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FOREWORD

'-iThis work provides wha, we hope, is a relatively simple, self con-
tained description of MHD instabilities in plasmas with simple
configurations This work is partially the result of a one year sabbatical
(Sept. -77 -S"ot. 78) one of us (WMM) spent at Culham Laboratory in
Abingdon, England. During the year there, the two of us worked very
closely, and we each received a tremendous amount of help from Dr.
John Wesson, also of Culham.

"-- By simple configuration, we mean a plasma in which all quantities
vary in only one spatial direction. We deal with such plasmas here
because we want to emphasize the basic physics of MHD instabilities.
In more complicated configurations, this is often very difficult to dis-
cern because the mathematical description is so much more involved.
Usually one has to first define a new coordinate system in which the
magnetic field corresponds to one coordinatea, then solve a two or
three dimensional problem in this system.' Although some fusion de-
vices --(r instance Elmo Bumpy Torus, tandem mirror, and
spheromak~lare inherently two or three dimensional in nature, there
are others, specifically tokamaks and reversed field pinches which are,
to good approximation, one dimensional. Also, these devices both
display a wealth of complex MHD activity which can be fruitfully dis
cussed.here. We hope that a good description of the physics of instabil-
ities in simple configurations is both interesting in its own right, and
also will provide a useful stepping stone to a study of instabilities in
more complex configurations.

y One deceptive aspect of MHD instabilities is that the simplest
ones are extremely easy to understand. or instance the instabilities of
a Z pinch to sausage and kink displacement-ha -been d cribed in
such standard texts as Jackson's Classical Electrodnamcs.IHowever
more complicated instabilities, for instance in a plasma where both an
axial and azimuthal field are present are much more difficult to visual-
ize; but they are also much more interesting. V

Although, as we will see, there is a tremendous variety of MHD
4i instabilities, all those which we will study are driven by one of two
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mechanisms. First of all there may be a gravity (or something
equivalent to a gravitational force) which is opposite to the density gra-
dient. This can drive Rayleigh-Taylor type instabilities. This is the
fundamental driving force behind both ideal and resistive pressure
driven modes in a reversed field pinch, ballooning modes in a tokamak,
rotationally driven modes in a 0 pinch and the mirror instability in a
magnetic mirror whose field lines bulge outward away from the plasma.
Second, a plasma which carries a current is potentially unstable because
current elements traveling in the same direction attract each other and
would like to all clump up together. Of course this is not so simple
because the current flows through a conducting fluid and, as will be
amply demonstrated, this imposes all sorts of constraints. Neverthe-
less, this mutual attraction of like current elements is the basic
mechanism which drives free surface modes in a cylindrical or toroidal
plasma; tearing modes in plane, cylindrical and tokamak geometry, and
the internal m - 1 kink tearing mode in cylindrical or tokamak
geometry.

There are other views we have on this area which affected the
material we chose to cover. First of all, we de-emphasized both the
energy principle and also modes in a plasma with a free surface. At
least for one dimensional configurations which we emphasize, it is
really no simpler to utilize the energy principle than it is to solve for
the eigenfunction and eigenvalue. This is especially true now, where
second order ordinary differential equations can be so easily solved
numerically. Also, to discuss the nonlinear evolution of MHD unstable
plasmas, it is necessary to know not only whether or not a plasma is
stable, but also to have some idea of growth rates and eigenfunctions.

As far as free surfaces are concerned, first of all it is rare that
plasmas have free surfaces; usually experimental plots of, say, density
or temperature profile usually show them going smoothly to zero with
radius, at least in tokamak and reversed field pinch plasmas. (For plas-
mas with more complicated configurations however, a free surface may
be a good model if there is a magnetic separatrix in the plasma.)
Secondly, free surfaces are not particularly difficult to understand, but
applying boundary conditions across them in their unperturbed and per-
turbed state can involve a great deal of mathematical complexity.
Therefore, they do not seem to be worth expending a great deal of
effort on in a manuscript like ours which attempts to emphasize physi-
cal principle, not mathematical detail. Hence we deal with free surfaces
in only one chapter in which we drive some fundamental stability
requirements for tokamak plasmas.
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One thing which we attempt to emphasize however is magnetic
reconnection. As we will see shortly, in ideal MHD, each magnetic
field line maintains its integrity and behaves rather like a string which
threads the fluid and cannot break. However there are flow patterns
which force two magnetic field lines together. Often nonideal effects,
for instance resistivity, can cause the field lines to break and reconnect.

. This work is divided into two parts. Chapters " describe linear
theory and Chapters -XV- describe the nonlinear theory. The latter
part is naturally much more speculative than the former because less is
known about nonlinear theory. The mathematical details in any non-
linear theory can rapidly mushroom out of all proportion. For this
reason much work in nonlinear MHD theory is done by numerical
simulation. However there still are some relatively simple nonlinear
calculations which can be done analytically, as well as some fairly sim-
ple physical insights which can be gotten. These are emphasized in
Chapters X-XV. Preceding both sections is Chapter I which discusses
experimental evidence for MHD instabilities in tokamaks and reversed
field pinches. As we proceed through the book we will show what light
theory can shed on these experimental results.

We would also like to thank the Americal Physical Society for per-
mission to use the figures which were taken from the Physical Review
Letters.
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Chapter I

EXPERIMENTAL EVIDENCE FOR
MHD INSTABILITIES

The subject of MHD stability has been studied for many years.
The motivation for this research has come from astrophysics (e.g., solar
flare theory), space physics (e.g., the physics of the magnetosphere),
controlled thermonuclear fusion, other geomagnetism and many other
fields. Controlled thermonuclear fusion has been pursued very actively
over the last decade in view of its energy potential. As a result this
field has probably provided the most detailed and reliable experimental
data on MHD instabilities in plasmas. Within the field of magnetic
confinement of high temperature plasmas, the tokamak device is
currently the most successful. This device originated in the Kurchatov
Laboratory in Moscow where the first one was built around 1956-57.1
More recently, tokamaks have been built and studied in all countries
actively pursuing the goal of fusion (e.g., USSR, USA, Europe, Japan,
and Australia). Since the performance of tokamaks; is presently limited
by an effect known as the disruptive instability and since this manifests
a number of phenomena typical of MHD instability, we shall discuss, in
this chapter, the experimental evidence for MHD instabilities coming
from studies of the tokamak device. Also, we look at experimental evi-
dence for MHD instabilities in reversed field pinches, another relatively
simple device which exhibits MHD activity.

First we will give a brief description of a tokamak. A tokamak is
a toroidal device in which a strong toroidal magnetic field is created by
external currents-the toroidal field coils. A weaker poloidal magnetic
field is created by a current flowing through the plasma in the toroidal
direction. This current is induced by means of a transformer which
produces a large change in magnetic flux through the hole in the torus
thus exciting a current in the plasma which forms the secondary circuit
of the transformer. The transformer usually has an iron core although
for high toroidal field devices an air core is used. The toroidal vacuum
vessel (or liner, as it is called) is made of stainless steel whose thick-
ness is typically 0.2-0.3 mm and the interaction of the plasma with the
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stainless steel wall is reduced by means of a limiter (or diaphragm)
which is a single loop of tungsten or molybdenum whose inner radius is
a few centimeters less than that of the stainless steel liner. Although
the effect of the limiter is not fully understood it is an indispensable
part of the tokamak apparatus. Finally, the plasma can be maintained
in equilibrium, against major radius expansion, by eddy currents which
flow in a thick (of the order of 2 cm) copper shell enclosing the liner,
or by a vertical magnetic field (parallel to the major axis of the torus)
generated by external windings. The main features of the tokamak
described above are illustrated in Figs. (I-la, b).

fJ

IRON CORE

1a) GENERAL ARRANGEMENT

PRIMARY WINDING

VERTICAL FIELD COILS
STORUS

L IMITER 
.

STABILIZING

COPPER SHELL

TOROIDAL FIELD
IRON COILS
CORE

(b) MERIDIONAL CROSS-SECTION

Fig. I-I - Standard Tokamak

We will now describe the most important experimental results
relating to MHD instabilities obtained from measurements made on a
number of tokamaks in various parts of the world. The detection and
interpretation of the fluctuations occurring in a tokamak plasma is a
very difficult problem for plasma diagnostics. To date, the information
on these fluctuations has come mainly from the measurement of oscil-
lating magnetic fields detected with coils situated outside the plasma
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(the Mirnov oscillations) and the analysis of soft x-ray signals coming
from the plasma interior. Analysis of these x-ray signals led to the
discovery of sawtooth oscillations. Let us now describe the experimen-
tal observation of (a) Mirnov oscillations, (5) sawtooth oscillations and
(c) the disruptive instability.

(a) Mirnov Oscillations

Mirnov 21 oscillations are fluctuations in the magnetic field of the
discharge current (particularly the current near the plasma boundary)
which can be detected outside the plasma ring. A concept which has
proved to b- of great significance for the stability of a plasma in a
toroidal magnetic field is that of resonant oscillations. These are oscil-
lations where the helix of the perturbation exactly matches the helix of
the confining magnetic field. The equilibrium helix is described by the
quantity q (r) (often called the safety factor) where

q(r) = rB. (I-1)

R B (r)

where B, (r) is the applied toroidal magnetic field, Be. (r) the poloidal
field due to the discharge current, r is the coordinate in the direction of
the minor radius and R is the major radius of the torus. The physical
significance of q is that it is the number of times a field line circles the
major axis in making one transit round the minor axis. The perturbed
helix is described by the poloidal and toroidal mode numbers m and n.
The theory of MHD stability (see Chapters IV and VIII) now states
that the plasma will be unstable to surface or bulk modes when

q (a) - m/n (1-2)

where 'a' is the minor radius of the plasma. Mirnov and Semenov(21

have made a systematic study of the magnetic fluctuations of the
discharge current in the tokamak T-3. The parameters of T-3 were as
follows: major radius 100 cm, liner radius 20 cm, limiter radius 15-17.5
cm, toroidal magnetic field in the range 17.5 to 26 kG, discharge
current from 50 to 150 kA and a plasma density of 1-2 x 101 cm -3 .
The duration of the current pulse was 70 milliseconds and a hydrogen
plasma was used.12 Mirnov and Semenov employed a system of 18
magnetic probes located on the surface of the discharge liner. The
probes were positioned around the torus covering a range of both the
poloidal angle 0 and the toroidal angle #. Signals from these probes
were transmitted to a correlation receiver. The input signals from two
probes were first subtracted and then integrated giving a quantity pro-
portional to the difference of the magnetic fields at two points in space.
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This quantity was finally squared and time averaged for a period of the
order of one millisecond before input to the oscillograph. By measur-
ing the spatial structure of the magnetic field fluctuations in this way
the mode numbers m and n were identified.

In order to investigate the prediction of instability when
q (a) - m/n, Mirnov and Semenov [2 applied a current pulse of the
form shown in Fig. (I-2a). In contrast to the usual flat top current, the
pulse shown in Fig. (I-2a) had a slowly increasing part thus enabling
the stability factor at the boundary, q (a), to be progressively reduced.
Figures (I-2b), c show the oscillogram W(t) and the corresponding
quantity as a function of the poloidal angle 0. These curves were
obtained at three instants in time such that the amplitudes of the
fluctuations had clearly formed maxima. It can be seen from these
curves that the m - 6,5,4 perturbations develop successively as the
discharge current rises. The toroidal mode number for these perturba-
tions was n - I and since the values of q in the vicinity of the bound-
ary practically coincided with the corresponding r-numbers, it was con-
cluded that these perturbations were resonance oscillations.

I KILOMETERS (a)

100

W(+) 25 50 t msec
REL. UNITS (

I

Fig. 1-2 - Development of perturbation, during
the initial stage of discharle



EXPERIMENTAL EVIDENCE 5

Perturbations with toroidal mode numbers n - 2-4 were also
observed in T-3. However, it was found that these oscillations were
generally small compared to the fundamental n - 1 perturbations. It
was therefore concluded that for resonance perturbations one should
expect their mode number m to be close to the value of q on the
boundary of the plasma.

It should be noted that the magnetic field oscillations detected by
Mirnov and Semenov 21 had the character of waves propagating in the
poloidal direction with a frequency in the range 4-10 kHz. This was
attributed to the effect of a poloidal rotation of a non-uniformly dis-
tributed current density J (G) in the vicinity of the boundary. It was
assumed that the effect of this rotation on the theory of resonance
oscillations (Chapter IV) was a simple Doppler shift of the zero fre-
quency instability to a finite frequency.

For larger values of the discharge current Mirnov and Semenov 21

also observed resonance oscillations m - 3, 2 as q at the boundary was
reduced to these mode numbers. It was noted that the m - 4 and
higher mode numbers were suppressed with a quasi-stationary discharge
current whereas this was not the case for the m - 3 and 2 modes. It
appeared that the m - 3 and 2 modes exerted a marked influence on
the macroscopic properties of the discharge. If the safety factor q (a)
was decreased through the value of 3 by a sufficiently rapid rise of the
current, the m - 3 mode could be suppressed. However, Mirnov and
Semenov were unable to stabilize the m - 2 mode in this way. We
shall return to the influence of the m - 2 and 3 modes on the
discharge when we come to discuss the disruptive instability. The
importance of resonance oscillations for the stability of a tokamak is
shown in Fig. (1-3) where the unstable regions of T-3A [31 as a function
of I1q (a) are shown shaded.

(b Sawtooth Oscillations

Information concerning fluctuation in the interior of a Tokamak
plasma can be obtained from a study of the continuous soft x-ray emis-
sion from the discharge. This radiation is produced by the thermal part
of the plasma electrons and consists mainly of the recombination radia-
tion of partly ionized impurities. The radiation intensity will therefore
depend on the electron density and temperature and on the concentra-
tion of impurities. In particular, fluctuations in the electron density or
temperature will produce a corresponding fluctuation in the x-ray signal.
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Fig. 1-3 - Dependence of H, on the parameter llq

Von Goeler, Stodiek and Sauthoff141 at the Princeton Plasma
Physics Laboratory carried out a study of the soft x-ray emission from
the ST-Tokamak. A sketch of their apparatus is shown in Fig. (1-4a).
The x-ray detectors were sensitive between 3 and 13 keV and the spa-
tial resolution at the plasma center was about 2 mm. An oscillogram
for a high density discharge in the ST Tokamak, shown in Fig. (I-4b)
exhibits the characteristic sawtooth oscillation discovered by von
Goeler, Stodiek and Sauthoff.1 41 The oscillation was interpreted as
being due predominantly to temperature fluctuations. It was noted that
the trace taken a small distance away from the center of the column
(r - 3.9 cm.) showed a fast rise and slow exponential drop which was
the exact inverse of the trace taken from the center (r - 0). This
phase change of the sawtooth oscillation is believed to occur at q - 1
surface and evidence for this is given below. Similar sawtooth oscilla-
tions have been observed in TFR.151 The sawtooth oscillation consists
of two parts: a sinusoidal oscillation &j superimposed on the main
sawtooth relaxation dA. This is illustrated in Fig. (1-5) taken from the
TFR work. Using various diagnostic techniques (e.g., Thomson scatter-
ing, spectroscopic methods HF coupling studies), the TFR group have
shown1 51 that tlb variation in the x-ray signal is due chiefly to the varia-
tion in T, i.e., typical ratios (AT/T,) r - 0 - 10%, (An./ne) r - 0
- to 2% were found.

In order to elucidate the inversion of the sawtooth oscillation sig-
nal between r - 0 and r - 3.9 von Goeler et al.141 made an estimate of
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the profile q (r). The electron density and temperature profiles were
obtained from Thomson scattering and assuming a nearly stationary
discharge and a uniform impurity concentration across the discharge, q
was found to be roughly 0.8 at the center of the plasma reaching a
value of 1.0 at r = 2 cm. These measured and estimated profiles are
shown in Fig. (I-6a, b). Figure (I-6c) shows the sawtooth relaxation
AIA/ which has a node at the q - 1 point. Outside this node, the
sawtooth is "inverted." For radii larger that r - 4cm. the amplitude
was very small. Simultaneous measurement of the sawtooth at
different radii and at different positions around the torus identified it as
an m - 0, n - 0 mode i.e., an expansion in minor radius of the central
region of the plasma column or "internal disruption." Finally, the ampli-
tude of the high frequency oscillation AA, superimposed on the
sawtooth relaxation, was measured as a function of the radius. The
amplitude was small at the center, had a maximum close to the q - 1
surface and vanished abruptly outside this surface. This is illustrated in
Fig. (I-6d). Such a perturbation is characteristic of the m - 1 kink
mode (see Chapter VIII) and in fact the oscillation was diagnosed as an
m - 1, n - 1 mode.141 The mode propagated in the direction of the
electron diamagnetic drift and its frequency was close to v* - (1/2vr)
(kT,/eB)p - ' dp/dr evaluated at the q - 1 surface.

The rise in the central x-ray signal over the long time scale (see
Fig. (1-5)) At is consistent with the ohmic heating rate there. This then
suggests the following interpretation of the oscillations. Ohmic heating
of the plasma inside the q - 1 surface and cooling of the plasma (by
radiation and other losses) outside this surface causes a further sharp-
ening of the temperature and current profile and q to drop still lower.
The m - 1, n - 1 kink mode is then able to grow to some critical level
when the sawtooth break occurs on the fast time scale 8t (Fig. (-5)).
The energy is then rapidly redistributed producing a flattening of the
temperature and current profiles. The whole process then repeats itself.
This picture is supported by the fact that sawtooth oscillations are not
seen,L61 when, from the temperature profile and the Jo T assump-
tion, q (o) > 1.

The series of phenomena associated with the sawtooth oscillations
are usually referred to as a minor disruption in contrast to a major dis-
ruption where the whole plasma column is involved (not just the
plasma around the q - 1 surface) and where the discharge current may
be abruptly terminated. There are also minor disruptions at other m
values (for instance m - 2), but these generally do not involve a relax-
ation oscillation. Let us now describe the phenomena observed during
a major disruption.
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(c The Disruptive Instability

The disruptive instability determines the range within which stable
discharge conditions exist. For an economic fusion reactor the parame-
ters p, (8fi 4w P/B2) where P5 is the average pressure and B the mag-
netic field, is required to be in the range 5% to 10% which is much
larger than the value attained in present tokamaks. Since.86a l1q 2 , (7 it
is therefore desirable to operate tokamaks with q (a) close to I as possi-
ble (q (a) > 1 is the Krustal-Shafranov stability requirement of
Chapter IV). However, this value cannot be approached in present
tokamaks because the disruptive instability limits q to larger values.
The disruptive instability is still not understood although a great deal
has been learned concerning its external manifestations. Il- 01 These are
a large negative spike on the loop voltage of the plasma (the loop volt-
age is a measure of the induced e.m.f which drives the discharge
current round the tokamak), a sudden decrease in the major radius of
the plasma ring, a significant loss of plasma energy and particles (from
the core of the plasma) and a decrease in the current. This decrease
can range from a few percent to a complete extinction of the discharge
current in a few milliseconds. The instability is almost always preceded
by strong helical modes of oscillation (usually m - 2,3) in the outer
regions of the plasma. These oscillations (which are often referred to
as the precursors) are of the resonance type where M M q (a).- As a
result of the disruptive instability almost all favorable tokamak results
i.e., high temperature and long confinement time, have been obtained
when q (a) > 3 or even q (a) > 4. As we have seen in the previous
two sections, both internal and external fluctuations can now be meas-
ured. Using these techniques, studies of the phenomena just before
and just after a disruption have been made on the Pulsator[$,9 ) T-41101

PLT"'1) tokamaks. We shall now describe some of these results.

The Pulsator device is a conventional tokamak with the following
parameters (R - 70 cm, a - 12 cm, B., - 28 kG (max.), I - 95 kA
for q - 3 and B, - 28 kG, a copper shell and an iron core transformer.
In addition, the device has a vertical field winding and the unusual
feature of an m - 2, n - 1 helical winding. This winding was particu-
larly advantageous for a study of the disruptive instability as will be
seen in a moment. Due to the presence of these other windings, there
is an unusually large gap between the plasma and the copper shell.
This made the plasmas in the Pulsator device particularly susceptible to
the disruptive instability if the plasma column was not well centered.
Nevertheless, a minimum value of q (a) - 2.2 was attained by careful
centering under very different conditions i.e., at high and low currents
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and corresponding magnetic fields and for electron densities between 
1013 and 1014 cm-3. 

The centering of the plasma column by current programming was 
achieved by trial and error and became more difficult as q (a) 
decreased. A disruption sometimes resulted from mis-programming 
and it was found that if the plasma was displaced inwards too much the 
resulting intability was a hard disruption (i.e., the discharge current was 
terminated) whereas if the plasma was displaced too much outwards 
only a soft disruption occurred (i.e., the current increased after the ins­
tability). The observed difference between "hard" and "soft" disruptions 
can be ascribed to an enhanced interaction between the plasma and the 
limiter caused by the instability. Evidence for this enhancement is an 
increase in the release of impurities shown by an increase in the emis­
sion of impurity lines, Eq. 0 III, 0 VI, Mo XIII, starting at the appear­
ance of the negative voltage spike. It was also suggested by the Pulsa­
tor group that some kind of enhanced interaction of the plasma with 
the limiter may be a starting mechanism for disruption. This view was 
examined in a beautiful series of experiments using the helical wind­
ings. 181 

It was found that for given plasma parameters a certain critical 
current /~1 in the helical windings produced a disruptive instability 
which exhibited all the characteristic features of a spontaneous disrup­
tion other than the n - 2/ m - 1 precursor activity. Disruptions were 
only produced when the helix of the superimposed field was in the 
same sense as that of the tokamak magnetic field. It was clear that this 
effect was not a result of any change in q since 3q/ q due to the critical 
helical current was negligibly small (of the order 10- 4 or 1o-s). The 
effect was evidently due to a geometric resonance between the tokamak 
magnetic field at the q - 2 magnetic surface and the superimposed 
m - 2, n - 1 helical field. This resonance was shown computationally 
to lead to the formation of magnetic islands, which will be discussed 
more fully in Chapter 7, but can be visualized in Fig. (I-7) which shows 
the magnetic island structure oroduced by a superposition of the 
tokamak and helical magnetic fields. The islands originate on the q - 2 
surface and are of width proportional to (/be/ Bzo)l/2. It was shown 
experimentally that the macroscopic plasma parameters changed very 
little for helical currents only slightly smaller than the critical value /~1• 

Another interesti g experimental result concerned the· rate of 
change of the helical current or the plasma current. The same value of 
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Fig. 1-7 - Island structure at the q - 2 surface produced
by w - 2 helical windings for Pulsator- parameters

1hel was found to lead to disruption whether ihel was increased at con-
stant q (a) or /he, was held constant and q (a) decreased by increasing

the plasma current provided the time scale for the increase in the
currents was large compared to a millisecond. On the other hand,
stable, a.c operation was possible above the d.c value of 1h.1 for fre-

quencies of the order kt Since the skin time of the plasma was of
the order of b millisecond this behavior was attributed to penetration
effects.

The case of a slowly increasing lhel (or slowly decreasing q (a)) is
illustrated in Fig. (1-8). It can be seen that the disruption is preceded
by a period of reduced MHD mode activity. The stability of the plasma

was improved by a helical field below the critical value. A disruption
which occured reproducibly for given plasma parameters could be
avoided by the superposition of a helical field leading to an extension of
the plasma current duration. However, since the improvement in sta-
bility was greater the closer Ih., was to the critical value 1h+.1 this effect
could not be used to extend the stable regime very significantly.

Since the production of disruptions by the helical currents was
believed to be related to the formation of magnetic islands, measure-
ments were made to discover the dependence of the critical island size

~(proportional to (l1hl/B.) I/ 2) on the plasma parameters. In order to do
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Fig. 1-8 - Decrease of mode amplitude due to
helical currents below the critical value

this the toroidal magnetic field B,, was varied from 10 to 30 kG and the
plasma current from 10 to 120 kA thus covering the range
2 < q (a) < 9. The results are shown in Fig. (1-9) where it is clear
that (lhi/B,) 12 is a monotonically increasing function of q(a). On -

the basis of these results and those on the positioning of the plasma by
programmed vertical fields, the hypothesis was put forward that disrup-
tion occurred when lh+I was such that the islands originating on the
q - 2 surface touched the limiter. For increasing q(a) the resonant
q - 2 surface moves inward so that the island size must increase in
order to make contact with the limiter. This hypothesis was also sup-
ported by the experimental observationl81 that the critical current 'l
was larger for an asymmetric racetrack limiter for the case where the
islands originating on the q - 2 surface were positioned on the major
axis compared to the case when they were positioned on the minor axis.

In order to elucidate further the origin of the disruption instabil-
ity, the Pulsator group have made a detailed study 91 of the phenomena
just prior to the occurrence of the negative voltage spike. Signals from
the external poloidal probes, the soft x-ray detectors, the loop voltage
and the discharge current were measures on a fast time scale with the

*
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Fig. -9 - Dependence of critical island size VI.I+WB.
on the safety factor q(a)

aid of a 16-channel transient recorder. The m - 2, n - 1 oscillation,
which was measured by the external poloidal field coils (and also with
the aid of the helical windings) had a very low amplitude, until, approx-
imately 10 milliseconds before the disruption, it started to grow both in
amplitude and cycle duration. A few milliseconds before disruption it
imposed its frequency on the m - 1, n - 1 mode (measured by means
of soft x-ray detectors). After coupling, the amplitudes of the oscilla-
tion grew faster and the frequency continued to decrease until immedi-
ately before the negative voltage spike. At this time the signals of the
x-ray detectors showed the superposition of an m - 1 mode in the inte-
rior of the plasma with a.phase-locked m - 2 mode further out. The
temperature maxima of this m - 2 mode coincided with the current
maxima as measured by the poloidal field coils. The signals are most
easily described as a uniform toroidal rotation of a rigidly coupled sys-
tem of m - 1, n - 1 and m - 2, n - I perturbations. The system
rotated in the direction of the electron drift resulting from the plasma
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current and the coupling was attributed to toroidal effects. Figure (I-
10) gives a record of these oscillations and shows the last half mil-
lisecond before disruption.

