approximately 20% lower than his, due to a small central

reversal that his profile shows only weakly. We anticipate that
this is due to our different treatment of the Lyman lines, which
have their biggest effect where the core of Ra is formed. The
half-width and intensities throughout the wings are virtually

identical.

b) Dependence on Input Parameters

We now investigate the effects of the physical parameters

of the model flare chromospheres on Ha profiles, using the

models, methods and parameters discussed above. Our approach is

to adopt a nominal set of parameters, and then to vary each
parameter, by itself, toc see how it affects the Ha profile.
Obviously this does not necessarily imply any physical
congistency of the values adopted; the temporal evolution of a
flare loop, even if it can be described to a good approximation as

a sequence of steady states, is associated with variations in
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more than just one of our input parameters. The relationship
between these parameters is a function of coronal plasma dynamics
and particle acceleration, which is beyond the scope of this work
(see, e.g., Ricchiazzi 1982, Ricchiazzi and Canfield 1983, Pisher

et al. 1984).

Our primary objective in this section is to establish the
relationship between the input parameters of the models and the
Ha profiles; we defer a complete physical discussion of such
matters as the mechanisms and origins of the Ha radiation until

the following section.

We start with models computed in the Thydrostatic
approximation, The results are shown in Figures 1 through 7. The
upper panel of each figure shows how the columnar temperature
structure changes as the values of the parameters are changed,
i.e. how the temperature structure reflects the physical process
whose role 1is being varied. The 1lower panel shows the
corresponding Ha profiles. The values of Ha spectral intensity
are expressed in terms of the preflare solar continuum near Ha,
and the wavelength range shown is Ha % 4;. The nominal set of

parameters is P, = 1010 erg cm-2 8-1, P, = 107 erg ecm-2 s-1,

5

P, = 100 dyne em-2, u=1, 6 =5,

Pigures 1 and 2 show how the temperature structure and Ha

profile change as the nonthermal electron flux is varied. In
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Figure 1 P, = 1 dyne cm-2, a low value, but P, has its nominal
value (100 dyne cm-2) in Figure 2. The low value is intended to
represent pressure in large coronal loops in which material
heated to coronal temperatures is distributed over a large
volume; the nominal case is more typical of the later phases of

compact flares with small coronal loop volumes.

The upper panel of Figure 1, the low pressure case, shows
that the nonthermal electron heating penetrates well into the
chromosphere; temperature increases even down to the preflare
temperature minimum for high electron flux values. The lower
panel shows pronounced sensitivity of both total emission and
profile width to the value of F, . However, each of the profiles
shown in this figure has the same amplitude of central reversal,

i.e. the same ratio of central intensity to peak intensity.

Figure 2 shows the effect of wvarying the nonthermal
electron flux in the nominal pressure case. The temperature
structure of the upper chromosphere is much different from that
shown in Figure 1; this is due to the dominance of the source term
in the energy budget by nonthermal electron heating, not thermal
conduction. It remains true that throughout the chromosphere a
higher temperature is reached at all column depths as on is
increased, just as was the case at low pressures. The main point
to be made regarding the Ha profiles shown in the lower panel is

that, just as in Pigure 1, both the total emission and the profile
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width are sensitive functions of on. Again, the amplitude of the

central reversal is quite independent of on.

Figures 3 and 4 show the effect of changing the coronal
pressure Po at two different values of nonthermal electron energy
flux on. In Pigure 3 the nominal value is used (?20 =
1010 exg cm-2 s-1), as might be the case for a long-lived
electron beam in a fairly strong flare. In Pigure 4 we consider
low values of on, which mimic the effects of long-lived weak
nonthermal electron heating, as well as the effects of typical

values of X-ray heating during the thermal phase of flares

(Ricchiazzi 1982).

Figure 3 shows the effect of varying the coronal pressure at
the nominal value of Pzn' Increasing the coronal pressure has a
very different effect than increasing the electron flux. The
temperature structure in the lower chromosphere is not affected
much, but the column depth of the transition region decreases as
the pressure increases. As shown in Paper I, the pressure
sensitivity of the temperature structure is easily understood. At
high coronal pressures, owing to the increased value of density
at a given temperature, the outer atmosphere is more able to
radiate away the imposed energy flux at a given value of column
number. As the lower panel of the figure shows, the coronal
pressure not only affects the total emisrion and profile width,

it also affects the amplitude of the central reversal. The

le

T T T S —————




amplitude of the central reversal changes rapidly between 10 and

1000 dyne cm- 2. The reversal disappears entirely at the upper end

of the range explored.

Pigure 4 shows the effect of varying coronal pressure at a
low value of on.the electron beam is very weak, the chromosphere
is cooler and the transition region forms at lower column depth
than in the high on case. Again we see that as P, is increased
the central reversal goes away. The Ha profiles have less width
and lower intensity than those from the more strongly
electron-heated atmospheres of Figure 3. The key feature to note

is that extensive wings indicate nonthermal electron heating.

The effect of varying the amplitude of the conductive flux
at 105 K, F. is shown in Figures 5, 6, and 7, for low, nominal,
and high coronal pressures respectively. These figures show both
similarities and important differences. All three figures show
that when the conductive flux is high enough, the top part of the
chromosphere is evaporated to coronal temperatures, while the
lower chromosphere is virtually untouched. However, it is
important to realize that the critical value of Fs' at which
conduction begins to affect the transition region temperature
structure and the Ha line profile, varies with coronal pressure,
and that the coronal pressure may or may not be important to the
pressure of a conduction-dominated transition region. Heating by

conduction will be unimportant to chromospheric structure until
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it dominates over heating by nonthermal electrons in the energy
balance at the point where T = 105 K. Lin and Hudson (1976 ) have
given an expression for the column depth of the transition region
when the heating is electron-beam dominated. In Paper I we have
given the corresponding expression for the conduction—-dominated
case; we showed that in the latter case the column depth of the
transition region (Ntr) adjusts so that the total pressure there

is proportional to Fe: P -~ P, *+ mgNtr= 2.2 x 106 P, (m = mean

t

mass of nuclei = 1.4mH, g = solar gravity, cgs units). Note that
the column depth of the transition region 1s insensitive to the
value of P, until it dominates the total pressure. This is
illustrated by the models with Fs = 108 erg cm~2 s-! in Fagures
5 and 6. From the equation above, the total pressure in both cases
will be (2.2 x 10-8) x 108 = 220 dyne cm~2. It can be easily
shown that Ntr must only change by a factor of 1.8 to adjust for
the extra 99 dyne cm-2 in the nominal pressure case. The Ha
profile becomes sensitive to F, only when the transition region
becomes conduction dominated. Figure 5 shows that the core is
affected first, and then the total intensity drops, as F, 1s

increased. Figure 6 shows that the effect of increasing Fs can be

sudden, which is explored further in Figure 7.

Figure 7 shows a conduction-dominated case in which coronal
pressure determines the transition region location. In this

figure a conductive flux of 108 erg cm-2 s-1 is not enough to
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evaporate the upper chromosphere, in contrast to the nominal
pressure case in Figure 6. The models with Ps < 108 erg cm~-2 g-1
are virtually identical. However, when the conductive flux is
increased to 109 erg cm-2 s-1, the atmosphere becomes
conduction-dominated and the above equation relating P, and Ps
again obtains. One can establish whether the transition region is
electron-heating dominated or conduction dominated by comparing
values of the transition~region column depth determined by each
mechanism in the absence of the other [cf. Ricchiazzi and
Canfield 1983, equations (36) and (37)]. When conduction
dominates, the atmosphere is extremely sensitive to the value of
F,. High values of conductive flux make the chromosphere very

thin, which is accompanied by a substantial reduction in Ha

emission,

We now investigate atmospheric structure and Ha profiles in
the impulsive approximation discussed in Section II. Figures 8
and 9 show the effects of varying an and P5 respectively; P0 is
not a free parameter, Both figures show effects that are similar

to those in the hydrostatic cases.

The upper panel of Figure 8 shows that, as F,p 18
increased, the temperature increases throughout the
chromosphere, and hence the region of significant heating extends

to greater column depth. The temperature structures bear

congiderable resemblance to those of hydrostatic models with
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intermediate values of coronal pressure. This 1is simply due to
the fact that the density distributions for the preflare case
resemble those of the hydrostatic models with intermediate
coronal pressure. The lower panel of Figure 8 shows that the Ha
profiles change in total emission, width and central reversal as
on is varied. The behavior of the width and total emission is
qualitatively similar to the hydrostatic models; substantial
wings and higher total emission still correspond to higher values
of on. However, the behavior of the amplitude of the central
reversal is somewhat different. It 1s no longer true that 1t 1s

1ndependent of on; instead, as on increases, the amplitude of

the central reversal decreases.

Fiqure 9 shows the effects of varying Fs in the impulsave
approximation. At the lowest value of Ps conduction 1is not yet
important in the energy balance at temperature 105 K. For higher
values of F_., both the temperature structure and the Ha profiles
are sensitive to Fs, for the same reasons alluded to above in the

paragraphs on hydrostatic atmospheres.

Finally, we have explored the effect of varying the
nonthermal electron spectral index and the electron pitch angle.
Their effects are straightforward. Varying the spectral index
smoothly varies the relative amount of heating in the upper
chromosphere versus the lower chromosphere. The Ha profile

manifestation is as expected: Relativelv more heating at high
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values of column number (smaller spectral index &) produces
relatively more wing emission. Varying the pitch angle also
varies the relative columnar distribution of heating in a smooth
way. As expected, more heating at higher column depth (smaller

pitch angle angle, larger L) gives more wing emission.

¢) Mechanism of Pormation

What physical factors determine the form of the Ha profile

for each model flare atmosphere? Crudely speaking, in the region
where continuum opacity is negligible, the emergent intensity as
a function of wavelength displacement from line center is a
mapping of the Ha source function, S, as a function of Ha optical
depth. The intensity at line center depends on the value of S
relatively high in the chromosphere, and the intensity in the
wings depends on S in the lower parts of the chromosphere. The
source function is a measure of the ratio between upper and lower
level populations in the transition. This ratio is determined
both by collisional processes, which depend only on the local
temperature and density, and on radiation fields, which can be
very non-local. If collisions dominate, the source function will
be the Planck function, B. If radiation dominates, and if escape

of photons from the region is significant, S departs from B.

A useful way to understand the profiles is to look at the
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depth dependence of both B and :he departure of S from B. A third
useful quantity is the effective Ha Planck function, B, which
includes the effect of interlocking with other transitions, i.e.
the effect of indirect transitions between the second and third
levels of the hydrogen atom. In analogy with the simple two-level
atom formulation, B is defined so that the source function is
given by 5 = (IvaJ¢v + ;é)/(l + ;), where Jv is the mean
intensity of the radiation field in Ha, ¢v is the Ha absorption
coefficient profile, and ;/(l+;) is the effective Ha photon
destruction probability per scattering (see, e.g., Canfield and
Puetter 1981). If S closely matches é, it means that the level
populations are controlled largely by interlocking with other
transitions. If é closely matches B, it means that all

interlocked transitions are in local thermodynamic equilibrium.

To show why the Ha profile depends sensitively on the
temperature and density distribution of the flare chromosphere,
we look in detail at three hydrostatic models that have the
nominal values of the nonthermal electron energy flux and
conductive flux and differ only in the value of coronal pressure.
Pigure 10 shows how pressure affects the 1line center optical
depth dependence of S8, B and 5: pressure is lowest in the top
panel and highest in the bottom. The first point to note is that S
follows 5 very closely in all three cases. This illustrates a very

important fact: Ha is just one of a strongly interlocked set of

24




transitions, and its source function depends on other lines. The
second point to note is that, as pressure increases, B approaches

B more closely throughout all but the upper chromosphere. This

reflects the increasing dominance of the interlocked transitions
by collisional processes that push their source functions toward
the Planck function. At small optical depths the interlocked
transitions decouple from the Planck function due to photon

escapes, so B is ingsensitive to variations in B there.

To find out which interlocked 1lines are important we
carried out an analysis comparing atomic transition rates between
the n = 2 and n = 3 levels of hydrogen via all possible third
levels, following the methods described by Jefferies (1968) and
Canfield and Puetter (1981). We find that the principal
interlocked transitions are Lyman a and Lyman £, with Paschen a
contributing increasingly with higher pressure. Lyman a, in
particular, is known to be highly sensitive to local values of
temperature and density. The behavior of Ha in flares is thus very
different from that in the quiet sun, where the Ha source function
is determined by radiation in the Balmer and Paschen continua
(Gebbie and Steinitz 1974). These continua are formed in the
photosphere, and thus in nonflaring conditions Ha is sensitive to
chromospheric temperature and density only through changes in the

optical depth scale.

what affects the variation of the Ha source function in
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these flare atmospheres? The optical thickness of the
chromosphere is of considerable importance. For example, if its
thickness 1is increased, Ha tends to be formed in a higher
temperature region. This effect can be seen by comparing the
absolute values of S and its depth dependence in the low pressure
and moderate pressure cases (top and middle panels) in Pigure 10.
Increasing the pressure adds more absorbing material to the outer
atmosphere, so the Planck function becomes higher at a given
value of Ha line center optical depth for the moderate pressure

case than for the low pressure case. This causes the Ha source

function to be higher as well.

why should the amplitude of the central reversal be coronal
pressure dependent? The important factor is the relationship of
collisional and radiative transition rates. At the outer edge of
an atmosphere, the number of upward transitions is lowered by the
escape of photons into space; they are not scattered there, and do
not contribute to maintaining a large ratio of upper and lower
level population. This lowers the value of the source function
near the outer edge, and causes the spectral line profile to have
a central reversal. However, if the collisional rates are high,
as is the case at high pressure, the loss of radiative upward
transitions is less important, since collisions do the job, and S
stays closer to the Planck function. This effect can be seen by

comparing the moderate and high pressure cases in FPigure 10. A
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high pressure corona increases the density in the upper
chromosphere, resulting in higher collisional transition rates,
and a smaller departure of S from B. This results in a source
function which continues to rise all the way out to the point

where Tﬂa=1, thus giving an unreversed profile.

Where in the model atmospheres does the emergent Ha
radiation originate? For several different models, Figure 11
shows the depth dependence of the Ha flux divergence, defined
here as the derivative of the integrated flux
(B = dev uIvdw/4n) with respect to the logarithm of the column
number, N. Since we plot dH/d(log N) vs. log N, the flux from any
given column depth range can be integrated by eye, noting that the
vertical scale is logarithmic, The flux divergence distribution
1s given by the solid curve, the temperature by the dashed curve.
Note that continuum absorption cuts off the Ha flux divergence at
(log N) = 24.5 in the photosphere. Figure 11 (a) shows the
distraibution for a quiet sun model, Model C of Vernazza, Avrett,
and Loeser (1981). The quiet chromosphere is very thin in Ha, so
the vast majority of the total emission (though obviously not
line center emission, for example) comes from the photosphere. If
we heat the atmosphere with beamed nonthermal electrons (j.e.,
increase on), the chromosphere becomes increasingly thicker in
Ha due to the increase in the second level population. This

increases the chromospheric emission, as shown in Pigures 11 (b)
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and (c). The photospheric Ha flux divergence 18 actually slightly
decreased, since the escape of photons from there is inhibited by
the thicker chromosphere. Figures 11 (d) and (e) show the effect
of increasing the conductive flux (Fs)' which pushes the
transition region down toward higher column depth. Although
stripping off the top of the chromosphere allows more radiation
to escape from the residual chromosphere and photosphere, the
emerging Ha flux in the high F, Case is lower because of the high
emissivity of the layer that was evaporated. Comparison of
Pigures 11 (d) and (f) shows that increasing the coronal pressure
(Po) simply adds more chromospheric material, thus adding to the
total emission. As a general rule, the total Ha flux is strongly
related to the Ha optical thickness of the region where the
continuum optical depth is less than unity. Finally, although the
Ha flux divergence in the conductively heated transition regions
of some of the model atmospheres is very large, especially in
Figure 11 (e), these regions are so thin that their contributions

to the emergent Ha flux are negligible.

Pinally, what processes dominate the formation of the Ha
wings? For all on and our nominal parameters, we find that Stark
redistribution is the dominant escape mechanism in the wings of
Ha throughout the chromosphere. Resonance broadening is
important only at and below the temperature minimum, where flare

effects are small.
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d) Interpretation of Dependence on Input Parameters

On the basis of our understanding of the formation of Ha
in the flare model atmospheres, it is now possible to interpret
many aspects of the input-parameter dependence of the 1line

profile characteristics seen above.

(i) Heating by Nonthermal Electrons

In the range 108 < F,, < 1011 erg em-2 s-1, shown in
Figures 1, 2, and 8, increasing F, produces more Ha emission.

The analysis in the preceeding section indicates that this is due

primarily to enhanced production of Ha photons per hydrogen
nucleus. In the hydrostatic case, the amplitude of the central

reversal is essentially independent of F2 because the ratio of

0

collisional to radiative rates at the point of unit line center Ha

optical depth does not change significantly, due to the
hydrostatic adjustment. In the impulsive models, however, the
amount of central reversal decreases as on increases, because
the density at the unit optical depth point increases (the
density at each column depth remains the same as the preflare
atmosphere). The unique signature of substantial nonthermal
electron heating is formation of extensive Stark wings; they are
strongest at 4 = 1 and small values of 0, since they reflect

heating of the deep chromosphere.
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(i1) Heating by Thermal Conduction

Thermal conduction has no effect on chromospheric structure
until it begins to dominate the heating term in the energy balance
at T = 105 K, which depends on the value of the coronal pressure.
Figures 5, 6 and 7 explore the range 106 = Fg =
109 erg cm-2 s-1, When thermal conduction first becomes
important, only the core of Ha is affected, because only the upper

atmosphere is "evaporated"” to coronal temperatures, whereas the

lower atmosphere is virtually unperturbed. As P5 increases

further, the entire Ha profile is affected, dramatically reducing
the total amount of Ha emissicn. The total number of atoms in the
chromosphere decreases, and the number of Ha emitting atoms
decreases even more dramatically, since the remaining

chromosphere has a low characteristic temperature,

(1ii) The Role of Coronal Pressure

In the range 1 £ P, < 1000 dyne cm- 2, explored in Figures 3
and 4, the effect of increasing the value of the coronal pressure
is both to enhance the total amount of emergent Ha radiation and
to reduce the Ha central reversal. The reason is straightforward;
the pressure at any given temperature, and hence the density, is !
increased down to the point where mgN ~ P,. This results in the

production of more Ha photons, as a result of interlocking with ﬂ

the density-sensitive Lyman 1lines. The higher density also

enhances the production of Ha photons in the outer chromosphere
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by making collisions even more effective at photon generation in
the interlocked transitions, which fills in the central reversal

of Ha.