After the perturbations had reached a certain amplitude, immedi-
ately before the negative voltage spike, very hard x-rays (E > 1 MeV)
were emitted from the limiter. The x-rays were emitted in bursts and
were synchronized with the rotation of the helical system, occurring
when a given point passed the limiter. After the main burst the tem-
perature in the plasma interior dropped significantly as can be seen
from the central trace of the soft x-ray diodes in Fig. (1-10).

PLASMA 600 V/DIV I 55 kA I

20V/DIV I 2.6V I I VLOOP ,I r_ .
T -- -I NEGATIVE.5VIDIV_ ._ _ '___ , VOLTAGE

- -T-- - - -- -q - -l- -'tY |SPIKE -
HARD 77, } ]j

X-RAYS -ARB. UN. 54V(LIMITER) " " " t .

I I i 8 [ I
^ , , I I I I ., 4, I I

AnB. LIN,. ( ( J L.L L I
FT - - - -si ga - - px imtely the(INSIDE) - - / -/ ' " '" ' I m =(OUTSIDE)2

POLOIDAL -- r --

FIELD _ _ i _ _ _ _ _ _ __

SOFT , ------ , I'

X-RAYDIODES ARB. UN. 2 "'
(BOTTOM ) _-, - - - - - --.- - . . .--

-- T--T -

(TOP) - - - -- , -, - -:- "7

Fig. 1-10 - Oscillogram showing approximately the
last half millisecond before disruption
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In a separate experiment with faster time resolution, it was shown
that the temperature drop in the center of the plasma occurred 10-30
microseconds after the beginning of the main burst of hard x-rays and
10-20 microseconds before the leading edge of the main negative volt-
age spike. The negative voltage spike was accompanied by a positive
spike in the plasma current (Figs. (Ila, b) and a fast inward motion
of the plasma column (i.e., a contraction of the major radius). This is
shown by Figs. (Ila, b) by the traces from the poloidal field coils.
Figures 011 a, b) also illustrate the difference between a hard and soft
disruption. Disruptions varying from hard to very soft were observed
(Figs. (I-i a,b,c)). The intensity of a disruption seems to be deter-
mined by the magnitude of the central thermal energy drop effecting
the strength of all subsequent processes (rate and magnitude). On the
other hand, the strength of the disruption does not seem to depend on
the amplitude of the preceding coupled helical oscillations and only
weakly on the intensity of the x-ray burst.

The Pulsator group interpreted their results in terms of the fol-
lowing picture. The coupled m - 1 and mn - 2 perturbations impose a
growing, rotating helical structure on the drift surfaces of the high
energy runaway electrons which have a fixed phase relation to the mag-
netic island system. The runaways are displaced outward with respect
to the magnetic surfaces e.g., 1.5 cm for 6 MeV. Following the
growth of the perturbations, deeper and deeper layers of runaways are
depleted at each rotation until all the runaways have been dumped on
the limiter before the first large negative voltage spike. As the pertur-
bations grow so do the magnetic islands until a large scale ergodisa-
tion[121 of the magnetic (i.e., overlap of neighboring magnetic islands of
Chapter VIII F and Chapter XII) causes an enhancement of electron
heat conduction and therefore a drop in the central temperature. As a
result of this drop in the central temperature, the plasma is pushed
inwards in major radius by the applied vertical field causing a positive
spike on the loop voltage. The calculated and observed inward dis-
placement could at best only explain the magnitude of the first step on
the negative voltage spike. One has to assume an additional variation
of the plasma inductance corresponding to an expansion of the current
channel to account for the full value of the negative voltage spike.
Such an expansion is consistent with the increase in the ff. emission
and fast neutral particle outfiux at the instant of the leading edge of the
negative voltage spike.

The Pulsator experiments have demonstrated that the creation of
magnetic islands is an essential feature for the onset of the disruptive
instability. Moreover, all the results are consistent with the assumption
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that disruption occurs when the islands come into contact with the lim­
iter. 

An important consequence of the Pulsator observations is that the 
destruction of confinement has occurred before the leading edge of the 
negative voltage spike so that in order to improve the confinement the 
discharge must be acted upon before the <.;entral temperature drop has 
taken place. 

A similar study of the evolution of the disruptive instability was 
mau~ on the tokamak T -4. The parameters of T -4 were Bzo - 26 kG, 
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q (a) 3 ('a' being the limiter radius) and n, - 2 -3 x 1O13CM -3.
These T-4 disruptions were produced by a programmed rise in the
current. The aim of the T-4 experiments was to study the correlation
between the internal and external fluctuations of the plasma column. A
similar set of measurements were made as for the Pulsator experiment.
These were the discharge current, the loop voltage, the fluctuations in
the magnetic field of the current measureci with coils located on the
outside of the liner and x-radiation from the inner regions of the
column.

Mirnov and Semenov 101 observed a complex time structure on
T-4 which began with a pre-disruption phase in which a helical m - 2
oscillation propagated from the boundary to the interior. This was fol-
lowed by an mn - 0 expansion of the central hot plasma and a simul-
taneous development of an mn - 1 perturbation at the centre. The final
stage was a violent mn - 2 perturbation which transformed to m = 3
and mn - 4. This transition was thought to be due to a fast expansion
of the column to the walls of the discharge chamber resulting in a
change of q (a) from 2 to 4. The oscillograms in Fig. (Q-12) show the
time evolution of a typical disruption. The drop in the central tempera-
ture is clearly shown on the soft x-ray oscillograms. The dotted lines in
the oscillograms show the corresponding discharge parameters for a
pre-disruption which did not develop into a disruption. Also, the verti-
cal line I marks the start of a pre-disruption when the loop voltage
begins to drop and line HI denotes the instant up to which the disrup-
tion does not differ significantly from a pre-disruption.

As a result of their observations, Mirnov and Semenov[l0l sug-
gested the following chain of events leading to a disruption:

1. Slow compression of the current channel and ultimate decrease
of q (0) to 1 and q (a) to 2.

2. Rapid development of an mn - 2 perturbation near the bound-
ary with the formation of magnetic islands.

3. Destabilization of an m - 1 perturbation near the center due
to a deterioration of the stabilizing properties of the periphery
or to q (0) < 1.

4. Mixing of m - 1 and m - 2, flattening of the current profile
J (r) and increase of q (0) to 1. 5.

5. Disruption per se. Non-linear development of the in - 2 per-
turbation in the presence of a flattened distribution JAr).
Fully developed turbulence of the plasma column, its expan-
sion to the walls of the discharge chamber with the transforma-
tion of the mn - 2 perturbation in to mn - 3 and mn - 4 modes.
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Mirnov and Semenov 1 1 concluded with an interesting inference
concerning the generation of the negative voltage pulse. They noted
that from the observed level of the m - 2 poloidal magnetic field
perturbations the discharge current could be reversed in the outer
regions of the plasma. A collapse of these currents could then account
for the negative voltage spike. However, owing to the integrating effect
of the liner for the short time scales involved they were unable to
confirm this experimentally.

In summary both the Pulsator and T-4 groups saw the growth of
coupled m - 1 and m - 2 oscillations, the growth of magnetic islands
and a sudden drop in the central temperature following some postulated
ergodisation of magnetic field lines. In addition, the T-4 group
observed violent m - 2 activity in the presence of a flattened JAr).

In conclusion, we emphasize the fact that the disruptive instability
limits the current and density at which safe operation of a tokamak is
possible. Even an occasional occurrence of the disruptive instability
constitutes a serious danger for large tokamak devices since the abrupt
termination of the discharge current leads to large currents and forces
in the vacuum vessel and the external circuits. Clearly, the incentive to
understand and control the disruptive instability is very great.

We now continue with a discussion the reversed field pinch,
another fusion device which has a relatively simple configuration and
also is characterized by MHD activity. The configuration in fact is the
same as a tokamak in that it is a large aspect ratio torus and the plasma
carries a toroidal current. It is different in that the longitudinal field B,
is much weaker than in a tokamak. In fact on the average B,2 BO,
and also B, has a great deal of radial structure. It usually maximizes in
the center and reverses sign (thus motivating the name of the device
near the wall. A plot of the radial profile of B, and B0,, taken from
HBTX at Culhamn is shown in Fig. (1-13). As a model of the reversed
field pinch let us consider a toroidal plasma in a conducting shell with
an initial uniform bias field B,. Because the shell is perfectly conduct-
ing, no toroidal flux can go in or out, so the toroidal flux, ira 2 B is con-
stant. However let us imagine there is a poloidal slit in the shell. At
time t - 0, a voltage V is pulsed across the slit and is kept on for a
time 84, after which the slit is short circuited. The voltage pulse will
induce toroidal current (and poloidal field) in the plasma and will also
trigger complicated plasma motion until the system comes to rest in a
steady state. There are other modes of operation of a reversed field
pinch in which both toroidal and poloidal fields are programmed, but
we will not consider this additional complication here.



EXPERIMENTAL EVIDENCE 21

0.6-

0

0.4- 0

BB
(Tesla)

0.2-

OZI WALL

-0.2 L

Fig. 1-13 - Radial dependence of toroidal and
poloidal field in HBTX

There are three remarkable experimental feature< of reversed field
pinches. First, as the voltage applied to the poloidal slit increases, the
toroidal field at the wall decreases until it goes through zero to negative
values. That is the toroidal field at the outer edge of the plasma spon-
taneously reverses. A useful parameter in studies of reversed field
pinches in the pinch parameter

0 - B8(wall)/B (-3)

which is proportional to plasma current. Experimental plots of

F- B, (wall) (1-4)
B,

versus 0 for both zeta also at Culham and HBTX as shown in Fig. (-
14). The toroidal field at the wall reverses for 0 > 1.2.

Secondly, as the voltage is increased, the current does not remain
a monotonically increasing function of voltage. For low voltage the
steady state current does increase with voltage. However as the voltage
is further increased, the current no longer increases, but saturates at a
pinch parameter of about 0 = 1.8. For instance, in Fig. (I-15) is
shown the time dependence of 0 in HBTX for a strongly driven

•Sr
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discharge. At first, 0 increases to almost 4, but then it drops abruptly
to its equilibrium value of about 1.8 and stays there.

Thirdly, after the initial turbulent evolution of the plasma, it
reaches a quasi-steady state in which the plasma slowly heats up and the
current slowly decays. This quasi-steady state has been seen in both
zeta and in q3II in Padua. For instance the time dependence of density
and temperature during the quiescent phase of zeta is shown in Fig. (I-
16). This quiescent phase generally seems to last until field reversal is
lost on the outer wall. For a field as shown in Fig. (-13), magnetic
diffusion tends to transport high toroidal field from inside to outside
and thereby tends to reduce and ultimately eliminate the field reversal.
However the magnetic diffusion time in a large, hot device like zeta is
much longer than the millisecond or so quiescent period, so that some-
thing gives rise to anomalously fast magnetic diffusion. In Chapters
XII and XIV we will discuss these experimental results further and see
how knowledge of MHD instabilities can shed light on them.
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Chapter II

INTRODUCTION TO MHD

The Magnetohydrodynamic equations, which form the subject of
this work are taken as

-- + V . p V - 0 (II-1)

at

(mass conservation),

pV- + p(V V) V -- - Vp + I J x B (11-2)
at C

(momentum conservation assuming scalar pressure)
I 8B V x E (a)
C Ot

V B - 0 (b) (11-3)
V x B- 4- J (c)

C

(Maxwells equations). In Maxwell's equations, the displacement
current is neglected; instead the electric field is related to the current
through Ohms law

E + Vx B J (11-4)

C

where E + -V x B is the electric field in the reference frame moving
C

with the (nonrelativistic) fluid velocity and ") is the resistivity. The
only other quantity needed is the pressure. We will assume an adia-
badic law

S+ V p? dt p"3 ' II
at I 0-(1'-5

Equations (1-1) through (II-5) constitute a complete description of the
system. The unknowns are density, pressure and the three components

25
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of magnetic field, electric field, current density and fluid velocity, four-
teen in all. Equations (11-1 and 5) are two scalar equations for p and p,
Equations (11-2, 3c and 4) are three vector equations for the three com-
ponents of V, J and E, and finally Eqs. (11-3 and b) are equations for
the solenoidal and irrotational parts of B.

Usually, it is convenient to eliminate E and J directly by using
Eqs. (11-3c and 4). Doing so, the momentum equation and Maxwell's
equation become

dV p L VxB)xB(16

and
8B _DC~2 VX(V x(V xB) - _x( X (11-7)
at 

4 1r

Much of our discussion will concern perfectly conducting fluids - 0)
so that Eq. (11-7) is

8B-V x (V x B) (01-8)
at

Equations (11-1, 5, 6 and 7 or 8) form a complete description of the
magnetized conducting fluid. Derivations of these equations as well as
discussions of their validity and possible extensions (for instance
including tensor pressure, thermal conduction, finite Larmor radius,
etc.) have been discussed in many textbooks on plasma physics. We
simply assume these equations describe the plasma and investigate their
consequences; particularly we focus on how the magnetic field couples
to the fluid motion.

Before doing this, it is worthwhile to quickly review what mag-
netic field lines and flux tubes are. Any vector field has streamlines.
For the magnetic field, these are the solution of

dx & dA (11-9)
B, By B,

The field lines are then everywhere parallel to the magnetic field. Let
us now imagine an element of area 8iA which is parallel to a field line at
some point s on the field line. If the magnetic field at this point has
strength B(S), the flux through this element of area is 846 - B(S)
8iA --mB(s) -8A. One can then imagine a tube of constant flux around
the field line. If the flux is d#, the area of the flux tube as a function
of distance along the field line is given by

8A (s)- (11-10)
B (s)
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The amazing thing about a flux tube is that in a perfectly conduct-
ing plasma (q = 0), which we will refer to as ideal MHD, a flux tube is
convected with the flow. It is a simple matter to prove this from Eq.
(11-7). Integrating Eq. (11-7) over a fixed area 8A, we find

d8)= d fids. (V x B) = f (ds x V dt) -B (11-11)

where fds is an integral around the closed line bounding 8q6. How-
ever ds x V dt is the area swept out by an element ds of the periphery
of the flux loop. The term on the right hand side of Eq. (11-i11) is then
negative the flux swept out by the circumference in its trajectory.
Therefore, the total flux through a surface area moving with the fluid
does not change time, or

YA= 0 (11-12)

Perhaps a more direct way to see this is to note that if =0, Ohms law
Eq. 0114), simply says that E - 0 as one moves with the fluid. How-
ever in the inertial frame locally moving with the fluid, Maxwells equa-
tion says that the rate of change of the enclosed flux is minus the loop
voltage, that is zero.

While the magnetic lines of force are well defined by Eq. (11-9),
in general there is no unique way to define the motion of lines of B in
a changing medium. However in a perfectly conducting fluid, the flux
is frozen into the flow. Since the flux tubes can be regarded as bundles
of field lines, one can equally look upon the field lines themselves as
being carried along with the flow. We will now examine just what this
means. Since V - B - 0, the field lines have no start or finish, but
either close on themselves or else have infinite length. Since they are
frozen into the flow, the field lines cannot reconnect, or in other words,
the topological properties of the field is maintained. That is, the field
line can stretch and bend, but it cannot change its topology.

Let us illustrate this for two dimensional motion. Say the field
line initially is the dotted circle shown in Fig. (11-1a). Since the veloc-
ity field is a single valued function of r for all time, there is no way that
two fluid elements initially far from each other can ever occupy the
same point; to do so would mean the fluid elements pass through each
other, implying a double valued velocity field. Therefore, while a com-
plicated flow pattern can greatly contort the field line, to for instance
the solid line in Fig. (L-1a), the field line can never cross itself, it
always has a single inside and outside. Thus the topological properties
of the field line are maintained. Once possible flow pattern could dis-
tort two nearby field lines to a pattern shown in Fig. (11-1b). While the
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Fig. 11-1 (a) -A possible contortion of' a field in two dimensions which
preserve the topological constraint, (b) another motion which also preserves
the topology by showing how field lines can be forced together, and (c a field
line pattern similar to 2(b), but where reconnection is allowed

two points near A can be arbitrarily close, the field line still must main-
tain its integrity. However as we will see in later chapters, the presence
of non ideal effects, for instance resistivity, can relax the topological
constraint so that the field line can break and reconnect, forming that
pattern in Fig. (11-1lc). Clearly the topology has changed from a simple
closed curve topology to a figure eight. That is there are two inner
regions instead of one and two sets of closed field lines.

As another example the topological constraints on the field line
motion, we will consider an example in three dimensions. Consider
two field lines which are initially parallel to each other shown in Fig.
(11-2a). (In order to distinguish which field line is in front of the other,
each line is shown with finite width and different shading). Imagine a
flow pattern which distorts the field line, but which renders this field
line periodic in space with periodicity length L, and which has V - 0
along the dark field line.

Since the lighter field line is frozen into the flow, it cannot wind
around the dark field line between Z - 0 and Z - L. For instance, if
the fluid winds around the inner field line at say Z - L/2, but does not
move at Z - 0 and Z - L, the shaded line winds around the dark line
as shown in Fig. (II-2b). Between Z - 0 and Z -L/2, the shaded line
winds around the dark line, but between Z -L/2 and Z -L it
unwinds. The total winding number of the shaded line around the
dark, between 0 < Z < L, is preserved at zero.

However another type of fluid motion might give rise to the field
lines shown in Fig. (11-2c). The topology of the shaded line is the same
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Fig. 11-2 -(a) Two neighboring field lines, (b distor-
tion of one field line which preserves winding number,

Wc distortion which preserves winding number but
which forces field lines together, Wd field pattern simi-

lar to 2(d), but which allows reconnection. Note that
winding number is no longer conserved, but dotted
field line winds around dark one.

as shown in Fig. (11-2a and b). That is, if one pulled the field line at

Z - 0 and Z - L, it would snap back to that shape in Fig. (11-2a).

Notice though that near the point marked A, two parts of the field line

are forced close together. Again, the presence of non-ideal effects

could cause the field line there to break and reconnect as shown in Fig.

(11-2d) where now two sets of field lines are produced, the main field

line which now loops around the axis, and an additional circle which

also loops the axis. Thus, in ideal MHD if a field line does not wind

around another initially, it never does. However if non-ideal effects

(for instance resistivity) are allowed, the field lines may break and

reconnect and then wind around another field line which it did not

initially encircle. In other words, new magnetic axes can be generated.
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To summarize, the field lines in a magnetized fluid can be
regarded as strings which thread the fluid and go wherever the fluid
goes. They can stretch and bend but cannot break or reconnect in ideal
MHD. However if non-ideal effects are allowed, the field lines can
break and reconnect. Obviously, however, since div B = 0, a field
line cannot break unless it reconnects instantanecisly with another part
of the field line (or with a different field line). As we will see, there
are types of fluid motion which tend to force different portions of field
lines together, as shown at points A in Fig. (II-lb) and II-2c). In this
case, often a very small amount of resistivity can cause reconnection at
these points. In other words, given a choice between evolving toward a
very complicated structure with the same topology, or a simple struc-
ture with different topology, a field line in a real plasma will often
choose the latter.

We now turn to a study of the magnetic forces exerted on the
plasma. The magnetic force per unit volume is given by

Fm = I J x B (11-13)
C

which is clearly always perpendicular to both B and J. A more con-
venient form for Fm is

Fm -- (VxB) xB-- 1VB2+4-(B'V)B (a)8 4ar
B2

-Vi B 2 + (ib " V)ib (b) (11-14)

In Eq. (II-14b) above Vi means the portion of the gradient which is
perpendicular to B and ib is a unit vector in the direction of B.

The two terms in Eq. (II-14b) have simple interpretation. The
first term shows that the magnitude of B2 acts like a pressure in a direc-
tion perpendicular to B. That is a gradient in B2 exerts a force which
pushes the plasma toward regions of lower B2. To interpret the second
term, note that (11, • V) ib = 1R/R where R is the radius of curvature of
the field line and 1R is a unit vector pointing toward the center of cur-
vature. Thus if the field lines are bent, there is a force exerted on the

82
plasma of magnitude -B and directed toward the center of curvature.
This latter force acts rather as if the field line were a rubber band. If a
stretched rubber band is bent, a force is exerted which tends to snap it
back to a straight line. This then corresponds to the way a magnetic
field line acts. The main difference is, of course, that a stretched bent

I
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rubber band exerts a strong force along its length as well as perpendicu-
lar to itself; the bent magnetic field line only exerts this force perpen-
dicular to itself but not along its length. Figure (11-3) illustrates the
force exerted on the plasma by the two terms in Eq. (1I-14b).

B

_ _ _ B

Fig. 11-3 - Illustration of the force, a gradient in B1, and the
force a curved field line exerts on a plasma

Clearly, before we can concern ourselves with MHD instabilities,
a first step is an examination of MHD equilibria. In equilibrium, with

V t-i- = 0, the momentum conservation equation is

Vp= xB -- V B 2 + - (B • V)B. (1-15)

There are several immediate consequences of Eq. (11-15). First of all,
it is easy to show that the pressure must be constant along a field line;
simply take dot product of Eq. (11-15) with ib and get the result

(ib V)p = 0 (11-16)

so the pressure is constant along a field line. Therefore any open ended
device, for instance a magnetic mirror, where field lines end on walls,
cannot be in MHD equilibrium, at least for scalar pressure. It is for
this reason that the research on open ended devices usually concerns
itself principally with Vlasov equilibria and stability or else with tensor
pressure.

For the remainder of this chapter we will concern ourselves with
devices with enclosed field lines, for instance tokamaks, reversed field
pinches, or infinitely long cylinders. As a field line goes around a
toroidal machine, there are three possibilities; first, it may close on
itself after one or more transits; second, it may trace out a surface, and
third, it may ergodigally fill a volume, which may be either the entire

IT
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volume of the torus or a portion of it. In MHD equilibrium, the pres-
sure is constant along each magnetic line, surface or volume, whatever
the case may be. Clearly, if the field lines fill the volume of the device,
no MHD equilibrium is possible.

In the case of reverse field pinches or tokamaks, the field lines
form surfaces. From Eq. (11-15), it is possible to show that the current
lines are also in the flux surfaces. To do so, take the dot product with
J which shows that P = constant along the lines of J. However if P
varies from one flux surface to the next, then lines of J must also lie in
the surfaces of constant P that is the flux surfaces.

In a general axi-symmetric toroidal equilibrium, it is usually con-
venient to choose as one co-ordinate surface, the flux surface. For our
purposes here, we only write the pressure balance equation in cylindri-
cal geometry with variation only in r. These are

Br - 0

dr I 8 S i  1 B I

Once p and B, are given, Eq. (11-17) can be solved for the appropriate
B, for equilibrium.

Having discussed the steady state equilibrium, we now proceed to
a discussion of the dynamics by examining what sort of wave motion is
allowed in a uniform, magnetized, current free conducting fluid.
Denoting an unperturbed (equilibrium) quantity with a subscript zero
and a perturbed quantity with no subscript, the linearized equations of
motion are

P V YPo
P -- "- + -(V x B) x o  (a)

OP + Po"V -V- 0 (b) (11-18)
at
-B -VxVxB. (c)
at

where we have made use of the adiabatic relation between p and p.
Taking -L of Eq. (II-18a) and substituting from Eq. (11-18 b and c), we

find a single vector equation for V. Assuming V - ik and - - -

it is
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-Wo2 V=-ck(k.V)+ VA'ix [kx {kx (Vx i))] (11-19)

where c, is the sound speed, c, = [__I -- J and VA is the Alfven speed
BP

V, -,..4o. Also Bo is assumed to be in the z direction. Since the

plasma is isotropic in the x-y plane, we may take k to be in the yz
plane without loss of generality. Then taking the component forms of
Eq. (11-19), gives

c 2 V = k2 V2V (a)
2 V-i kyc 5

2 (k, V+ k'V) + (k2 + kz2)VVy (b) (-20)
2 Vz =f k5c(kyVy + k' V'). (c)

As is clear from Eq. (11-20a), the x velocity decouples and this is
the shear Alfven wave with dispersion relation

c k2 V2 - k2 Vcos 2  (11-21)

k being the magnitude of k and 0 being the angle between B and k.
The other modes involve the coupled y and z motion. A straightfor-
ward calculation from Eqs. (11-20 b and c) gives the result

02 (V2 + c'2) ± ((VI- c5 )2 + 4c5
2 VI sin 29) 1/ 2

i- 2 . (11-22)

For 0, the two roots are w2 k2 / c, and VI2 while for 0 the

two roots are w24 + VA and cs? cos29/(1 + 0. A

polar plot - for the three roots is shown in Fig. (11-4) for the case

of VA - 3c. Figure (11-4) shows that waves in a magnetized fluid have
some interesting properties. Since the shear Alfven wave (Eq. (11-21))
has V - V -0, it does not compress the plasma. At 0-,0, the
sound wave does compress the plasma, but by following this root
around to 0 - 1- where w - 0, one can show that there is no plasma

2
compression there. On the other hand, at 0 - 0, the wave which has
-- VA does not compress the plasma; however following the root
k 2

around to 0- " where -2 - VA2 + c2, we see that the plasma is
2' k

compressed. Thus if VA > c5, there is no such thing as a pure sound
wave. What starts out 4,s a compressional wave at 0 - 0 ends up as a
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shear wave at 0 - and visa versa. However if c, > VA, the sound
2'

wave is compressional at all angles.

We now give simple physical pictures first for the shear Alfven
wave for 0 = 0 and then for the compressional Alfven (magnetosonic)

wave at 0 = -ir Imagine that each fluid element is displaced in the x2"
direction an amount

x = x. cos kz. (11-23)

Since the field line is frozen into the flow, Eq. (1-23) above is also the
equation for a field line. The perturbed field Bxi. is perpendicular to
the equilibrium field, Boi,, so there is no first order change in the mag-
nitude of B. Hence the only force on the fluid arises from the bending
of the field line, as discussed after Eq. (11-14). If terms of order x' 2 are
neglected, the reciprocal of the radius of curvature of the field line is

R- t = - k2xo cos kz i,. (11-24)

Therefore the force per unit volume on each fluid element is
B2k2

Fm 4 B ix 0 x cos kz (11-25)

which is just minus a constant times the displacement of the fluid ele-
ment. That is, each fluid element performs simple harmonic oscillation
with frequency given by w2 - k2Bo2/4 'p perpendicular to the
equilibrium magnetic field. The phase speed of this wave is the Alfven
speed.

One can picture this oscillation in terms of the magnetic field lines
constituting a series of strings which permeate the plasma. ImagineB2

pulling on these strings with a tension of i per unit area. Then if

the strings are bent, they will tend to snap back and oscillate about their
equilibrium position with frequency k2B2/4i'p. Therefore as far forces
perpendicular to themselves are concerned, the magnetic field lines are

B2

like strings with tension per unit area. They are different however,

in that unlike a stretched string there is no force along a magnetic field
line.

We now turn to an examination of wave motion across a magnetic
field. Say that B, is in the z direction and the displacement and wave
number are both in the y direction. In this case, the field lines remain
straight and do not bend. Therefore, according to Eq. (II-14b), the
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force density on the plasma is minus the gradient of the scalar magnetic
pressure. This perturbed magnetic pressure is

BoB, B' B 2Pm,
PM = 2 z 2 B . V (11-26)87r B0  P0

where we have used the fact that the field is frozen into the plasma so
-P-__ - Bz .(Also this can be easily verified from Eqs. (I1-18b and c).)
P0  Bzo
Hence the magnetic scalar pressure acts like a fluid with y - 2. The

perturbed fluid pressure is of course I"--2-I so that the perturbed total

pressure in the plasma is given by

PTo T - + 2 Lo p  (11-27)
P0  P0 J

Now it is clear that perpendicular to the field, waves propagate like
sound waves, except that the magnetic field adds an extra 'springiness'
to the plasma.

We conclude this chapter with a discussion of what sort of plasma
motion an MHD instability is likely to generate. The modes we have
discussed all have w 2 > 0. However for instability, obviously Wu2 < 0.
Now imagine that there is some physical effect which perturbs the sys-
tem so as to drive the plasma toward instability. Clearly this effect will
manifest itself by lowering w2. However if co2 is large to begin with,
instability, in general, will not result, but instead just a lowering of the
frequency. Clearly, the most likely place for instability is where o 2. 0,
or for incompressible flow with k B - 0, according to Fig. (11-4) and

I/

Fig. 11-4 - A polar plot of phase veloc-
ity versus angle to the magnetic field
for the three branches of MHD oscilla- -

tion

A
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the discussion following Eq. (11-22). In other words, if k • B * 0, the
instable flow will couple to shear Alfven waves, which is a stabilizing
effect; and if V. V d 0, it will couple to sound or magnetosonic
waves, which is also stabilizing. In most of the rest of this book, we
focus on perturbed plasma motion which is incompressible. This does
not mean, of course, that the plasma is impossible to compress, but
rather that the motions we consider have phase speed much less than
the magnetosonic speed and are therefore decoupled from compres-
sional motion.

Listing relevant previous work in MHD in a complete and fair
way is an enormously difficult job because of the tremendous amount
of research spanning about a quarter of a century. Our own choice
comes generally from the papers that most influenced us, but we have
included others dealing with topics not directly covered in this book.
Also the papers listed reflect our own experience in magnetic fusion.
There are many other papers in astrophysical, solar and magnetospheric
research which we are not as familiar with.

We start with a list of recent review articles in this field:

Plasma Equilibrium in a Magnetic Field, V.D. Shafranov in
Reviews of Plasma Physics, Vol. 2, Consultants Bureau, New
York, 1966, Ed., M.A. Leontovich, p. 103.

Hydromagnetic Stability of a Plasma, B.B. Kadomtsev in Reviews
of Plasma Physics, Vol. 2, Consultants Bureau, New York, 1966,
Ed., M.A. Leontovich, p. 153.

Plasma Confinement in Closed Magnetic Systems, L.S. Solovv
and V.D. Shafranov, In Reviews of Plasma Physics, Vol. 2, Con-
sultants Bureau, New York, 1970, Ed., M.A. Leontovich, p. 1.

Plasma Equilibria in a Tokamak, V.S. Mukhovatov and V.D.
Shafranov, Nuclear Fusion, 11, 605 (1971).

Tokamak Devices, L.A. Artsimovich, Nuclear Fusion, 12, 215
(1972).

Tokamak Research, H.P. Furth, Nuclear Fusion, 15, 487 (1975).

Hydromagnetic Stability of Tokamaks, J.A. Wesson, Nuclear
Fusion, 18, 87 (1978).

p IIIT
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Experimental Studies of Plasma Confinement in Toroidal Systems,
HA. Bodin and B.E. Keen, Europhysics Journal, 40, 1415 (Dec.
1977).

A paper describing the concept of magnetic field lines in a magnetized
fluid is:

Motion of Magnetic Lines of Force, W.A. Newcomb, Ann. Phys.
2, 362 (1958).

Several papers describing MHD equilibria are:

Equilibrium of Magnetically Confined Plasma in a Toroid, M.D.
Kruskal and R.M. Kulsrud, Phys. Fluids, 1, 265 (1958).

Hydromagnetic Equilibria and Force Free Fields, H. Grad and H.
Rubin, IAEA Geneva Conf., 31, 190 (1958).

On Magnetohydrodynamical Equilibrium Configurations, V.D.
Shafranov, Sov. Phys. JETP, 6, 545 (1958).

Toroidal Containment of a Plasma, H. Grad, Phys. Fluids, 10, 137
(1967).

Helical Equilibrium of a Current Carrying Plasma, S. Yoshikawa,
Phys. Rev. Lett., 27, 1772 (1971).

MHD Equilibria in Sharply Curved Axisymmetric Devices, J.D.
Callen and R.A. Dory, Phys. Fluids, 15, 1523 (1972).

High Pressure Flux Conserving Tokamak Equilibrium, J.F. Clarke
and D.J. Sigmar, Phys. Rev. Lett., 38, 70 (1977).
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Chapter III

THE ENERGY PRINCIPLE

A complete solution of the linear stability of a plasma for a given
magnetic field configuration requires the determination of eigen-
functions and eigenvalues of the linearized equations. For all but the
simplest geometries this proves to be a problem of considerable com-
plexity. It is therefore desirable to have a procedure for deciding the
question of stability which does not require the determination of the
eigenvalues (or characteristic frequencies). For the problem of the
MHD stability of a perfectly conducting plasma in the absence of an
equilibrium flow, the Energy Principle provides just such a method.

The original derivation of the Energy Principle by Bernstein et al.,
assumed that the eigen-functions of the linearized equations formed a
complete set. However, it was pointed out by Laval et al., that this
assumption is not always valid so that it became necessary to find a
proof of the Energy Principle which did not rely on the completeness
property. Laval et al., in a very elegant analysis, provided this proof
assuming only that the linear operator was self-adjoint. Here we shall
give an alternative proof of the Energy Principle which assumes neither
completeness nor self-adjointness but instead we shall demonstrate the
conservation of small signal energy directly from the linearized ideal
MHD equations.

Before giving this proof let us say a few words about the small
signal energy mentioned above. The small signal energy is defined
entirely in terms of the fields of the linear theory and is not the same
as the physical energy. It was Sturrock who first drew attention to the
significance of the small signal energy (or "pseudo-energy" as he called
it) for the problem of linear stability. It is not obvious that this small
signal energy will be conserved in a conservative system simply because
the physical energy is conserved since the exact fields have been
expanded in a series and truncated at the first order.
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We shall now derive a generalization of the Poynting theorem
from the linearized MHD equations and from this obtain the conserva-
tion of small signal energy. The proof of the Energy Principle is then
completed using the arguments given by Laval et al.

Let us consider a plasma in which the pressure is isotropic and
which is bounded by a rigid, perfectly conducting wall, where the
boundary conditions are the following

fi.-V-0; fix E-0; fi- -=0

when fi is the unit normal to the boundary. The analysis is easily gen-
eralized to other boundary conditions (e.g., plasma-vacuum boundary).
The linearized equations of the ideal MHD model are

OV 1 1Po- -VP+-Jx o+--oX B(III-1)

O- + V • oV) - 0 (111-2)
at

E + - V x Bo=0 (111-3)
C

ak + (V " V)P - lP- [-p- + V " ptV 0

V x E = (I18-5) "

V xB-4rJ (111-6)
C

V B- 0 (111-7)

where fields with subscript zero are equilibrium quantities and the
linearized variables are written without subscripts. As already men-
tioned there is no equilibrium flow of the plasma. We now scalar mul-
tiply Eq. (III-1) by V to obtain

av
poV' V -V'VP+ - x(JxB,)+- (J x B) (111-8)

using the relation

V (pV)-pV.V+V.Vp

Eq. (111-8) can be written in the form
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a 2pVV =-V • (pV) +pV V+ (jx Bo)
2 JC

+ -!(J. x B). (111-9)
EcB

Next, scalar multiple Eq. (111-6) by -i---E, Eq. (11.5) by - to obtain
41 4

C E V x B-- B V xE + J E.
41r 41r8:t 87J

This can be written as

B0 BI+ cE xB I+ J E 0 (111-10)
at 81r 47

Substituting for E from Eq. (111-3) into the term J E Eq. (111-10)
becomes

a_ + V 4cEx B V. U x B) (III-11)

where we have made use of the vector identity
J .(V x Bo) = V (Bo x J). Adding Eqs. (111-9) and (III-11), we
obtain

1 V V + [E2 cE x B
t 1 2P 8 7r~ I V 47

= pV V + V (Jo x B). (111-12)

Now consider the term pV • V. With the aid of Eqs. (111-2) and (III-
4), we find

V •V- -Lap+ I.(V. V)po1 . (111-13)I Po at -YPo

Substituting Eq. (111-13) into (111-12) we have

1 V vv+ 2: + 2 o + -- ExB+ pV

- V • (JO x B) - --- (V. V)po. (III-14)
YPo

In order to obtain the final form of the conservation equation we must
introduce the linear displacement vector j defined by

"V. (Il-15)i-: a t
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Notice that this is n t the actual displacement, which is defined by

dL - [ + V . acV V. However since f and bold V are bothdt lat

small, the two are the same in linear theory. This enables us to

integrate Eq. (111-5) in time to obtain B in terms of f thus

B = V x (f x B0 ) (111-16)

where we have, of course, made use of Eq. (111-3). We can also obtain
p in terms of f by integrating Eq. (111-13) in time to obtain

p = - (f • V) Po - vpo(V • f). (111-17)

Now consider the two terms on the right hand side of Eq. (111-14).
First,

V .(U0 x B) -- J,, A x B)

Since B depends linearly on ( and Jo is independent of time we may
write

J i x B [f x BI

so that

V (J0 X )- J. t X BI.

Next, consider the second term

-- (V • V)po - .L . v p0.

Since p depends linearly on J through Eq. (111-17) and po is indepen-
dent of time we may again write

- (v. o V)PO - T vL11 o V 1.(111 19)

We may now substitute (111-18) and (111-19) into Eq. (111-14) to obtain

I-L TooVBV + .-- + i oJ " (C x B)

+ I-(f- V)P + 4. lE X B + pV 0 . (111-20)

This is the required energy conservation relation and is the generalized
Poynting theorem for linearized ideal MHD. The term inside the first
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set of parentheses is the total energy density of the perturbation per
unit volume and the second set of parentheses represents the energy
flow out of this unit volume. The energy flow terms will be easily
recognized as the Poynting vector and the convection of the plasma
internal energy by the perturbed plasma motion.

Equation (111-20) is not yet in its most familiar form. Let us
combine the pair of terms containing the perturbed pressure

1 2 + _p Vpo ._p(p + Vpo)
2 ypo 2 y p 20 Po

Substituting for p from Eq. (II-17) we obtain
_P2 + 1 -- f'VP°2L(e'V)P°+-I y p ° (V ' ) 2 (111-21)

2 yPo 2 ypo22

Substituting (111-21) into (111-20) we obtain the final form for the small
signal energy conservation equation

±Ji1 V+ B.B +1 1I- Jpo V. V + B--- B J + _Lj × x) + lypo (V . j) 2

+ ( -. Vpo)V.f +V. -ExB+pV 0 (111-22)

We now integrate this equation over the whole plasma to obtain

af IoV.v+ B + Jo ( x B) + +ypo (V. f)2

++(.Vpo)Vf d3r+fl- EXB+pV .- 0

where dS = iS and S is the surface bounding the volume of integra-
tion. Since we have assumed a perfectly conducting, rigid wall in con-
tact with the plasma the boundary conditions ensure that the surface
integral vanishes. We are then left with the result that

-C(K + 8 W) - 0 (111-23)
8t

where K -f -1pV • V dV is the total kintic energy of the plasma 8 W

is immediately identified as the potential energy of the perturbation and
is given by

&
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8W= ff J o"( x B) + yp v. f)2 (111-24)
2 1r

+ (f. V)poV .4]d3r.

The form of 8 W given in Eq. (111-24) is in agreement with that first
given by Bernstein et al.

We can already draw a number of conclusions at this stage of the
analysis with the aid of the equation for the conservation of energy.
Since we assumed zero equilibrium flow, it follows that K is always
positive definite. Taking as a definition of instability an unbounded
increase of K in time, it is clear from Eq. (111-23) that if 8 W > 0 the
system must be absolutely stable. It is also clear from Eq. (111-23) that
in order to have instability 8 W < 0 such that 18 WI grows in time so as
to balance exactly the increase in K. To complete the proof of the
Energy Principle we now follow the argument given by Laval et al. in
order to show that if a f and B = V x f x B. can be found such that
8 W < 0 the plasma is unstable.

Equation (111-1) can be written as

Po 0 -  F(f) (111-25)
at 2

where

F(f)=V(. UVpo) +V(ypoV. ) + -JO x B (111-26)
C

+ -1(V x B) x Bo.
C

The next step is to define the virial I(J) defined by

I(e) - f d3r. (111-27)

Differentiating I twice with respect to time

" f (poi j + po e)d 3 r. (111-28)

The first term on the right hand size is twice the kinetic energy and the
second term can be written in terms of F(J) with the aid of Eq. (III-
25) giving

g2K F(C)d 3r. (111-29)
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With the aid of some vector algebra it is straightforward to show that

f • F(f)d 3r - - 28 W (111-30)

where 8 W is the potential energy defined in Eq. (111-24). The final
form of Eq. (111-29) can now be written

1 = 2K - 28 W. (111-31)

We now assume that there is some displacement q7 such that

8 W(q) < 0. We write this explicitly as

8 W(71) - - (021(qi) (111-32)

where w > 0 and I(vg), the virial, is, of course, positive definite. The
displacement vector C, which is a solution of Eq. (111-25), is now
chosen to satisfy the following initial conditions

= 11, C = W-0. (111-33)

Since the total energy Q of the perturbation must be a constant we may
calculate its value with the aid of Eq. (111-23). Thus

Q=K+8W

-1() + 8W()

= 021(,") + 8 W(7q)

so that Q - 0. Using this result we may now eliminate 8 W from Eq.
(111-31) to obtain

I - 4K. (111-34)

We now relate I to I and i. By the definition of I,

j2 = If ,, 1f f2 I) 1/ (p/2C)d3rj

Using Schwarz's inequality, we may write

I (pl 12t) . (po/l2c)d3r"2 < (f pof " d31r" (f poi j d3r1

and therefore j 2 < 41K. With the aid of Eq. (111-34) the inequality
becomes

j2 < I. (111-35)

Now I > 0 at t - 0. Integrating Eq. (111-34) we obtain - jo +

4Kdt where the subscript zero indicates that the quantity has been
evaluated at t - 0. We may evaluate the constant I with the aid of the

4initial conditions. Thus

'm ~ • .. . •----- --
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io,f pof . d3r=,f po .j d3r-2w 1o>0. (111-36)

We therefore find that io > 0 so that j > 0 for t > 0. Since Ii > 0
for t > 0 we do not alter the sense of inequality (111-35) by dividing
throughout by this quantity, so that

I -. (111-37)I I

Integrating for t > 0 we have

In TL in '. (111-38)
4'

Using inequality (111-36) we obtain

- > 2wu. (111-39)1

Again integrating for t > 0 we have

I >, I, exp 2&j t. (111-40)

Thus I grows at least as fast as exp(2(at) and since I is quadratic in f it
follows that the displacement f will grow at least as fast as exp(cwt).
This then completes the proof that for any displacement which makes
8 W < 0 instability will always occur.

Actually there are stronger proofs that are possible from the
energy principle. One can also prove (although it is more difficult) that
if the equation of motion is written as Eq. 111-25 then the operator F is
Hermitian. This means that the eigenfunction j is in fact that function
which minimizes 8W. From this fact, one can draw a number of
interesting conclusions. For instance increasing the specific heat ratio Y
always makes the plasma more stable. To see this, consider minimizing
8W for the case that y - Y2. To do so, take for instance a set of possi-
ble eigenfunction and minimize 8W by varying a set of parameters.
Now consider the case of -y - 3 < Y2. Using the eigenfunction which
minimized 8W for Y - Y2, we can show that the 8W for y = 3 is
smaller because the only term dependent on y in 8W is ypo(JV . f)2.

Thus increasing y is a stabilizing effect. Therefore we generally con-
sider the case of y - 0o, the incompressible limit. If the plasma is
unstable in this limit, it will be unstable at any smaller value of y also.
In the incompressible limit, the perturbed pressure is finite, so accord-
ing to Eq. 111-17, V • is finite, but V • f and 3(V f e)2 -- approach
zero.

I
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Let us conclude this chapter by considering, in very simple terms,
the physical significance of the potential energy 8 W defined by equation
(111-24). We have seen that the plasma will be stable when 8 W > 0.
The expression for 8 W then shows that the energy required to perturb
the equilibrium magnetic field (either field line bending or compres-
sion) is positive definite and therefore stabilizing. The third term is the
expression for 8 W is also positive definite so that incompressible per-
turbations may be expected to be the most unstable. The second and
fourth terms in the expression for 8 W are the potentially destabilizing
ones. The driving mechanism in the first of these being due to the
equilibrium current and is the second to the equilibrium pressure gra-
dient. To apply the energy principle one can do one of two things.
First of all, one can try various different displacements and see whether
the 8 W can be made negative. For instance, the well known stability

requirement that - -must decrease as the pressure decreases can be

derived by examining the effect of a displacement which interchanges
two adjacent flux tubes. Of course this only gives a necessary condition
for stability; there may be other untried displacements which give insta-
bility. Alternatively one could attempt to minimize 8 W by applying the
variational principle. If the minimum value of 8 W > 0, for a displace-
ment normalized in some way, for instance f If 2d3r = 1, then the
plasma is stable, and visa versa. Thus one can derive a necessary and
sufficient condition for stability. This is the approach used by
Newcomb in analyzing the stability of a diffuse linear pinch. For an
illustration of the Energy Principle in a number of simple situations the
interested reader may refer to the review of hydromagnetic stability by
Kadomtsev.

There are other forms of the energy principle which are also use-
ful. These can be derived from Eq. (111-24) with some algebraic ma-
nipulations. There is one other form which we will consider

Bw-lf dr _IB12+4,". B11  B,, Vp0

Jo" Be 1
+ypoIV "I2 + "-- 012 Bo X"B-2 -po, -K (111-41)

where i and 11 denote components of B perpendicular to B., and K is
the normal field line curvature K - B • V B where B is a normal vector

parallel to B0 .
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Equation (111-41) is particularly illuminating because each of the
five terms in it are from identifiable causes. The first three, which are
always positive are the energies associated with the shear alfven, mag-
netosonic and sound waves. The fourth is the energy driving kink
modes and is created by the presence of the plasma current. It can be
negative. The fifth term is energy driving interchange modes. It can
be negative if the curvature is in the same direction as the pressure gra-
dient. If the pressure gradient is antiparallel to K, the last term in Eq.
(111-41) is always positive. However any angle between Vp and K
other than 1800 is potentially unstable. To see this note that if the
direction of f is along the angle bisector of Vp and K, this term is
positive.

This last, interchange mode term has exactly the same form as
the energy from the displacement of an incompressible plasma in a
gravitational field. This gravitational energy -released is minus the force
dotted into the displacement, or

WG  = -P9 (111-42)

where g is the gravitational acceleration. The quantity p may be deter-
mined in terms of f by integrating the mass conservation equation for
incompressible plasma,

p - - 1Vp

so that

WG = g • Vpo. (111-43)

Thus the gravitational energy is negative if g and Vp point in opposite
directions. Equation (111-43) for the gravitational energy has exactly
the same form as the last term in Eq. (III-41a) if Vp o is replaced with
Vpo and - 2K is replaced with g. This leads to the conclusion that pres-
sure driven modes can be investigated, qualitatively at least, by study-
ing the much simpler problem of gravity driven modes.
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Chapter IV

FREE SURFACE MODES IN A
CYLINDRICAL PLASMA

A very important class of unstable modes occur when the plasma
does not extend up to the wall of the metal chamber. In this case, the
plasma has a free surface which can undergo unstable helical (or kink)
perturbations. In this chapter, we work out the properties of two types
of free surface modes, first where the current is carried on the surface,
and second where the volume current density Joz is uniform inside the
plasma. The former instability is responsible for the famous Kruskal-
Shafranov requirement for gross stability q(a) > 1 where a is the
radius of the free surface. The later instability is responsible for

unstable displacements of the free surface wherever q(a) < -m where
n

m and n are integers. Also q (r) - rB,/RB9, R being the major radius.

We begin with the former type of instability, that is where all the
current flows along the free surface. Let us now define our model
more precisely. We shall consider an infinitely long cylindrical plasma
whose axis is taken to be the z direction. The plasma extends radially
from r - 0 to r - a, beyond which there is a vacuum. For simplicity,
assume the vacuum region extends to infinity and that the plasma sur-
face current flows only in the z direction. Then, Maxwell's current
equation gives the following boundary conditions for equilibrium mag-
netic fields

(Bv- B0o)Plrla - 0 (IV-I)

(B- - ) - 4 IJ (IV-2)
c

where .,o is the axial surface current and the superscripts V and p
denote vacuum and plasma fields respectively. Assuming that

B, - 0 for the equilibrium we obtain the following equi-
0 oz

librium fields from Maxwell's equations
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B-Po - B 0_ -= (IV-3)

B q 0 (IV-4)

B v, . 47ra Jo, (V-S)
rc

Since the magnetic field is uniform in the plasma, then so must be the
pressure. Then equilibrium pressure balance at the plasma vacuum
interface is given by

20a) -27J2
p,(a) = 2 (IV-6)

Let us now consider perturbations to this equilibrium, which are
assumed to vary as f(r) exp(i (kz + mO) + yt). (To make the transi-
tion from cylindrical to toroidal systems, we simply quantize k by taking

k - -n where R is the major radius of the torus.) Here and hence-
R

forth we take B,9, B~o, J, and m > 0. However the sign of k is arbi-
trary. In general there is only instability for k < 0. The linearized
equation of motion of the plasma can be written

10 V -L (B° . V)B - VP (IV-7)

Bo B
where po is assumed to be uniform and P - P + 4r. In obtaining

(IV-7) we have used the fact that Bo is uniform in the plasma. Taking
the divergence of Eq. (IV-7) we obtain

'po(V - V) --- ' V ' B- V2. (IV-8)

We now assume that the motion is incompressible V • V -V B - 0
so Eq. (IV-8) reduces to the simple form

V 2,5 - 0. (IV-9)

The solution of this equation which is bounded at the origin is

P - A I.(kr) (lV-0)

where A is an arbitrary constant and l, is the modified Bessel function
of the first kind.

We now also need to relate the perturbed velocity V to A3 The
equation for the perturbed magnetic field is

vB - V x (V x B). (IV-11)
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Using once more the incompressibility condition for B. and Maxwell's
equations, the above equation reduces to

V - (B V) V. (IV-12)

Substituting (IV-12) into Eq. (IV-7) we obtain V in terms of P

v - yVP (IV-13)
po(,2 + k2V V)

where VA2 - B2/41rpo.

The perturbed field in the vacuum must satisfy
V -Bv - V x 8v - 0. Putting Bv i  , then q/ satisfies the equa-
tion

so

41 - C K..(kr) (IV-14)

where C is a constant and Km is an arbitrary Bessel function of the
second kind. The final step in the analysis is to match the perturbation
in the plasma and vacuum. Since we have two arbitrary constants in
Eqs. (IV-10 and 14), two boundary conditions are necessary.

The first condition comes from the need to have pressure balance
across the interface. Integrating the radial component of the equation
of motion across the boundary, we have

(B:+ BP). (BP+ BP) (Bv + Bv)• (Bv + Bv)
P + Po+ 8 0 (IV- 15)

Since we require the linearized form of Eq. (IV-15), we note that the
perturbed quantities are to be evaluated at the unperturbed boundary
and the equilibrium quantities, at the perturbed boundary, which has
been displaced a distance e - V/y. We then find the following condi-
tion for pressure balance

?(a) L + (IV-16)

where we have used the equilibrium pressure balance condition and the
fact that equilibrium pressure was assumed uniform.