IV. DISCUSSION

We now have available a variety of theoretical Ha
profiles, corresponding to the specific physical processes
thought to be of dominant importance in the energetics of flare
chromospheres. How can they be used in the interpretation of
observed line profiles? First, they may be compared directly to
the observations, which we leave for a future paper (Gunkler et
al. 1984). In addition, one must ask whether the calculations
reveal any unique qualitative spectral signatures., In fact, the
calculations show that i1n some cases such signatures indeed
exist. In others, however, there is considerable ambiguity, which
can be resolved only by further constraints on the values of one
or more parameters, or a specific relationship between two or

more of the parameters.

Our results show two unambiguous qualitative line profile
signatures. Pirst, only sufficient dominance of flare heating by
nonthermal energetic electrons (on > 1010 erg cm-2 s-1)
produces broad Stark emission wings of obviously non-Gaussian
form; neither thermal conduction nor high coronal pressure alone

do so. Low values of Pza are inevitably associated with the
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absence of obviously non—Gaussian emission wings. Second, only
high coronal pressure produces strong unreversed emission
profiles. Neither high nonthermal electron flux nor high
conductive flux alone does sSo. Conversely, Hzx profiles with
substantial central reversals are invariably associated with

relatively low values of coronal pressure (Po < 102 dyne cm~2).

Other profile characteristics are ambiguous and cannot
immediately be related to a unique physical process without
additional informaticn. High total Ha emission certainly
indicates flare heating, but one cannot quantitatively fix the
values of all three of the most important parameters (on, PS.
and P, ) on the basis of total intensity alone. Conversely, low Ha
emission alone does not necessarily imply low flare heating; we
have seen that even in the presence of high nonthermal electron
heating, the total Ha intensity can be made low by a high value of
the conductive flux. Alsc, one must bear in mind that there is an
intrinsic uncertainty in the atmospheric temperature values owing
to a factor of two uncertainty in the total radiative losses, and
hence (roughly speaking) a factor of two uncertainty in the total
Ha emission would not be surprising. Finally, although the
amplitude of the central reversal is useful qualitatively, it
cannot be used to quaptitatively establish the values of the
important parameters without additional <constraints or
relationships. It depends on both pressure and conductive flux in

some ranges of conductive flux, and depends on which of the two
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static approximations (hydrostatic or impulsive) is used.
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FIGURE CAPTIONS

Pig. 1.-— The effect of varying the energy flux of nonthermal

electrons above 20 keV, F at low coronal pressure.

20’
Hydrostatic approximation. Top: model atmospheres. Column
depth is the number of hydrogen nuclei measured from the
acceleration site 1in the corona. Bottom: Ha profiles.

Intensity is measured in units of the preflare continuum

near Ha.

Fig. 2.-- The effect of varying the energy flux of nonthermal
electrons above 20 keV, on, at nominal coronal pressure.

Hydrostatic approximation. Top: model atmospheres. Bottom:

Ha profiles.
Fig. 3.-— The effect of varying the coronal pressure, Po, at
nominal nonthermal electron flux. Hydrostatic
approximation. Top: Model atmospheres. Bottom: Ha
profiles.
Pig. 4.-- The effect of varying the coronal pressure, P, at low :

electron energy flux. Hydrostatic approximation. Top:

Model atmospheres. Bottom: Ha profiles.

Fig. 5.-- The effect of varying the conductive flux, F at low

5'
coronal pressure. Hydrostatic approximation. Top: Model

atmospheres. Bottom: Ba profiles.
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FPig. 6.-- The effect of varying the conductive flux, F at

5’

nominal coronal pressure. Hydrostatic approximation. Top:

Model atmospheres. Bottom: Ha profiles.

Fig. 7.-- The effect of varying the conductive flux, P at very

5"’

high coronal pressure. Hydrostatic approximation. Top:

Model atmospheres. Bottom: Ha profiles.

Fig. 8.-- The effect of varying on, the energy flux of
nonthermal electrons above 20 kev. Impulsive
approximation. Top: model  atmospheres. Bottom: Ha
profiles.

Fi1g. 9.~- The effect of varying the conductive flux Fs. Impulsive
approximation. Top: Model atmospheres. Bottom: Ha
profiles,

Pig. 10.--The effect of varying the coronal pressure P, on the
source function (S), Planck function (B), and effective
Planck function (E), as a function of Ha 1line center
optical depth. Top: low pressure, P, = 10 dyne cm-2,

Middle: nominal pressure, P, = 100 dyne cm-2. b: ttom: high

pressure, P, = 1000 dyne cm- 2.

Fig. 11.--The dependence of the columnar distribution of net Ha
emission on atmospheric parameters. Hydrostatic

approximation. The solid curve shows the Ha flux divergence
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(left scale) and the dashed curve shows the temperature
(right scale). Note that the ordinate is logarithmic.

Panel (a): Average quiet sun model VAL/C.

Panel (b): Low electron heating, low coronal pressure.
Panel (c): High electron heating, low coronal pressure.
Panel (d): Low coronal pressure.

Panel (e): High conductive flux, low coronal pressure.

Panel (f): Nominal atmospheric parameters.
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¢) Solar Coronal Loop Magnetohydrodynamic Stability Theory

Magnetic flux tubes, manifested as X-ray emitting loops, are ubiguitous
in the solar corona. They are not yet fully understood theoretically, and they
are therefore an active area of current solar research. We have carried out a
variety of theoretical studies that have contributed to progress in this field.

Results of our solar MHD stability studies include the following:

1. Radiative energy loss affects both the growth rate and stability
boundary of ideal-MHD modes.

2. Compressibility of the solar plasma 1s a stabilizing effect on ideal
MHD modes, and the effect comes in through magnetosonic modes.

3. The twist of magnetic field lines (nonpotential) in a cylindrical
plas-a (flux tube) has a significant effect on the stability of thermal
condensation modes.

4. Kink 1instabilities show magnetic field line-tying (at the feet of
coronal loops) effects that depend on whether or not the equilibria are force-
free, and on the degree of magnetic shear.

5, The effect of line-tying depends on the radial pressure profile

withln the cylindrical model of the coronal loop.
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ABSTRACT

Previous studies of the magnetohyvdrodynamic {(MHD) stability of solar coronal loops have not
1aken into account the effects of radiative or conductive energy loss in the energy equation. However,
since coronal loops continuously lose energy by radiation and heat conduction, it 1s important to
understand how these energy loss mechanisms affect MHD stability. We investigate the problem
assuming that a magnetic loop has cylindrical geometry. As a first step. stability is studied for a
localized mode. and the result 1s applied to a specific equilibrium. We find that the radiative 2nergy
loss effect not only changes the growth rate of 1deally unstable modes. but also alters the stability
boundary predicted by ideal MHD theory.

Subject heudings: hydromagnetics — radiative transfer — Sun: corona

I. INTRODUCTION

Numerous observations have shown that the solar corona consists of many loop structures. which are believed to
he magnetic loops. The interesting features of these magnetic loops are that they are long lived. and solar fares occur
in them in actve regions. In recent years many studies have been done to understand thewr apparent stability.
Muagnetohydrody namic (MHD) stability studies have emphasized photospheric line tying and positive pressure profile
etfects (Foukal 1975) on global MHD modes. Giachetti, Van Hoven, and Chiuderi (197"} and Van Hoven, Chiuderi,
and Giachetti (1977) studied MHD stability of a cylindrical loop with a positive pressire gradient (Foukal 1975)
using Newcomb's (1960) criterion; Raadu (1972), Hood and Priest (1979). An (1982), and Einaudi and Van Hoven
(1981) studied the photospheric field line tying effect using the energy principle of Bernstein et al. (1938). All of these
studies neglected radiation and heat conduction effects. even though these are the dominant energy dissipation
mechanisms. On the other hand, Antiochos (1979), Hood and Priest (1980), Chiuderi. Einaudi. and Torricelli-Ciamponi
(19381). McClymont and Canfield (1983), and An er al. (1982) studied thermal instability driven by radiative energy
loss to understand long-lived nonflare X-ray emission of coronal loops {Vaiana er al. 1976). They found that instability
is localized near the transition region. In their calculations they did not take into account the magnetic field. except
that heat is transmitted along magnetic field lines. Field (1965) studied field effects on the thermal stability of a
uniform atmosphere. He found that the effect can enhance or reduce stability. depending on modes considered. as
well as the angle between the wave vector and the magnetic field. Chiuden and Van Hoven (1979) extended the work
to study the effect of spatial variation of the background magnetic field on the thermal instability.

It is not yet known how radiation and heat conduction affect the MHD stability of magnetic loops. From recent
observations (Van Hoven et al. 1980; Harvey 1981: Davis and Webb 1981) 1t is suggested that thermal instability may
be a trigger mechanism for global MHD instabilities. For better understanding of the observational characteristics of
solar magnetic loops it may be important to include radiation and heat conduction effects in MHD stability calculations.
This is the motivation for the present study.

In this paper we investigate how energy dissipation and redistribution mechanisms affect the MHD stability of a
coronal magnetic loop. We assume that the loop has a cylindrical geometry, with physical quantities uniform along
the loop, which have only radial dependence. The loop can be subject to MHD as well as thermal instabilities. By
including these energy dissipation mechanisms we hope to better understand observational characteristics and to
find clues for flare eruptions. As a first step. we study stability for localized modes and apply the result to a specific
equilibrium, cool-core loops (Foukal 1975). We find that the radiative energy loss effect not only changes the growth
rate of ideally unstable modes, but also alters the stability boundary predicted by ideal MHD theory.

[n § 1. we describe the basic equations and derive a second-order ordinary differential equation. Stability for
localized modes is studied in § IIL. In § [V we apply the results to cool-core loops. and the conclusion is given in
y V.

II. GOVERNING EQUATIONS

In this section we will derive a ditferential equation for stability of a coronal loop with the following configurations.
t. The loop is assumed to be a circular cylinder with uniform temperature. density. and magnetic field along the
loop direction. We will consider only radial dependence of these equilibrium vanables.

02
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2. Plasma is confined by a nonpotential magnetic field generated by plasma current. Therefore. magnetic field lines
are helically twisted along the loop.

3. Since for coronal temperature T = 10° K, heat conductivity parallel to the magnetic field line is much larger
than the perpendicular component {Spitzer 1962), we will neglect the perpendicular heat conductivity in this caiculation.
In this case, radiative energy loss is balanced by ambient heating for a loop in steady state.

Before perturbation a coronal loop in a steady state is governed by the equations below:

VP, —J, % By =0, (1)
v xﬂo'—“-lo. (2)
H(p) - R(p. T) = 0. (3)

Here Py, J,. By are equilibrium pressure, current density, and magnetic field: H(p) and R(p. T) are ambient heating
and radiative energy loss function, respectively. Because T has only radial dependence, the contribution of conduction
to energy balance is zero.

Assuming we give a linear perturbation of the form fi(r, t) = ¢”'f, (r)e*™ ~*2, the loop is governed by the following

equations:
,),‘_"__vpﬁ y X B, ~J x B, (4)
%:—1=—;.'POV-v—(;'—l)“:;:;)uﬂ+(§§)r0‘*(k-80)"%§ﬂ —5-VP,. (5)
Jy=Vx8, . (6)
B, =V x(§xBy). (7)
pr=—5 VYo —py¥V-3 ($)

Here /, 1s an equilibrium and f] is a perturbed quantity: § is a displacement vector which satisfies ¢& ¢t = v: & 15 the
coefficient of heat conduction parallel to the magnetic field. and y is the specific heat constant; & is the wave vector,
and k + B, = kB,, + m.rBy,, where k and m are longitudinal and poloidal wave numbers. In equation (5) we assume
that the ambient heating function is not perturbed mainly because we do not know the form of the function.

We simplify the calculation by assuming that plasma is incompressible. i.c.. V - v = 0. This assumption may weaken
the effect of the radiative instability since it disallows the isobaric condensation mode, but the essential features of the
radiative energy loss effect will remain.

Using state equation Py, = 2(Tpo + Ty p,) and equations (5) and (8), we get

@+ whPh
Pl—' (.L)+8 LT (9)
where
b= — Ly )+(k~3)1“ 10)
= ( T 0‘ 2 B(‘; . (
L, . P
= —1)[ — +p0(k B,) Bé]‘ (t1)

Here x is 2 times the Boltzmann's constant, and P, is a derivative of P, with r.
From equations (4)-(8) we derive a second-order ordinary differential equation:

o - P,8
( 20k, ) ("° 2 )F, F1=0., (12)
where ¢ = rZ, and &, is r component of §. Here
[pow? + (k - By)] po® — Py 6 i
F, = 5 e =, Fy=|——FF, - 1.
Y Ipew? + B[(m? rt) + k7] ro+8) ! Hil + H, (13)
2B,, ’"Bo B;,
=220 070 (k- - 208
H, Q| F it (k- 8,) ;
H, = =[pow?® + (k- By)?] ’Boo [(Boo . ’":sz):) + k:Bé-(Bfw + E‘B + k ,(—-—mBO:— kB, ——~———n6° — P'{)g] .
r repow rpgw r rogws\ r w+ ¢
(14)

—~ - . . - — e e — e . e —_ - - - s e et e -~
.
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In order to study stability for various equilibrium loop configurations we have to solve equation (12) numerically. !
Since the equation is not Hermitian, the eigenfunction and cigenvalue are complex variables. When we solve the
equation numerically, we have to decouple the equation into real and imaginary parts and solve them simultaneously
for given boundary conditions. Because of this non-Hermitian property it is a difficult task to solve the equation
numerically. However, we can solve it analytically for some special case. In the next section we will solve the equation
analytically for localized modes and find the radiative energy loss effect on the MHD stabulity.

11 STABILITY FOR LOCALIZED MODES

For ideal MHD stability, the eigenfunction is localized near a mode rationali surface r,, where kr,B. + mB, =0
is satisfied as the poloidal wave number is increased {Goedbloed and Sakanaka 1974; An 1982). We find that the same
is true for the case discussed in this study. We will take the limit as & and m go to infinity while keeping a safety
factor q finite in order to study the stability of local modes. The safety factor g is defined as

q = k’BO:/’"BOO .

and n is the number of the wavelength in the cylinder length L. By taking the limit m — x. we will show that the
etgenlunction y of equation (12} is localized near r (kr, B, + mB, = 0) and wiil derive an equation for the local mode.
If we take the limit m — x, with ¢ and 2 m fixed. equation (12) becomes

B3, ot B}
:/B—(;[wj—‘:) U(l"—‘{) +4Dy = 4Dy - D5)=0. (13)
0 r
Here
D = Loyd = P,ot Ba[l +(nmy] |
YT w4 IrBi[l + (ngBo,mB,y) ]l
D = dp b~ P) B[ = (nmy)* 2B = {nmy] |
T oA ~d) B+ (anoa,mBo,):] ri[1 = (ngBy, mB,, )|l
2Bos Boa) ("qBoo (B, " B_«Ju) _(’iB'w' ml[l - (f"!B«u.w”'B'):):] (l’;)‘b - P, ff )'
r[\ + {ngBgy mBy:)*) | mBo. i r rB; w -4 )
D, = pow® + (m B r*)1 + (n/m)q)? . (16)

r

For the limit m — x, D, and D, stay finite, while D, goes to infinity in the region where 1 - (n m)g » | m. In this
region equation {13) becomes

B°"(1+—q),”—o (1)
and , = 01s the solution. On the other hand, in the region where | ~ (nm)g < 1 m (near r = r,). equation (13) becomes
é po(l): . C,
@s (Cls +27)| + 9x Y. /._0)1_91(—0 (18)
Here
1 [ Bos Bo. z(" : Blolpo ® — Py8) 2B, dR
=r- =-|l—7] -9 Cv——$*‘—. 7= — .
S$=r-h G r\ B, )mq)' : rB: rBz(' ”(dr)
Boo Bo:) ,  2Bq, 83,] Boa) ( Boa) 2 "Bm Pow
9= 7478, ml* rBI W\ r Bo. Boo + f+ ®= Bl m (19

When we derive equation (18), we expand [1 + (n:m)q}® in Taylor series at r, such as

(1o 20f = (e err

for the first term of equation (15). We keep xi in equation (18). even though 27 goes to zero as m — x. By keeping
17 we can avoid a singularity at s = 0 which appears for marginal stability analysis of ideal MHD (Newcomb 1960).
From equations (17) and (18) we find that for the limit m — x, g is localized near a mode rational surface r,. Since
¢ is localized at r = r,, equilibrium variables in equation (18) are all calculated at r = r_ and coetficients in equation
(19) are all constant. We can solve equation (18) for a given boundary condition. However, if we do not want detailed
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information about cigenfunctions but only want to know eigenvalues, we may multiply the equation by * (complex
conjugate of z) and integrate by parts.
The result s
L (g__ : ) [s*lPds =i J Ll
C, r w+0 | x|*ds Clj’]4|zds'
Since 2} is mﬁmtesnmalh small as m — x, we can neglect the last term of the above equation. Using an estimate of
integral | 57| |*ds 2 } | | 7)°ds, we get

N C,
g-Puis

= 3
r w+ 8 faCy. (20)

where 7 > 1.
1f we exclude w = 8 as a root. equation (20) is a cubic equation for w:

2 s L 4 C 5
@ 00w L gCl—g -‘r-Br—(%o'C,—g)—&- 'r=0. (1)
potd Po

o
Roots of equation (21) ‘or any equilibrium are not ditficult to get. but it is more instructive to study the case in
which the ideal MHD growth rate is much bigger than the radiative growth rate. This is true for T = 10° K. In this
case we can letw = wg + oy withe = w,, & <€ 1. Here wg 1s the growth rate for ideal MHD. and w, is the contnibution
due to radiative instability. Since @ is the growth rate of the isochoric mode. 8/w, = ¢ < 1.
The zeroth order 1n ¢ of equation (21) 15

rs {ao
(U%‘P(UO‘)—.)‘.—‘Cl—g)=0.

and the roots are

e =0 - r_‘( _g(‘)lz AR
wo =0, = ‘)09 e . (22

Here we have to neglect wy =0 as a solution because this solution implies that a loop is in a marginally stable
state for any equilibrium.

Ifg — (¢ 4)C, < 0. the loop is in an ideal MHD stable state. and if g — (¢ 4)C; > O, the loop is in an ideal MHD
unstable state. The explicit expression of g — (o 4)C, is

2B3, (730,, 3. (nq)
rB(; 3 rB?

a
g-3C=- 23)

Therefore. the ideal MHD stability condition ¢ — {6.4)C, < 0 turns out to be the Suydam criterion (Suydam 1958)
f welets =1:

-

g\ 2P .
(E) + Bé.o>0 (..4)

|

The first-order solution in ¢ of equation (21) is
C, _ C,
2[(13)C, - 4] Zpo T

The effect of radiative energy loss on MHD stability is stabilizing or destabilizing, depending on the sign of w,,
i.e.. stabilizing for w, < 0 and destabilizing for w, > 0. We will study the radiative energy loss effects on the MHD
stability for several cases:
Case I: wd > 0. ie. the ideal MHD unstable case. If C, > 0 (i.e. dR.dr < 0), w, is negative, which means the
radiative energy loss effect is stabilizing. If C, < 0 (i.e., dR dr > 0), the effect is Jestabilizing.
Case II: w3 <0, ie. the ideal MHD stable case. If C; >0 (dR dr < 0), the radiative energy loss effect is
destabilizing. If C, < 0. the effect is stabilizing.
Case II1: wj = 0. ie. the ideal MHD marginally stable case.
In this last case we cannot use equation (25). From equation (21) we get
C, ry

W+t =" =0. (26)
Po

(25)

w, =




ey
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The roots of this cubic equation are (Abramowitz and Stegun 1970)

9 i) ? 1 9 (3 .
31=(51"5:)“3- ::=_§(51+5:)_§+%“'(51_52)- 33=—5(51*‘5:)—3——2‘“(5‘\—5:)~ (27)
Here
2\ 2 2 C:V', 1 02
si=[r+@+) 00, = - (g, r=~—zpo—2—79’. 4=-3- (28)

Since we consider a loop with T < 109, § (eq. [10]) is negative near r,.

IfdR dr > 0. then z, is real positive, and =, z; are complex conjugates. The real part of -, and :; can be positive or
negative depending on the detatled equilibrium. In this case there is at least one unstable mode. even when ideal MHD
theory predicts marginal stability. If dR,dr < 0, stability is not obvious unless we solve the roots numerically for the
given equilibrium.

Case 111 shows that there are unstable modes even when ideal MHD predicts a marginally stable state. This result
indicates that the stability boundary is altered by the inclusion of radiative energy loss. Since we study a mode
localized near a mode rational surface where the radial component of the magnetic field is not perturbed. conduction
Joes not play any role in stability for this mode. The results are summarized in Table 1.

Next. let us consider how radiation affects the stability for various cases. Note that the local mode treated 1n this
section is an interchange instability driven by a pressure gradient. This mode has analogies to the Rayleigh-Taylor
instability driven by a density gradient under a gravitational field. The pressure gradient in the MHD interchange
mode has the same effect as the density gradient in the Rayleigh-Taylor mode, and the curvature of the magnetic
field line plays the same role as gravitational force (with the opposite sign). We can. therefore. understand how
radiation atfects MHD interchange modes by analogy.

The Ravleigh-Tavlor mode is unstable when the density gradient has a sign opposite to the gravitational force. If
plasma displucement in the same direction as the gravitational force s accompanied by 1 Jdeasity decrease due to
some mechanism (e.g.. radiation), then the instability growth rate Jecreases because the reduced density causes the
buovancy force to be increased. If the density increases, on the other hand. the growth rate will be increased. For the
unstable MHD interchange mode, the radiation increases P, from that of ideal MHD (sce eq. [9]) for positive Z,.
ifdR dr > 0. By analogy to the Rayleigh-Taylor riode. radiation increases the growth rate of the instability. If R dr < 0,
the radiation decreases P, from that of ideal MHD, resulting in enhancement of stability. For ideally stable cases, we
can use a similar argument to understand the results.

IV, STABILITY FOR A COOL-CORE LOOP

Foukal {1975) observed cool-core loops whose radial pressure gradient is positive. The cool-core loop is especially
interesting from the MHD stability viewpoint because the equilibrium satisfies the Suydam stability criterion (1958),
i.c. the loop is stable for the local mode by the ideal MHD theory. Since violation of the Suydam criterion implies
(Goedbloed and Sakanaka 1974) that the entire infinity of all lower-mode solutions, including m = 1, n = 0, is unstable,
the cool-core loop has certain advantages for stability over equilibria with a negative pressure gradient. Giachetti,
Van Hoven, and Chiudeni (1977) studied local and global ideal MHD stabulity for cool-core loops and found stability
for the short-wavelength mode. Xue and Chen (1980) found that the positive pressure gradient is a necessary
requirement for the existence of an equilibrium toroidal loop.

Observations (Foukal 1975) show that pressure has a positive radial gradient, while density 1s nearly uniform:

dp dn .
>0 330 (29)
For the radiative energy loss function R, we use
R = "ZZT-.)Q . (30)
TABLE 1

Raptamion EffecTs on MHD SrasiLiry

Case | Ca-e Il Cre il

Parameter b >0 g e D ;=0
dR dr <) . stahihizing festahiizing a0t shaous
R dr >0 destabilizing slabmzing destamlizing
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and for the ambient heating function H, we use
H=nh. (31)
Energy equation (3) becomes
nh=nT" 32, (32)

If we assume h ~ T~ 2, density n is uniform. Since stability depends on the sign of dR/dr, we calculate the term
using equation (30):

dR _i.-r—szd_P~__‘£>
dr 2x dr dr’

For the cool-core loop which is ideal MHD stable we can use the result of case II from the previous section. From
equation (33), which shows dR/dr < 0, and the result of case II, we find that the radiative energy loss is a destabilizing
effect. Because the observations show that the temperature at the core is much lower than 10 K. we can expect that the
loop is unstable for the local mode even though ideal MHD theory predicts stability.

Before closing this section, we have to mention that local instability of the cool-core loop due to the effect of radiation
does not mean that the loop is globally unstable. The observations (Foukal 1975. 1976) show that cool-core loops
maintain long-term stabulity.

The following physical picture of the cool-core loop can be drawn from this study and the observations. The loop
is stable for global modes, and therefore maintains its iong-lived loop configuration. On the other hand, it is unstable
(due to radiation) for the local interchange mode. especially near its cool core. Therefore. there is mixing of materials
in the core and in the surrounding hotter region. The mass flow across magnetic field lines due to radiation might
be the source of mass Rowing continuously down along the cool core, as claimed by Foukal (1976).

(33)

V. CONCLLSIONS

We have studied the effect of radiative energy loss on the MHD stability of coronal loops. Because of the effect.
the governing differential equation is not Hermitian. This non-Hermitian property of the equation causes mathematical
and numerical ditficulties. We have attempted to solve the equation analytically for a limiting case where poloidal
and longitudinal wavenumbers go to infinity. We have derived resulis for the stability of localized modes and apply
the results to a specific equilibrium. cool-core loops (Foukal 1975). Our result demonstrates that radiative energy
loss can enhance or reduce the stability of a loop, depending on the detailed equilibrium profiles. The result also shows
that the cool-core loop, which is predicted to be stable for localized modes by ideal MHD theory, can be unstable
due to radiation and predicts the mixing of the material between the cool core and the surrounding hotter region.
This result supports the claim by Foukal {1976) that the mass flowing down along the cool core is supplied from the
surrounding plasma by MHD instability. The effect will be more important for filaments where the temperature is
much less than 10° K. .

We have considered the stability of local modes as a first step in the study of large-scale modes. By solving equation
(12) in § I numerically we can see how the stability boundary of the m = | mode is changed by radiation and heat
conduction. For a more complete treatment. we have to discard the assumption about incompressibility of plasma
and include the perpendicular component of heat conduction for low-temperature coronal loops.

The author thanks Dr. R. C. Canfield for his valuable discussions and comments during the course of this work.
This work is supported by the Air Force Office of Scientific Research, Air Force Systems Command. USAF, under
grant AFOSR 82-0092, and by NASA under grant NSG-7406.
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ABSTRACT
We have studied the effect of radiative energy loss on the stability of compressible plasma in coronal loops
By taking the limit as poloidal wavenumber m — x. we derive stability conditions for local modes. We have
found that the radiation effect can trigger MHD instabilities of coronal loops which are in ideally marginatly

stable states.

Compressibility is a stabilizing effect for ideal MHD local modes because the compression of magnetic field
lines exerts a restoring force by increasing magnenc pressure. Compression of plasma induces two modes in o
radiatively unstable plasma. magnetosonic and condensation modes. Compressibiliny affects the stability of
ideally stable (or unstable) coronal plasmas through magnetosonic modes. which are a stabihizing (destabilizing)
effect for deally stable (unstable) plasmas. For coronal plasmas in ideally marginally stable stutes. condensation
as well as magnetosonie modes can trigger MHD instability. Because of these two modes. the effect of
radiation on compressible coronal plasmas 1s more destabilizing than it 1s on incompressible plasmas when the
plasmas are in ideal MHD unstable or marginally stable states.

Subject headings : hydromagnetics - plasmas

I INTRODUCTION

In recent seuars, numcerous studies of coronal loop ~tabihty
have been carried out to understand their stable nature. Two
different approaches have been used. magnetohyvdrodvnamic
(MHD) and radiatne hyvdrodynamic approaches. MHD
stability studies have emphasized the etfects of photospheric
line tying (Raadu 1972: Hood and Priest 1979 Einaudi and
Van Hoven 19810 An J982) and radial pressure profile
{Grachettt, Van Hoven. and Chiudern 19770 Van Howen,
Chiudert. and Guachettr 1977) on the deai MHD stability of
loops. For radiative hydrodynamic studies. condensation
modes have been studied 1o understand solar prominences
(Freld 1965) as well as long-lived coronal loops {Antiochos
1979: Hood and Priest 19%0: Chiudeni. Einaudi. and
Torncelli-Cramponi 1951 McClymont and Canfield 1931 An
¢ al Y9N3 Annochos or ul 1984). The previous MHD studies
did not take into account radiation and heat conduction. even
though these are imporuwant energy dissipation mechanisms in
coronal loops. Most of the previous studies of thermal stability
neglected magnetic field effects other than heat conduction
and mass motion along magnetic field lines. Since radiation
as well as magnetic fields plays a role in loop stability. at is
important to include these effects in MHD as well as thermal
stability studies. The effects of magnetic field on thermal
stability wzre studied by Field (1965). Chuideri and Van
Hoven (1979). and Zweibel (1980) for plane-parallel
atmospheres. Recently, An (1983, hereafter Paper [) studied the
effect of radiative energy loss on MHD stability of loops with
cvlindrical geometry In Paper L. we found that radiation not
only changes the growth rate. but also alters the stabihty
houndars predicted by ideal MHD theory We also found that
a4 cool-core loop (Foukal 1973) with a positine pressure
gradient. which s stable for ideal MHD interchange modes.
can be unstable because of radiation This result supported the
claim by Foukal {1976) that mass flowing down along the cool

[

[

- Sun- corony

core s supplied  from
imstabilities

This study 15 a conunuauon of Paper T and includes the
effect of plasma compression. Since Paper 1 did not consider
compressibifity. magnetosonic and condensation modes wer.
excluded. Noting that compressibility 15 an expected churac-
tertstic of coronal loop plasma. we believe that compresstbihin
will have a significant effect of ruduatine MHD stabihin

This paper 15 organized as tollows. In ¢ 1L we deseribe the
basicequations and derne a second-order ordinary differential
equation. The effects of compression on localized ideal MHD
modes is considered in X 1L and the effects of rudiative energy
loss on the modes are studied in & IV, The concluston
gnennd V.

surrounding plasma by MHD

I GOVERNING FOQU ATIONS

In this section we will derne a differential equavon for
stability of a corunal loop wath the following configuration.

I. The loop 15 assumed to be a crcular cvlinder with
uniform temperature. density. and magnetic field along the
loop direction. We will consider only radial dependence of
these equilibrium variables.

2. Plasma is confined by a nonpotenuial magnetic ficld
generated by plasma current. Therefore, magnetic field hines
are helically twisted along the loop.

3. We neglect the perpendicular heat conducuon In this
case. radiative energy loss 1s balanced by ambient heating for
a loop in a steady state.

Before perturbation. a coronal loop m a steady state s
governed by the equations below.

VP - Jx Bo=0, ()
VxB.=J.. ()
Hip. T) -Rip. T)=0 (3)
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ciere. Py J,. By are equihbrium pressure, current density, and
magnetic field: H{p. T) and R(p. T) are ambient heating and
radiative energy loss function. respectively. Because T has only
radial dependence. the contribution of conduction to energy
balance is zero.

The linearized dimensionless equations are

”‘3:" —BSP, +Jo x B, +J, x B, (4)

~lm

‘R
= =P,V r VP, =y~ l)[g(f—r) T
- »

3,CR K 1, .z
E‘E)r‘)l¢(k‘Bo)z‘B‘g"—c(Tl+T0$r)]' (5)

J,=VxB, (6)

B, =V x(¢xB,). ()
= =8 Vpo—poV:§. {3}
P,=Tpy~Typ, . (9)

Here P oo, T,. and B, are scaled by standard values of
wonad pressure. Jensity. temperature. and magnetic feld: and
. saaled by the MHD ume scale, 3 = pou® B3 (u is the
Yius ol a {oop). The radiative time scale is t, = 3P, IR:
conductine time scale is ¢, = a*Py ko Ty 21 ¢ is the ratio of
+HD and radiative ume scales, € = (¢, £,): and B is the ratio
of piasma and m.xgneuc pressure, B Py, B3; & is a displace-
mentvector (08 Jt = v): K = ky T3 ° is the coeficient of heat
conduction parallel to the magnetic field: ; is the specific heat
constant: A 1s the wave vector: and k - By = kB,, ~ m.rB,,.
where & and m are longitudinal and poloidal wavenumbers.
In cquation {3) we assume that the ambient heating function
13 not perturbed. In this study, we assume V& %0; (e
plasma 1s compressible.
A perturbed quantity is expressed as

Sl t) = f(rlet ™ et

Using equanons [5), (8). and (9) we can express the perturbed
pressure Py as

P of
P o= —{Py V- §+PyL)+ eV :(—0_’_—(3@)
e 0P, ~ dpo ~ (k- Bo)z(Tg z."Bo)TQ)('r/fe)(? -1)
= w + el ’
(10)
Here

e, e ]

X (1)

T‘1
or,r,-—[ T) ke m(a)},
0 c

—mge - -- - - . —_— - -

The compression term. V - & can be derived using equations
(4). (7). and (10).

XF 4B
v. g-,;o.)[——\ o

—e(m? + K*r¥)F

)(mBo: - krB\,)I b

x [¢Pb+(}' )‘(k Bo)z—To"BP'oJXI

1
Do + d). (12)
Here
F=pow® +(k-By).

D = p,w? [puw: - B,('; -~ k:)} + ('2: - A:)/};'PUF
P

Blop, — wa”)(’"" rt = kF
W -t ’
D=D~D, (13
P, is the derivative of P, with r. [, is the radial component

of 2. X = ri,. Using equations (4). (7). (10). and (12), we can
derive a second-order diferential equation for the study.

(Q,X) = (0% = Q)X ~ [(G,X) ~G. X -G, X] =0

D, =

{14)
Here
Ql = F[p')"'):(ﬂnpv) -~ Bf:)) et B P.)(I\’ . Bv)):: VD
I\'-B\ g'P‘F__“!;B_;
Q: = _:Bon[m( 0p, ,)l 1y~ B3)
Bulpor V]
r
11 B
Qs = - - \F =252
o D |
LT8¢
Gy = dpy + (7 = 1) " (k- By -2 T, = P,
l( 3
- 2hBog po i (mBy, — krBoy)(dp, ~ P.,H)
r’D
G, = Blpo (u:)lF((t’IJo - ~-P00)/[(w + (H)rDD] .
G. < G0Brow W Bou(mBo.'r ~ kBoy)  [Bpow?FC ™
: 7*Di = ) D + 0)
. BF[Spn ~ (= DMt A BT G BT, — 0P
(l‘= mo_ b o )Ty —0P)
rDley « 1))

Equation (14) consists of two parts, an ideal MHD part (first
three terms) and an energy dissipation part (last three terms).
Theideal MHD limit {zeroth-order solution) s« = 0; we know
that ¢ < 1 for coronal loop conditions. As in Paper I, we will
study the effect of radiative energy loss. as higher order
solutions, on localized interchange modes.
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[11. THE EFFECT OF COMPRESSIBILITY ON
IDEAL MHD LOCAL MODES

We will derive a stability condition for local ideal MHD
modes of compressible plasmas as a zeroth-order solution of
equation (14). Since radiation etfects appear in high-order
solutions, and the solutions depend on the zeroth-order
solution (see egs. [23] and [27)), a detailed study of the zeroth-
order solution is necessary to understand the radiation effects.
The stability condition for local modes, the Suydam con-
Jiton (Suydam 1958), is dzrived from marginal stability
analysis by excluding the compressibility of plasmas (New-
comb 1960) in minimizing the energy equation (Bernstein
et al 1938). The effect of compressibility on ideal MHD
modes was studied by Ware (1964} with assumptions that the
magnetic shear is negligibly lintle and |x'/x| < k. Since he
considered various modes {m > 1), his stability condition is not
1 Suvdam-type local stability condition. By taking the limit as
m — < with &B. mB, fixed. we derive a local stability con-
Jion. the Suvdam condition for compressible plasmas. A
moble aspect of vur result over that of Ware (1964) is that our
Jerivation s based strictly on the localization of eigenfunctions
near singular surfaces as m — x (Paper [) rather than any
1pProximations.