The second boundary condition results from the following obser-
vation. Since the plasma is assumed to have infinite conductivity the
electric field moving with the plasma must be identically zero, or
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EP + V. X Bop= 0.
C

If we now match fields in this frame; then, because the tangential com-
ponent of electric field must be continuous in any reference frame, we
must have

E v+ (Y! x Bv) 0
C

where the subscript t denotes the tangential component. This is the
second boundary condition. However it can be put in a more con-
venient form by adding the normal components of each term to the
equation and taking the curl. With the aid of Maxwell's equations and
a little vector algebra we obtain

A8Bv
n n-V X(V xB v)0

where h is the normal to the plasma surface. Since B and V are zero
ait

in equilibrium, we can replace n by the unperturbed normal i,. Using

V - _-L f, we obtain
ait

Bi1 =IV x (fx BV)Ir-a (IV-17)

The final form of the second boundary condition now becomes

B, Vl t -a BV + kBVr. (V-18)

We are now in a position to obtain the dispersion relation for the prob-
lem. Equations (IV-10) and (IV-13) give the result

A kI, (kr)
-r l p(~ ~

2 + k2 V2) (IV-19)

where prime denotes derivative with respect to argument. Calculating
the perturbed field in the vacuum from Eq. (IV-4) and substituting Eq.
(IV-10 and 19) into Eq. (IV-16), we find

In(ka)P- poy kV) 4a FBr., A

A . Bov(a)
-k . K,(k) C-0 (VI-20)
4ir

j-,
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where k. Bv - m + kBv . Then substituting from Eq. (IV-19)
r

and the expression for Bv (from Eq. (IV-14)) into Eq. (IV-18) results
ikA -V (a) 1l (ka)

2( 2) A + k K'(ka) C - 0. (IV-21)

p0(y2 +k 2 V])
The condition for nontrivial solution of Eqs. (IV-20 and 21) gives the
required dispersion relation

2k BoV(a)) 2  I (ka)K ,(ka)
Y =-k VA+ rfrpo I(ka)K,(ka)

+ k(B (a)) 2 I(a ,(ka) (V-22)4 vrPoa Im(ka) "

Since Im'(ka)/Im(ka) > 0 and Km'(ka)/Km(ka) < 0 it is only
the third term on the right hand side of Eq. (IV-22) which is destabiliz-
ing. In order to see when this term is larger than the other stabilizing
terms, consider long wavelength ka < < 1. Using the fact that

Im (ka)/II(ka) - mika

and

Km (ka)/Km(ka) - m/ka,

Eq. (IV-22) can be written

a m (BY (a))2
-Y 2 -- k2 V- 4rp + 4a2p . V-23)

The most unstable k value is

k m Bv (a) (IV-24)
a 2B,

Substituting this into Eq. (IV-23), we find that the maximum growth
rate is

2 mB%~(a) Im 1
~ -IM + 1 (IV-25)YhX-a 2 4wrp 0  1- 2

so that the m - I surface mode is unstable, m - 0 and 2 are mar-
ginally stable and all higher m (long wavelength) are stable.

.- .II II I I I -
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It is also of interest to write Eq. (IV-23) in the form

2k2B2? 2m B., Bv (a) k (IV-26)
47rp0  a 4 rpo
m (BY, (a))'2(

a2  4 rpo

Since only the m - 1 mode is unstable we can immediately obtain the
range of unstable wavelengths

0< IkI < I a)
a Bo,

1
For a torus, the minimum value of k is -I-, so a toroidal plasma is

stable if

q(a) - aB > V-27)
RB v (a)

Equation (IV-27) is the celebrated Kruskal-Shafranov limit on the q (a)
value of a toroidal discharge.

Let us see what this condition implies for a tokamak plasma. The
plasma and metal wall are shown in Fig. (IV-1). The value of q at the
plasma edge must be greater than unity. In the vacuum region between1
r - a and r - b, B,, (r) decreases as - so that in the vacuum region

2 ~ r2

q(r) increases as r2, so that q(b) > [-]J. Thus, depending on where

the plasma boundary is, the value of q at the limiter must be somewhat
greater than unity in order for the plasma to be stable to gross kink
modes. This lower limit on q (a) implies an upper limit on current for

stable configuration. Using Bo'v (r - b) = -r where I is in amps, B in
5r

Gauss and r in cm, the maximum current is

5a 2Boz
I < (IV-28)R

We now turn to a discussion of the other type of free surface mode,
that where the plasma has a uniform current up to r - a and vacuum
outside. Also we assume B., >> Bo, R >> a, and treat the case
where B. , is constant. In equilibrium

0- d  1 Jzo B90  (IV-29)dr c

* (
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b METAL CYLINDER

Fig. IV-1 -A cylindrical or toroidal plasma
surrounded by a conducting wall

so the pressure profile is parabolic and vanishes at r - a, since B9, -~ r
and J,, is constant. We will see that this plasma can be unstable for all
m instead of just m - 1 as was the case for a surface current.

Before calculating the growth rate, let us show physically why this
is so. As discussed in the last chapter, a perturbation is most likely to
be unstable if k B0 - 0 since in this case, it does not couple to stable
shear Alfven waves. Right at the surface of the plasma,

mB vo(a)
k -B0  0 2 + 0 , and as we just saw, the plasma is unstable

when this nearly vanishes. However if k -B 0 is zero at the plasma
edge, it is equal to kB,0 inside the plasma. Thus, modes which are flute
like (that is perpendicular to BO) on the plasma surface are not flute
like in the plasma interior, and there is a strong coupling to shear
Alfven waves there. This is the explanation of the stabilizing first term
on the right hand side of Eq. (lV-22). Clearly the thing responsible for
this stabilizing effect is the fact that the magnetic field abruptly changes
direction as one crosses the plasma boundary. However, if the axial
current density is uniform, the poloidal magnetic field is a continuous
function of radius so that a perturbation which is flute like on the
plasma surface will be flute like in the plasma interior also. Thus we
expect the plasma with uniform current to be less stable than the
plasma with a surface current.

We now proceed to derive the properties of unstable modes in a

plasma with a uniform axial current with B, > Be, and -L« 1,
R

the so called tokamak ordering. Since the axial field is very large, one
expects that the most unstable motion could not compress this field,
implying two dimensional motion in the r# plane, i.e., V., - B, 0.
We will assume this to be true for now and prove it a posteriori. The

A perturbed magnetic field in the vacuum is unchanged and is given by
Eq. OIV- 14).
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The problem now is to derive an equation for the magnetic field
inside the plasma. To do so, take the z component of the curl of the
equation of motion. Using the fact the J, is constant in the plasma,
V • J - V B - 0 and B,2 is constant, we find

rp. Vo9- im V, -iVX (JxBo+JoxB) (IV-30)

-ik BO JZ.
C

Relating J, to Bz via Maxwells current equation, and using the fact that
1 0 imB

V " B- "--r Br + --B . V
ror r

TrY, + V,- 0(IV-3 1)
r Or r

we find

-y Tr~rpo-7--m r) +-i' (IV-32)

I i 8rr
47r r r im Or r

where
F mB°° nBz°

F- --.--= k .Bo.  (IV-33)r R
Note that for the case of constant current density Bo is proportional to
r so F is constant. The other relation between B, and V comes from
Eq. (IV- 11). Taking the radial component, we find

V, -= ), Br(IV-34)iF
Inserting Eq. (IV-34) into Eq. (IV-32), we find the single equation for
B,

m41rp r+Fj r A rB, m2B , 0 (V-35)

where we have assumed p0 constant.

The factor outside is simply the dispersion relation for shear
Alfven waves and cannot vanish for positive y. The quantity in the
square brackets must then be zero. Trying a solution B, - r" and
insisting that B, be well behaved at the origin, we find

-- -- n m l n I h i
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Br - A rm- l. (IV-36)

Of course A above and C from Eq. (IV-14) can be simply related by
requiring that B, be continuous across the free surface. (Since the
unperturbed fields are continuous across the free surface, all we need to
is say that the perturbed radial field is continuous across the unper-
turbed free surface.) Using Eqs. (IV-31 and 34) we also find

VO=iV,

Bg i B,. (IV-37)

The dispersion relation then follows from assuming pressure balance
across the free surface, or

B~~oB 2+ B0 oB , B0 oB84B == 4 + P  (IV-38)

where we have made use of the fact that B~v- 0 and that IB,12 is con-
tinuous. In the vacuum, one can immediately derive

K,, (ka )
Bz-i Km(ka) B, (a)

K,', (ka)
imKm(ka)

B -MK, (b). (IV-39)rkK' (ka)

It remains only to calculate p in terms of B,. This comes from the 0
component of the momentum equation

PoY V9 - - Tnp + 1 [-J,B., + BrJol. (V-40)
r C

Now
J,- V x Br B (V-41)

41r 1X~ 4r

where we have used Eqs. (IV-37b and 36). Thus by using Eq. (IV-41)
and the expression for V0 in terms of B, from Eqs. (IV-37a and 34),
Eq. (IV-40) relates p to B,. Plugging into Eq. (IV-38), we find the
dispersion relation

Y2.I FB. 2  I mK(ka) 11 V-42)
P0 2wr 2vpo kr K,' (ka) "

Since K,/K, < 0, the term proportional to F2 is stabilizing. The term

proportional to F can be destabilizing if F > 0, or > .
r R

Clearly the plasma can be unstable in the limit of F -- 0. Since B0, is
constant and Bog decreases as a function of r in the vacuum region, the
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plasma can be unstable if the singular surface, F - 0, falls just outside
the plasma. If the singular surface falls inside the plasma
F(r - a) < 0 so the plasma is stable. Also if the singular surface falls
too far outside the plasma, the second term on the right of in Eq. (IV-
42) dominates the first and the plasma again is stable.

Let us see what this means for the current buildup of a tokamak
plasma. As the current rises the value of q (a) decreases. Thus

F = mB 9, nB.o rB 9  I ° ng1 (
r R r Ir

starts out negative but as the current builds up it decreases. When the
current reaches the value at which

q(a) -m (IV-43)
n

F changes from negative to positive and the plasma is unstable to
modes with values of m/n given in Eq. (IV-43). This instability occurs
where Minov oscillations occur in tokamak plasmas, and it may be that
the two are related. However as the current increases, the mode
becomes stable because of the stabilizing effect of the second term on
the right of Eq. (IV-42). Thus only certain values of total current give
instability. In building up tokamak current, the idea then is to program
its rise so that it passes through the unstable values very quickly. How-
ever the maximum plasma current will always still be limited by Eq.
(IV-28).

We close by determining the conditions under which the motion
is two dimensional, as we have assumed. The velocity in the z direc-
tion comes from the z component of the momentum equation. Assum-
ing B, - 0, we find

y po " ikp.

Inserting for p from Eq. (IV-40) and taking the maximum value of vY,
from Eq. (IV-42), we find

Vz kr
2- r (IV-44)

kr
so the motion basically is two dimensional as long as L- << 1.

2t
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Two early references on stability of sharp boundary cylindrical plasmas
are:

Hydromagnetic Instability in a Stellarator, M.D. Kruskal, J.L.
Johnson, M.B. Gottlieb, and L.M. Goldman, Phys. Fluids, 1, 421
(1958).

The Influence of an Axial Magnetic Field on the Stability of a
Constricted Gas Discharge, R.J. Taylor, Proc. Roy. Soc. (London),
B70, 1049 (1957).

More recent work on stability of a cylindrical plasma with more realistic
current profile is:

Hydromagnetic Stability of a Current Carrying Pinch in a Strong
Longitudinal Field, V.D. Shafranov, Sov. Phys. Technical Phys.,
15, 175 (1970).

I/



Chapter V

GRAVITATIONAL (g) MODES IN
SLAB GEOMERTY

This chapter discusses modes driven by a gravitational force in
slab geometry. If gravity is present, the MHD equations for a perfectly
conducting, incompressible fluid are

+ V • Vp - 0 (V-I)
at

p a-+pV.VV--Vp+ -- x B- pF (V-2)
a t C

aB V x Vx B (V-3)
Ot

V x B- 4- J (V-4)
C

V • V= o. (V-5)

All variation is assumed to be in the x direction.

At this point we will digress briefly to consider what the
significance of g is. First, and most obvious, g could correspond to a
real physical forces. For instance in the ionosphere, the earths gravity
does give rise to Raleigh Taylor instability. Also g could correspond to
an inertial force. Consider for instance 0 pinch implosion shown in Fig.
V-I. Clearly, as the theta pinch implodes, the plasma accelerates
inward. In analyzing the local MHD stability of the imploding pinch,
one could work in the reference frame in which the fluid is locally at
rest. The inward acceleration is then described by an outward inertial
force. Also if a 0 pinch plasma is rotating with angular velocity fl, one
could analyze its stability by working in a rotating reference frame.
Then the inertial force is the sum of the centrifugal, fl 2ri, and coriolis,
2& x V. The former is outward and acts like a gravitational force. In
fact, 0 pinches are observed to disrupt due to the onset of rotational
instabilities. In ideal MHD, any rotation produces instability. However
with finite Larmon radius and other effects included, the rotation speed
must be greater than the ion diamagnetic speed V. - cT(d n/dx)/eBn
in order for the plasma to be unstable.

63
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t = 0 t =t t-- 2

7'/ '/ . .//

Fig. V-1 - Schematic of stages in the implosion of a 0 pinch

Less obvious, certainly less precise, but probably more useful, the
acceleration g can be used to model complicated geometric aspects of
the magnetic field as was seen in Chapter III where the energy driving a
pressure driven mode was compared with the energy driving a gravita-
tional mode. There it was shown that if the radius of the field line
points in the direction of increasing pressure, 8 W can be made negative
so the plasma can be unstable. On the other hand, if the radius points
away from the plasma, the plasma is stable. Stable and unstable
configurations are shown in Figs. (V-2 and 3). The energy was then
compared with the energy of a plasma in a gravitational field. For our
purposes now, we simply model g - iR VT/R. where iR is a unit vector
pointing outward along the radius of curvature of the field line, and VT
is a typical thermal velocity (that is VT is roughly either the ion thermal
velocity or else (Me/Mi) 1/ 2 times the electron thermal velocity).

Bz(X)

F F

Fig. V-2 - Schematic showing how a gradient in B exerts an average
force on a charged particle as it traverses its larmor orbit
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Fig. V-3 - Picture of a plasma confined in a magnetic
configuration with unfavorable curvature

After this digression on the significance of gravity, we return to a
discussion of g modes as described by the linearized version of Eq. (V-
1). All variation is taken to be in the x direction and g also points in
the x direction. The magnetic field points in the z direction and is
taken to be uniform. The basic g mode is then very easily derived.
Assuming a time dependence exp y t for perturbed quantities the linear-
ized versions of Eqs. (1-5) are

ap(
YP+ Vx ay=0 (a)

1

PoV - Vp -T V (Bo" B) - (B, 0 V) B

- (B. V)Bo +pgi,) (b)

V V-0 (c) (V-6)

where now perturbed quantities have no subscript and unperturbed
quantities have a subscript zero. Let us further simplify by assuming a
spatial dependence of exp i ky (that is no x or z dependence) for per-
turbed quantities. Then inserting from Eq. (V-6a) into Eq. (V-6b) and
taking the x component, we find

apo

Y,2. _ - 9 __x (V-7)

P0

Thus, if g and Opo/Ox have opposite signs the pla.ma is unstable.
Notice also that this instability is extremely violent. Assuming that L.

1, O-N" I is of order of R which is of order of the size of theA _ __ex
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plasma R, the growth time is of order RI VT. That is the time for the
mode to grow is roughly the time for the plasma to escape the system
from the micro trap traveling at the thermal velocity; in other words,
there is no confinement of the plasma at all!

Clearly, in order to confine the plasma, some means must be de-
vised to stabilize these modes. One possibility is to utilize a cusp (like
minimum B) type configuration like that shown in Fig. (V-4) so the
g 8po/Ox > 0 either everywhere or else so averaged over a flux tube.
This is generally called magnetic well stabilization and it is usually used
to stabilize mirror machines. To reverse the sign of gp' involves fields
with fairly complex structure and we will not emphasize magnetic well
stabilization here.

Fig. V-4 - Picture of a plasma confined in a magnetic
configuration with favorable curvature

One other way to stabilize these modes is by magnetic shear. A
discussion of this stabilization mechanism will occupy the remainder of
this chapter. In order to set the stage for our calculation of shear sta-
bilization of g modes, we begin by considering these modes when
k, ;d 0. If perturbed quantities vary as exp i (kyy + k, z), then the x
component of Eq. (V-6b) becomes
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ik Bo  V. ap0PO Vx = 4 B - 0" 6 (V-8)

To obtain Bx in terms of Vx, one uses the x component of Eq. (V-ic).
Inserting for Bx in terms of Vx, we find that the dispersion relations is

V,2 2  g OP- (V-9)
47r p, p Ox "

Notice that for kz 2 V2 > g -/po the mode is stable. Clearly as k,

increases, the unstable g mode attempts to couple to a stable shear
Alfven mode. Postulating a k, sufficiently large that V,2 given by Eq.
(V-9) is negative is, or course, not equivalent to stabilizing the system.
In an unsheared field, the plasma is still free to pick a parallel wave
number equal to zero. The basic idea behind shear stabilization is to
remove this freedom by imposing an equilibrium variation on the direc-
tion of B0.

Let us now say that

H, (x) = B0 oz + f-L iy) (V-10)
LS

where we imagine x << Ls. Since this additional x variation is
imposed on the system, all perturbed quantities have the functional
form

f(x) exp (i ky + yt)

where we have set k, = 0. Notice however that the variation in a per-
turbed quantity is no longer perpendicular to B0 . Indeed

(Bo -V) f(x) exp (i ky +Vt)

iBo --f (x) exp (0 ky +y 6,t. (V- 11)

Thus the presence of shear forces any perturbed quantity to vary paral-
lel to Bo as long as x ;d 0. This forced variation parallel to B will tend
to couple to shear Alfven modes and stabilize the plasma. We now
proceed to calculate just how much shear is needed for stabilization.

In a sheared field, the equation for the perturbed x velocity is
slightly, but not much more difficult to specify. Because of the
inherent x dependence of B0 , one can no longer assume that perturba-
tions are independent of x. To begin, take the curl of the perturbed
momentum equation

A4._ ---1. -------
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yVxpV--VXI(Be.V) (VxVxBe)4 7Ty

+ [(V x Vx B). VI Be)

- gV xI V, Po ixW-2

where we have made use of the fact that B - 1 V x V x B.. Now
Va

consider the x component of Eq. (V-12). Recalling that - 0, a

short calculation gives the result

2 V + 4- k2
1 V,-o. (v-13)

Equation (V-13) above dictates that either V - 0, or else the quantity
in the square brackets vanishes. The latter case implies shear (stable)
Alfven waves at each point x. Since these are not unstable, we assume
the former, i.e.,

V, - 0. (V- 14)

From the fact that V - 0, one can show easily from Eq. (V-id) that

also

Bz - 0. (v-15)

Thus the perturbation is two dimensional in the x - y plane. The
incompressibility condition then relates V, to Vy and B, to By

OBx _ BY- .Vx + ikVy - . W-16)

ax e~ x

Then, taking the z component of Eq. (V-12) and making use of Eq.
(V-16) above, we find the following simple equation for V:

Y + k x -2 j 2 k21x )
TX1PV2+ '2[J B axj S

Bp
00 +g Vx-O. (V-17)

Notice that the term in the parentheses on the right hand side is simply
the local dispersion relation, Eq. (V-9), if one assumes
k,2 - k2 (x/L,) 2. However, this is no longer the dispersion relation in
the sheared system. For instance if Eq. (V-9) were initially satisfied,
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disturbances near x - 0 would grow while those far from x - 0 would
not. A strong x dependence would then be induced by the local
growth, and eventually the first term of Eq. (V-17) would also be
important. The problem then is to find the eigenfunctions and eigen-
values of Eq. (V-17). In the limit of x -- oo, the equation approxi-
mately reduced to

x k2Vx (v-18)ax 2  x(

with solution

Vx = exp -E kx (V- 19)

clearly the proper boundary condition is that Vx approaches zero at both
x - ± oo. Since

1P2 B2
_

P0 °y2 + k 2  X 40 = Q > 0 (V-20)

as long as y2 > 0, Eq. (V17) has no singular points on the real x axis.
Therefore one could easily solve this equation numerically for the
eigenvalues ,2.

We now see what insights may be obtained analytically. One can

immediately show that if g - > 0, no solution with y2 > 0 can

4B" - Q(x) is then greater than zero. Assume that at x -- -cc, Vx is

well behaved and also that V > 0. Then

8VX fX. k2 G W) V &c' (V-21)
ex Q(X)

where

op.
GW) - QW) + . -ex (V-22)

which is greater than zero since g8p18x is. Therefore ix > 0 for

all x so that the solution for V is a monotonically increasing function
of x. Hence, it does not satisfy the proper boundary conditon as
x - +co. Clearly, in order for V, to satisfy the proper boundary condi-
tion as x- +ao, there must be some region of x where G(x) < 0.

4... .: II
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Now let us examine how an unstable eigenfunction can be con-
structed. If g OpIox is greater than zero the function is monotonically
increasing, and as x -- oo it diverges as exp kx. Now depending upon
the sign of G(x) (Eq. V-22), the equation has two fundamentally
different types of behavior. If G(x) > 0, the solution for V, is a
monotonically increasing function of x as we have just discussed. On
the other hand, if G(x) < 0, the solution for V, is generally oscillatory
in x. The local wave number is given very roughly by
k(- G(x)Q(xW 2 . If G(x) changes sign as x varies, we will denote
the regions of G (x) > 0 as monotonic regions and the regions where
G(x) < 0 as oscillatory regions. We have just shown that the regions
x --" ± co are monotonic.

If g ap0 /Ox < 0, there is an oscillatory region specified by

X°s k2 Be g OL-x - 21. (V-23)

Since the wave number of the oscillation in the oscillatory region is
given roughly by k(-G(x)/Q(x)) 1/ 2, it is clear that increasing y
increases the wavelength in the oscillatory region. Let us imagine that
a y y- can be found such that Vx = 0 at xxo,. Then, since
x > x0, is a monotonic region, the solution for V for x > xo diverges
toward minus infinity as x - +oo as shown in curve A in Fig. (V-5).
As y is increased, the wavelength in the oscillatory region increases so
that the solution for Vx will not curve downward as much here. Thus
for a sufficiently large y E +, the solution for Vx diverges toward
positive infinity as x - oo as shown in Fig. (V-5) curve B. Clearly,
there exists some y v= y, where y- < y0 < y+ for which the solution
to Eq. (V-17) asymptotes to zero for through positive values of V+ as
shown in Fig. (V-5) curve C. This then is an unstable eigenfunction
with eigenvalue y.

One can now deduce the following criterion for determining
whether Eq. (V-17) has unstable eigenvalues. First select a y and
assume Vx is well behaved as x - -c and integrate the equation
towards plus infinity. If there is one zero of V before the solution
diverges at x - + oo, then there will be one eigenfunction with a
growth rate larger than this assumed y. Similarly, if there are two zeros
of V,, before the solution diverges for x - +o, there are two eigen-
functions with growth rate larger than the assumed -y; and so on.
Clearly, the more nodes to the eigenfunction, the smaller is -Y. The
equation, and this technique of determining a sequence of eigenvalues
is closely related to the Sturm-Louisville equation described in Morse
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4-

Fig. V-5 - Diagram of how to form the eigenfunction
and calculate the eigenvalue (y) of Eq. (V-17)

and Feshback, Methods of Theoretical Physics, Vol. I, Chapter VI or
almost any advanced calculus textbook.

Now it is possible to derive very quickly an approximate criterion
for shear stabilization of g modes. In order that Vx(xo,) 0 0, it is
necessary that there be roughly one half a wavelength of oscillation in
the oscillatory region. Approximating the wave number of this oscilla-
tion by the square root maximum value of k2G divided by the square
root of the maximum value of Q, we find instability if

2 J P~?9~/2 sB~ 1 1/22, ,Co, - a Ik 2 Os -

q-~ a1  x LS 2 4lIT

2-g -I-2 L4 > 1. (V-24)
W axj B0

For L, much larger than specified by Eq. V-24, the mode grows with
growth rate given roughly by Eq. (V-7). Equation (V-25) is then a
condition for shear stabilization of g modes which have scale length of
order x 3. One might think that by localizing the mode very close to
x - 0, and by greatly decreasing the growth rate, the wavelength of the
oscillation for V in the oscillatory region could be significantly reduced
so that unstable eigenfunctions could be constructed even if Eq. (V-25)
is violated. This possibility will now be examined.
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For very small xand -, the equation for V, can be written as

kt+k[J B Ix v,= 0. (V-25)

In Eq. (V-25) above, the y2 is retained in the left hand term so that the
solution is non singular at x - 0. However clearly, for

X >L241r py2 (V-26)
2

k 2 B,

the y term in Eq. (V-25) is not important. Therefore, we can neglect
y, but restrict ourselves to the range of x denoted by Eq. (V-26). By
considering the limit x - 0 we can see how the solution behaves for
small x and y, and particularly, we can see whether the solution has a
node. (Naturally one cannot connect the solution at positive x to the
solution at negative x in this way, because to do so one must also have
the solution in the region where Eq. (V-26) is violated.)

If / - 0 in Eq. (V25), one can solve in the neighborhood of
x - 0 by assuming V, - x1. In this case one can solve for n and find i

n - -1/2 ± (1 + 4tp)1/ 2  (V-28)
where

- 4vrg o.- L.2/ B2. (V-29)

The condition for the exponent n to be complex is simply

< -1/4. W-30)

However if n is complex, n - n, + inj the behavior of Vx is oscillatory,
and the wavelength of oscillation approaches zero as x -- 0, that is

V, - X " exp (in, In x).

Thus there are an infinity of nodes of Vr in the limit of x - 0. This
means that there are an infinity of unstable eigenfunctions. The growth
rates of these eigenfunctions approach zero as the number of nodes
increase. The condition for such localized unstable modes is given by
Eq. (V-30), while the approximate condition for stabilizing modes
spread over x, is given by Eq. (V-24). Notice that the equations have
roughly the same form except that about three times as much shear
(that is L, smaller by one third) is required to ,iabilize modes localized
over x. than is required to stabilize modes localized right at the posi-
tion x - 0. A condition for the occurrence of unstable modes is then
given by Eq. (V-30).

S- ---- -'Sonom- a
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To summarize, pressure driven modes are analogous to gravita-
tionally driven modes in an incompressible plasma. These can be sta-
bilized in one of two ways, first by magnetic well, or by contouring the
field so that the radius points away from the plasma; and secondly by
shear stabilization.

The Raleigh Taylor Instability has been known for a long time and is
discussed in such textbooks as:

Hydrodynamic and Hydromagnetic Stability, S. Chandrasekhar,
(Oxford: Clarendon Press, 1961).

Experimental Stabilization of a Mirror Plasma by removing the destabil-
izing field line curvature is reported on in:

Y.T. Baborodov, M.S. Ioffe, V.M. Petrov, and R.L. Sobolev, J.
Nuclear Energy, Pt.C, 5, 409 (1963).

Rotation and rotation driven instabilities have long been observed in 0
pinch plasmas. An early reference is:

Fission of a Hot Plasma, N. Rostoker and A.C. Kolb, Phys. Rev.,
124, 965 (1961).

A more recent reference is:

Field Reversal Experiments, R.K. Linford, W.T. Armstrong, D.A.
Platts, and E.G. Sherwood, Plasma Physics and Controlled Ther-
monuclear Fusion Research, 1978, Vol. 2, p. 447 (IAEA Vienna,
1979).