Betore deriving the stability condition, let us consider how
the compression term. V - &, behaves near and far from a
sinzular surface.

\ceording o equation{12ywithe = 0. the compression term,
V - 215 proportional to w*. Therefore, we tend 1o believe that
there s no distincuon between compressible and incom-
pressible plasmas for margnal stability because V - § = 0 for
157 = 0. However. we notice that the behavior of V& 15
Jdifferent at a mode rational surface r, when compared with its
hehavior far from the surface as * — 0. Let us consider the
comprasston term V- § at r, and at a region far from r,
using the explicit expression

V-E=E E,.

mBy. B, ) “J
] .
;

St
E1 = Pyta° [F ; (r:,) - "/\Bw(

. . (mt .
E;=powr(pgw” + (;:— - k‘)w:'Po ~ Ba)’

("L.*A )ﬁ Polk - By) (15)

For w =0, V-&=0, where k- By # 0, but ¥-& is not
defined at r,, where k - By = 0. If we take a limit as w? — 0,
V - § becomes

2kB,u{mBy, r — kBgy),

im* 7+ KN BiPy = BY) o)

V-§d= -

at r,. On the other hand. V- § becomes zero at k- 8% 0.
Eguation {16) has two implications. The first is that marginal
stability analysis cannot study the effect of compressibility by
letting w* = 0 from the beginning. The second is that the effect
of compressibility is especially important near the mode
rational surface, r,. From equation (16) we expect that com-
pressiblity significantly atfects the stabulity of focalized modes.
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As found in Paper |, X is zero far from r, but satisfies the
following differential equation near r,as m — x:

[flrnw)X] —glr,w)X =0, (17)
where

. _Tpo w?  (nBgyq m)*r—r )z
fir.w)= m24, rd,

, [ 2ol + nq,m)]
Jir.w) =

rid,
.41 =1+ (ango, l"Br).)

4330 4330 B:P,

Boo)' o 3BosBiPy
r'B} " rBi(B} + B.P,)

Ay = pow? 1303(

After multiplving equation (17) by X and integrating by parts.
we can derive the stabdity condition for localized modes of
compressible plasma:

rla q) _2rBPy 3B B:Py
4 B BBy - fiP)

>0. (18)

Here g = krB., mB,,. and n is the wavenumber in the
longitudinal direction. When we derive equation (18), we
ezlect a term whuch is proportional to | m* as the term goes
to zero for m — x. Unlike the Suyvdam stability criterion
(Susdam 1958), equation (18) has an additional stabiizing
term, 4B3, B Py [B5.(B5 +~ B P,)] We can easily find out the
origin of the term by taking a limit as m — x in gquation
(16). As m— x. V - £ becomes

V& =2B}Z [r(B:Po + B3] . (19)

Noting that the compression term in equation (§) has P,
we can understand that the additional stabilizing term is due to
compressibility. Since V¥ - § is proportional to £, ¥ - § is finite
at r, but smoothly goes to zero ar a region far from r,.
Equation (18) shows that even when there is no shear (ie.
g = 0), the locai mode can be stabilized.

IV. LOCAL MODES OF COMPRESSIBLE PLASMA WITH RADIATION

Field (1965) found two modes. magnetosonic and condensa-
tion, with wave vector perpendicular to the magnetic field.
Since these two modes appear only for compressible plasma,
the stability condition for compressible plasma will be different
from that derived in Paper [ for incompressible plasma.

The stability condition for local modes of compressible
plasma can be obtained by studying higher order solutions of
equation (14), after taking the limit as m — o, with the same
method used in Paper [: multiply equation {14) by X * (complex
conjugate of X)and integrate by parts. After using the relation

(Paper )
l sTdX dsitd ]

and neglecting a term with 1 m°, we have

e P r g Qb r ~ YPu + (Y +W)=0 (20)

e e ol
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dere If plasmas are in an ideal MHD marginally stable state
3 S (i.e.®? = 0), the radiation effect can trigger MHD instabili-
P=onla -G ties, which might lead to Hares, or completely stabilize the
T TR R po {CR . instability depending on imual equlibrium. The radiation
Q= —f— ( : b l)'ﬁ - ? :‘) . (1) etfect on ideally marginally stable plasma can be studied by
. letting w'%'? = 0 (or Y =0) in equation (20). The equation
BB, r( -1)1‘BMVOC(LRLT) n“_l)ggl becomes
r rB3 P ' dr Po Pulr +epy Qi r +¢W =0 (24)
y = Bl B3:ld q)? L 2BoBPo ‘f53:1 BiPy The roots of this cubic equation are {Abramowitz and Stegun
4B} F°B} " BB} + BP,) 1970)
and 3y =5y ~5a)—uar 3,

Ci = Bé, Po - Cxl = B,Py.po .

1—';) =(TI;) ~uo(%§)r [Tof: = 1)

e r‘.c!d in a uniform Jtmospherc {Field 1965). The first
term of W is proportional to the growth rate of the
magmetosonic mode m a uniform medium (Field 1963). and the

her s the same term JR dr that appeared for incompressible
niarmd AR 19%3). Since ¢ < 1 for coronal loop conditons.
‘we cua obtain zeroth-, first-, and second-order solutions from
rgeanon (200 By expanding o as

L
o= ) mo ’(.’J'l -t -

> ceroth-order solution, '°', is
l!)‘ ‘= —-I'Y[,)O. (::

1nd sre conditionw'®'? < 01is a sufficient stability condition for
locaiced modes of compressible plasma. i.e.. equation (18).
T2 drst-order solution, «'', is. assuming ' # 0,

= = WPy )9 (23)

From equation (23) we can understand how radiation affects
the stabiiity of compressible plasma. A difference of stability
betasen incompressible and compressible plasmas is that
stabiinty of compressible plasma is atfected by the magnetosonic
modz as well as the sign of 4R dr. The effect of condensation
mod2s does not appear in the first-order soluuon For opticaily
thin -adiative energy loss function, R ~ p?T ™", (CR.CT), is
positive because n < 3 (Hildner 1974). Since (CR.dT), > 0 for
any temperature profile, the magnetosonic mode is a stabilizing
effect ‘or w'®"? < 9 (i.e. ideal MHD stable) but a destabilizing
etect for ™ > 0.

Since ¢ < | for coronal loop conditions, the radiation effect
is insignificant except when the coronal loop is in an ideal
MHD marginally stable state (w'®? = 0% For quiescent
prominences, however, the radiation effect is important because
¢ > 01107 1). For example. for a qmescent prominence with
T =10'K.n=10"%m"> a=5x 10 km, and B, = 8 gauss.
¢ ts esumated as € ~ 0(10 ). If the quiescent prominence
15 ideally unstable (' > 0), the radiation effect accelerates
MHD instabihities. Since the condensation mode is a second-
order eTect ine for w'* # 0.1t 1s an insignificant effect for the
-sronal loop condition. but it can be an important effect for

seseent prominences. The second-order solution will be
derinad later.

'
|

=51 +52) 2~ a3~ i 3s; —52)2, (25)

',
-
It

= —(y v 2= un 3 - sy -5 2
Here
o=l = PP = g =)
d= =W (20, Py = 1:0r PY¥ 27
g=—(€Qr Py 9. as=QrP. (26)

A marginally stable equilibrium has dp dr < Oand R dr > 0
{see ¢ [fj of Paper 1). For coronal loop conditions {ie.
T~ 10°K) Q <0. W <0, which results in d>0,4<0. and

1< inequation (26). Therefore. we can se2 that - > 0. The
sign of the real part of =, tor z3) s not zasily d)' crmuned
hecause the first and second terms of =, have duferent signs.
We need numerical calculation to determine the signs for a
gnen equilibrium. The solution shows that there 1s at least one
unstable mode in coronal plasmas due to radiation if the
plasma is in an ideally marginally stable state. The solution
(see =, of eq. {23]) also shows that not only magnetosonic but
also condensation modes destabilize coronal plasmas in an
ideally marginally stable state. By comparison with the results
of incompressible plasmas with ™% =0 (see eg. [27] of
Paper I). we find that radiation has more of a destabilizing
effect on compressible coronal plasmas. For plasmas of
quiescent prominences with w'®'* =0, the radiation effect is
not as obvious as for coronal plasmas because in quiescent
prominences. condensation modes are stabilizing, while
magnetosonic modes are destabilizing, effects.

The effects of condensation modes on MHD stabulity are
different depending on ideal MHD stability: when "' # 0,
condensation modes atfect MHD stability only to second
order in ¢ as

(.’)l:' = _3“)111: :qui _ :(U”‘Q— (:P(U\OI) . (:7)

while condensation modes are first-order effects for w'®'? = 0.

The physical interpretation of the effect of radiation on com-
pressible plasma is essentially the same as that in incom-
pressible plasma mentioned in Paper I; e, including the
compression term in equation (20), radiation affects the
perturbed pressure Py and then affects the stability of localized
modes.

i

VCONCLUSION

We have studied the effect of radiation on the local stability
of compressible plasma. We have found that compressibility
is not important far from a mode rauonal surface

— — - . - - R et r————————
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r{hr, B, + mBy = 0) but is important near 1it. We have pointed
out that the Suydam stability criterion (Susdam 1958} derived
from marginal stability analysis excludes the effects of com-
pressibility by fetting w? = @ (so V - § = 0) from the beginning.
Careful study of the compression term V -§ reveals that
¢ - Z1s not zero near a mode rational surface as w* approaches
zero. Compressibility has a stabilizing effect on ideal MHD
local modes because compression of magnetic field lines exerts
a restoring force by increasing magnetic pressure. The com-
pressibility induces magnetosonic and condensation modes in
a radiatively unstable medium.

If the plasma is in an ideal MHD stable {or unstable) state,
the cffect of condensation modes on the localized MHD
instabihity is insignificant. However, if the plasma is in an
«Jeally marginally stable state, condensation as well as
magnetosonic modes leads to MHD instabilities. Because of
these two modes, the effect of radiation on compressibie
coronal plasma is more destabilizing than on incompressible
coronal plasmas for »”'? > 0. The effect of radiation on MHD
stibshty of solar filaments will be significant because the
radiatne ume scale s nearly the same as the MHD time
scale for filament conditions. The results suggest that thermal
instabilities might be a triggering mechanism for globai MHD
nstabilities {Harvey 1981: Davis and Webb 1981).

We hasve studied radiation effects on locaiized interchange
mades in cylindrical plasmas. How does the radiation atfect
siobal modes? Any gquantitative answer to this question 1s
certainly out of the scope of this paper. However. we can
consider two important etfects of global modes. First. heat
conduction plays a stabilizing role on the zlobal modes. For
the local modes. heat conduction does not plas any roke because
heat conduction atfects the stability through the term (& - 8,)°
(see 9 or ¢ in eq. {I1]) which is zero at a1 mode rational
surface. v, where the modes are localized. Since global modes
are distributed over regions beyond the mode rauonal surface.

AN

where k- By # 0, heat conduction can be a stabilizing
mechanism. The other effect of global modes 1s that plasma
current density can be enhanced in a condensed region. For
{(tdeal MHD) marginally stable plasmas, as thermal instability
develops. condensation modes squeeze the plasmas, resulting
in enhancement of plasma current density. As plasma current
density increases, the plasma can change its state from
marginally stable to unstable. We do not know how the two
competing effects actually influence the global MHD modes
until we solve equation (14) numerically.

Stability for ideal MHD local modes in toroidal plasmas
was studied by Mercier (1960) and Greene and Johnson (1962),
and the physical meaning of the stability condition is discussed
by Shafranov and Yurchenko (1968). While an ideal MHD
local stability condition for toroidal plasma can be derived
using the energy principle (Berstein et al. 1938}, we cannot
use the method for locai modes of radiative MHD. We can
postulate how toroidal effects alter stability by considering
equation (11). From this equation we can see that the
radiation term depends on local density, temperature. and
magnetic field. On the other hand. the heat conduction term
depends on the magnitude of (k - B,)* as well as local plasma
quantities. Noting that toroidal plasmas do not have mode
rational surfaces for a given longitudinal mode. the heat con-
duction term may be atfected strongly.

For better understanding of the radiation effect on MHD
stabdity of coronal loops. we have to extend our efort to
globul modes and include toroidicity in the caleulanons.

The author thanks Dr. R. C. Canfield for his +aluable
discussions and comments during the course of this work. This
work was supported by the Air Force Office of Scientific
Research, Air Force Systems Command. USAF, under grant
AFOSR 32-0092, and by NASA under grant NSG-7406.
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ABSTRACT

We have studied condensation modes of the thermal instability in a cylindrical plasma to understand the
formation and stability of solar prominences.

The magnetic field in the cylinder has both potential (longitudinal) and nonpotential (poloidal) components
which form hetically twisted field lines. We find that the twist of field lines has a significant effect on the
stability of condensation modes; these modes are unstable if field lines are nearly straight but become stable
45 the twist ncreases. This trend is opposite to that of the ideal magnetohydrodynamic (MHD) modes.
which become more stable as the twist decreases. Stability is also strongly affected by magnetic field strength
and loop aspect ratio. In a strong magnetic field region. condensation modes are stabilized at a low field line
“wist. On the other hand. in a weak magnetic region. higher twist is needed for stabilitv. A loop with higher
aspect ratio neads higher twist for thermal stability. From the results. we can understand why promunences
have long-lived global structures.

We have treated the problem in a fully self-consistent way to derive a second-order ordinary differential
equation for radiative magnetohyvdrodynamic stability. Because the differential equation is not Hermitian. a
complete solution has not been attempted. We have made an approximation. by neglecting inertial terms.
which 15 +alid for coronal loop conditions and if there is no singular surfice in the plasma. and we hase
fernved o amplitied differenual equaton. We have studied ~tabiity ‘or the m = 0. 1. and 2 medes numerically

{0r Larous [vop parameters.

Subject headings: hydrodynamics — Sun: corona — Sun: prominences

[ INTRODUCTION

P-evious hydrodynamic studies of thermal stability of loops
{Anatiochos 1979; Habbal and Rosner 1979: Hood and Priest
1930 Chiuderi. Einaudi. and Torricelli-Ciamponi 1981: Craig
and McClymont 1981: McClymont and Craig 1981a. b. ¢
Antiochos et al. 1984) neglected MHD effects. It was found
that stability can be obiained if thermally stable chromo-
spheric material is included (Craig and McClymont 1981;
Peres et ul. 1982) and if the ambient heating function
satisfies certain conditions (McClymont and Craig 1981c¢).
The stabilizing mechanism in the hydrodynamic model is heat
conduction parallel to field lines. Since these studies neglect
nlasma motion perpendicular to magnetic field lines and
examine the thermal stability of single field lines. potentially
important MHD effects remain to be studied and understood.

The effect of a magnetic field on thermal stability was
studied by Field (1963), Nakagawa (1970), and Zweibel (1980)
for uniform magnetic field configurations in piane-parallel
geometry. Chiuderi and Van Hoven (1979) extended the work
of the above authors by considering the effect of magnetic
shears in plane-parallel geometry. Noting that observations
of active region filaments and prominences (Smith and Smith
1963 Zirin 1966; Gibson 1973: Rust 1972) have shown that
they consist of many small-scale individual loops. the stabulity
of cylindrical plasmas should be studied to understand various
phenomena of prominences. Since the magnetic field con-
" ruration of coronal loops is basically different from that of

imiform atmosphere, it is expected that the stability of
.-indrical toops will be significantly different from that of
plane-parallel plasmas. Recently, cylindrical geometry was

studied by An (1983, 1984) to understand the effects of
radiative energy loss on the MHD stability of incompressible
and compressible plasmas.

In this paper. we study the effects of magnetic field on
condensation modes of a cylinder to answer the foilowing
questions. s the thermal stability of loops in hvdrodynamic
approaches altered by including the plasma motion
perpendicular to field lines? How does the magnetic field
atfect the condensation modes in loops? Can we understand
the formation and stability of prominences with the
¢ylindrical models?

We will present detailed explanations of how a helically
twisted magnetic field atfects thermal stability, and we will
apply the results to prominences in order to understand their
formation and stability.

This paper is organized as follows. In § Il we present
governing equations for radiative magnetohydrodynamic
{RMHD) study, and in § [II we obtain a model equilibrium.
We linearize the governing equations and derive a differential
equation for RMHD stability in § [V and study the stability
of condensation modes in § V. We discuss the {ormation
and stability of prominences in § VI.

II. GOVERNING EQUATIONS

We make several assumptions for this study: Coronal
plasma is compressible and is confined in a rigid straight
circular cylinder. Physical quantities are uniform along the
loop direction. having only radial variations. The loop has
nonpotential as well as potential magnetic fieid; ie. field
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lnes are hehcally twisted. Heat conduction perpendicular to
magnetic ficld lines is neglected.
We assume plasmas are governed by the following equations:

Pt VP —Jx B=0, (1
dPdt = PV v —-(y-1)
x [H-R(p.T)+V Kk, e,6,-VT]=0, (2)
Cplt=V-(po)=0, (3)
VxB-J=0. 4)
Bt +VxE=0, ()
E+oxB=0, {6)
P=KpT. 7

Here p. P. and T are plasma density. pressure. and
temperature, and B. J. and E are magnetic field. plasma
current density. and electric field; A and R(p. T') are ambient
heating and radiative energy loss functions: x is the heat
conductintty parallel to the magnetic field. defined as
x =4, T** and A, is a heat conduction constant {Spitzer
1902).¢, = B B! s aunit vector parallel to the local magnetic
defd: oas the specific heat constant. and K is a gas constant.

1L £QUILIBRILM OF CYLINDRICAL PLASMA

Berore perturbanion. a coronal loop 1s assumed to be
governed by the steady state equations below.

BVYP, -Jyx B, =0, 8)
VxB,=J,. 9
H-R(p.T)=0. (10)

Here P,. J,. B,. p. and T are dimensionless equilibrium
pressure, current density. magnetic field. plasma density. and
temperdture scaled by standard coronal values. The quantities
H and R(p. T)are dimensionless ambient heating and radiative
energy loss functions, respectively. Because T has only radial
dependence, there is no contribution of heat conduction to the
energy equation (eq. [10]). The quantity § is the ratio of
plasma to magnetic pressure at the surface of the cylinder,
g=p,8;.

We can calculate equilibrium quantities by solving equations
{$)-{10). However, since we do not know the functional form
of the ambient heating rate H, complete solutions of
equilibrium equations are not possible. We solve equations (8)
and (9) with a specified plasma current density to obtain
plasma pressure P,(r). In order to calculate the ambient
heating rate H. which satisfies steady state energy equation
{10). we have to specify p = p(r). The heating rate calculated
from equation (10) with a specified p(r) is not 2 function of p
and T but a function of r. If we know the functional form
of H = H{p. T). p(r)can be obtained by solving equation (10}.
We assume that longitudinal current density. longitudinal
magnetic ield. and plasma density are uniform. Since such
profiles produce uniform twisting of ficld lines. we can simplify
the analysis. The justification of uniform plasma density can
be found in Fouhkal (1973), where he found that variation
of plasma density along the radial direction is insignificant
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compared with the varation of temperature or plasma
pressure.
The equilibrium quantities are as follows:

Py=Bil=r)f~ 1,
B,

Here 4 is the aspect ratio. 4 = L/a (a is a radius of the
cylinder cross section). The quantity ¢ stands for the twist
of magnetic field lines: ¢ > 1 means that field lines are nearly
straight lines, and g ¢ | implies that field lines are highly
twisted. We assume that the radiative energy loss function R
is R = p; T '. Coronal temperature. pressure, and loop length
are obtained by solving the hydrostatic energy equation.
The standard equilibrium studied in this paper has coronal
temperature of Ty = 2.3 x 10° K. density ny = 4.4 x 10°cm™?,
and length L = 1.7 x 10° ¢cm.

By,.=1. By, =rB,.

I
q= —2arBy. LBy, . (1)

—-ngqAd .

IV, LINEARIZED EQUATIONS FOR STABILITY

After giving a linear perturbation. we obtain lineanzed
dimensionless MHD equations:

p,frét= =fVP, ~J; x B, +J, x B, . (12)

c‘zl = =PV~ (= ”’%‘:_T),T’ w—%‘;—ﬁ)rm
—(« Tuk 'B?‘) - —Z”"Zg’ : T:J;,J —e-¥P,.
{13)
Ji=VxB8 . (14)
B =V x(x8,). (13)
pr=—=5 Vg —poV-§. (16)
Pr=Tpe+ Top, . {17)
Here § 15 a plasma displacement vector. ¢§ ¢t =w; t is

scaled by the radiative time scale, ¢, = 3P, 2R, in order to
study the effect of magnetic field on slow condensation
modes. The MHD time scale is t§; = poa’ Bé. the conductive
time scale is t, = *Py. ko T3 . and ¢ is the ratio of MHD to
radiative time scales, € = t3.t3. In order to define the
conductive time scale t,, we use the expression ko T3 ? for
parallel heat conductivity, x ,; L is a loop length, and k, is a
heat conduction constant. For derivation of the linearized
equation, we assume that the ambient heating rate H is not
disturbed by perturbations, because we do not know the
functional form of the ambient heating function (Chiuderi
and Van Hoven (979).
If we express a perturbed quantity f(r. t) as

filr2) = filr)emestaesr

we can derive a second-order differential equation for radiative
magnetohvdrodynamic (RMHD) stability of compressible
plasmas (for a detailed derivation, see An 1984).

(@, XY +(Qy + 0,)X + [(Gp\")' +G,X+G, .\"] =0.
(13)
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Here X =r%,. and & 15 a radial component of ¢ The
coetfictents of the differential equation are defined as follows:

Q= Flepo (B Py ~ B3) =~ BoPuk - By rD .
k- BB P F + v B}
Q:= —2800['”( O)UL :2 Pol? 0)
22
" Bos(€po w?) l D .
r ;
l. vp {Bos)
¢y = _|F — 2Bgy %)
_WBMpowBy < Pk Bolll g
r<D f
f k-B) _..
U= "'-")"l‘r' 3 ) T‘)'(]'—X)T")—HP.')]
. Bs
B ocoyettmB, — krBaMopy — Py )
- rD '
G, = Jiewys? ) Flop, = Pyt) [(w = 9)rDD] .
} G by, 4 2AB LimB,y, 1 = kBoy) Bewo FGy |
.= r:[‘j(‘)__”) rD((-) _‘)) .
L F t,th - B
try =0 l,’)‘.) 3 B{;
<« T5°t =0T, - »)Pj)J rlj(u - d). (20)
F=pyor ~ (k- By).

3/ R . Tl.‘: t,
d:(" - 1)[‘;"((’.—7_ *(kBO)'(-B_’g');‘] Po -

3(°R T3
Lt - l)[i (L—T , + (k- Bo)'(_;g') Iy

o= Po -
D=:p,0° [ep,)u): - Bé(,—:_lT- -+ k:) + "%. + k:)ﬂ}'P,)F .
Blopy = 2Py O)m* r? + k*)F
D, = .
W+t
D=D+D,. (21)

Note that the energy dissipation term due to radiation is
expressed as 3(CR.CT), 2 in 8 and 3(6R¢T)p2 in 4. and
the term due to conduction is expressed as (k- B,)?
< (T5° B3)t,.t.)in d and ¢. In the equations, k is a wave
vector. and k - B, = kB,. + mrB,,, where k is a longitudinal
component of k. and m is a poloidal wavenumber.

For coronal loop conditions. € < 1 (~10~*). Since other
terms in equations (19) are on the order of 1. we can neglect
terms which have «py” unless instability growth ume is
much shorter than the radiative time scale. This approximation
943 been used by numerous authors for hvdrodynamic study
of rermal stability. For magnetized cylindrical plasmas. this
approimation should be viewed with caution. For example,
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let us consider @, n equation (18). Even when ¢p,0° < |
is satisfied, we cannot neglect the term near a mode
rational surface where & - By =0 because the term with
ep, 2 is not smaller than the term with (k - B,)® neur the
surface. In other words, the inertial term is important near the
mode rational surfaces. In the following analysis. we neglect
€pow” terms assuming that the instabtlity growth time is of
the same order as the radiative time scale and there are no
mode rational surfaces in the plasma. If mode rational surfaces
are in plasmas, the plasmas are subject to ideal MHD
instabilities, whose time scale is so much shorter than
radiative time scales that it is meaningless to consider the
slow thermal modes.
If we neglect ¢p,w” terms in equation (18), we have

CoakBL
YARL

i B,
2 = 2B, —f)

r

(rzz.\' '

v 1( >mB.,, 1) |
M T r

r\M

X r(3 20 = 1)(dR dr)]

— =0 (22
MGP o~ 0py) )

Here x = k - By and M = k°r* ~ m>. We will solve equation
(22) numerically to study m = 0. 1. and 2 condensation modes.

V. STABILITY

We solve equavon (22} numerically for equilibrium
caleulated in & NI The diferenual equation 1s converted
o a fntte ditference equation to find eigenvalues and
eigenfunctions of a tridiagonal matrix using standard pro-
cedure {Potter 1973). The boundary condition X =0 atr =90
is obtained by solving equation (22) near r =0, and the
boundary condition X =0 at r =1 is determined by the
assumption that the cvlindrical plasma is surrounded by a rigid
wall. A more realistic boundary condition at r =1 will be
considered in future work. Since equilibrium profiles are
uniform along a longitudinal direction. periodic boundary
conditions are given at both ends of the cylinder. The effect
of finite loop length on stability appears through longitudinal
wavenumber and aspect ratio. For a given aspect ratio. shorter
longitudinal wavelength enhances conductive stabilizing etfect
over longer wavelength. and for the given wavelength, shorter
aspect ratio induces higher conductive stabilizing effect (see ¢
and ¢ in eq. [22]).

For ideal MHD study, stability is determined by g, which
measures the relative twist of field lines. We also find that
stability of thermal modes strongly depends on the twist of
field lines. Since the sign of w, (the real part of w) indicates
stability, the maximum values of w, versus g are plotted in
the following figures. Note that w, > O implies instability.

In Figure 1, we plot the maximum value of w, of the
m = | mode versus ¢ for various values of aspect ratio. The
assumed magnetic field is 100 gauss and B =175 x 1072
First, the figure shows that stability of condensation modes
is strikingly ditferent from that of ideal MHD modes. The
m =1 ideal MHD mode becomes unstable as the twist of
ficld lines exceeds a certain value which corresponds to
4 < | (Bateman 1978). The stability of condensation modes
has the opposite tendency: ie. they become unstable as the
twist of field lines decreases. The result indicates that the
m =1 thermal mode is unstable at values of ¢ where the
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Figure 1 also shows that aspect ratio s an important
parameter which strongly determines the stability . A loop with
higher aspect rauo has higher growth rate at a given 4 and
needs greater twisting of field hines 1o stabihze the mode than
does a loop with lower aspect ratio.

Figure 2 demonstrates how the strength of the magnetie
ticld influences stability. The magnetic fields are 50. 100, and
200 gauss. and the aspect ratio s fixed at 10, For a 200
gauss magnetic field. the loop is stabilized for g smaller than
50. On the other hand. for 30 gauss. the loop v stabithzed
for ¢ smaller than 10. The modes in stronger magnetic fields
are stabilized by less twist than in weaker ones. In a region
with strong magnetic ticld. condensation will cease relatnvely
soon after magnetic field lines start to twist from straight
potential field Itnes.

For ideal MHD modex. stabilities of various poloidal modes
differ sigmticantly from one another: 1.¢.. the mstability region
of the m=1 mode i g < 1. and the region of the m =2
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mode is ¢ x 2 (Bateman 197¥). Figure 2 shows how similar
the stabilities of thermal modes are for different poloidal
modes. The figure shows no appreciable differences between
m=0. 1. and 2 modes. This result 15 strikingly different
from that of ideal MHD stability.

Let us consider how magnetic fields affect thermal modes in
ovlindrical plasmas. Unlike the effects of magnetic ficlds on
wdeal MHD instabihitios. the magnetic fields affect the thermal
modes 1in indirect ways. Magnetic fields affect ideal MHD
modes by exerting magnetic tension. building up magnetie
pressure. and forming magnetic shear. These effects prevent
further plasma displacement after the initial perturbation.
On the other hand. magnetic tension and magnetic pressure
cannot completely stabilize the thermal instabihty, even when
the magnetic fields are extremely high. because plasma can
cool down nearly isochorically (Field 1965). The most effective
stabilizing mechanism  for the thermal modes 18 heat
conduction. Since we neglect heat conduction perpendicular
to the magnetic field. heat conduction cannot have a
stabihizing effect on the modes unless field lines bend. Figure 4
shows how the bending of field lines affects thermal modes
In Figures 4u and 4b. temperature vanes along the radwl
direction but is uniform along the =-direcuion. If field hnes
are not bent by the perturbation (1e. &k - B, = 0). as shown
in Figure da. the condensed region cannot receive heat from a
higher temperature region because heat cannot be transmitted
across the field lines. The only stabilizing effect is magnetic
pressure. which cannot stabilize condensation modes: it only
reduces the growth rate (Field 1963). If magnetic fields bend
(i.e. k + By # 0). as shown in Figure 4h. the condensed lower
temperature region. indicated by shading. can receive heat from
an unperturbed region along the field lines. For coronal
loop conditions, where the conductive time scale is several
umes lower than the radiative time scale. parallel heat
conduction can effectively stabilize the modes. The dependence
of stability on ¢. 4. and fi can be understood with
cquation (23) below. Plasma pressure depends on ¢, 4. and
1 the following form:

Pury= (=

gAV( =) g -t {23y
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FiG. 4. —(4) Condensation of plasmas perpendicular to field lines
k- B, =0). Since heat flows only along the field lines. the condensed
region cannot receive heat from adjacent regions. () The bending of field
lines makes it possible for the heat to flow into the condensed region from
adracent regions along feld fines. The shaded areas in Figs. 4a and b are

For ziven 1 and g, plasma pressure increases as g decreases.
Since we assume that equilibrium plasma density is uniform,
the increase of pressure is associated with the increase of
temperature. As temperature increases. the destabilizing effect
of radiative 2nergy loss is reduced. while the stabilizing effect
of heat conduction is enhanced. That is the reason why
hermal modes are stabilized as g decreases. The effect of
aspect rano 4 on the stability is similar to that of g.
“or given 4 and B, a higher aspect ratio means lower pressure
-d lower temperature, which enhances the destabilizing effect
radiation and reduces the stabilizing effect of heat
conduction. Therefore, Figure 1 shows that plasmas become
more unstable as 4 increases. Equation (23) also indicates
that for a lower value of B, a certain increase of field
twisting causes higher increases of pressure and temperature
in the plasma. This is the reason why plasmas in stronger
magnetic fields are more stable for a given g-value (see Fig. 2).
The insensitivity of the stability to different poloidal modes
{Fig. 3) is due to the facts that the major destabilizing
mechanism. radiation, is independent of poloidal modes. and
the major stabilizing mechanism, heat conduction. weakly
Jepends on poloidal modes (see 8 and ¢ in eq. [21]).

V1. DISCUSSION AND CONCLUSION

We have studied the thermal stability of coronal plasmas
assuming that the plasmas are confined by magnetic fields, and
physical quantities vary only along the radial direction. By
discarding a hydrodynamic assumption that plasmas move
only along the field lines, we study the MHD effects on
condensation modes of cylindrical plasmas. We find that loops
can be unstable even when they satisfy the hydrodynamic
stability conditions (McClymont and Craig 1981¢) unless the
twist of field lines exceeds a certain value. Therefore, whenever
we discuss the hydrodynamic stability of condensation modes,
we have to implicitly assume that the twist of field lines
exceeds a certain value.

\n interesting result of this study is that the condensation
modes are distinguished from ideal MHD kink modes for

:ability: The m =1 kink mode is unstable for ¢ < 1 but
-zcomes stabilized as the twist of field lines decreases
tg > 1). On the other hand, the m = 1 condensation mode is
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unstable for g » 1, at which value the m =1 kink mode is
stable. but becomes stabilized as the twist increases. This is
important for the understanding of the very stable nature of
prominences.

Conceding that detailed observational phenomena cannot be
understood with this simple model. we try to understand
some of the essential features of the observations qualitatively
by dividing field configurations into three types: very low
twist (g > 1), medium twist. and high twist (¢ < 1) of field
lines. Since condensation modes are unstable for g » 1, we
believe that prominences (or filaments) are formed in this field
configuration. Noting that eruptions of prominences are
believed to be due to MHD kink instabilities for high
twisting of field lines (¢ < 1) (Sakurai 1976), we expect that
the prominences and filaments are in globally stable con-
figurations; i.e.. the prominences (or filaments) are in thermally
unstable but MHD stable states. This assertion is supported
by numerous observational studies (Rust 1972; Malville 1979;
Smith and Smith 1963: Gibson 1973: Zirin 1966: Tandberg-
Hanssen 1974) which describe prominences which have
materials Jowing down continuously along the field iines in
stable global configurations. The flows of materials in
prominences are interpreted as a result of continuous
condensation of surrounding plasmas.

According to Malville {1979), preflare loops do not exhibit
the extensive down flows that postflare prominences do. Qur
interpretation is that loops about to flare have medium twisting
of fleld lines. which results in stability for condensation modes
as well as MHD kink modes. On the other hand. since
posttlare loops lose much of their free magnetic 2nergy to the
tlare, their field lines are less stressed (¢ » 1), and their
configurations allow more extensive plasma condensations.

Figure 2 shows how the formation of condensations is
affected by the strength of the magnetic field. In a strong
magnetic field region. where B ~ 200 gauss. condensation will
cease before prominences are formed. as the field lines start
to twist further by the buildup of nonpotential magnetic
field. On the other hand. in a weaker magnetic field region.
where B ~ 30 gauss. condensation continues until the twisting
of field lines increases to a larger degree. During this time,
the condensation develops fully to form prominences. From
Figure 2 we can predict that prominences and filaments
are more likely to form in a weak magnetic field region
than in a strong one if the other physical conditions in the
regions relevant to the formation of filaments are the same
(e.g.. existence of neutral lines, etc.).

Flare loops have high twisting of field lines (g < 1) in
strong magnetic field regions. where condensation of the loops
is not likely to occur. Erupting filaments also have high
twisting of field lines, but they are in weak magnetic field
regions, where condensation can occur in relatively highly
twisted field configurations.

We have found that the effect of magnetic fields on
condensation modes is different from that on MHD kink
modes. Magnetic tension and magnetic pressure do not directly
affect the condensation modes. unlike the ideal MHD case. but
they influence the stability by affecting heat flows along field
lines.

The results enhance our understanding of the formation
and stability of prominences. Since our medel is extremely
simplified. any quantitative comparisons between theory and
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observations are not appropriate. In the future, we will study
thermal modes with nonuniform current density to understand
the effect of magnetic shear. and we will abandon the rigid
wall boundary condition. It can be expected that studies of
more realistic geometries of prominences with longitudinal
wariations of temperature and density will further enhance our
understanding of the physics of prominences.
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ABSTRACT

The gtfect of line-tying in the photosphere on the magnetohydrodynamic (MHD) stability of coronal loops
has been investigated by a number of authors. We comment on the various boundary conditions. plasma dis-
placement functions, and other assumptions used by a number of investigators. Our comments lead to three
conclusions. First. as a boundary condition for line-tying studies, the plasma at the footpoints of a loop may
safely be assumed to be stationary. Second, when a simple perturbed test function is used for the energy prin-
ciple. the function should be helical in form. because the complete stability of ideal MHD modes obtained in a
presious study is due not to line-tying but to the choice of a nonhelical perturbed function. Finally, con-
stramnts on the test function (e.g.. the component parallel to field lines 1s zero) should be discarded because
they overestimate stability.