A gravitational instability in an accelerated fluid is studied in:

Raleigh Taylor Instabilities of a Collapsing Cylindrical Shell in a
Magnetic Field, E.G. Harris, Phys. Fluids, 5, 1057 (1962).

Finite Larmor Radius effects can be an important stabilizing effect on g
modes, as studied in:

Finite Larmor Radius Stabilization of "Weakly" Unstable Confined

Plasmas, M.N. Rosenbluth, N.A. Krall, and N. Rostoker, Nuci.
Fusion, 1962, Supplement, Part 1, 143
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Recent theoretical studies of Rotational Instabilities can be found in:

Rotational Instabilities in a Theta Pinch, J.P. Freidberg and L.D.
Pearistein. Phys. Fluids, 21, 1207 (1978).

Finite Larmor Radius Equations in an Arbitrary Near Theta Pinch
Geometry, Phys. Fluids, 21, 1218 (1978).

a(
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Chapter VI

RESISTIVE g MODES

In the previous chapter it was shown how shear in the magnetic
field produces a stabilizing effect on instabilities driven by a gravita-
tional field g. In this chapter we shall again consider the stability of a
plasma supported against gravity by a sheared magnetic field, but with
the addition of a further physical effect, namely resistivity. For the g
modes of the previous chapter the ideal MHD model was used for
which the field and fluid are frozen together. However, for the instabil-
ities to be described in this chapter, the magnetic field and fluid become
decoupled due to the presence of resistivity. It will be found that the
instability is again 'localized at the resonant surface where k -B = 0,
which, as we will see, is the only place where a small resistivity can
introduce a significant amount of decoupling in motion of field and
fluid. The net effect of resistivity on g modes is to nullify the stabiliz-
ing effect of magnetic shear. An ideal g mode which was stabilized by
the presence of magnetic shear will be shown to be unstable-albeit at a
reduced growth rate-when the presence of a small amount of resis-
tivity is allowed for. Thus, if the effect of magnetic shear is compared
to a dyke, then resistivity turns the dyke into a leaky one.

Let us now describe the resistive g mode in slab geometry, as in
Chapter V. The magnetic field is taken as

B. (x) - B0 1. + B. x~0LS

where B. is a constant. The gravitational acceleration is in the x direc-
tion and all equilibrium fluid quantities also vary in only the x direction.
We treat the plasma as an incompressible, weakly resistive fluid. The
linearized equations of motion are

at V +-L(V xB) x B

+ -(V xB) xB+pg (VI-1)
4w
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8B Vx (VxBo)- a - x (VxB) (V-2)
at 47r

= -(V V) P, M(VI-3)0t

V • V = 0. (V-4)

Note that we have treated the resistivity as uniform in obtaining Eq.
(VI-2). Since the equilibrium varies only with x, we know that
the eigenfunction of all perturbed quantities varies as
f(x) exp (yt + iky). We then find the V and B, decouple from the
remaining variable so that only the x and y components of Eqs. (VI-1
and 2) are required. (The variables V and B, describe the properties
of shear Alfven waves so that we may put both of these variables equal
to zero when analyzing the behavior of linearly independent resistive g
modes.)

The x and y components of Eq. (VI- 1 and 2) give

Yp + Bo - ik Bx"/PoVx 8x 41" LS

I a BOx By +Pg (V-5)

4k r Ox Bo (VI-6)

pVB - ikpB JB+ O _LjkM-6)

OxiB : V c -Lk 2 1 (IM-7)

BByBO-L !x + 4 _L - k2 By. (VI-8)

We now simplify the problem by expressing all variables in terms of
either V, or B,. Using Eqs. (VI-6 and 4) we find

po 8 Vx i Bo  . (VI-9)P". k 2  OX _ 41 kLs BM9

Substituting Eqs. (VI-3 and 9) into Eq. (V-5) and using Maxwell's
equation V B - 0, gives

a , +  OPO

B° x[ 2  2-- yk O X2 - k 2 B,. MV-10)
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We must now solve the pair of equations (VI-7) and (VI-10).
Notice that with 9/ 0 in Eq. (VI-7), the equations describing g modes
in ideal MHD results.

Before solving these equations with qI d 0, let us consider the
effect of resistivity on the stability of the system. As already men-
tioned, the instability will be localized around the resonant surface
k • B.. This is also the position where the motion of the fluid and field
can most easily decouple. The form of Ohm's law which has been used
to give Eq. (VI-2) is

7)J-- E + -V x B,. (Vi- 11)
c

For 71 - 0 the condition of frozen in field lines is simply

E = - -V x B0 . (VI-12)
C

On the other hand, the opposite extreme to this is clearly when
the fluid moves freely through the field lines, i.e., V ; 0 but E Z 0.
In this case, Eq. (VI-11) gives

J," • V xBx B0 Lx (VI-13)

One part of the force exerted on the plasma is then

F -ff J x Ho -- i, Bo' 2x (VI-14)

From the negative sign, we see that the force is a restraining force and
furthermore, for x ;0 0 and small 71, this force is very large. This only
means, of course, that the plasma does not slip through the field lines,
rather the field remains frozen into the flow. However for x - 0 (that
is k • B - 0), the restraining force becomes small and the plasma can
leak through the field. We therefore see the importance of the
resonant surface and the reason that resistivity can be important at this
point, but unimportant everywhere else in the plasma.

Let us assume that in the vicinity of the resonant surface the
plasma flow is decoupled from the field, so that Eq. VI-7 becomes

-P 2 -k 2 Bx 4 i2 B,-- V,.  (VI- 15)

ax2 , 2 L
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As we will see shortly, one simplifying feature of resistive g modes, as
compared to for instance tearing modes (next chapter), is that resistive
g modes are localized about the resonant surface. Therefore, for resis-
tive g modes, Eq. (VI-5) can be taken to apply everywhere.

Substituting Eq. (VI-15) into Eq. (VI-10), we obtain

a 'a-x + k2g -- x Vx + 2  Vx -O0. (VI-16)
T Ox ax O x X )C2L

The problem is now reduced to the solution of a single second ordinary
differential equation, the quantum mechanical harmonic oscillator in
fact. Since we are interested in solutions localized around x = 0, we
neglect the dependence of po on x and also neglected k2Bx compared to
a2Bx

in Eq. (VI-5). Finally we have assumed that the growth rate y is

Oo 11/2
much less than the growth rate in an unsheared field g/o _

I Ox
Introducing the constants

A- "=Y/C 2p0 
L s2 (VI-17a)

and 
k 2 Bo2

B gaoiLS2(vI.17b)k 2 B2

Eq. (VI-16) can be rewritten

A x- -  ( -X 2) Vx _ 0. (V-18)

Introducing a change in variables

x= A - 114 X

Eq. (VI-8) becomes

dx +, -X121 vX - 0. (VI_ 19)
The solutions to Eq. (VI-19) which vanish at x - ±oo are the Hermite

functions

V,,- H(x') exp - x'2/2 (VI-20)

and the eigenvalues are

B/A"12 - 2n + 1. (VI-21)
,. I

i
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Notice that there can only be a real eigenvalue y, for B > 0. From the
definition of B, Eq. (VI-17b), this means gpo' < 0; that is density gra-
dient is opposite to g so that the mode in an unsheared field is unstable.

Equation (VI-21) is the dispersion relation for the resistive g
mode. Substituting for A and B, we find

_1L _I (v-22)

This shows the characteristic dependence of the growth rate of the
resistive g mode on the one third power of resistivity. Notice also that
this mode cannot be stabilized by shear. As L, decreases (increasing
shear), the growth rate is reduced but there is not critical value at
which it vanishes. Hence the earlier analogy with a "leaky dyke."

Finally, let us use the above solution to check the validity of the
approximation which enabled us to carry out this analysis. This was the

neglect of the ,B.x compared with -R x in Eq. (VI-7). This
41r Ox2

approximation is only expected to be valid over a small distance, (say
x,) where x, is given approximately fromf Eq. (VI-16) by the condition

2 p k2_1 Vo X]- k2g- -vt I ,

or

-g .- -q L,
axxc yB,

Using this to compare the orders of magnitude of the neglected term, wth -  O2BX
B- with , we find41r ax 2

y Bx x2 _l 
4 S. Po~~

77C 82Bx 7 aOx B
41r Ox2

From the expression for g given in the previous chapter

poR p 0r (B, + B2)

where R, the radius of the field line is r(B,2 + B9)IB , and L -- Rq
(R is the major radius of the torus), the condition for validity becomes
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4v<P1.<(V[-23)
B2 + B

This condition is well satisfied in all current tokamaks and pinches.

Let us recall that there are two ways of stabilizing pressure (g)
modes in ideal MHD, shear and magnetic well stabilization. However
the former is not a stabilization mechanism of resistivity is allowed,
because the fluid can now slip through the field. The latter is, because
it relies on changing the sign of gp', or of taking away free energy
which drives the mode.

- .. a J i.'



Chapter VII

THE TEARING MODE

In this chapter we turn to a discussion of one of the most impor-
tant, and interesting modes in all of MHD theory, the tearing mode.
This mode is quite different from the resistive g mode. There, resis-
tivity allowed the plasma to slip through the sheared field, rather like
(but much slower than) the case where there was no shear. The tear-
ing mode is a totally different type of fluid motion and it is allowed only
because of the presence of resistivity. In the resistive g mode, the
fastest growing mode had V, an even function of x. For the tearing
mode however, V, is an odd function of x so that for a particular y, two
fluid elements on opposite sides of the singular surface are flowing
either towards each other or away from each other.

Before actually -discussing the tearing mode, it is worthwhile to
examine this type of motion. By doing so, we will show that if mag-
netic field lines can reconnect, certain restraining forces disappear so
that the equilibrium is more likely to be unstable. Let us consider two
dimensional incompressible motion in the xy plane where initially

B = B, y. (VII-1)

Then specify the following velocity profile in the x direction
-V,, cos Aky 8 < X

VX - o x <(VII-2a)

V, (-x) - - Vx (x) (VII-2b)

where 8 is taken to be very small. Using the fact that the flow is two
dimensional and incompressible, we find

0 8<x
VY io(VII-3a)

sinkyO< 8 < x

VY (x) - Vy W). (VlI-3b)

81
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Thus in the separation layer IxI < 8, there is very rapid flow in the y
direction. The velocity stream lines are as shown in Fig. (VII-). The
two fluids on opposite sides of the singular surface x = 0 stream
towards each other for y > 0, recoil near x - 0 and then stream away
from each other at some y < 7r/k. Similarly two fluid elements
streaming towards each other at y < 0 recoil and stream away some-
where around y > - r/k. The fluid exactly at y - 0 initially, does not
stream away toward either positive or negative y, but piles into the stag-
nation point at x = y = 0. We will call this type flow a tearing flow or
tearing motion.

II

_ _ _ _ _ _ _ _ _ _ _ _ 1 -3 3 X

Fig. VII-1 - The velocity streamlines for a tearing motion

Now imagine that the fluid is magnetized with the field given by
Eq. (VII-1). In ideal MHD, the magnetic field is frozen into the flow.
This allows us to see just how the magnetic field reacts to the flow pat-
tern shown in Fig. (VII-l). In Fig. (VII-2a) is shown a portion of two
magnetic field lines -ir/2k < y < ir/2k initially at x and -x where Ix I
> 8 at time t - 0. On one of these field lines in Fig. (VII-2a) are a
series of dots (A-A). Since the field is frozen into the flow, it must
always pass through these dots no matter where they go. Thus by fol-
lowing the positions of these dots, we can construct the field line at
later times. The field line for positive x can of course be drawn in an
analogous way. Since V - V - 0 at y - ±fr/2k, the points A and A'
do not move, while the other points B-E move toward x - -8 with
progressively higher velocity. Thus at a later time the field lines bulge
as shown in Fig. (VII-2b). Now consider a still later time when points
D, E and D' have entered the separation region -8 < x < 0. Point D
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(a) A m/2k (b) A T-/2k
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I D/2
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Fig. VII-2 - The magnetic field line, frozen into the
tearing motion a successive times

shoots upward, D' downward and E remains on the line y - 0, always
approaching the separation point x - y - 0. Thus the field lines are
distorted as shown in Fig. (VII-2c). At a later time this distortion is
further accentuated and the field line looks as shown in Fig. (VII-2d).
Notice that the field lines get very twisted and contorted by this type of
motion.j _ _

- - - - - - - - - - --- ---
i- l--I--II
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This contortion of the field line strongly affects the fluid motion.
The field line is sharply curved at the points marked with a star on the
right hand side of Figs. (VII-2c and d). However, as we have seen in
Chapter III, a curved field line exerts a tension along the line rather
like a rubber band. Thus the magnetic forces at the starred points in
Figs. (VII-2c and d) (and of course at the analogous points on the left
hand graph) are trying hard to snap the line back into its original shape.
That is, the magnetic forces provide a strong restoring force which
tends to prevent the type of fluid motion given by Eq. (VII-2 and 3).

Now, let us examine what effect nonzero resistivity has on this
motion. If the plasma has resistivity, the field lines can break and
reconnect. Notice also that in addition to the sharp corners induced at
the stars in Fig. (VII-2c and d), there are also long lines of weak, oppo-
sitely directed fields forced right next to each other near the singular
surface x - 0. Thus if resistivity, and thereby magnetic diffusion is
allowed, the field lines, rather than looking like those in Fig. (VII-2c
and d) would look like that shown in Fig. (VII-3).

Notice that the field pattern in Fig. (VII-3) does not have nearly
as many sharp corners as that in Fig. (VII-2c or d). Thus, it provides a
much weaker restraining force against the tearing motion described by
Eq. (VII-2 and 3). Indeed, as we will see in this chapter, configurations
which are stable to tearing motion in ideal MHD can be unstable if the
resistivity is nonzero.

We now continue by writing out the equations for the linear sta-
bility of the system. We assume that B, = Boi z + Bo. (x)iy where Boy
-0 at x-0. The procedure is exactly the same as in Chapter V,
namely take the x component of the curl of the momentum equation to
show that V -0. The z component of Eq. (V-ic) then shows that
B, - 0. Then take the z component of the curl of the momentum
equation, use the fact that V and B are two dimensional and incompres-
sible, and arrive at the result

8 x 1k 8x Xj 4v 0  ex 2

O2B
O k2 Boy B (VII-4)+x I

assuming, as usual that perturbed quantities vary as exp (t + Mky).
Notice that Eq. (VII-4) combined with the x component of Eq. (V-ic)
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Fig. VII-3 - The field lines from Fig. 2c or d
if reconnection is allowed

would give Eq. (V-17) except that in the former g is assumed to van-
ish, while in the latter, the second derivative (i.e., the derivative of the
current) is assumed zero.

If the resistivity is present, the equation relating B, to V, is
y Bx-ik By V,,+ -1c 2 8 2B '~v -x k 2B, (VII-5)

Let us first prove that this configuration is stable in ideal MHD (i.e., if
7) - 0). Substituting B, - ikBy. V[y into the right hand side of Eq.
(VII-4), we find the resultA,
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xB [ 2 + 41 x Vx =1 y  (VII-6)
ax k 2 4w 1x 4_1r k.

Notice that for real y, the right hand side of Eq. (VII-6) is positive for
all x. Thus, as discussed in Chapter V, Vx is a monotonically increasing

function of x for all x as long as Vx and -- X are both positive in the

limit of x - oo. Hence there is no way to have a solution for Vx which
approaches zero as z -= : c, so the plasma is stable in ideal MHD.

Another way to understand this ideal MHD stability is as follows.
According to Maxwells equation an electric field

E= - - -- Bx (VII-7)
ick

is induced by th fluid motion. However, we also have

Ex = - 1 Vx By (VII-8)
C

so that any nonzero E, induces an infinitely large Vx near the singular
point x - B,, -0 . The only possible resolution in ideal MHD is of
course y - 0, or stability for the fluid. If the resistivity is nonzero,
then near the singular point the electric field can be balanced not only
by fluid flow, but by Ohmic dissipation.

Let us now imagine that the resistivity is very small, but nonvan-
ishing, and that its presence gives rise to instabilities whose growth rate
vanishes in some way as -q - 0. Then, away from the singular point
we expect the plasma to be described by the Ideal MHD equations with
zero y, or setting the right hand side of Eq. (VII-4) equal to zero,

=, k' 1 - IB,. (VII-9)

Let us briefly discuss the significance of the neglect of y.
Neglecting the growth rate in the momentum equation simply means

1 (J x B,) + I (J x B) - Vp - 0,c c

or equivalently
V x (J X BO + J0 x 81 l 0.

That is away from the singular region, the perturbed plasma is in a state
of ideal MHD pressure balance equilibrium. Imagine that the tearing
mode we consider grows with growth rate much less than kV where

,



THE TEARING MODE 87

VA is a characteristic Alfven speed in the outer region. Then if the
plasma configuration is not in pressure balance equilibrium, magneto-
sonic waves and/or shocks with frequency wu - kVA will be generated.
Once these magnetosonic disturbances damp out, pressure balance will
be attained. Our fundamental assumption then is that the time scale
for maintaining this pressure balance is much less than the characteris-
tic growth time of the tearing mode. Therefore, in the outer region,
pressure balance applies for all time and this outer region is described
by Eq. VII-9.

There are two difficulties in describing the entire system with Eq.
(VII-9) above. First of all there is no eigenvalue -,, so that a solution
which satisfies the proper boundary condition at x = - oo in general
will not satisfy the boundary condition at x - + oo. Stated another
way, if the solution satisfies the boundary conditions at both x = - cc
nd x = + oo, in general there will be a discontinuity in slope at the

position where the two solutions meet (assuming the solutions are nor-
malized so that there is no discontinuity in B, itself). Secondly, the
equation is singular at x - 0 where By - 0. A power series expansion
shows that the two linearly independent solutions, denoted ti and 02

behave for small x as.

t1 = X

#2 - C, + C2 x In x (VII-10)

where 402 has a logarithmic dependence because the exponents of x in
the two solutions differ by an integer. The idea then is that Eq. (VII-9)
applies for all x except a very narrow range around x - 0, (the outer
region). The solution of Eq. (VII-9) in the outer region has a discon-
tinuity in slope at x - 0. In a very narrow range around x - 0 (the
inner region), inertia and resistivity both come into play and smoothly
connect the two outer solutions.

Before actually calculating the growth rate we consider more care-
fully just what drives instability and calculate qualitative expressions for
the growth rate. Let us calculate the power liberated by the fluid in its
motion. Imagine the fluid is acted upon by a force density F and that
the fluid velocity is V. Then the power P going into the fluid is

P - fd3x V* • F + c.c. (Vn-11)

However for incompressible motion,

V - curl R (VII-12)

!I
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so that the power going into the fluid is

P=f d3xcurlR'F=f d3xR curlF (VII-13)

where we have assumed the solution is well behaved at x -±oo and
that the velocities at x = 0' are somehow smoothly connected to those
at x = 0-. For two dimensional incompressible motion

V iz

so that ik

P=-fdx ikj" (V x F), + c.c. (VII-14)

In ideal MHD, V, is related to Bx by Eq. (VII-6), with q - 0, and the
right hand side of Eq. (VII-4) is an expression for the z component of
the curl of the force density. Putting these together we find

f 4" kBxjd. 2 +k2BX

+ Bs I + c.c. (V11-15)

where we have assumed that Bx is real. Of course the expression for
power liberated is consistent with the 8B2 and J, " (f x B) • term in
the energy equation, Eq. (111-24). The quantity in the curly brackets is
just Eq. (VII-10) and is zero in the outer region. However, Eq. (VII-
10) is not satisfied everyone in the plasma, but only in the outer region.
Thus power can be dissipated by the fluid in the inner region.

The outer region solutions for large x generally have a discontinu-
ous derivative at x = 0, but as is apparent from Eqs. (VII-lla and b),
Bx itself is well behaved and continuous. This means that in the inner
region, 12B./8x 2 is very large so that it is the dominant term in Eq.
(VII-5). Hence the power per unit area dissipated in the inner region is
given by

P - 2 Bx2 (x -) A + c.c. (VII-16)k2 B (

where

- dBx d ~ (VII-17)
Bx (x -0) dx -0+ dx
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Thus if A is positive, energy is dissipated by the fluid in the inner
region, and we expect that the plasma is unstable. Clearly the potential
energy driving this dissipation comes from the outer region. This is
obvious because Boz is not involved in the motion and Boy is zero at the
singular point, so there is no free energy in the inner region. In
Chapters VIII and XI we will discuss other aspects of the free energy
which drives the tearing mode.

The basic picture of a tearing mode is then that energy is released
in the outer region and dissipated in the inner region. The condition
for release of energy in the outer region, and therefore the condition
for instability is

A > 0. (VII-18)

One can show that for the sheet current at x =- ± a, and for the mag-
netic profile

Boy = Boy tanh (x/a), (VII-19)

the A's are given respectively by

1-k - ka - ka tanh ka ](VII-20)I ka- (1- ka) tanh ka

A - 21-L - kan (VII-21)

i Hence for sufficiently srr.ai k, each current distribution is potentially
unstable to tearing modes.

One other interesting aspect of the instability criterion A > 0 is
the following. If A - 0, the MHD solutions for y - 0 connect
smoothly to each other through the singularity. Thus if A - 0 there is
another MHD equilibrium (B - Bo + B) which can be arrived at from
the original equilibrium with no expenditure of energy. Hence the con-
dition for tearing mode instability is that there be a neighboring equi-
librium of the magnetic structure which has the same energy as the ini-
tial equilibrium. This aspect will be important later on when we discuss
the nonlinear theory.

Now that we have the condition for instability, we continue by
estimating the size of the inner region and the growth rate. To start,
we will eliminate the d2Bx/dx 2 term in Eq. (VII-4) by using Eq. (VII-
5). The result is

- II I
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__ 0 V k 2B2(x)

x PO x c2 /
.[ + a .YB', k2 Bov

-- ik[ +_ + 4 2  B (VII-22)

where we have neglected k2Bx << a x in Eq. (VII-5). Within theax 2

inner region, Bx is nearly constant as we have discussed previously, and
Boy : B --L. Thus Eq. (VII-22) is an inhomogeneous differential4
equation for Vx in terms of the now constant B,. Clearly the charac-
teristic length scale on which Vx varies in the inner region is

Lc_ I p. qlc -y Ls 2 1114

L c k 2 1/- 4 (VII-23)

To derive the growth rate, let us assume that the energy released
in the outer region is dissipated by Ohmic heating in the inner region.

Recall that 8 is discontinuous across the inner region. Since By

B is then itself discontinuous across this region. Thus
ik Ox' ~

there is a strong current in the z direction which flows in the inner
region. A rough estimate of the magnitude of this current is

J _ " c B B; c B, (x A ) '& . (VII-24)

41r L 4rrik
The power dissipated per unit area is then 71JL,. Equating the Ohmic
power dissipated in the inner region with the power released by the
fluid in the outer region, we find

lC2 &2B,(x-O) L k A B2(X 0) (VII-25a)
16r 2 k2 LC 47r k'

or

Y =1114 (,C2 )31 5 A4/ 5 k- B 2  (VII-25b)
4 w IDp 0  L S

and
1/5 I I/

L L (jq(2) 2/5 A(VI-5c4 02k B02 4vc ~ .(VI2c

S __________
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Notice that once again, as for the case of the resistive g mode, the
growth rate is proportional to a fractional power of the resistivity. This
means that even if V x '0 V x B, * 0, so that the plasma is not ini-
tially in equilibrium, the time for the relaxation of the plasma due to
tearing modes, t - 71- 3 5/ is quicker than the time scale for relaxation of
the assumed equilibrium due to resistive diffusion t, - --.

Let us re-emphasize that even in ideal MHD, there is free energy
to drive a tearing mode if only one could ignore the MHD constraint
E + V/c x B = 0. One way around this constraint is to introduce resis-
tivity. However there are other ways around this constraint also, and
the arguments from Eq. (VII-22)-(VII-25) basically follow. We will
consider two examples.

For the first let us consider electron inertia as the nonideal effect.
Then Ohms law becomes

m -- ne y J = -e E + Vc x B (VII-26)

where n is the electron number density. The small parameter now is
the electron mass m and the growth rate will be proportional to some
power of this quantity. As is apparent from Eq. (VII-26), inertia plays
the exact same role as resistivity if one makes the replacement

7 - MY (VII-27)ne 2 •

The singular layer width Lc will still be defined by Eq. (VII-23) if one
uses Eq. (VII-27).

The power gain within the singular layer now arises from accelera-
tion of electrons, there rather than from resistive dissipation. The

power gain per unit area is nmV a V Lm j 2 L so that theat ne2

growth rate for an electron inertia driven tearing mode is given by

Y(M) -
2  mc 2 13/2 kB (VII-28)Y ~ 4) ne L2 I L

The second non-ideal effect which we consider is electron shear
viscosity so that Ohms law becomes

0 --e E + V- Ve MA m (VII-29)
c - ax, __2 ne*4

A .,.,,.
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where is the electron shear viscosity, which has the dimension of a
diffusion coefficient. Also we have assumed that the electron Jensity n
is nearly constant within the singular layer. Since Eq. (VII-29) now has
a higher derivative than for instance Eq. (VII-26), there is no exact
mathematical analogy with the resistive tearing mode. However it is
clear that the energy deposited in the inner layer will now be dissipated
by viscous dissipation. The power dissipated per unit area in the layer
is now

nmz ox 2 LC=
ax ne2  axJ

a2j
To get the scaling of Lc replace z in Eq. (VII-29) by - J/L 2

ax2

so it now has the same form as Eq. (VII-26). The analysis from (VII-
22-25) follows as before and we find

MtC21113 A12/3 ( I-0
4rn2 13

) 4ne 2 J 4 2rp L 3('

Thus for a tearing mode, energy in the outer region is available to drive
an MHD instability. Any process which circumvents the MHD con-
straint and allows this energy to be dissipated in the inner region, will
give rise to a tearing mode. Generally we concentrate on resistivity as
the non-ideal effect. However, in practice, it may be other things
which causes nonzero growth.