We study kink instabilities in cylindrical plasmas on this basis. The results are very different from those of a
previous study which used a nonhelical test function, which indicates the importance of a helical test function.
We tind that the etfects of line-tying on force-free equilibria are not the same as on non-force-free equilibnia.
As the value of the aspect ratio increases, the effect of line-tying becomes less important for force-free equi-
libria. but more important for non-force-free equilibria. We also find that line-tying is a more stabilizing effect
on the equu’bria with a higher magnetic shear (or a more peaked radial current profile).

Surrect aeadings. hyvdromagnetics — instabilities — plasmas — Sun: corona

I. INTRODUCTION

Numerous earlier papers concern the effect of photospheric line-tying on the 1deal magnetohydrodynamic (MHD) stability of
coronal loops. Most of the authors have used simple test functions in order to represent plasma perturbations satisfying a line-tying
houndary condition. Because the simple test functions lack generality and cannot include all displacements. they cannot be used to
Jetine both necessary and sufficient stability conditions. Recently. more sophisticated methods have been proposed to evaluate loop
stability. Hood and Priest (1981) used a two-dimensional numerical analysis to obtain a necessary and sufficient condition for
stability of a force-free loop equilibrium. Their resuits showed that the method of Hood and Priest (1979) using much simpler test
functions gives a good bound on the critical vaiues of the stability parameters. Einaudi and Van Hoven (1981) developed an
energy-principle method. in which a general initial perturbation is expressed as a uniformly convergent sum over a complete discrete
set of longitudinal mode numbers. With this method., they later defined necessary and sufficient stability conditions for various loop
equilibria (Einaudi and Van Hoven 1983). But while these studies have improved on previous work, none allows the addition of
nontdeal effects (i.e., resistivity, radiation, and heat conduction), because of the extreme complexity of the methods. Use of a simple
rest function may thus have certain advantages if we wish to study nonideal effects.

Looking at the various ways in which boundary conditions and simple test functions for line-tying have been determined. we note
that the results do not coincide. For example, Hood and Priest (1979) used a helical form of displacement function whose amplitude
is modulated by the factor cos 2z, ie., &r) = §(r}e'™ "** cos 2z. Here m and k are poloidal and longitudinal mode numbers.
respectively, and 2 = br/2L. Here b and L are the radius and the length of the cylinder. The quantity x (=bn/2L) is one of many
possible choices from x = (n + $)bn/L (n =0, 1, 2, .. ) to satisfy the line-tying boundary condition. The quantity x = br, 2L was
used by Hood and Priest (1979) to study the least stable case. By applying the energy principle (Bernstein et al. 1958), they predicted
instability onset for a force-free equilibrium with aspect ratio (=2L/b) larger than 3.3z. On the other hand, Van Hoven, Ma, and
Einaudi (1981) obtained complete stability for any equilibrium by using a nonhelical form of test function, &(r) = &(r}e'™ cos 2z. The
two contradictory results demonstrated that the choice of the function is crucial in determining loop stability. Raadu (1972), Hood
and Priest (1979), and An (1982, hereafter Paper I) used the helical form of the function, while Van Hoven. Ma. and Einaudi (1981)
used the nonhelical form. The study of line-tying has been extended to include resistive instabilities by Mok and Van Hoven (1982),
who used the nonhelical test function.

As for boundary conditions, Raadu (1972), Hood and Priest (1979, 1981), and An (Paper I) assumed that plasmas do not move at
the footpoints. while Van Hoven, Ma. and Einaudi (1981), Einaudi and Van Hoven (1981, 1983), and Mok and Van Hoven (1982} all
assumed that plasma motion perpendicular to the magnetic field would be zero, but that an arbitrary parallel component might
exist. The different assumptions yield different results.

Most of the previous works by Hood and Priest (1979, 1981) assumed that there is no plusma motion parallel to magnetic fields.
T'us assumption overestimates stability unless plasma pressure is identically zero.

Since different choices of test functions, boundary conditions, and other assumptions give different results, it is important to
Jiscuss how the choices affect the results and to determine which test function and boundary conditions are the most reasonable in
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order to evaluate stabiity properly. These problems should be clanfied before we study nonideal etfects on the stability of coronal
loops.

[n this paper. [ discuss which boundary conditions and test function for line-tying are more reasonable and how the choices affect
the results. [ will also present my results for cylindrical plasma stabi'uy. Throughout this paper [ will use dimensioniess equations
for convenience.

II. COMMENTS ON THE PREVIOUS STUDIES

a) Boundary Conditions

Why should a line-tying boundary condition be considered in order to study the MHD stability of coronal loops? The tops of
coronat loops are occupied by tenuous plasmas of density n = 10° cm ~? and have a narrow transition region in the chromosphere
where plasma density increases steeply. The loops may extend farther down. to the photosphere, whose density is about 10! cm ™ 3.
The huge difference of densities between the coronal and photospheric rezons means that the MHD time scales,(pq b° B2)! %, of the
two regtons are very ditferent: ie., 7y, 7, = 1072 Here po, b, and B, are Jdensity, radius of loop cross section, and magnetic field,
respectively, and 7, and -, are the coronal and photospheric MHD time scales. A perturbation of the loop plasma in the coronal
region generates changes on the coronal MHD time scale. while the plasma at the photosphenc footpoints undergoes no appre-
ctable change. This is the physical reason to consider the effect of line-tying on MHD stability.

Einauds and Van Hoven (1981) assumed that at the footpoints motions perpendicular to the magnetic field () are zero, but that
rarallel components of the motions (3 ) are arbitrary. This permitted them to neglect the plasma compression term, V + §, when they
minimized the energy integral. SW (Bernsteir. et al. 1938). Their analyses were greatly simplified by the condition [ = arbitrary at
‘ootpoints. The choice of boundary condition was inspired by observations ie.g.. Foukal 1976) that showed guasi-steady flows along
loops that probably extend down to the footpoints.

A question concerning such plasma flows at the footpoints is whether the Rows are induced by perturbations. For an answer to
this question, we must recall the assumption that plasmas before perturbation are in an equilibrium state with no motion. The
2neryy-principle method 1Bernstein er al. 1938) is based on the assumprion. Let us consider the parallel component of plasma
motion. The perturbed momentum equation parallel to the magnetic field :s

WpnE By=-B,- VP, -8B VP, . 1)

Here. p. P.and B are dimensionless density, pressure, and magnetic fic.d. and the subscripts 0 and | stand for equilibrium and
perturbed quantities, respectively. The quantity w is the dimensionless growth rate. and & 1s the plasma displacement. The equation
shows that parailel motions change on a hydrodynamic time scale. (p, L] P,)'! *. not on an MHD time scale. Here L, is a scale
hewght. If the hydrodynamic time scale at the footpoints. ;. is comparable o the coronal MHD time scale. £,. a perturbation on the
coronal time scale would cause substantial parallel motions at the footpotats. [n thus case. we must treat the observed plasma flows
1s a boundary condition. Butif :; =, < 1, however. parallel motions at the footpoints are negligible on the coronal MHD time scale.
Thus we can assume that plasma motion in any direction is zero at the feotpoints. If we wish to consider the observed quasi-steady
Hows (Foukal 1976}, we must construct a steady state with a steady flow and study the stability of the steady state. But note that we
can no longer use the energy-principle methods of Bernstein et ul. 11958).

Lzt us estimate the ratio of the coronal MHD time scale to the photospheric hvdrodynamic time scale. =, r,, for a semiempurical
squilibrium. We take the VAL model (Vernazza, Avrett. and Loeser 1981) as an example. since 1t has been used extensively to study
both linear {McClymont and Canfield 1983) and nonlinear {An er al. 19831 thermal instability. The plasma pressure in the loop at the
minimum temperature region is about 10* dyn ecm ™2, and the photospheric scale height. measured from the lower transition region
Jdown to the minimum temperature region. is about one-tenth of the loop length. For a magnetic field of 100 gauss, 7, z, = 107%,
which is the same as the ratio of coronal to photospheric MHD time scales t,, r,. Since we neglect gravity in our calculations, we
may not put the footpoints at the minimum temperature region, where gravity is important. We also estimate the time scales at the
region with temperature T = 6.5 x 10° K and density n = 8.5 x 10*? cm ™%, where the gravitational force is negligible (about 17 of
the Lorentz force). The estimated time scales are r,/t; = 10”2 and 7,7, 10~ 2. Thus we may justifiably neglect parallel as well as
perpendicular motions at the footpoints.

There are two different ways to represent the absence of motion at footpoints. One is that the plasma displacement § = 0 (Raadu
1972 Hood and Priest 1979, 1981 ; Hood, Priest, and Einaudi 1982); the other is that the perturbed magnetic field B, = 0 (Paper I).
Note that the condition B, = 0 ensures the condition § = 0, but the reverse is not true (Paper I). Since the condition 8, = Q implies
ughter binding of field lines to the footpoints than the condition § = 0. B, = 0 should yield a higher stability boundary. Using
Er) = ¥ret™® k) cos? x= (An 1982) and &(r) = &rie"™ """ cos 2z (Hood and Priest 1979) t~ represent 8, =0 and & = 0 at the
footpoints, respectively, we can derive an energy-principle expression

oW = JW, + Hols, . 2

Here %) is the energy ntegral without line-tying {Newcomb 1960), and oW, is due to line-tying: 6 = 1 and 4.3 for the boundary
conditions £ = 0 and B, = 0. respectively: and ¥, is identical for the two different boundary conditions. (Paper . Since ¥, > 0.
we can see that the condition B, = 0 gives an insignificantly higher stability than § = 0.

b) Test Functions for Line-T yving

md + kz) imé

Which test function [(§,(r) = Jtrle Cos 1z Of §.ir) = Jtrie'™ cos 2:] represents a perturbation with line-tying most reason-
ably. and how does the choice affect the results? Let us first consider the form of the perturbations. The helicai form of
Er) = Sret™ "t cos az is shown in Figure lu. Line-tying is expressed with cos xz. Since eguilibrium magnetic field lines
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are helically twisted, the field lines are least disturbed if their helicity is the same as that of the perturbation. The nonhelical form
[Z.r = Zr1e™ cos xz] is shown in Figure 1b. Because the perturbation is not kelical, it can disturb the field lines greatly no matter
what helicity they possess. The disturbance of field lines can induce two competing mechanisms. slow magnetosonic modes which
mas be destabilizing and magnetic tension which is stabilizing. The following calculation will show that £,(r) results in complete
stability. while § 1r predicts instabulity for a force-free equilibrnium. The result implies that the stabilizing effect of magnetic tension is
more significant tha-, the destabilizing etfect of the slow magnetosonic mode for kink modes. The effect of choosing the helical 3 1r)
over the nonhelical Z,(r) is easier to understand if we simply note that the nonhelical &,ir) 1s a special case of the helical & (r), with
L =0
Consider the force-free equilibrium given by Gold and Hovle (1960); namely,

B.=1(1+r). By=r(l ~r). 3

The magznetic delds have a uniform twist and a uniform plasma pressure. Hood and Priest 119791 showed. using 3,.r) as the test
‘unction, that the eqaiitbrium with pressure p, = ) becomes unstable as the aspect ratio 4 = 2L b becomes larger than 337 Here L
's 2 half loop length, and b is the radius of a loop cross section. But if we use &,(r), we can show analytically that the equilibrium is
:empletely stable no matter what the aspect ratio is. By letting K = 0 in the energy integral of Hood and Priest (1979) for the
orce-free equilibrium. we obtain a oW for the nonhelical Z,(r)

SW = [J’E.!'ti;)’ +gill. )

-

Here
f=1rm'Bi + x*r*BY.D . g =(m* -~ \x’rB; D + 22*r*B? D* — 22%r°B.B, D, D =m?+ 2%, (5)

where Z, is a radial component of %, 3 = xb 2L. B} = B! + B}, and B is the derivative of B, with respect to r. For the force-free
equilibrium. g > 0for m = | modes. Since fis always positive, W is positive for m > 1 no matter how large the aspect ratio is.

This result contradicts the result of Hood and Priest (1979), who found the instability for 4 > 3.3x. The different results are due
solely to the different choice of test function. Because Van Hoven. Ma, and Einaudi (1981) used &,(r), the complete stability they
obtained is not from line-tying but is owed rather to their choice of test function. The analysis suggests that results obtained using
the nonhelical §.(r) do not predict the stability correctly. Mok and Van Hoven (1982) used the nonhelical &,(r) to study the effect of
line-tying on resistive instabilities. They concluded that line-tying completely stabilizes m > 1 resistive modes by noting that &,(r)
does not allow mode rational surfaces in the plasma except for the m = Q mode.

¢) A Constraint on the Test Function, & + By =0

It was assumed that plasma motion parallel to the magnetic field is zero, i.e., § - B, = 0, to simplify the calculations (Hood and
Priest 1979) and to obtain a necessary and sufficient stability condition for a force-free equilibrium in the limit 8 = 0 {Hood and
Priest 1981). The validity of the constraint can be checked by studying a component of the perturbed momentum equation parallel
to the magnetic field (eq. [1]). For the left-hand side of equation (1) to be zero, the equilibrium pressure must be identically zero. For
force-free equilibria with p, # 0, the constraint § * B, = Qs not valid; it results in an overestimation of stability.

Since Paper I did not use the constraints that Hood and Priest (1979) used for & comparisons of the results obtained in Paper |
with those of Hood and Priest (1979} will give a good indication of how the constraint atfects the stability. For comparisons, we have
to change 4.3 to | in equations (16}424) and correct a mistyped term 222 T r? to x* T, #* in equation (18) of Paper [. The number 4,3
came from the use of B, = 0 (rather than §, = 0) as a line-tying boundary condition. The non-force-free equilinrium which Hood
and Priest used 15

B.=1, By = (b 2LIDOV (1 + 1), Po = B2+ [Ib 2LIMOJ 2L + r3)? . (6

Here 0y is a twist of field lines at r = 0, defined as ®r) = 2L B, brB.. and J is the ratio of plasma to magnetic pressure. Figure 2
shows how the stability boundary is changed by the constraint § * B, = 0. We plot the critical twist (02 versus longitudinal wave
vector k for a marginally stable plasma with aspect ratio 4 = 2L b = 10. Line ! is the Kruskal-Shafranov limit (Kadomtsev 1966),
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11979 using the constraint & - B, = 0. line 3 is the result *f this paper without the above constraint. and line 41s the result without line-tying.

‘ine X 1s a result of Hood and Priest (19791 using the constraint above. line 3 is the same result without the constraint 1detailed
calculation is in the next section). and line 4 is a result without line-tying. The instability region 1s the right side of each curve. The
figure shows how the constraint § - B, = 0 alters stability for various values of k. Note that the effect of the constraint is to raise the
<amiity boundars. and that the etfect is significant for low values of & As the difference between lines 2 and 3 shows. constraint
2 B, =0 yields. for certain values of k. two stability regions for high and low values of ®(0); without the constraint. only one
stability region exists. The figure demonstrates that the constraint should be discarded for a meaningful study of the line-tying effect.

More detailed calculations and comparisons are given in the next section.
{II. KINK INSTABILITIES IN CYLINDRICAL PLASMAS

a) A4 Differential Equation for Stability
In Paper I, we studied the MHD stability of cylindrical plasmas with line-tying using the energy principle (Bernstein et al. 1958).
The test function 3r) = E(rle"™ "** Ccos* xz was used, with B, = 0 at the footpoints. A stability condition for local modes was
Jerived analytically by taking a limit as m goes to infinity. In this section. we will study kink instabilities for various equilibria. A
detailed physical explanation for the effect of line-tying will result. For comparison with other work, we will use § = 0 rather than
B. = 0as the boundary condition. By changing the equations to the dimensionless form, we have

SW = (2 2% ([m:;w + G:Ydr . )

Q = (nmB, + krB)(1 + Sg) + 2*rX(BE + BiSy)] A, .
G =rk - By*l — L/A,) + 2Bpy k?ri A, + 2k3rk*r*B: — m?B3) A + 2302 T r® + 23Ty A}
+ 2 Tyk?*r*B} — m*B} + *Tyr* + 2* T A} — 23(r*BISY — 2’ Tyr*Bi) r* A, + 2Bl + S)r
+ (2T, + 2*T)rA, — [AAPT) + *T)/A4, . (8)
Here
T, = r*B2 + r}S[m*B2 — B}) - 2mkrB,B,], T,=r¥1+mS), Ty = —(mr*B.S)?,
T, = B} + S[(B} ~ B}ym* + 2krmB, B.] . T, =(B} - B))r-SBim* r, (9
A, =m? + k¥ 4+ 2T, S = Bypo [(krB, + mB,)* + 22r*B2] . So = 2°r’S.
and ; is a specific heat constant. Stability can be studied after obtaining the Euler-Lagrange equation from equation (7):
Q) -G, =0. (10

We use Newcomb's theorem | Newcomb 1960) to study the stability, as previous authors have done (Chiuderi, Giacchetti. and Van
Hoven 1977; Hood and Priest 1979: Ray and Van Hoven 1982); stability is determined by examining whether or not the solution of
equation (10) has a Zzero crossing between r = 0 and a radial boundary r = d {Newcomb 1960). The boundary condition for J, at
r = 0, which is obtained by solving equation (10) near r = 0.1s

(=1 form=1, =0 form>1.

_

o
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N oLrrgnation o dees et aane singulanty, we integrate the 2guation up to r = 4 Formost of our calculatons, d = 815 used even
L2nac eund that the resalts drensensitive to the chowe ot dfor g+ 8
b Egui b rium
W m e studied the stabihity of two ditferent equilibria One s the torce-free equibbrium, equations 13, with p, = 0. the second is
e nonolorce-tree equilibrium. equanons 161 Both were studied by Hood and Priest 11979). We have already taken these two
f e oria to understand how the constraint § - B, = 0 atfects the resuits 13 1D Since the equilibna have current densities distnibuted
1 .orspace. we have constructed two new equilibria with current density localized within a cyhinder of radius r = 1. namely,

je=Joll = 2%y forrg 1, 5. =0 forr> 1, B.=1. (1

The equtlibrium has a current density localized at r < 1 and becomes smoothly zero for r > 1 The current channel i1s embedded in
reant-iree ambient plasma » ' B =2 x 1072 We took two Jdiferent current Jdensities. [ = 1 and [ = 2, to learn how different

§

ent-density profiles (or ma “ic shears) affect loop stability with ine-tving Note that the current-density profile with [ = 1 s

=+ qoerchanchatwithl = 2 and that [ = 2 has a higher magnetic shear than ! = |
1 Resuirns
F oot et as consider the force-free equilibrium. equation i 21 Since eguations v« tongre identcal to equations 12.5) and (2.6) of
B and Priest 1979 for this equibibrium, we can use the resgit shown in Freure 2ot Hood and Priest (19791 without repeating the
..... ioon The fgure shows that plasmas without dane-tsing are unsiame tor o & - L farany aspect ratio Line-tying completely
Tt asma ofspectratio 4 o= 2L b < 330 A the dspect Tatto nervanes Rowener the efect of line-tying hecomes negligible.
- r1~’ . 2quthibria, we need to anderstand how the pressore gradient ofects stanniy As an exwam r¢ take the

. rd n cguations chaand compare aur resaity Aavn R e 4 Hoed and Priest 9790 Fraures Wd ¥ show the
ST ticat Uhast Dﬂ'» 2ersus fongitudinal wave ‘-cctor Aforaspect ratiosaf 4 = 1uand 4 = 20, respectively. The nuy 1n each curve
< the came meaning ason Frgure 2 Ay e pomnted cutin s I the constraint § - B = Ostrongly atf tue stability of
2 ety more sigmnicant at the lower aspect rato It also ~hown that stability withou :-tving iline 4)
'm the Krusade-Shafranoy amit ds & feredsey A comparson o ane 3 aithanedresealst o vinghas a
cemne 2ffect for low-a modes. but insigmincant for mgher « modes The two figures do not show any - shing etfect
- TR TeLl A Poreees I ConIrant to the force-troe pgalihrum studied abose Infact as the ratio increases.

e PAEFEN AEEE B

t e rnasaooco gt etecn aven thoaeh the magnenic iension cwang te ane-thiang decradses.
I2 Fraare 4 ae piota cnticas twast vielding marginal >tabil 1ty fOr vartous dspect ratios. The critical twist increases with aspect
. The gure dJemonstrates that line-tving 1s more stabihzing at higher aspect ratios
Since Jhanges oo the pidsma current-density profile drive instabihties. ditferent current-density profiles should result in differing
~aty In Frgure $owe present the stability of the equiiprium shown in equanons (1) for I = 1 and | = 2. The figure shows that

ne-tving hds 3 more stabiiizing effect on more peaked current-density protiles.
D Interpreranon

We have found that ine-tving has a significant stabilizing etfect at small longitudinal wavenumber k., but the effect becomes
m~igmiticant as & mcereases for 4 given aspect ratio. As the aspect ratio increases. line-tying becomes more stabilizing for equilibria
aith a pressure gradient, but less stabilizing for force-free equilibria. The stability of force-free equilibria with and without line-tying
s ndistnguishable at extremely high aspect ratio. In this section. we provide the physical explanation for these resuits.

Furst, why Joes the crfecl oflinc tying b >me negligible as k increases? The contribution of line-tying to stability is expressed in
erms g vpomonql to x* or x* in equat10n> 8) and (9); x* 1s a >mall quantity ix~ < 1) for the usual Loronal loop condition. For
svampiz. for afoop with A L = 0.1, x~ is less than 0.04. Becau>c 2 15 50 small. any terms which have 2* or x* can be negligible.
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However. terms which have 2°S are not negligibly small for some cases, even when x* — 0. From equations (9) we have
1°S = x?Bypy [ritk « Byi* + x°r* B3] . 112)

At 14 mode rational surface, where krB, + mB,y = 0. x°S = gyp, r*BI. which is not negligible even when x* — 0. From this mathe-
matical behavior of x°S we concluded quickly in Paper I that line-tying was important only near a mode rational surface. However.
A ind that the sonciusion s true only for large values of & for 4 non-force-free equilibrium. This equilibrium. equations 165, has
3, = wbr 2l - r5y = 2Bk = dnxinis 2 longitudinal wavenumber), and tkr8, ~ mB,)* = x714nr - mB,)* For large values of &
or i 1ArB, = mB,)* is large: in other words. 2°S 1s small. except near a mode rational surface, where line-tying will be important.
On the other hand. since tkrB, + mB,)* is smallt ~ 27) for small values of k even far from a mode rational surface. line-tying can also
be an :mportant stabilizing mechanism far from a mode rational surface. Figures 2 and 3 show that the critical twists 0} with and
~ithout line-tying approach each other for higher & but sigmificantly depart from each other for low k. The physical explanation is
*hat magnetic fields are bent so severely by a perturbation with a short longitudinal wavelength (large k) that the bending caused by
line-tving does not make a significant contribution to the magnetic tension. On the other hand. for a perturbation with a long
wavelength, the bending of field lines by line-tying makes an important contribution to the magnetic tension.

How does the pressure gradient atfect the stability of plasmas with line-tying? It does not directly affect kink instabilities. because
the driving force of the instability is plasma current. not pressure (Bateman 1978). Rather, it affects the stability indirectly. by
in:luencing the magnetic field profiles. If the plasma has a pressure gradient. B, depends on the aspect ratio as well as the field twist.
), as we can see in equations (6). The quantity B, decreases as aspect ratio increases for = given ®0), resulting in decrease of the
plasma current density (the driving force of kink modes). In equation (8) we note that as x — 0. stabilizing terms (magnetic tension)
decrease with 27 leven at mode rational surfaces), but driving terms decrease with x*. Therefore. as the aspect ratio increases (x — O,
ane-tying is more stabilizing. The stabilizing force increases compared with the destabilizing force. On the other hand. for a
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force-free equilibrium. since B, is independent of aspect ratio see eqs [3]). the plasma current density does not change while the
stabilizing etfect of line-tying ¢ ~ x°) decreases as x — 0. If the aspect ratio increases sulficiently 12° = 0), the stability of the piasma
with line-tying becomes indistinguishable from that without.

1IV. CONCLUSION

We have discussed several studies of the MHD stability of coronal loops with line-tying, concentrating on boundary conditions,
test functions, and other assumptions commonly used, and we have reached the following conclusions:

1. A reasonable boundary condition for line-tying is to assume that plasmas do not move in any direction at the footpoints of a
loop.

2. When a simple test function is used for the energy principle (Bernstein et ul. 1958), the function should be helical in form, i.c.,
e = Hret™ "4 f(2), with f(z) = 0 at the footpoints.

3. Theconstrainton §. § * B, = 0, should be discarded because it overestimates stability when § # 0.

We have compared the stability of cylindrical plasmas on this basis with the results of Hood and Priest (1979) and Van Hoven,
Ma. and Einaudi (1981). We have found qualitative agreement with Hood and Priest (1979) although their results predict a higher
stability boundary. The very different results of Van Hoven, Ma. and Einaudi(1981) appear to underline the importance of choosing
4 heiwal test function. Our previous assertion (Paper [) that line-tying is an insigmificant etfect for a loop with a high aspect ratio is
true only for high values of the longitudinal wave vector k and only for force-free equilibria. The effects of line-tying on force-free
equilibria are not the same as on non-force-free equilibria. As aspect ratio increases. the etfect of line-tving becomes negligible for
force-free equilibria. but it becomes more important for non-force-free equilibria. We have provided detailed explanations of why
ine-tving has diferent etfects on the force-free and non-force-free equilibria.

Even though the simple helical test function does not give sufficient and necessary stability conditions, it has a certain advantage
over more sophisticated methods. i.e.. Einaudi and Van Hoven (1981, 1983) and Hood and Priest (1981). With the method of Hood
and Priest (1981 we cannot study the stability of non-force-free equilibria because their assumption £ - B, = 0 1s not valid for
V-, =0 The method of Einaudi and Van Hoven (1981) is so complicated that nonideal effects cannot be included 1n the calculation.
That is why Mok and Van Hoven (1982) used a simple test function to study the etfect of line-tying on resistive modes. Because they
ird notuse a helwal test function, their results could not properly predict the stability of resistive modes. The ideal MHD stability of
coronal arcades wath line-tying was studied by various authors, who found that line-tying completely stabihzes kink modes. Most of

rese studies. tov. used the constraint § + 8, = 0 or nonhelical test functions. and thetr resuits overestimated the stability. We believe
“at further careful studies are needed, using helical perturbed functions, to understand the effect of line-tying on nomideal MHD
:odes as well as on the statality of coronal arcades.

The author thanks Dr. R. C. Canfield for valuable discussions and comments during the course of this work. This work was
supported by the Air Force Office of Scientific Research. Air Force Systems Command. USAF. under grant AFOSR 82-0092. and by
NASA under grant NSG-7406.
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ABSTRACT

We have studied the effects of photospheric line-tying on
the localized radiative magnetohydrodynamic (MHD) modes of
compressible coronal plasmas. We used a simple trial function to

represent the effect of line tying.

wWe have found that the effect of line-tying on radiative
MHD stability varies, depending on the radial pressure profile;
line~tying completely stabilizes both ideal and radiative MHD
modes for plasmas with a negative pressure gradient. For plasmas
with a positive pressure gradient (e.g., cool-core loops), which
dare in ideal-MHD stable state, radiation can initiate MHD
instabilities near the center of the cool-core loop. In the
surrounding hot region, however, line-tying completely
stabilizes the plasmas. It also has stabilizing effects on the
magnetosonic and condensation modes; bent field lines allow heat

flows into or out of the condensed (compressed) region.

Subject Headings: hydrodynamics - plasmas - Sun: corona
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I. INTRODUCTION

Since coronal plasmas are strongly coupled with magnetic
fields, the plasmas are subject to MHD as well as radiative
instabilities. A number of investigators have studied the MHD
effect on the thermal instabilities to understand the formation
of sclar filaments in a plane-parallel geometry (Field, 1965;
Nakagawa, 1970; Chiuderi and Van Hoven, 1979). Because loop
structures are basic magnetic field configurations in the solar
atmosphere, study of the stability in cylindrical geometry is
preferable. In previous papers, the radiation effects on local
MHD modes of incompressible (An, 1983a) and compressible (An,
1984a, hereafter Paper I) cylindrical plasmas were investigated,
and the magnetic field effect on condensation modes was also
studied (An, 1984b). Since cylindrical geometry is closer to the
real solar loop geometry, these studies enhanced our

understanding of observational results,

However, these and earlier studies have not taken into
account the photospheric boundary, in which plasmas are
egsentially motionless on the coronal MHD time scale. The effects
of photospheric line-tying on ideal MHD stability have been
studied by numerous authors (Raadu, 1972; Hood and Priest, 1979,
1980, 1961; Einaudi and van Hoven, 1981; Van Hoven, Ma, and

Eipaudi, 1981; An, 1982; Migliuolo and Cargill, 1983). All found

2
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that line-tying has a stabilizing effect on ideal MHD modes.

Magnetic tension is the most important stabilizing mechanism

arising from line-tying.

How does line-tying affect radiation and heat conduction?
We may certainly expect that its effects on energy dissipation
mechanisms will not be the same as on ideal MHD modes——magnetic
tension does not affect the energy dissipation directly. This
study is a continuation of the attempt made in An (1983b) and
Paper I, to study the true role of photospheric line-tying in
compressible radiative plasmas. In Paper I, we found that
radiative and compressible plasmas have magnetosonic and
condensation modes that affect the MHD lcocal interchange modes.
Radiation can initiate MHD instabilities in plasmas that are in
marginally stable ideal-MHD states. Cool-core loops (Foukal 1975)
with positive pressure gradient everywhere in the loops, which
are stable to local interchange modes, are also destabilized by
radiation (An 1983a). According to recent theoretical studies of
loop equilibria, the cool-core plasma is a natural consequence of
force and energy balance (Xue and Chen, 1980; Einaudi,
Torricelli-Ciamponi, and Chiuderi, 1983). In other words, the
cool core is not a result of dynamical evolution, but a condition
of loop equilibrium. If a cool-core is a general phenomenon in
solar loops, as observed by Foukal (1975) and predicted by the

theoretical studies, the radial pressure profile should be taken
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into account in the stability calculation.

In this paper, we will try to derive the basic physics

underlying the effect of line-tying on radiative modes and to
study how different radial pressure profiles influence the effect

of line-~tying on radiative MHD stability.

11. GOVERNING EQUATIONS

We make several assumptions for this study. Coronal
plasmas are represented as compressible cylindrical plasmas of
circular cross section, with helically twisted magnetic fields.
Heat conduction across the magnetic field is neglected. The

- ambient heating is assumed constant over time., Physical
quantities are uniform along the loop direction and have only
radial wvariations. This assumption does not represent the
photospheric boundary where variations of temperature and density
from coronal values are significant. As a realistic treatment of
the photospheric boundary would require solution of two 2-D
second~order partial differential equations, we assume an
idealized boundary condition, discussed in Section III below, to

simplify the calculation.

(a) Time-Dependent Equations
The equations that describe the MHD properties of the loop

plasma under the above assumptions are
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Here p, P, and T are plasma density, pressure, and
temperature, and _ﬁ, -j\, and -E are magnetic field, plasma current
density, and electric field, respectively. H and R(p,T) are
ambient heating and radiative energy loss functions. The quantity
Ky is the heat conductivity parallel to the magnetic field,
defined as Ky = xoTs/z where «, is a heat conduction constant
(Spitcer, 1962). The quantity eb - 'é‘/lsl is a unit vector
parallel to the local magnetic field; ¥ is the specific heat

constant; and K is the gas constant.
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3V - =
N —— = . TP 3
T AT P+ 3 B (1)
L1 YP Tev + (y-1)[H~R(p,T) + 7exy, &8, *7T] (2)
dt Ve i bb

e
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(b) Steady States
An equilibrium for a cylindrical plasma can be obtained by

solving the dimensionless static steady-state equations below:

o Yo o (8)

o o (9)

B - R(:,T) = 0 (10)

Subscript O signifies the equilibrium quantity and 8 is
the ratio of plasma to magnetic pressure at a standard point, 8 -
90/802. Because T has only radial dependence, heat conduction
does not contribute to the steady state energy balance, Eq. (10).
As discussed in Paper I, we obtain equilibria assuming that
density is uniform along the radial direction. This assumption is
supported by Poukal (1975), who observed that radial density
variation i3 insignificant compared with the temperature
variation. We assume that the radiative energy loss function
R(p,T) has a functional form as R(p,T) " Pp2/T for T > 105 k. We do
not attempt to solve Eq. (10), because we do not know the
functional form of the ambient heating rate H. Rather, we

calculate H as a function of radius from Eqs. (8) and (9).

In An (1983a) we found that the effect of radiation on MHD

ahsani. - et o i i T e =

2
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stability varies, depending on the pressure profile. We expect a
gimilar effect of the pressure profile on line-tied radiative MHD
modes. We therefore construct two different equilibria. One has a
negative pressure gradient (i.e., the pressure is greatest along
the axis of the cylinder and decreases outward), which is
unstable to local interchange modes, and the other has a positive
pressure gradient, which is similar to that of cool-core loops
(Poukal, 1975). The profiles of the two equilibria are as

follows:

EqQuilibrium I {negative radial pregsure gradient)

B =1

z

= — (r? - Ir)

a

2 Aqo
P =27y 702 2 [N P

-.O-(Aq)(ir - 3r® + 4r-) ; (11)

o)
5 r 2 -

P 1 + 3 (KE;) /3

B, =2-r2 , B, = -r/3
(12)

L
P=1+[L7-r2-r7]/5

Here the boundary of the loop is r = 1, A is the aspect ratio,

defined as A ~ L/a (a and L are the radius of a cross section and

2
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the cylinder length, respectively), and qo is the safety factor g

at r = 0, defined as q = —2ﬂrBz/LBe.

III. DERIVATION OP A DIFPERENTIAL EQUATION POR STABILITY

The linearized, dimensionless Eqs. (1) through (7) are

_—= - v 3 X j ¥
P53t Pl+Jo 1+Jl E'o (13)
! 338 338
e = = P TeVUeTP —c(y=1){=(= 20388y
t (P T Vv TR me (y 1)‘2(5T)QT1: >G50 (14)
N - B
=D [ BT T e T s 7T ]
i ' '8 l
0
- —
jl =V x Bl (15%)
- - —
Bl =7 x (5 x Bo) (16)
Tev vt (17 ‘
Ql = = 5 DO - 30' > )
= (18
Pl Tlpo + Topl )

Here subscripts 0 and 1 stand for equilibrium and perturbed

quantities, respectively. Time t is scaled by the MHD time scale

tu - (p°a2/302 )1/2. The radiative time scale is t:r = 390/2R; the

. . . 1/2
conductive time scale is tc = LZPO/KOTO / ; and € is the ratio of L
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MHD and radiative time scales, € = tM/tr. The quantity E*is a
plasma displacement vector (a?/at ='3), _); 18 the wave vector, and
')2-'50 - sz + (m/r) Be, where k and m are longitudinal and poloidal
wavenumber. In Eq. (14), we assume that ambient heating is not

perturbed.