We now concludt. this chapter by actually calculating the growth
rate and also Ohmic and kinetic power dissipated in the inner region for
the case that resistivity is the non-ideal effect. Here the velocity is the
solution of Eq. (VII-22). We now make a sliLht simplification and
assume that the current sheet is symmetric so that Bo. also vanishes at
the singular surface. In this case, in the limit of q - 0 the dominant
term on the right handside of Eq. (VII-22) is the 2By/qC term since it
diverges as 1 as il -- 0, whereas the other two terms diverge as q- 3/5

according to Eq. (VII-25b).

The idea now is to solve Eq. (VII-22) for V, in the inner region.
The growth rate is then calculated by insisting that the inner region
solution matches with the outer region solutions for large x. If the
inner region is narrow on the length scale which Bx varies on, then Bx
on the right hand side of Eq. (VII-22) can be regarded as constant.
This is equivalent to the constant ip approximation first introduced by
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Furth, Kileen and Rosenbluth. Making these approximations, Eq.
(VII-22) reduces to

O2 V _ k 2B2 x2

80 Ox 2  71c 2 yLS 2

ikBox Bx (x= 0) (VII-31)
,-i I2 Ls

assuming p0 does not vary substantially in the inner region. The solu-
tion for V, from Eq. (VII-31) is that linear combination of homogene-
ous solutions and the particular solutions which satisfy the appropriate
boundary conditions, that is V, -- 0 as x - :t oo. We first look at the
solution to the homogeneous equation

P 6X2 V r k2po + 7C2 ys 2 + VkB x

Since the quantity in parentheses is positive, the solution for V, which
is positive at x - -oo is a monotonically increasing function of x and
therefore cannot possibly satisfy the boundary conditions. Therefore
the appropriate solution to Eq. (VII-31) is the particular solution alone.

To continue, we re-scale the equation by letting X = x/Lr and
Q = y/Q, where [1 p0 "2L2 J1/6

Lr - 2 (VII-32)

Q, =[°L 2 j(Vli-33)

= V/y . (VII-34)

Thus Q is a dimensionless growth rate. Later on, these will prove to be
convenient scaling parameters. Then, neglecting k in Eq. (VII-33)
(that is, the inner region width is much less than k-l), Eq. (VII-33)
and (VII-5) become

df+ _!iI(o) (VII-35)

t- Q ( + xf) (VII-36) 4

where
- s , .  (VII-37)t-kBoL,
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The form of Eq. (VII-35) naturally suggests an expansion in
terms of Hermite functions, and indeed this is how the problem was
first solved. However because the behavior of the homogeneous solu-
tion as x - co ( x- ') is very unlike the form of the Hernmite func-
tions as x - o, an infinite number of terms and the associated difficult
manipulations are required to solve the problem in the x domain. An
alternative, and much simpler scheme is to solve the problem in the
Fourier (0) domain where the difficulties at x - oo transform them-
selves into~simple delta functions and their derivatives at 0 = 0. Here
7(O) - f dX f(X) eioX. Multiplying Eq. (VII-35) by ei X and
integrating over x, we find

1 d +o 2 __ q(X=_O)8,(0 )  (VII-38)
Q dO2  Q

where we have used the fact that the Fourier transform of X is propor-
tional to the derivative of a delta function.

For 0 > 0, the solution of Eq. (VII-38) is the parabolic cylinder
function which approaches zero as 0-.oo. In the notation of Abramowitz
and Stegun, Handbook of Mathematical Functions, Chapter 19 (by J.C.P.
Miller) Dover Publications (1972), the function U(a,x) is the solution of
the equation

d2y - ( 1 x2 + a) y - 0 (VII-39)
dx2  4

which approaches zero as x -- +oo. Hence for 0 > 0,

= A U(O, ) 0>0 (VII-40)

where

-,/2- Q(VII-41)

Since the source term on the right hand side of Eq. (VII-38) has
odd symmetry in 0, we look for a solution also having odd symmetry.
The solution for , < 0 is then

-- A U(O,- ). qS<0. (VII-42)

Integrating Eq. (VII-38) twice across a small region near 0 - 0, we find
that

A - - iol q,0/U(0, 0). (VII-43)
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To get the dispersion relation, we assume, as usual, that the outer
ideal magnetohydrodynamic region specifies a value of A', the discon-
tinuity in (dB,/dr)/B,, across the singular layer. Matching with its
counterpart from the inner region, we obtain, from Eq. (VII-36)

LrA '0f dX(Q) (* + X ). (VII-44)

To do the integrals over X note that f(X) = (1/21)xf_-*i ()e-ixdO
while IV (assumed constant) is DofJ_0,8(O)e -ix dk. Note that in doing
the f integral over X, one will ultimately have a derivative of a delta
function in the 0 integral. Inserting these forms into Eq. (VII-44) we
see that both the P and f contributions have a delta function com-
ponent at 0 = 0, but these two divergent contributions cancel. This
cancellation is of course the analog of the separate integrals in X space
of * and Xf diverging for X-oo, while the integral of * + Xf con-
verges.

The remaining part of the 0 integral comes from the derivative of
the parabolic cylinder function at 0 - 0. The final result is

LrA' = 21"F 14  Q514. (VII-45)

The r(1) and F( ) just come from the expression for U(O, 0) and
U'(0, 0) in Abramowitz and Stegun. As is apparant from the scaling
relation Eqs. (VII-32 and 33), the growth rate -y scales as q3/5.

To summarize, the tearing mode jusL becomes unstable when
there is a second magnetic equilibrium which is accessible from the first
with no expenditure of energy. The instability develops by the fluid
releasing magnetic energy in the outer region, and dissipating it princi-
pally via Ohmic heating in a narrow inner region near the singular sur-
face. This dissipation near x - 0 manifests itself by a change in the
magnetic field topology, that is, island formation. If By << B0, the
equations for the field lines in the xy plane is

dx dy
B cos ky -:I

,i"S
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where B. is taken as B cos ky. The equation for the field line is then

x . JK + B2--"B sin .y / (VII-46)

2L4B

This field line has a separatrix if K = 2 and this separatrix has
kBo

maximum width (the island width) I BLs 11/2

Axis =j 2 . o 1 " (VII-47)

The field lines in the xy plane are shown in Fig. (VII-4).

x

Ig

A/Y/t 2 ( SL--- /'2

is k~o

Fig. VII-4 - Magnetic island structure generated
by a tearing mode

• tk ,. -T i, .
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The following is for Chapters 6 and 7.

The original paper on resistive instabilities is:

Finite-Resistive Instabilities of a Sheet Pinch, H.P. Furth, J.
Kileen, and M.N. Rosenbluth, Phys. Fluids, 6, 459 (1963).

A clear description of tearing and resistive interchange modes (includ-
ing a description of matching of the inner and outer (MHD) region for
the latter) is in:

Resistive Instabilities in a Diffuse Linear Pinch, B. Coppi, J.M.
Greene, and J.L. Johnson, Nuclear Fusion, 6, 101 (1966).

A description of resistive interchange modes as an eigenfunction along
rather than across the field is given in:

Gravitational Resistive Instability for an Incompressible Plasma,

K.V. Roberts and J.B. Taylor, Phys. Fluids, 8, 459 (1965).

Application of tearing modes to tokamaks can be found in:

Tearing Mode in the Cylindrical Tokamak, H.P. Furth, P.H. Ruth-
erford, and H. Selberg, Phys. Fluids, 16, 1054 (1973).

Stabilization of Resistive Kink Modes in the Tokamak, A.H.
Glasser, H.P. Furth, and P.H. Rutherford, Phys. Rev. Lett., 38,
234 (1977).

A theory of an electron inertia driven tearing mGde is given in:

Inertial Magnetic Field Reconnection and Magnetospheric Sub-
storms, G. Van Hoven and M.A. Cross, Phys. Rev. Lett., 30, 642
(1973).

A full kinetic theory of tearing modes was worked out in:

Kinetic Theory of Tearing Instabilities, J.F. Drake and Y.C. Lee,
Phys. Fluids, 20, 1341 (1977).

Since the tearing mode is relatively subtle, some calculations have
solved it essentially by brute force. One possibility is a direct solution
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of the fourth order equations with no inner and outer expansion. This
can be found in:

Finite Resistive Instabilities in a Sheet Pinch, J.A. Wesson,
Nuclear Fusion, 6, 130 (1966).

Alternatively one can set up a periodic current distribution with long
wavelength and analyze the problem by Fourier transformation. Since
the instability is quite localized, a large number of harmonics are
needed and the matrix must be inverted numerically. This is in:

M.A. Cross and G. Van Hoven, Phys. Rev. A., 4, 2349 (1971).



Chapter VIII

INTERNAL MHD INSTABILITIES IN
CYLINDRICAL PLASMAS

In this section we discuss MHD instabilities in a cylindrical plasma
with no free surface. As we will see shortly, the modes which we have
discussed in the previous three chapters have simple analogs in cylindri-
cal geometry. However there are also additional modes in cylindrical
geometry which have no analog in slab geometry. Because this chapter
is quite long, we subdivide it into six subchapters, VIII.A-VIII.F, which
deal respectively with two dimensional MHD modes, ideal MHD modes
with m > 2, ideal MHD modes with m - 1, resistive MHD modes
with m > 2, resistive MHD modes with m - 1, and double tearing
modes.

VIILA - MHD Modes With Two Dimensional Structure

Recall from the last three chapters, that in slab geometry, the
appropriate modes always had two dimensional structure in the plane
perpendicular to B,. If Bo >> Bo and a << R, (tokamak ordering)
one might expect this to be valid in cylindrical geometry also. This is
analogous to the analysis in the second part of Chapter IV where we
examined two dimensional unstable modes in a cylindrical plasma with
a free surface. Here, as we will see, two dimensional modes in a
cylindrical plasma with no free surface are stable. However the analysis
here is still useful to set the stage for a study of instabilities resulting
from three dimensional or resistive effects.

In cylindrical geometry, all perturbed quantities vary as
exp i(mO + kz). To make the transition to toroidal geometry we sim-
ply quantize k, that is k -" nIR, but neglect all other complications of
the toroidal geometry. The perturbation is perpendicular to the
ambient field wherever mB9o,r(r) + nB2o/R - 0, so we expect
unstable perturbations to be in some way localized near this point (we
assume here that B., is independent of r and is >> B,,). If this is so,
k = mir B0.J m << mir so that the variation in the 0 direction is

99
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much more rapid than the variation in the z direction. Therefore,
plasma motion will be approximately 2 dimensional in r and 0, quite
analogous to the motion in slab geometry. Then V, = B, = 0, k is
taken as a small quantity unless it multiplies Bzo and V,, VO, Br and B,
are related by the incompressibility condition

W im V= - rB + mB,=O. (VIII-1)
r Or r r Or r

The next step then (analogous to the previous chapters) is to take the z
component of the curl of the perturbed momentum equation, or

- rp VO-Pim V IVx (JxBo+JOxB) z
r Or r 1= c

-{(B.V)Jo+ (Bo 'V)J- (J.V) Bo - (Jo 'V) B)z. (VIII-2)
C

First look at the third and fourth terms on the right hand side of Eq.
(VIII-2). Since Bo, is assumed to be constant, (J. V)BO = 0. The
fourth term is - ikjoBz which is small since both k and Bz are assumed

small. The first term on the right is I Br ! while the second is
c dr

i. B 0 + ikBo J. However J, = 4r V x 1131 Making use of Eq.

(VIII-l), Eq. (VIII-2) reduces to

IipL (rr)+2 Vr -

-- r O r r p  im Or r

Br +r- i B r4 (VIII-3)
C r 4w r Or im Or rrJ

where

F - + kBzo. (VIII-4)
r

Here, unlike the second part of Chapter IV, F depends on r in general.
To complete the description of linear modes in a cylindrical plasma in
the tokamak ordering, an additional relation between V, and Br is
required. This comes from Maxwell's equation

yB--VxVXB- - -V x V x B. (VIII-5)
4 vT

To start we consider only ideal modes, so v = 0 in Eq. (VIII-5)
above. In this case

1 -- -
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yBr = iFV,. (VIII-6)

Then inserting for B, on the right hand side of Eq. (VIII-3), we find
after a bit of straight forward manipulation

I r 3 -L + y 2 0 LV -- (m 2- 1)  Poy 2+ ' 21

r Or 41r I -r4

Vr_ )2 r 0 r

(VIII-7)

Equation (VIII-7) above must be solved subject to the boundary condi-
tion that V,. = 0 at r = a and V, is well behaved for r = 0.

Near r = 0, Eq. (VII-7) reduces to

r3 -Vr-- r(1 - m2) Vr (VIII-8)
Or Or

so that the solutions have the form V, = r'. Solving for n, we find

n--- I =: m. (VIII-9)

For m >, 2, one root is well behaved at r = 0 and one is not. The
solution which is well behaved at zero goes as rm- so that Vr = 0
there. Hence the center of the plasma does not move.

On the other hand, if m = 1, the well behaved solution for V is
constant at r - 0. Let us now see what this implies for the motion of

the plasma center. If ir is a unit vector in the r direction V = V • ir.IT

Near r = 0, Vr is a constant times cos (0 + kz) and i. = ix cos 0 + iy
sin 0. Therefore at z = 0, the velocity V is in the positive x direction,
and at for instance z - ir/2k, the velocity V is in the negative y direc-
tion. Clearly then, an m- I mode corresponds to a helical

displacement of the center of the plasma.

Since modes with m > 2 do not displace the center of the
plasma, the cylindrical geometry is not crucial and modes with m > 2
are not very different from analogous modes in slab geometry. On the
other hand modes with m - 1 represent a rigid helical displacement of
the center of the plasma. Since there is no analogous motion in a slab,
we find that m - 1 modes in a cylinder can be very different from any-
thing occurring in a slab. We now examine whether Eq. (VIII-7)
predicts instability.
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If m > 2, the coefficient of V, on the right hand side of Eq.
(VIII-7) is positive for p. < o, so that if V, is a monotonically increas-
ing function of r as long as it is positive in the vicinity of r = 0. Thus
there is no solution to Eq. (VIII-7) which satisfies the boundary condi-
tion at the wall, V, (r = a) = 0; hence there are no unstable modes
with m > 2 .

If m = 1, the solution to Eq. (VIII-7) which is well behaved at
the origin is V, is constant. Since Vr is constant. Since Vr must vanish
at the wall, it vanishes everywhere, so there are no unstable modes
with m = 1 either.

Hence the conclusion is that in a cylinder, there are no unstable
modes in ideal MHD which have two dimensional structure and no free
surface. The reason is that the coefficient of V on the right hand side
of Eq. (VIII-7) is always nonnegative, so that, as discussed in Chapter
V, there can be no instability. However while this coefficient is not
negative, it can be nearly zero wherever F = 0, that is wherever the
perturbation is perpendicular to the ambient field. Thus small correc-
tion to either the two dimensional structure of the mode, or to ideal
MHD (that is resistive effects might give rise to instabilities which are
somehow centered near the positions where F = 0. In the next five
subsections, we will see that this is indeed the case.

VIII.B - Ideal MHD Modes With m > 2

In this subsection we consider ideal MHD modes with m > 2.
We deal with the full three dimensional mode structure and make no
approximation concerning either B0 /B, of kr/m. The starting point is
the linearized fluid equation and Maxwell's equation:

B.B) (BV)Bo (B "V)BYPO V = - V p+ +--- -v + o4 + v4f- (VIII-1O)

yB=-V x Vx Bo  (VIII-11)

for the two vector quantities V and B. Consistent with our usual nota-
tion, a quantity without a subscript is a perturbed quantity and a quan-
tity with a zero subscript is an equilibrium quantity. The perturbed
pressure is eliminated by the incompressibility condition

V .V=- 0.

The idea now is to reduce this set of equations to a single equation for
V,. The manipulations involved in this are tedious and are set out in
the Appendix. The final result is

- .- :Q --.
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d dVr
d f - hVr = 0 (VIII-12a)
dr dr

where
ra (poy 2 + F 2/4ii)

f= k2r2 + m2  (VIII-12b)

h =2k 2r2  dPo +r k 2r2 + m2 -1 F2

k2r 2 + m 2 dr k 2r2 + m2

+ 2k 2r3  [kZ 121BS(k2r2 + m 2) 2 (kBr

+Y2 prk 2 Boo r2 d PO

4(k
2r 2 + 2) P +PYIoJ 1

±p~r k2r 2 + m2  (V11- 12c
k2r 2 +m 2  (

and where F is given by Eq. (VII-4).

Notice that as long as y 2 > 0, Eq. (ViI-12a) is nonsingular and
one could simply solve it numerically for y. This is the approach taken
by Friedberg. However there are many insights that can easily be
obtained analytically. Specifically, notice that Eq. (VIII-12a) is very
similar in structure to Eq. (V-17), derived in our discussion of gravita-
tional modes in a sheared field. That is, regions of negative h are

unstable and regions of positive h are stabilizing. As long as -r< 0,
dr

h will always be negative (for small y) at least at the singular surface

where F - 0 (of course k2B, 2Fr2  =0weeF= )

As in the case of g modes in a slab, for fixed y(-) there will
always be an unstable mode with y > y, as long as the eigenfunction
Vr(r) has a node between r - 0 and r =- a. The first possibility then is
that Vr(r) has a node near F = 0 in the limit of y - 0. A calculation
identical to that leading up to Eq. (V-30) shows that such a localized
mode will be unstable as long as

dP 0  1gq~ 2i I(VIII-13)
dr 8w q4drJ

II I _ i l I II _ I- - --_ - I -

4 i i
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rBzo
where we have used the fact that q = and k n/R for a

toroidal plasma. Also, at the singular surface q = - m/n. This is the
Suydam condition for instability.

A large q' can stabilize this mode, as shown in Eq. (VIII-13). To
see that this is a shear stabilization, let us calculate the shear length in
cylindrical geometry. Recall that in slab geometry, kt1 = k, x/L,. In

(Bo V ) _mir Beo + n/R Bzo
cylindrical geometry, then k1l = Bo - (B o + Bn)" 2

______(B I dq Jz
Near the position r, where F -0, k1l [ BI o + I q'

j[B'90 + ]~2 q dr

(r - r,) so that if mir is taken to correspond .to k,, then

L _- 1_=_2_ __ I dq (VIII-14)
(B19o + Bz2 ) 1/ 2 q dr

Now let us relate these pressure driven modes to the gravitational
modes discussed in Chapter V. Setting d/dr = F = 0 in Eq. (VIII-
12a) and taking the limit m2 >> k2r2, it reduces to

+ B Ojk2r2

y 2por + 2 --4r 0. (VIII-15)

Clearly, a negative pressure a gradient causes an instability whose
growth rate is roughly

I-PO 11/2 kr (VIII-16)
Ip o rJ m

However since F 0= , kr/m -- Bo/Bzo. The radius of curvature of the
field line is giver by

1 (Bo . V) Bo B 2,
R IBo1 2  r BZ2o 2o Ir

and is directed outward. Thus the unstable mode is like a gravitational
pu 1 dPo

mode with g - given roughly by where R is the radius of

curvature of the field line. This is very similar to that derived in
Chapters III and V.
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To summarize, we have shown that modes very similar to gravita-
tional modes can be driven unstable by a negative pressure gradient.
These can be stabilized by shear as shown in Eq. (VIII-13). However
the plasma is not necessarily stable if Eq. (VIII-13) is violated at every
point. Equation (VIII-13) is only the condition for unstable modes
localized about a particular singular surface. There also may be gross
modes which are not localized. This possibility has been investigated
by Newcomb. He examined when the solution of Eq. (VIII-12a) can
have a node in the limit of small y. One can of course also simply
solve Eq. (VIII-12a) numerically, the approach taken by Freidberg.

VIII. C - Ideal MHD Modes With m = I

For a cylindrical plasma in ideal MHD, one can always determine
mode structure and growth rates by solving Eq. (VIII-12a) subject to
proper boundary conditions at r = 0 and r = a. If B 0, - B,, and
kr - m, as in for instance a reversed field pinch, there is no particular
distinction between modes with m = 1 and modes with all other m.
However in tokamak ordering, Bo << Bzo, kr << m, the behavior of
modes with m = 1 is strikingly different from the behavior of modes
with all other m.

Recall from Chapter V that only those regions of the plasma hav-
ing h < 0 (h is defined in Eq. (VIII-12c)) can drive instability. In
tokamak ordering for m >, 2, the second term in h is so large that h
can only be negative in a small region around the singular surface.
However for m = 1, this term nearly vanishes. If k is equal to -nIR,
then in general, for m = 1 and q(r) a monotonically increasing func-
tion of r, h will be negative from r = 0 to the radial position at which
q = 1/,q. Henceforth we specialize to the case of n - 1, so that the
unstable region is within the q - 1 surface.

It was shown in Chapter VIII.A that motions with m = 1 are
unique in another way, namely these are the only motions which dis-
place the plasma center. Therefore these modes are expected to dis-
place the entire central region of the plasma. We continue by calculat-
ing the growth rates and eigenfunctions for these modes and conclude
by discussing physically what is happening.

a the limit of low growth rate, we neglect the y 2 terms in h.
Thus the equation describing the motion is still given by Eq. (VIII-12a)
with

I I I II II
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f r3 (pV2 +  B y-r 2 ( q - 1)21 (Vill-12b')

h r)= 2- r + &(q-) -- (l 2)1 .(VIlI-12c')d r r

Notice that h is multiplied by (r/R)2 which is a small term. Therefore,
V, is given approximately by the solution to the equation

d 3 2 + 2 1)21V-I ± )  - 0. (VIII-18)
dr 1  ~~41r r2 q dr

As we will see shortly, V,. is nearly constant for r within the singular
surface, and is nearly zero for r outside. Thus dVr/dr is nearly zero
everywhere except in the vicinity of the singular surface r z r. An-
ticipating this result, and setting q - I = q'(r - r,), we find from Eq.
(VIII-18)

dV, constant (Vill-19)
dr 3 r[p12+ Boo(r-r s)- [q'(r- )121

r51p~y+ 4v rs q-rJ

Integrating once more,

V, = K, arc tan j(r - rs)I 2B7Io(r r, ()21/2 + K 2. (VIII-20)
BBo (q,) 2

Thus, as long as yo < r , V, approaches a constant for r - r,

- oo and the two different values are smoothly connected in a nar-
4irp0 ~r~2 1/2

row region of width B2o (r,)q'2  about r r. The proper bound-

ary condition of course is V, (r - a) - 0, which dictates the relation
between K, and K2

K 2  - ir/2 K,. (VIII-21)

Also, we find

K1 - - Vr(r - 0). (VIII-22)
The eigenfunction V,(r) is shown in Fig. VIII-I.

Now we must solve for y. Of course y must result from the h

term which drives the instability. Assuming that V, is constant

between r - 0 and r - r,, we find that another relation for -r is
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Vr

Fig. VIII-I - A plot of V,(r) for
an m - I mode

r$ r

dVr 1
dr B2r (q') 2 (r- r5)2

fo h (r) V, (r - 0). (VIII-23)

Now the !Vrfrom Eq. (VIII-23) must be consistent with that derived
dr

in Eq. (VIII-19 or 20) in the limit as r -" r. This allows us to solve
for y the result being

2 (j') 312  f hq h(r)dr. (VIII-24)
Bfo . r, -I-.f

Thus, as long as f £ h (r) < 0, the mode is unstable.

We now discuss briefly the physical mechanism of this instability.
As emphasized many times, the most unstable perturbations are always
those which bend the field lines least. In slab geometry, with boundary
conditions imposed at ± cc, this means that the perturbation is
somehow localized near the singular surface. In cylindrical geometry
however there is another possibility. A rigid displacement of a cylinder
certainly does not bend any field lines. The problem is that a rigid dis-
placement cannot satisfy the boundary condition V, (r - a) - 0. The
question then is, can only the inner part of the cylinder be rigidly dis-
placed but still not bend the field lines?

To investigate this question, we first examine the fluid motion.
The motions V - constant for r < r, is of course something of an
over-simplification. Clearly such motion cannot be incompressible. To
describe more precisely this incompressible motion, imagine that in a
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narrow layer of width 8 about r - r, V,. decreases linearly to zero. In
this case

r, Vr

O .- -:!V r<r < r, +8, +V8- Vr. (VIII-25)

0, rs+8 <r, 0

This motion is reminiscent of the tearing motion described in the last
chapter. Assuming that the radial velocity goes as cos mO + 7k)' the

velocity streamlines are shown in Fig. (VIII-2) at four different axial
positions, Z = 0, 7rR/2, irR and 3irR/2. The streamlines are solid
lines, while the two circles r = rs and r = r, + 8 are dashed. Also
shown on each plot are three dots labeled 1, 2 and 3. Dot number one
corresponds to an initial position just inside the singular layer, where
q -1. Since the pitch of the field line is the same as the pitch of the
perturbation, the same field line passes through all dots labeled 1. As
the flow proceeds, for a time A2 and A3, the fluid element passes to
positions 2 and 3, while the field line, of course, continues to interlace
these points. In each of the four curves shown, the displacement
between positions 1 and 2 and between 2 and 3 is the same except for a
900 rotation. Thus the field line is not bent or stretched as the fluid
races around, from front to back, near the singular surface. For r < rs
the fluid motions is a rigid displacement in the (W) plane which does
not bend field lines. For r, < r < rs + 8, the pitch of the field line is
the same as the pitch of the perturbation, allowing the field line to be
rigidly displaced around the singular layer. Therefore the type of
motion shown in Fig. (VIII-2) does not initially bend field lines and is
likely to be unstable.