In order to impose a line—tying boundary condition, we

-
assume that the plasma displacement function § is

i(m>+k +..
el(m' kz) .t COs az (19)

-

- 2 -
2(r,t) = 5 (r)

Here a - ma/2L and cog az, which 1is zero at the footpoints,
represents line-tying. There are several other choices of ~?;)
for line~tying; the effects of different choices on the results
were discussed in detail by An (1983b). Equation (19) represents
a helical perturbation, which least perturbs a magnetic field
line if the helicity of the field line is the same as that of the
perturbation. Note that the trial function does not predict a
sufficient and necessary Sstability condition. The most general
form of ?‘for line tying can be expressed as a Pourier series in
the z~direction (Einaudi and Van Hoven 1981; Hood and Priest
1981), which gives the lowest bound for stability. However, the
general form does not allow the addition of heat conduction and
radiation because of the extreme complexity of the calculation;
couplings between all the longitudinal harmonics will frustrate

the analyses.

2
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By substituting Eq. (19) in Eq. (14) and using Eqs. (17)
and (18), we can derive a perturbed pressure with a form Pl =

C,(r) cos az + C,(r) sin az. In this form, P, is never zero at the
footpoints. Por ideal MHD studies, both Cl(r) and Cz(r) are
included in the calculation (An, 1982), But adding radiation
effects with the additional term Cz(r) makes the calculation

hopelessly complicated. For simplicity we therefore assume that

P1 18 zero at the footpoints, i.e., P1 is

i (m3
| = Pl(r) el<m“+k2) cos 1z (20)

P
This simple form allows us to understand the basic physics
without making the mathematics overcomplicated. Neglecting the
gin az term in Eq. (20) can be justified if we restrict the study
to high aspect ratio loops (i.e., a << 1) because the term, which
comes from 3§{/3z, is proportional to a. Equations (19) and (20)
imply that plasma velocity and perturbed pressure are both zero
at the footpoints. In a hydrodynamic study of thermal stability,
Antiochos (1979) used the same boundary condition to discard the
symmetric modes as unphysical. Recently, Antiochos et al. (1982)
found that Egs. (19) and (20) correspond to the boundary
condition for antisymmetric modes and Eq. (19) alone corresponds

to symmetric modes with a rigid wall boundary. Hydrodynamic

2

ey

e A"
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stabilities for the two different boundary conditions are
different. Por a detailed discussion of the boundary condition
and stability, see Antiochos et al. (1982) and McClymont and

Craig (1982,a,b,c).

-t
By substituting £ from Eq. (19) and P, from Eq. (20) in the
linearized Egs. (13) - (l18), we can derive a differential
equation for stability. We do not consider sin az terms by

restricting the problem to high aspect ratio loops. Por a general

-
expression of £ uSed by previous authors (e.g. Einaudi and Van

Hoven 1981; Hood, Priest, and Einaudi 1982), the sine, cosine,

and their cross terms might all be important for determining the

stability. After a lengthy calculation, we have

Py = xla' + W, (21)
-
N e (k-Bo)spo'x
VeE = AP + XZ 4 —
1 g ro Wl .
(K425 2P 2k, mB (22) ‘
+t3 [t /= 8, - ]
pow2 B, 2 ZkBq mB i
- ] 1 ~ 4
Cmeqt 200 4 =2 (e, - —2),]
r 1 r rQ 8 r 3 (23)
2B, B 2kB mB
. 8 .78y 8 z
+ 1 [— (=) + - —=)ay
« r (r) r2 (kBO r )*“4
-~ -
(2kB_)°B 2 {(k*B )? + a?B_?}
+ < o _ 0 z ]
r-.. r
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mB
WL F FU,F 0 2BS 0 2kB BT (kB - —%)
q, = &' + 5[ + B =70 r (24)
1 iy A rz - r: 9] ]
Here
X =y (25)
n2
K=k®+— +a? (26)
r-
- = :LW- + BOLK (27)
! '\sz(%;— + kz) + K(k'BO)(—
A= ——= [ = ] (28)
o B
Feo ot 4 (B) +4%8] (29)
5/2
T t
. _ (y-1) /2R o ro e - PP
g = 1= [{=) + — { (k- Z 22 21 (30)
o [(BT)p B2 ¢ -k B)m + u'B, ]
8] o] c
5/2
(."_I)To 2R To)/h tr - e 2 k
] = — I . < 2 2
. ((53) 57— ¢ (kB)" + a7 7] (31)
P 0 c
- - )
a7 >/2(y_1) 27 B (BB ) t_ ko w2 + (kB )B K
g =8 + 0.2 [e] o 2 [o] _l’.‘_ { Q o] z } (32)
B%p w? t Q
o 0 Cc
BZ ‘
“1 (w3 + r)/3

= - 1
w2 w,4 PO /r (34)
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(v-1)2T B2 (k*B )47z

2 (35)

W, = - [w+er+A3(ess +yP x)]-1 [e -2 9
<4 C o]

o (36)

(:z_e+yP w)2KB (KB, - —2)

—])

r-..

Here X' 1is a derivative of x with r. Egs. (26)-(29) represent
terms for ideal MHD and Egs. (30)-(32) are due to radiation and
heat conduction. Egs. (33)-(36) show how perturbed pressure is
affected by the energy dissipations and line-tying. The effect of
line-tying appears in different forms in EqQs. (26)-(29) and (30)-
(32). Line-tying enhances magnetic tension in the ideal MHD terms
in Egs. (26)-(29), but affects heat conduction in the energy
dissipation term of Egs. (30)-(32). Note that at a mode rational

surface heat conduction plays a role only for line-tied plasmas.

IV. LOCAL INTERCHANGE MODES
We now derive the stability condition for local
interchange modes to study how line-~tying affects them. The

method is the same as in An (1983a). A second-order ordinary
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differential equation is derived from EQs. (23) and (24). As m and
k go to infinity while keeping q finite in the differential
equation, eignfunctions are localized near a mode rational

surface rs(krssz +mB_ = 0) (An 1983a) and the pressure gradient

6
becomes the dominant driving force over plasma current for
instability (Dobrott et a. 1977). Since radiation and heat
conduction affect directly plasma pressure [See Eq. (14)]), we
expect that the effect of the energy dissipations on the local
modes (driven by pressure gradient) will be significant. After

taking the limit as m = o, the second order differential equation

becomes, at a region far from a mode rational surface L

Be‘
v = (1 -ng)? =0 (37)
here n is a longitudinal mode number and g is a safety factor

defined below Eq. (12). The solution of the equation is x = 0.

Near r = Iy the differential equation becomes

caxz (Cof_u:'~l—a13832)rBz2 BezBZ2 SL'.: > .
— x = ~7=—7 rg e G Ger) i]
0o )
2 2p 2 2 - ”
+ x[- —[—zzse &p - — %2 2B ® {e o "o (38)
r BO o] r r r
- 5/20 # 2p 2 2
. ey I)KOTO TO a Bz . (¢apoe+yPow) 2}3e 16l
rBOZ ' Boz




Z4SANEFF ~16- SP-83~-36 Rev., 2
where
- 2 2

G=w(B 2+ AYP )+ €(B 26 +Pp B)

Eqs. (37) and (38) show that X is localized near r = r,asm - oo,
We can derive a dispersion relation for 1local modes by
multiplying Eq. (38) by x* (complex conjugate of X) and integrate
by parts.

) - B

"0 2 'OV - —_ —

e — e YPL (YR HN) = 0 (39)
wWhen we derive Eg. (39) we use j s2 Ix'l ds = 1/4 I Ix!2 ds and
neglect a term with 1/m2.

Here
P = :oka‘ + Cs‘) (40)
(y-1)C2 2y o c2 715/2 t
—= ' S m R 0,3R ~ s o A~ r
= | (= +D) () ~ —(— - T = —_— 4 B ——
Q v [(c‘ DEP - T ]+ (v 1)[cm+ Y] o TR (41
s o 0 T Q C

B2B2 , 2 2B=gP' afB? 4B 3YP

y-L182z@4,, 8 o, =2, 6 o (42)
4 rB?2 ' q r2B2 r r:B2 (BS + 8yP)
o o o o o
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2B CCiy =157 4 B
.o . dR m g ! S0 R
W= - -1) 5 - e
5= (Y ) dr ; — [(5T>S
ProBs (43)
TS/2 t
(o] A r
+ alpd L
B2 E‘z t ]
0 ¢
and
€y = AP /e, 2= B0
5 (44)
SR 3R Yo 3R
(=) = (=) + /< (=—
s TSt aooT, B

The coefficients of Eq. (39) are evaluated at a mode rational
surface zs(krsBz + mBe = 0). The quantity Y represents the
stability condition for local ideal MHD modes, and Q and W are due
to radiation and heat conduction, The effects of line-tying
appear as magnetic tension in Y and as heat conduction in Q@ and W.
In Paper I, we found that heat conduction does not influence the
stabiity of the localized modes when no line-tying is considered.
Since Q > 0 is a stability condition for condensation modes in
uniform plasmas whose wave vector is perpendicular to the
magnetic field (Field, 1965), line-tying may be seen as a
stabilizing mechanism for the condensation modes. It also

stabilizes the magnetosonic modes represented by the terms within

brackets in W of Eq. (43).

There are sound physical explanations for the effect of
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line-tying on the magnetosonic and condensation modes. AS plasmas
are condensed (or compressed), so are the anchored field lines.
Plasma motions across the field lines bend the lines, as shown in

F1g. 1. In condensation, line tying connects the cool-condensed

: central region to unperturbed boundaries, results in heat

conduction from the boundaries into the condensed region along
the field lines (Pig. 1la). On the other hand, in adiabatic
compression (magnetosonic modes), heat will be conducted out of
the hot compressed region (Fig. 1b). The heat flows gstabilize the
two modes and can do so only because of line~tying. Without line-
tying, the field lines are not bent by the perpendicular motion,
and heat cannot flow into or out of the condensed or compressed

region (Fig. 1c).

Next, we may see how line-tying affects the local MHD
modes. As discussed in Paper I, we can derive zero- and first-
order solutions of Eq. (39), noting that € ~ 10—4 for coronal
loops and € ~ ].0_l for quiescent prominences. The growth rate w

can be expanded with respect to € as

i = IR 2
w ”O*’C‘M"’C*I’""-- (45)

The zero-order solution Wo (ideal MHD) is

Wl =
5T~ — (46)

C . o

e -
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and Y > 0 is the condition for stability. [Note that we use Wt

rather than eiwt for time dependence of perturbed quantities, see
EqQ. (19)). A difference between stability conditions with and
without line-tying is the third term in Eq. (42), (a28z2/r),
which represents magnetic tension due +to 1line-tying. Por
Equilibrium I, [PO' < 0, Eq. (11)], aZBzz/r is larger than the

P_' term in Y because Bz “~ 0(1), B

o ~ o(a), and BPO' - o(a?).

e
Line—-tying completely stabilizes the 1local modes for this

equilibrium.

The first-order solution, when wo2 * 0, is
NTppp— (47)
2Pp o”
OO (o]

For w02 = 0, we have to solve the equation

o P €0 Q
=34 w4+ eW =0
r € (48)

The solution is given in Eq. (25) of Paper I, where we find that at
least one unstable mode exists in coronal plasmas without 1line-

tying.

In order to understand the effect of the radial pressure

gradient, it is necessary to numerically evaluate w, and w,. For

0 1

plasmas in ideal MHD stable states, w, is imaginary [see Eq. (31)]

—— e e e — m————

2
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and the sign of Wy determines the stability. When plasmas are

ideal MHD unstable (i.e., wy > 0) the sign of w, does not
influence the stability because € << 1. Let us consider the
stability of Equilibrium I, Eq. (11), and then Equilibrium II,

Eq. (12).

Por Equilibrium I (Po’ ¢ 0), a numerical evaluation of Y
[in ideal MHD stability, Eq. (31)) with and without line-tying is
given in Fig. 2. The figure shows that plasmas without line-tying
are unstable for r = 0.35 and marginally stable at r = 0.36.
Radiation can induce MHD instabilities in the marginally stable
region (Paper 1). When line-tying is included, the plasmas are
completely stabilized (w02 < 0). Noting that W ¢« 0 for Po’ <0,

radiation cannot induce MHD instabilities in plasmas anchored by

line-tying [sSee Eq. (47)].

Por Equilibrium II (Po' > 0), whose pressure profile is
similar to that of cool-core loops, the equilibrium is ideally
stable (moz < 0) with or without line-tying [see Egs. (42) and
(46)). Prom Eq. (47), for w02 ¢« 0, W > O (W ¢ 0) implies
instability (stability). Pigure 3 shows the numerical estimate of

W. Por the estimation, we assumed that the temperature at r = 0 is

T~ 1.5 X 105K, density n = 1 X 109/cm?, magnetic field B, = 10 G, 4

and aspect ratio A =~ 10. The stability of equilibria similar to

Equilibrium II (Po' > 0) was studied for the incompressible case
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in An (1983a). It was found that radiation destabilizes the
incompressible plasmas with Po' > 0 which is in the ideal MHD
stable state. In Paper I we considered the effect of
compressibility on radiative MHD modes. The study showed that
compressibility is a stabilizing effect for cool-core loops but
did not mention how important the effect is. Is the
compressibility able to stabilize the radiative MHD modes? The

numerical estimate (Fig. 3) shows that compressibility does not

alter the result of An (1983a); radiation can destabilize the

compressible cool-core loops without 1line tying. The result
suggests that radiative plasmas can flow across magnetic field
lines, as claimed by Foukal (1976 ). When line-tying is included,
however, heat conduction plays a stabilizing role. Near the cool-
core region (r £ 0.2), where heat conduction is negligible, the
stability with or without line-tying is nearly the same., However,
for r 2 0.3, where heat conduction becomes important, stabilities
for the two cases are significantly different. Line-tying
stabilizes the modes for r = 0.3. The figure thus implies that
plasmas can flow across the field lines near the cool core but
that line-tying prohibits such flow in the surrounding hot

region.
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V. CONCLUSIONS

We have studied the effects of photospheric line-tying on
the local interchange modes of compressible cylindrical plasmas
in which energy is dissipated by heat conduction and radiation.
By taking the limit as m - o, the modes are localized near a mode

rational surface ts (krs Bz + mB_ = 0). Noting that the ratio of

e
MHD and radiative time scales € << 1 for coronal loops, we obtain
the zero~ (ideal MHD) and first—-order (with radiation) solution
of € by expanding the eigenvaue with respect to €. The effect of
line-tying appears as a magnetic tension for the zero~order mode
and completely stabilizes it. For the first-order mode, if the
lines are tied, heat conduction occurs along bent field lines

when plasmas move across the field lines. Without line-tying,

heat conduction plays no role in the first-order solution.

The effects of line-tying on stability differ for various
radial pressure profiles; for equilibria with Po‘ ¢« 0, since the
first-order mode is stable and line-tying completely stabilizes
zero—order modes, radiation has an insignificant effect on the
stability, i.e., it does not alter ideal MHD stability. On the
other hand, for equilibrija with Po' > 0 (To' > 0), as in cool-~core
loops, radiation has a significant effect on the stability. It

destabilizes plasmas in an ideal-MHD stable state.

Compressibility, which is stabilizing for PO' > 0 (Paper 1), does
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not alter the result. Line-tying here reduces the destabilizing
effect of radiation by generating heat conduction. The numerical
estimate of the stability of a first-order state in a cool loop
shows that plasma near the cool core is unstable owing to
radiation, i.e., the line-tying effect is insignificant in this
region. On the other hand, the plasma in the surrounding hot
region is stabilized by heat conduction: 1line-tying has an
important stabilizing effect on the hot region. The result
suggests that plasma mixing across the field lines occurs mainly
near the cool-core region, while the surrounding hot region
undergoes no appreciable MHD activity. If plasmas flow down along
the 1loop, as suggested by Poukal (1976), the flow might be

concentrated near the cool core.

Thus we see that radiation is an important mechanism for
initiating MHD instabilities in 1loops with positive radial
pressure gradient that are in an ideal-MHD stable state. If so,
radiation and radial pressure profile must be taken into account

in determining loop stability.

By neglecting the sin az term in P,, as is done in Eq. (20)

1
to simplify the calculation, we render the line-tying boundary
condition essentially the same as the boundary for antisymmetric
modes in hydrodynamic thermal stability studies (Antiochos et

al., 1982). The constraint on li'1 may overdetermine the stability,
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but the essential effect of line-tying on radiative as well as

ideal MHD modes will be the same as without the constraint.

We have studied the radiative MHD modes in cylindrical
plasmas analytically by utilizing the fact that the modes are
localized near a singular surface as m -~ <. A question arises
concerning the applicability of the results to finite m modes.
How large should m be for the results to be valid in good
approximation? Since m # 2 modes are localized near a singular
surface (An 1982) the results might be applicable for all m 2 2.
Furthermore, noting that the major destabilizing mechanism,
radiation, is independent of m [see EQ's (30) and (31)), we may
expect that the dependence of the radiative modes on the poloidal
mode number m is not significant, The precise limit of m can be
obtained only by solving EqQ's (23) and (24) numerically.

In this study, we have considered the photospheric
boundary in the stability calculation. Since our model is greatly
simplified, we do not attempt to compare our results with
observations. Rather we have put more emphasis on understanding
the basic physics governing the effects of line~-tying and
radiation on MHD stability. Future work should include the
variation of physical quantities along the loop direction and
take into account more realistic loop geometry and boundary

conditions.

- am o= e — —— -
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FIGURE CAPTIONS

Figure 1: Magnetic field lines after plasma condensation (or
compression. Because of line-tying, field lines bend for
plasma motions perpendicular to field lines: (a) when
plasma is condensed, heat flows along the field lines into
the condensed region; (b) when adiabatically compressed,
heat flows out of the compressed region; and (c) without
line-tying, the field 1lines do not bend for the
perpendicular motion. No heat flows into (out of) the
condensed (compressed) region because heat conduction

perpendicular to field lines is neglected.

Pigure 2. Numerical estimation of the ideal MED local mode
stability condition ¥Y; Y > O implies stability. The left
vertical axis is for a@ = 0, and the right is for a@ # 0. The
abscissa is radial distance from the center of a unit

cylinder cross section.

Figure 3. Numerical estimation of first-order stability (the
effect of radiation and heat conduction) condition W; W » O

implies instability owing to energy dissipation,
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