Now examine the motion for a field line which at A -0 is not
near the singular surface. In the standard tokamak configuration,
q < 1 for r < r, so this field line winds a tighter helix at A - 0. The
cylinder which the field line is initially on is dotted in Fig. (VIII-2) and
at the various Z's the field line passes through the points A. However,
the field line does not enter the singular region at the same time
anymore, since at some axial points it is initially closer, along a stream
line, to the singular region. Thus some points of the field line whip
around the singular region before other points do. Clearly, this
involves considerable bending and stretching of the field line and is a
stabilizing effect. Therefore as the motion proceeds, there is an oppos-
ing force, which increases with the displacement, rather like compress-

ing a spring. The distortions of a field lines with q - I and q < I are
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r I r sI + 0, A

'A B I I

Z:O Z -77iT2 k
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- \

1,

, -- ',- -/ - \ , !3
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/A

Z = /k Z 37/2k
Fig. VIII-2 The flow pattern at four axial positions. The dots la-

beled 1, 2, and 3 are intersections of a field line, having the same
pitch as the flow, with these four planes at three different times. The

points labeled A are intersections of a field line having q < I with
these four planes. At Z - 0, point A is closer along a stream line to

the separation region. Therefore it will enter this region first and will
race around the cylinder before it does so at other axial positions.
This will lead to considerable bending and stretching of the field line.

shown in Figs. (V11I-3 and 4). This lets us interpret somewhat the
various effects which contribute to y, in Eq. (VIII-24). The integral h2
simply represents the average force which displaces the plasma, while
the q' in the denominator represents the restraining force from the
bending of the field lines. Of course if q'-- 0, the analysis leading up
to Eq. (VIII-24) is invalid. For q'-= 0, however, the analysis leading
up to Eq. (VIII-16) is still valid and we find that for zero shear, the
growth rate is given by

y2 , 2Po/ Rpo (VIII-26)

so that there is instability if P. and p,, have the same sign. The growth
rate in Eq. (VIII-26) is much greater than that in Eq. (VIII-24), so the
presence of shear slows down these modes but does not stabilize them.



110 MHD INSTABILITIES

Fig.VII-3 thre dmeniona viw o th

motonoftwoneghorig ied ishvgq
I (sme ptchas te fow).A soid ieldlin

meas t s ea te rot o te ylndrdote

Fpig.tI--tre dimetos t2()eioare ofthein
mrotino tw eighbringl fiel3d) line havn qoth

inefrntrof the cylinde re onvected owarte

in back of the cylinder.



CYLINDRICAL PLASM AS11

(a (h d

Fi.VII4 hrediesinl lt fa ildlnehvighihr ich( > 1 ta

the' fo patr.A t-0,tefedln wrparudteinrcin hw n()

Att- ()thscyidr ovet lk agi oy (ih Opae wt h anfo

and~~~~~~~ ~ ~ ~ ~ ~ th il iecniust rpaon t.A 2() h il ieetr h

seaato reio at on on-n eist hpaon, hl oto h il iejs

cotne t oea argdboy tt- 3 ot ftefil iehaNnee

sepaatio reinadtefrtpr ftefedlnet ne h eaainrgo a e
emredotth tersd o h clner laryte il ln s otrtdmchmr

Fig.e are- siAmthre di einal poto a fied lin e ig hihrp itc = q _1 ) ha

H r isthe flowuspattern.aAtre 0, the field line was aro nd the inesyindrson in (a).

At H t,( ths cylinder c rnvet lik e s ol rigibiizd bod (isteufpln)fit ihem int
ansher fsidlied nine to. wrapaound. Atowever , the field ieo eters ithea
sepron ein ate pinht an t begistiwiy aroud whiestbofz thes fie dlies
cylontinue thoe asa itody.eathrou3,gdh mto theae field. lealy entee
sepanra reoeand ,th e ist pt the ield li e sl to terna el theeaainrgo atre



112 MHD INSTABILITIES

analogous to Eq. (VI-22), finite resistivity allows pressure driven modes
to go unstable with a growth rate given by

' dPI ML. 1 23 / (VIII-27)
POR dr r Bo,, PO

where R is given in Eq. (VIII-17) and Ls in Eq. (VIII-14).

The tearing mode for m > 2 in tokamak ordering (Boo << Bzo,
kr << 1) also follows in a straight forward way from analogous results
in slab geometry discussed in Section VII. That is if the inertial terms
in Eq. (VIII-3) are set equal to zero, the equation for the perturbed
field gives

1 Tr B , 4Bm r (Vi-28)
rr r r IB r cF dr I

if k = -nR, the quantity F - B/r (m - nq) vanishes at the singular
surface r = r, where q = m/n. The procedure now is exactly as it was
for the slab (Chapter VII). First calculate solutions for Eq. (VIII-28)
for r < r, and r > r, which satisfy the proper boundary conditions at
r - 0 and r - a. If these solutions are normalized to have the same
value of B, at r - rs, in general there will be a discontinuity in slope as
one crosses r. Then if A (defined in Eq. (VII-17)) is positive the
plasma is unstable to tearing modes. Since the width of the tearing
layer is very small compared to r, the connection between the two
MHD solutions can proceed exactly as in slab geometry. Thus to see
whether a cylindrical equilibrium in the tokamak ordering, is stable to
tearing modes, one simply solves Eq:.,(VIII-28) numerically and inves-
tigates the condition for A > 0. Calculations such as these have been
made by a variety of authors. Stated very qualitatively, the conclusion
is that for sufficiently smooth current profiles, tearing modes are stable
if m > 4. For m - 2 or 3, the profile is typically unstable. However
by tailoring the current profile, it is possible to stabilize these modes
also.

We conclude this subsection with a simple physical picture illus-
trating the free energy which drives a tearing mode in an incompress-

iV a
ible plasma. To begin, take Eq. (VIII-3), multiply by and
integrate over the plasma volume. Integrating the second derivative
terms by parts and neglecting the end point contributions, we find the
result: 

"

• :~ , 4
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27r yf rdr[poIVI2+# I 2)+ 1(iBr12+ IB 12)1--
4 vT

2wrfrdrace dr (VIII-29)

In calculating Eq. (VIII-29) we have made use of the incompressibility
condition to relate V0 and B0 to V and B,. Notice that the left hand
side of Eq. (VIII-29) is simply the rate of change of kinetic plus mag-
netic energy. The term on the right hand side then represents a driving
term. This term can only drive instability in those regions of the

plasma where - r and F have opposite signs. If -L is everywhere
dr F dr

positive, then one can easily show from Eq. (VIII-28), that for
boundary conditions B, = 0 at r = 0 and r = a, Br is a monotonically
increasing function of r for r < r, and a monotonically decreasing func-
tion of r for r > r. Thus A < 0 and the plasma is stable. Hence

A' > 0 can only arise if < 0, somewhere in the plasma.
F dr

dJo.
In the standard tokamak configuration ! is negative and q (r) is

a monotonically increasing function of r. Therefore since
F - Bdr (m - nq), these terms have opposite signs for m > nq, or
for radii less than the radius of the singular surface. Thus for a tearing
mode in cylinder, the region inside the singular surface releases free
energy; the region outside soaks some of it up. What is left over is
deposited as Ohmic hearing near the singular layer.

It is instructive to examine physically the nature of this driving
energy. Since the plasma motion is incompressible, the motion of each
fluid element can be expressed as a displacement plus a rotation. We
will consider for now the rotational part of the motion. The power
input into rotation is the torque times the angular velocity. In Fig.
(VIII-5) is shown a fluid element in polar coordinates between r and
r + dr and 0 and 0 + dO. To calculate the torque, we calculate the
difference between the 0 components of the force on the two edges at r
and r + dr. Clearly one element of this torque 7 = r x Force is

7 , [ d - o- dr - Br dr. (VIII-30)

2c1 dr

The problem now is to calculate the angular velocity of the fluid ele-
ment about its own axis. To calculate the angular velocity about the
axis, first subtract out the displacement of the axis. Then any variation

II
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(r+Jr, G+d9)

ip

A,?

(r,8)

Ar dO

Fig. VIII-5 - A fluid element in cylindrical co-ordinates illustrating
how OJ0./Or can given rise to a torque which enhances the rotation

of radial velocity with polar angle 0 must be a rigid rotation about the
axis. Thus this angular velocity, fl is simply

r -. d(VIII-31)dr Oo

aVr
where negative w implies f) is in the positive Z. In real notation,

the relation between B and V in ideal MHD is

B, = -L F (v -32)

Therefore
P - T. • 1 - y' Br d Joz rdrdO (VIII-33)

2r F dr

so that F and - r having opposite sign means that P is positive. Now
dr

the interpretation is clear; when F and dJ.,0 /dr have opposite signs, the
torque on a fluid element is in the same direction as the rotation,
thereby tending to increase the rotation.
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VIII.E - Internal m = 1 Tearing Modes

As we have seen in Chapter VIII.C for tokamak ordering, modes
with m - I can be driven unstable in ideal MHD by the three dimen-
sional nature of the motion. However, as noted in VIII.C the basic
motion is two dimensional and it consists of a rigid displacement in the
rO plane for r < r,, coupled to a rapid flow around the edge of the
cylinder defined by r - r. This motion is illustrated in Fig. (VIII-2).
It is instructive to compare Fig. (VIII-2) with Fig. (VIII-1). Clearly
these two types of motion are quite similar; in the former, a magne-
tized fluid collides and bounces off a stationary fluid, while in the latter,
two fluids with equal and opposite velocity collide and bounce off each
other. Since the fluid motions are so similar, we might expect that this
m = 1 motion in a cylindrical plasma is also unstable if finite resistivity
(and therefore magnetic reconnection) is allowed. Indeed, as is
apparent from Fig. (VIII-4), if there is shear, the frozen in magnetic
field lines have sharp turns which provide strong restraining forces.
The presence of resistivity allows the lines to break and reconnect, so
that they would appear as in Fig. (VIII-6). The field in Fig. (VIII-6)
(analogous to that in Fig. (VIII-3)) has fewer sharp turns and thus pro-
vides weaker restraining forces. Thus for nonzero resistivity, there is
more free energy to drive the instability.

Simpler diagrams illustrating the same point are shown in Figs.
(VIII-7 and 8). For purely two dimensional m - 1 motion in a cylin-
drical plasma with B, - 0, the frozen in field lines in the (rO) plane are
shown at four times in Fig. (VIII-7) (which is analogous to Fig. (VIII-
2)). Clearly sharp corners develop where the field has to stretch to fol-
low the fluid motion. However if nonzero resistivity is allowed, the
fields here will break and reconnect so that the field pattern at t - t4
appears as in Fig. (VIII-8) (analogous to Fig. (VIII-3)). In these
figures, the dots are the magnetic 0 point singularities (nulls); the two
dimensional field lines circle these points. For the case of ideal MHD,
no new null point can be produced and as complicated as the field line
gets, it circles the dot only once. However if resistivity is present, the
topological constraint is relaxed and new nulls (also called islands) can
be produced. In this case an island is produced near the cylinder wall
opposite from the direction of flow.

If B, * 0, the field surfaces are three dimensional. Figures
(VIII-7 and 8) can be regarded as projections of the field lines back into
the Z - 0 plane for ideal and resistive MHD. The dots then
correspond not to nulls, but now to magnetic axes. In ideal MHD in

• ' ..... ' i I III I
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Fig. VII1-6 -The field pat-
tern, analogous to Fig. VIII.
4c if magnetic reconnection is
allowed
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t 0

/ I
lt t 2  t t 3

Fig. VIII-7 - A two dimensional field line in the r, 0 plane
which is frozen into the flow given by Eq. VIII-25. The
field line is shown at four different times. Notice that it is
rapidly convected around the separation layer and re-
emerges into the main flow on the other side of the circle.
At t - 13 fields of opposite sign are forced next to each
other in the separation layer and along a horizontal diam-
eter on the left side of the circle.

Fig. VIII.8 - If the resistivity is non zero the
nearby field of opposite sign can diffuse into each
other and annihilate each other leaving the field
pattern shown here. Notice a magnetic island is
formed in the circle on the side opposite to the
direction of flow.
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three dimensions the topological constraint preserves the number of
times one field line winds about another. However if resistivity is
present, new magnetic axes can be formed and the field lines can start
to wind around new axes.

Now let us qualitatively discuss resistive m = I instabilities. As
shown in Section (VIII.C), the velocity is constant for r > r. Thus,
for ideal MHD, the expression for B, has the functional form

r r< rs
B, = r > rs "  (VIII-34)

Since Br vanishes at r = r5, the quantity A from Chapter VII is infinite
and the theory of tearing modes described there does not apply. The
growth rate must be calculated by solving the coupled equations

I ar rp° ar (r V )  
0 r IBr- J cF

r r r r IC dr 4iir

r r r (rBr) + (VIII-35a)

4r +rI B,. (VIII-35b)
)' ,. WV. + 4 1r O r2

subject to proper boundary conditions.
4

We will not follow this route, but instead will derive a qualitative
expression for the growth rate by balancing power released in the outer
MHD region with Ohmic power dissipated in the inner region near the
singular surface. Since the motion is two dimensional and incompressi-
ble, the velocity is the curl of a vector potential Q where

Q =-i rVr iz .  (VIII-36)

Then, as calculated in Chapter VII, the power liberated per unit length
is:

P" f (iV .r') " V x FI, d,2. (VIII-37)

The Z component of V x F was calculated in Section VIII.A and the
result is
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P -2rrdr Y -B B , -+P=-2r rr F c '-dr 47r

I rdr r d rBr + Br (VIII-38)

The quantity in the curly brackets vanishes in the outer MHD region,
exactly as in Chapter VII. However near the singularity, the bracket is
no longer zero, since ideal MHD with y = 0 is no longer an accurate
description of the plasma. In a narrow region of width x, the slope of
Br goes from zero to some constant value. Thus d2B,/dr2 is the dom-
inant term in the bracket. The functional form of B,.(r) is shown in
Fig. (VIII-9) as the solid curve, while the ideal MHD solution is shown

as the dotted curve. Clearly, B, and -i- B have the same sign, so thatdr2

PF is positive and energy is available to drive instability. If the value of
Br at r = r, - x, is denoted Brr, Eq. (VIII-38) yields the approximate
expression,

P=y r 3 I B1 2  (VIII-39)2x,

The Ohmic power per unit length dissipated in the singular layer is
given roughly by

2rrs xc 7J (VIII-40)

where J, is the current flowing in the singular layer. However

J, == BO, cr, Br41JcB ccs rc(VIII-41)

47r x, 
4 7r xC2

where the first relation in Eq. (VIII-41) comes from Maxwell's current
equation and the second from V B - 0. Then combining Eq. (VIII-
39 and 40) we find

y 4w C (VIII-42)41r xc2 "

The only problem now is to determine xc in terms of y and 71. The
procedure here is exactly the same as in Chapter VII. Namely, substi-d2 B,
tute for the d 2B term in Eq. (VIII-35a) from Eq. (VIII-35b). Then,

exactly as in Eq. (VII-23),

XC P 71 C2 1/4

xc I (F ) 2  (VIII-43)

(F')A
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8,

N

XC r - r$

Fig. VIII-9 - A plot of B, as a function of r

for an m = I tearing mode

This then gives the results

(vqc 2)113 1 (F')2 j / (VIII-44)
(41)2 / 3 p o r- J

and
1 1(tc2l3{[ 1/6

=- (71C 2) 1/3  P )2r - rs (VIII-45)
47r (F')2  -

Thus, one can derive in a fairly simple way the basic results of m = 1
tearing modes.

VIII.F - Double Tearing Modes

We conclude this chapter with a study of double tearing modes;
that is tearing modes which are excited when there are two zeros of F
near each other. For tokamak ordering, this generally means a current
density which is not a monotonically decreasing function of radius, but
which peaks at some radius, in other words a skin effect. This can be
seen from Fig. VIII-10a and b. The solid curves are normal current
density and poloidal field as a function of radius. The dotted curves
show the effect of a narrow skin layer on both J and B. Since
F- Bo/r - kBz, F clearly has basically the same behavior near r, as
the dotted curve in Fig. (VIII-10b).

To investigate the stability of such a configuration, first look at
the regions of the plasma where ideal MHD is valid. Using the
definition of F and Maxwells current equation, Eq. (VIII-28) can be
reduced to
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Ozo(r) B9o (r)

rC r rc

Fig. VIII-1O - Schematic diagram showing how the skin effect
can give rise to non-monotonic q (r) profile

d 3 dB,. Bf d 3 F m2 -1

dr r -r +F . B,. (VIII-46)
r2 dr dr r dr r

This equation is to be solved subject to appropriate boundary conditions
at r = 0 and r = a.

If rl and r,2 are the positions where F vanish, and if
r 1 - r,2 << r, then r - r, the second term on the right hand side of
Eq. (VIII-46) is much smaller than the first, and can be neglected.
Making this approximation, one can easily construct a solution to Eq.
(VIII-46) which satisfies boundary conditions at r = 0 and r = a and is
everywhere continuous. The solution is

0 r <r,2

B, F rc2 < r < rc,. (VIII-47)
0 rcl < r

This is analogous to the solution for B for m - 1 tearing modes.
If p0 , 71 and F' have the same value at r - rl and r,2, an analysis like
that in the previous section gives Eq. (VIII-44 and 48) for growth rate
and size of singular region. (Of course xc << rc - r,2 is also
assumed.) Notice that the growth rate for a skin current goes as 1,
whereas for a normal tearing mode it goes as 713/ 5. Since 71 is a small
quantity, a double tearing mode grows much faster than a conventional
tearing mode.

Since the ideal MHD relation between V, and B, is yB, - iFV,,
the solution for B, in Eq. (VIII-47) gives
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0 r < r,2

Vr constant r,2 < r < rcI. (VIII-48)
k t rc < r

The flow pattern is then that which is characteristic of tearing modes,
namely a fluid collides with and recoils off a stationary fluid. Such a
flow pattern is illustrated in Fig. (VIII-11) for the case of m = 4.

4)

Fig. VIII- 1 - The flow pattern for an m - 4 double tearing mode
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Chapter IX

INSTABILITIES IN A TOROIDAL PLASMA

In this chapter, we just touch upon the question of MHD instabil-
ities in toroidal geometry. The actual calculations of relevant instabili-
ties has many more mathematical complications than the equivalent cal-
culations in slab or cylindrical geometry because toroidal plasmas are
inherently two dimensional. For instance if the toroidal co-ordinates
are as shown in Fig. (IX-1), the equilibrium is symmetric in toroidal
angle C, but depends on the two variables r and 9. Thus calculating the
stability involves a two dimensional eigenvalue equation in r and 0,
rather than one dimensional calculations (in r for cylindrical geometry,
or in x for slab geometry) as done in the preceding chapters.

4 +4

Fig. IX-1 - The toroidal co-ordinate
r, 0, and C

We will not attempt such a two dimensional calculation here;
rather will examine first how modes in cylindrical plasmas are affected
by toroidicity, and second will show that there are, instabilities in a
toroidal plasma which have no analog in cylindrical geometry. In
tokamak ordering, the results are that free surface modes and tearing
modes exist as in cylindrical geometry. The pressure driven modes,
described in Chapter VIII.B, are stabilized of q > 1. Finally a new

125



126 MUD INSTABILITIES

mode, usually called a ballooning mode, can exist in the regions of
locally bad curvature. These ballooning modes give rise to a pressure
limit for tokamak plasmas.

We now examine these points more thoroughly. In the tokamak
ordering, a << R, BO << B , and all toroidal effects will be small by a
factor of at least a/R. However in deriving the equations for
modes with two dimensional structure in cylindrical geometry (Eqs.
(IV-35) or (VIII-7)), all terms of order aIR were neglected. There-
fore, any instabilities which exist in this approximation for a cylindrical
plasma should also exist in toroidal geometry if a/R. The relevant
instabilities are then the free surface modes described in Chapter IV
and the tearing modes described in Chapter VIII.A-F. However, as
pointed out in Chapter VIII.A, a plasma with no free surface and with
zero resistivity is stable to modes with two dimensional structure. Now
let us examine the pressure driven modes discussed in Chapter VIII.B.
These modes were driven by a pressure gradient, and as is apparent
from Eq. (VIII-12c), the driving term is multiplied by k2 r2 _ (r/R)2.
However toroidal effects are also of this order, so that these pressure
driven modes can be strongly affected. Calculation of the exact stability
condition is mathematically involved and was first given by Mercier and
also by Shafranov, and others.

These analyses are almost always done in flux co-ordinates, where
one co-ordinate component in taken to be constant along a field line or
flux surface. The simplest result for sheer stabilization of pressure
driven modes in a torus is for a high aspect ratio torus with low beta
and circular flux surfaces. The result is that the condition for shear sta-
bilization of pressure driven modes is given by

- 01- q 2) dri 1r dri < 1/ 4. (IX-1)

It is different from the analogous cylindrical geometry result only by
the factor (1 - q2). Although this seems like a very simple result, this
does not appear to be so. Shafranov, who makes all approximations
with regard to flux surfaces, etc., at the outset, must still use a fairly
complex co-ordinate system. He finds the I - q2 factor in Eq. (IX-I)
is the result of a combination of three effects; the radius of curvature
of the toroidal field, which is stabilizing at small major radius and desta-
bilizing at large major radius; the outward shift of the flux surfaces,
which results from the toroidal nature of the equilibrium, and the
poloidal variation in the pitch of the field lines.

I I I II1I
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z

R

Fig. IX-2 - The toroidal co-ordinate R, z and C

However this toroidal effect plays quite an important role. It
implies that tokamaks, which are characterized by q > 1, are stable to
pressure driven modes. Reversed field pinches, however, which have
q < 1, are potentially unstable to pressure driven modes in ideal MHD
if the shear is not great enough, and are also potentially unstable to
resistive g modes no matter what the shear is.

We close this chapter by qualitatively examining the problem of
ballooning modes in tokamaks. Recall that any pressure driven mode is
ultimately driven by a pressure gradient which has a component in the
direction of the radius of curvature of the field line (see for instance
Eq. (111-41). In a toroidal plasma there two components of the field
line curvature. First there is the curvature of the poloidal field KP
(Boo/BHo r)i, which drives pressure modes in cylindrical geometry as
the previous chapter. Secondly there is the curvature of the toroidal
field line Kr Z iR/R which has no analog in cylindrical geometry. Gen-
erally K T >> KP. However K T ' Vp nearly averages to zero along the
field line. For instance at 0 - 0, Vp - -ir= -iR, while at 9 -r,

p -- -i, = +i R . Thus if the mode structure is uniform along the
field line, as for a flute mode, the effect of the curvature of the toroidal
field should not be dominant. This naturally brings up the following
question: Can a mode be localized along a field line so that it only sees
the positive, destabilizing, values of KT 'Vp (around 0 = 0) and not
the negative, stabilizing, values? We will see that such instabilities can
indeed by generated if the plasma pressure is too high. These are usu-
ally called ballooning modes, probably in comparison to the behavior of
a balloon of varying thickness. Imagine a balloon whose thickness
varies around its surface, also imagine a second balloon of uniform
thickness equal to the average thickness of the first. Say that someone
is too weak to blow up and pop the second balloon; he might still be
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able to blow up and pop the first, because it blows out much more
easily where the surface is thin.

This is then analogous to an MHD instability in a tokamak picking
out the most unstable (outer) region and localizing itself there. Of
course, it is not so simple for a mode to localize itself along a field line.
Any disturbance which is localized along a field line is also setting up
shear. Alfven waves, which tend to give a positive frequency V4/L 2

where L is the characteristic length of the disturbance along the field
line and VA is the Alfven speed. The distance L is given roughly by
the characteristic distance along a field line, Rq. The maximum growth
rate is given roughly by the maximum value of g divided by the gra-
dient scale length, taken here as 11r. The plasma can only be stable if
the outward motion forced by the pressure gradient does not overcome
the resistance to field line bending, or if

V,2 v2
2  VA_

Rr < k 2  R VA2 g 2 q2

where V in the ion thermal velocity. This gives rise to an approximate
limit on the total /3 of a tokamak of

]=,V2  r
V-2 < "Rq2  

(IX-2)

Now let us show how this basic result can be obtained more
rigorously by modeling the system with a slab in a gravitational field
which is spatially dependent. If we assume slab geometry with all per-
turbed quantities varying as f(z) exp iky, B. uniform and in the z
direction, the density gradient in the x direction, and g varying with z,
an analysis similar to that which led to Eq. (V-17) gives the result

-71P- B1 -A Iv, + ), o g g(z) V,,==O. (IX-3)

I 47r),8z' ax
i 1 n gz V2cos0

Specializing to a tokamak, where a and gW) -i R

we find that Eq. (IX-3) reduces to

V2 d2  V2 cos 9 0

R 2 q2 dO2  RL, V(O)O iX-4)
where L,, is the gradient scale length. Notice that the last term in the
parentheses is periodic in 0 with period 2fr. However the solution for
Vx(O) must also be periodic with the same periodicity, since V" must be
a single valued function of 0. Thus y is determined by the condition

I
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that solutions to Eq. (IX-4) exist which are periodic in 0 with period
2 tr. An approximate criterion for unstable roots can be derived as fol-
lows. If - = 0, the solutions to Eq. (IX) are oscillatory between
-ir/2 < 0 < 7r/ 2 and are exponentially growing and damping for
a-/ 2 < 101 < 7r. Imagine a solution for V localized between -7r/2 and
7r/ 2 and which damps to a very small value between say 7r/ 2 < 0 < 7'.
Then the solution for V, between -ir/2 and 7r/ 2 does not affect the
solution for V, between say 37r/2 and 5 r/ 2 . The condition for a solu-
tion to Eq. (IX-4) with zero y is simply the condition for localized roots
between the turning points, or according to WKB theory,

f 7r/2 dO iq cos 0 = 7/2. (IX-5)
i/ VA IL

The eigenfunction is as shown in Fig. (IX-3). Notice that oetween
7r/ 2 < 0 < ir, V, gets so small that it does not affect the value of V,

-4r,

./

-2w

Fig. IX-3- The eigenfunction (dotted (
curve) and local wave number squared
(solid curve) for ballooning modes in a 0
tokamak

(,,
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in 3r/ 2 < 0 < 5r/2, where Vx gets large again. Using the fact that

-/2 V dO - we find that the plasma is unstable if

r/2 2 rI

> 0.42 q (IX-6)

A Rq2

This condition then puts a limit on the maximum pressure which can
be stably confined in a tokamak. If the plasma is unstable, growth rates
can be calculated in an analogous way by setting

4 j2 V2 qd2COS v21 . (IX-7)

The problem of ballooning modes in sheared fields, and with nonzero
resistivity is much more complicated and is still under active investiga-
tion.

The first calculation of both interchange and ballooning modes in a
plasma with no shear is in:

I. Bernstein, et al., Proc. Roy. Soc. (London), A224, 17 (1958).

The Mercier condition for stability of interchange modes in a torus is
given in:

C. Mercier, Nuclear Fusion, 1, 47 (1960).

Stability Criteria for Arbitrary Hydromagnetic Equilibria, J.M.
Greene and J.L. Johnson, Phys. Fluids, 5, 510 (1962).

Conditions for Flute Instability of a Toroidal Geometry Plasma,
V.D. Shafranov and E.I. Yurchenko, Soy. P,hys. JETP 26, 682
(1968).

As of this time, ballooning modes in tokamaks are under active investi-
gation because of their relevance to pressure limits in tokamaks. Some
recent work includes:

Topology of Ballooning Modes, B. Coppi, Phys. Rev. Lett., 39, 939
(1977).
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Theory of Ballooning Modes in Tokamak with Finite Shear, D.
Dobrott, D.B. Nelson, J.M. Greene, A.H. Glasser, M.S. Chance,
and E.A. Frieman, Phys. Rev. Lett., 39, (1977).

Stability Limitations on High Beta Tokamaks, A.M. Todd, M.S.
Chance, J.M. Green, R.C. Grimm, J.L. Johnson, and J. Man-
ickam, Phys. Rev. Lett., 38, 826 (1977).

A very ingenious way to reduce the ballooning mode problem for high
mode number to a one dimensional problem is given in
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R.J. Hastie, and J.B. Taylor, Phys. Rev. Lett., 40 396 (1978).

A study of resistive modes in a toroidal plasma is in:

Resistive Instabilities in General Toroidal Configurations, A.H.
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(1976).
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Chapter X

QUASI-LINEAR THEORY OF
MHD INSTABILITIES

This chapter begins the second part of this book, that concerning
the nonlinear theory of MI-D instabilities. Before commencing it is
necessary to point out that the nonlinear theory of MHD instabilities is
not nearly as well developed as the linear theory and much of what will
be discussed here is necessarily more speculative than the material dis-
cussed in the preceding chapters, which treated the linear theory.

We begin by examining the quasi-linear theory of MH-D instabili-
ties in which the perturbed velocities are non-singular. This applies
potentially to m = I kink tearing modes and double tearing modes
(Chapters VIII E and F) as well as to ideal MHD modes. In this and
the next chapter we change the notation slightly from that in the previ-
ous chapters. Now any quantity (say A) will be denoted by <A> + i
where <A> is the ensemble average and A is the perturbation about
the ensemble average. Ensemble averaging will be denoted by angular
brackets.

For instance, if we restrict ourself to cylindrical geometry, A is a
function of radius only, and

A= I A(r~mk)expi(kz+m9)+c.c. (X-1)
rn-k *0

the d 0 under the summation indicating m and k are not both = 0.
Since any physical quantity must be real, the complex conjugate is
added on in Eq. (X-1). The process of taking the ensemble average
can then be defined as an average over 0 from zero to 21r and an aver-
age over z from 0 to L, where L is either a periodicity length if such a
length exists or else is some very large length. Clearly <Ai> = 0, but

< AR> - 1:A (r, m, k) B *(r, m, k) + c. c. (X-2)
k^m 0

Expressing the fluid quantities in this way, the four fluid equations for
p, V, B and p become

1331
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at

(< P (< V > +,V) + (< P > +h) k< v > +V,)

• V (<V> +Vr)--V (p+.b)

+-I{V x (<B> +)x (<B> +A) (X-3b)

a (<B> +f)=Vx (<V> +V) x (<B> +B) (X-3c)
at

a (<p> +k)+ (<V> +I) .V (<p> ±b)
at

+- (<p> +,b)V. (<V> +V) = 0 (X-3d)
3

where we have assumed y = 5/3 to avoid confusion between the adia-
batic y and the growth rate.

The first step is to take the ensemble average of (Eqs. X-3). The
result is

<P> + V<p> <V> - V<V3V> (X-4a)
at

<p> <V> + <p> <V> .V <V> +V<p>
at

1 (V x <B>) x <B>
4ir /

- <1> •V<V>-< <V> VV>
-<p> <V "VV> - < 'VV>

! <(V x A) x F> (X-4b)
4wT

O<B> +Vx <V> x <B>=Vx <VxB> (X-4c)

x<V>58<p> x <V>.V<p> + <p>V'<V>

3

<'V .VP> - --< VX >.(X-4d)

3II
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Then subtracting Eqs. (X-4) from Eqs. (X-3) gives the equations
+ V. G <V> + <P>V) =- (V• V- V<V>) (X-5a)

<P>A-V+ a< +ji<V>-V<V>+pV-V<V>

+<p><V> .VV+Vt
1 (Vxil) x <B> +(V x <B>) x >

41r

= -v + <A- >
Ot

-Av .V<V> + <AsV> .V<V> -is<V> .VV

+<A<V> VV>

- <p>V Vfi+ <p>< . VV > -A r 'V + <AV"VV>

+ -L(V x A) x AB- l-<(V x B) x B> (X-5b)
4 7r 47r

-B-V xVx <B>-Vx <V> xB
at

=V x V x- V x < Vx B> (X-5c)

+ .< P > + < V> .V,+ - <V >+ <p>V .V=

V W + <+>. (X-5d)
3 3

Equations (X-4a-d) and Eq. (X-Sa-d) are now a complete set of non-
linear equations for <p>, A, <V>, V , <B>, B, <p> and P, and so
far no approximations have been made.

The quasi-linear approximation to these equations consists of
neglecting the <A V. V V> term (that is the term cubic in fluctuating
quantities from the right hand side of Eq. (X-4b) and in neglecting the
entire right hand side of Eqs. (X-5a-d). We will briefly discuss these
approximations now. The fluctuating quantities are assumed to be
small so that a term like <A V" '> is expected to be much smaller
than a term like p< V V-V> since A <<p. This is the basic
justification for neglecting the cubic nonlinear terms on the right hand
side of Eq. (X-4b).
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Notice that all terms on the right hand side of Eqs. (X-5a-d) are
various quantities minus their ensemble averages. This ensures that for
our cylindrical case of azimuthal and axial averaging, there is no quan-
tity on the right hand side of Eqs. (X-5a-d) which is a function of only
r. That is every driving term on the right hand side has oscillatory
structure in 0 and/or z. For instance if there are two fluctuations at
(kl,ml) and (k2,m2), the quadratic terms on the right hand side will
drive additional fluctuations at (2ki, 2mj), (2k 2, 2m2) and
(k, :: k2, mI :± M2 ). However no fluctuation will be driven at
k - m - 0 since the ensemble (i.e., azimuthal and axial) average of
the right hand side is subtracted out. These terms then describe the
coupling of fluctuations at different wave lengths directly with each
other. It is worth noting that the terms we have neglected are mode
coupling terms. That is they couple modes nonlinearly to each other,
rather than nonlinearly to the ensemble average background.

Thus the quasi-linear approximation neglects coupling of the
fluctuations among themselves, but includes the coupling (correct to
second order) of the fluctuating to ensemble average quantities. There-
fore the basic idea behind the quasi-linear approximation is that cou-
pling of the waves to the background is more important than the cou-
pling of the waves to each other.

With the right hand side of Eqs. (X-5a-d) set equal to zero, the
equations for the tildad quantities are very similar to the linearized fluid
equations of earlier chapters, but with two important complications.
First of all the background velocity is not equal to zero in Eqs. (X-5a-
d) and secondly, the background quantities are functions of time as
well as radius. To proceed, we now restrict ourselves to the lowest
order tokamak ordering and to systems not far above stability threshold.
As we will now show, these complications can then be eliminated. In
lowest order tokamak ordering, recall B, > > B1, R > > a and the
mode structure is two dimensional in the rO plane (that is ' -
B.. - 0). Also V • f - 0, that is, the perturbation is incompressible.
The equation for B2, from Eq. (X-4c) then ,-,omes

r V. BZ.  (X-6)
rr

Since B, is very large, it cannot change very much without drastically
altering the systems energy density. However for B, to remain
unchanged, it must be that

V, 0 . (X-7)
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Thus to lowest order in tokamak ordering, the ensemble average radial
velocity vanishes. Now let us consider the azimuthal and axial com-
ponent of velocity. Making use of the fact that the fluctuating flow and
magnetic field are incompressible in two dimensions, it is a straight
forward matter to show that the 0 and z components of the terms on

the right hand side of Eq. (X-4b) are proportional to V0, L and
Or

a V,9
Thus there is no term which acts as a source term for an

acceleration in 0 and z (one can also show that this is true in cylindrical
geometry without an expansion in tokamak ordering). Therefore, if V9
and V are initially zero, they will be zero at all subsequent time.
Hence, to lowest order in tokamak ordering, there is no induced fluid
velocity, or

V = 0. (X-8)

(In general in cylindrical geometry Vz = V9 = 0, but Vr  0.)

In this case the equation for the perturbed quantities (Eqs. (X-
5a-d) with the right hand side - 0) are different from the linearized
equations in previous chapters only in that the background quantities
are functions of time. Therefore the perturbed quantities cannot be
assumed to have a time dependence like exp yt. However if the time
scale for the change of equilibrium quantities, req satisfies the condition

y Teq > > 1 (X-9)

where y is the linear growth rate (assuming the ensemble average
quantities are time invariant), then one can solve Eqs. (X-5a-d) by
making a WKB approximation. This is, fluctuating quantities are pro-
portional to exp J y (t) dt. The zero order WKB approximation to Eqs.
(X-5a-d) then give the conventional result

YA + V • V <P> (t) - 0 (X-10a)

y <p(t)> V--Vp+ - {(V x B) x <B (W>

+ (V x <B(t)> x (X-10b)

yB - V x V x <B(t)> (X-10c)

V " V - 0 (X-lOd)

where we have assumed the flow is incompressible in Eq. (X-lOd).
These are just the conventional equations for perturbed quantities
which we have studied in previous sections. Using them to express A,
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iJ and p in terms of V, it is a simple matter to show that the equations 
for p , p, and B9 are 

o<p> ... _!_ 1._ ~ <i: 2 ( k)> o<e> (X-ll a) 
!I !I r L.i )' ~ r r, m, !I 
ut r ur mk ur 

o<e> = _!_ 1._ ~ <1:2< k )> o<e> 
!I !I r L.i )' ~ r r, m, !I 
ut r ur mk ur 

(X-llb) 

o<Bn> _1..__!_1._ L 2 2 a -!I !I l: {<~, (r,m,k ) > r 
t ur r ur mk m 

m<B9 > 
( +k<Bz>)} 

r 
(X-ll c) 

where g, is the radial displacement, g, = V,/y and where as usual the 
perturbation is assumed to be a summation of individual fluctuations 
proportional to exp ( im 0 + ikz) . It only remains to check a posteriori 
that Eq. (X-9) is satisfied. If rn is the radial scale length for say the 
density variation, and if one makes the simple assumption that 

:, - ,n- I , then Eq. (X-9) reduces to 

(X-12) 

Thus Eq. (X-9) is s~t isfied as long as the radial displacement is small 
compared to the radial scale length. 

Equations (X-lla-c) then describe the evolution of the back­
ground density, pressure and poloidal field in response to the instability. 
These equations in themselves do not guarantee pressure balance. 
However pressure balance can easily be maintained through very small 
changes in Bz. Thus we expect that V, will not exactly vanish , but 
rather that there will be a very small V, which will modify very slightly, 
Bz (according to Eq. (X-6)) so as to maintain pressure balance at all 
times. 

Now let us examine the behavior of the Quasi-linear equations as 
expressed in Eqs. (X-10 and II) . The first thing to ·note is that the 
right hand side is non zero only because y is nonzero. Thus the plasma 
responds to the growth of the fluctuation; once the growth ceases, for 
whatever reason, the plasma ceases to evolve. Thus the quasi-linear 
theory, as expressed in Eqs. (X-fO and II) cannot describe a situation 
of steady state turbulence; but rather the evolution of an initially 
unstable configuration to a final stable one. 
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To describe this evolution, note that Eqs. (X-10) are just the
linear equations for the fluctuation at the local equilibrium. Thus they
can all be replaced by

d -- (X-13)dt

so that Eq. (X-I la), for instance can be replaced by
a<p> =I 1 lr8r r <f 2t <!(rmk)> a<p> (X-1 Ia')

0t 2 r r k dt r Or

Assuming that the plasma is near marginal stability, so that the back-
ground density changes only slightly, the time dependence of <p> can
be neglected on the right hand side of Eq. (X-1la'). Then Eqs. (X-13
and 1 la) can be integrated in time to give

r(r,m,k) - (r, m,k,t 0) exp y(t') dt' (X-14a)

<p>= <p(t 0 )> + 2 r r J< F(rmk)>
2 r m,k

O r<(t=O)> (X-14b)6 r

The time dependence of y (t) is unspecified here. It is the eigenvalue
of the temporally local equations for the fluctuation, Eq. (X-10). The

solutions expressed in (X-14) are meaningful only if f 0  (t)dt is finite.
Thus quasi-linear theory can only be valid if the plasma evolves from
an initial unstable state to a final stable one.

Let us now briefly discuss the effect of mode coupling. This
effects the time dependence of fluctuating quantities through the
interaction of the fluctuations with each other. By neglecting mode
coupling we assume that its effect on the integrated growth of ,

expressed by Eq. (X-14a) is small.

There is one aspect of Eqs. (X-1la and c) which might at first
appear paradoxical. That is the ensemble average magnetic field is no
longer frozen into the ensemble average flow. This can most easily be
seen in slab geometry. If the perturbation is two dimensional and
incompressible in the xy plane, a simple calculation shows that the slab
geometry analogs to Eqs. (X-1 Ia and c) are

O<pt> - I < > 0<> > (X-15a)

a < By > 02

Yn <' <B> (X 15b
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Since Vx = 0, frozen in field means p/By is constant which clearly is
not the case if p and By obey Eqs. (X-15).

The resolution of this apparent paradox comes from the fact that
the MHD constraint does not require the average field to be frozen into
the average density; rather it requires that the exact field be frozen into
the exact flow. The two requirements are not the same as we will now
show. To show this imagine a fluid with initial density po(X) and field
BO(x) i. Then give each element of the fluid a displacement sin
ky i. where f is constant. Let us now calculate the new density and
magnetic field. To this do consider 3 neighboring points initially at
(x,y), (x + dx, y) and (x, y + dy). After displacement, these points
go to (x + sin ky, y), (x + dx + f sin ky, y), and (x + f sin ky +
f kdy cos ky, y + dy). The two difference vectors before and after the
displacement are dxix and dy iy before; and dxi, and dy k cos
ky ix + dy iy after. The original and final area is dxdy, as can be seen
by taking cross products of the two sets of difference vectors. This
confirms the incompressible character of the displacement. Thus if the
initial position of a point (i.e., (xy)) is denoted r0, and the final posi-
tion (x + f sin ky,y) is denoted r, then

p0 (ro) = p (r).

Solving for ro in terms of r, we have

p (r) = po(x - ; sin ky).

Assuming that the variation of Po is small in a distance f, we find that
the density averaged over y is given approximately by

<p=(x)> p(X) + I f 2-- x 2 •(X-16)
4 OX2~

We will now continue by calculating the field, exploiting the fact
that it is frozen into the flow. In the undisplaced fluid, the field is
parallel to the first difference vector dy ly. This difference vector is dis-
placed to dy (f k cos kcy ix + iy) and this must be parallel to the 'dis-
placed' field. Thus a unit vector parallel to B is

i- fkcoskyix+i
(1+ f 2k2 cos2 y)' / 2  (X-17)

Now calculate the magnitude of B. The initial flux through the line
{(x + dxy) - (xy)j is (Bo(x)iy) • (dxly) - Bo(xo)dx. After displace-
ment flux is frozen in, so
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B (r)iB . iydx = Bo(xo) dxo, or (X-18)

B (r) Bo(xo) ((gk cos ky)' + 1)1/2

B0 (x - f sin ky) ((6 k cos ky) 2 + 1)1/2.

The y component of B in the displaced fluid is
By = B Wr iB ' Jy -- Bo(x - cos k v). (X-19)

Again, assuming that B0 varies only slightly in a distance , we find
1 02Bo X-0

<By> = B0 (X) + 2 (X-20)4 OX2

As is apparent from Eqs. (X-16 and 20), <p>/<By> ;e p/B so the
average field is not frozen into the average density. Yet the field was
calculated by making explicit use of the fact that the exact field is
frozen into the exact density. Therefore ensemble averaging destroys
the 'frozen in' nature of magnetic fields in ideal MHD.

In a sense, this is not a surprising result. As we have seen in
Chapter VII and VIII, fluid flow with frozen in field can lead to very
complicated, small scale magnetic structures which may well be com-
pletely washed out with any kind of ensemble averaging. However, this
complicated structure was a direct consequence of frozen in fields, so
averaging field and density will in all likelihood destroy this link.

An analogous situation is an incompressible fluid with variable
density p (x) filling the square -L < x, y, < L. Imagine stirring up
this fluid for a long time. Even though the flow is incompressible, low
and high density parts are forced near each other in an almost random
way. Hence any kind of coarse grain averaging of the fluid will give
rise to nearly uniform density, even though this might at first sight
appear to be impossible due to the incompressibility condition. There-
fore, in all cases, 'microscopic' constraints can become unglued upon
ensemble averaging.

Let us now apply the quasi-linear theory to an internal m = I
kink tearing mode. The theory is greatly simplified because , = con-
stant (that is independent of r) within the q - 1 surface, and only the
m - n - 1 mode is assumed to exist. As it can easily be shown that

0BO
for B, - constant and , - constant, there is no contribution to at
from Bz, the equation for B0 is

OB O 1 O aILr < >B (X-21)
at MY r r r
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which is very much like a diffusion equation. Another way of writing
Fq. (X-21) is to take the curl and write it as an equation for the plasma
current in the z direction. The result

a I k r - < 62(t)> Jz (X-22)
Ot r Or Or

which is a diffusion equation for J.

We now examine what sort of an interpretation for m = n = I
sawtooth oscillations can be made by using quasi-linear theory. Imag-
ine that at time t - 0, an Ohmically heated tokamak discharge has
q(r = 0) < 1; and, as is usually the case, monotonically decreasing
profiles of p(r), p(r) and Jz1(r) (but monotonically increasing profile of
q(r)) as shown is Fig. (X-la). This configuration is unstable to the
m = n = I kink tearing mode. According to quasi-linear theory, this
mode will grow at its local growth rate and p, p and J, all obey diffusion
equations. Thus current, density and pressure all diffuse outward, and
tend to evolve the plasma to a final state where J, (and thereby q), p
and p all have no radial gradient within the singular region, as shown in
Fig. (X-lb). Now let us postulate that the steep gradient near the
singular surface in Fig. (X-lb) rapidly diffuses away, either by classical
diffusion, or more likely by exciting some sort of micro-instability.
(Actually we will see in Chapter XV that Kadomtsev proposes a non-
linear scheme for the effect to be felt beyond the singular surface.
After this, the profile has smoothed out and looks like that shown in
Fig. (X-lc), where the interaction between the m - n = 1 instability
and whatever smoothes out the profile, will insure that in the final
state, q (r - 0) > 1, so the plasma is stable. However the plasma is
heated by Ohmic heating, so that the hotter central region tends to be
preferentially heated. This lowers the resistivity, and channels the
current into the center thereby lowering q(r - 0) until it is less than
unity. Thus the current channeling tends to force the plasma back into
an unstable state. This channeling plus the quasi-linear reaction of the
plasma have the property of forminig a relaxation oscillation.

The time of the down stroke, according to quasi-linear theory,
would be the time for the fluctuation to exponentiate to a level large
enough to affect the background. This could be a time of order five or
ten linear growth times. For a large size (singular surface radius - 10
cm) hot (T - 2 Key) plasma characteristic of say TFR, the linear
growth time is about 100 /4 sec, so one might expect that quasi-linear
theory would predict a down-stroke time of something less than a mil-
lisecond. This appears consistent with experimental data from TFR.

l iI I I II I I A
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(a) rS

(b)

(c)
Fig. X-1 - The quasi-linear evolution of the toroidal current for
an m - n - I internal kink tearing mode. (a) The initial
current, (b) the current on completion of the MHD instability
phase, (c) The current after the resulting steep gradients diffuse
away.

Another possible application of the quasi-linear theory to tokamak
plasmas is current penetration due to excitation of double tearing
modes. As discussed in V11I F, if a skin current forms as the current
builds up in for instance a tokamak, there will be two nearby rational
surfaces and double tearing modes can be excited. According to Eq.
X-22, the double tearing mode will cause diffusion of the current
between the two rational surfaces and will tend to reduce the skin effect
and help the current penetrate to the interior of the tokamak plasma.
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Since the edge plasma is cooler and more resistive and the rational sur-
faces are closer together, the growth rate of the double tearing mode
will be larger than that of an m - n 1 internal kink. The growth
time is about 10 /isec, so that quasi-linear theory might predict current
penetration between the two rational surfaces in a time of about 50 to
100 A.sec. The current penetration time for the entire plasma would of
course be much longer.



Chapter XI

QUASI-LINEAR THEORY AND
SIMPLIFIED NONLINEAR THEORY OF

TEARING MODES

Since the tearing mode is driven by magnetic energy in the outer
region, it is tempting to describe its nonlinear evolution in terms of a
quasi-linear theory of only the outer region. In this way, one might be
able to follow the growth of the tearing mode coupled to the depletion
of free energy which drives it. Then, when all of the free energy is
used up, linear growth should stop. Another attractive feature of an
outer region quasi-linear theory is that it works the same way no matter
what the dissipation mechanism in the inner region is. The problem is
that the MHD equation for the outer region is singular, so that one still
has to treat the singularity. For instance if B(xy,t) = §,(x) exp i
(ky + yt) + c.c., then Eq. (X-13b) reduces to

a<By> 2L0 b1= _ r h_+ ._ (x I- 1 )
at k2 ax2 <By> k x 2

where we have related fix to the displacement by the ideal MHD rela-
tion Bh, = i k <By> . Also, as in Chapter X, we have assumed the
presence of a large, uniform B. Clearly, Eq. (XI-1) is singular at
x - 0, the position where <By> = 0. For <By(x)> as shown in Fig.
(XI-la), it is possible to show that in the outer region, the ambient
magnetic field loses energy and thereby drives the mode. To do so,
make use of the fact that around x = 0, because of the nonzero resis-
tivity f (x) is actually a well behaved function of x over the entire
domain - oo < x < oo. Therefore, the last form of Eq. XI-1 can be
integrated by parts so that

d <B2> ro2Lo 2

dtJ~o 2J ~k jX2

X 0 2 y

< > & x 2  y > "  (XI-2)
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(b) 8 < B

Fig. XI-I The initial profiles of
<B>and <By>" for a slab

plasma unstable to tearing modes

Since < By> -0 and d2- <By> = O at x - 0, the last integral in Eq.

X-2 is not singular. Also By and its second derivative everywhere have
opposite signs (see Fig. (X-Ia and b), so it is clear that energy is
released from initial magnetic field. This energy goes to drive the tear-
ing mode. Clearly the energy released within the inner region is not
accurately calculated; however, this should be unimportant, very little
magnetic energy is there in the first place.

We now examine how the quasi-linear evolution of the plasma in
the outer region can be carried out. There are two relevant widths in
the inner region, first there is the resistive layer size L, given by Eq.
(VII-25c) and secondly there is the island width Ax j,. It is clear that
Eq. (XI-l) is not valid for x < 4, because all information concerning
resistivity was left out. However, it is also true that Eq. (XI-1) cannot
be valid for x < Ax5 either. The reason is that it is a partial
differential equation relating the change in <By> to the spatial struc-
ture of <By> in the immediate neighborhood. However, during
reconnection, the magnetic field line is suddenly affected by the other
field line it reconnects with; a field line which is generally very far
away. Thus the behavior of the ambient field during reconnection can-
not be described by a single partial differential equation. This can also
be seen in the derivation leading up to Eq. (X-20). From this it is clear
that Eq. (XI- I) described the response of the average frozen in field to
small displacements of the fluid.
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Therefore, Eq. (XI-1) can only be valid both outside thL singular
layer and outside the island. In the linear regime, where B is
infinitesimal, the island width is smaller than the resistive layer width.
However since LC is small, as B grows, soon Axis > L, so the island
width becomes the relevant inner layer width. Equation (XI-1) then is
only valid for x > Axis.

We now show how the quasi-linear evolution of a single tearing
mode may be carried out. If the variables are renormalized in dimen-
sionless form as

p := kx (XI-3a)

7 = fvdt (XI-3b)

the equations for hX and By are

O - I + < > (XI-4a)

= k(p - ,r) - Pi) (XI-4b)

a < B > 2 a2 IA=2  4 2&X + 4

Ot Op2 <By> <By> <By> aOpJ
8B oAxO<B> 4Ax t O<B> p

+ 4 B; _a<_By>I (XI-4c)
<y>2 ap Op <By> 3  Op

+ hx' 8 O< By>
<By> 2  Ox2

To get the second form of Eq. (XI-4c), we have expanded the deriva-

tives and used Eq. (XI-4a) to express ax 2 . Despite the apparent

complexity, the second form in Eq. (XI-4c) is much simpler to work
with because the diffusion term now has a positive diffusion constant.
Also, we have assumed hB, is real. Equation (XI-4a) is the equation for
B11 in the outer region (the same as Eq. VII-9) except that now

8<By>-
lI > pi, where pi, - 2 12 €:p p - . (The additional factor

of v12 between this and Eq. (Vll-41) comes from the difference
between sin cos and exponential notation.) Equation (XI-4b) simply
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says that the fluctuation at p- Pis grows as the linear growth rate.
Equation (XI-4c) is the quasi-linear equation for <By>, which is valid
only outside the island, that is lpI > Pis

The question now is how to calculate the island width, which
depends upon the slope of < BF> at x = 0, that is, inside the singular
region. Clearly it is necessary to make some assumption concerning the
current and field distribution inside the singular layer. We make the
reasonable assumption that <By> is linear in x within the island.
Then Eqs. (XI-4) must be solved numerically in space and time, cou-
pled with a calculation of the island width. The procedure is as follows.

At T= 0 start with a field profile, which we will specify as
<By> = Bo tanh (p/L 5 ) and B outside the island given by the solu-
tion of Eq. (XI-4a) with some assumed small amplitude. Here L, is the
scale length in units of k- 1. To advance from r to T + Ar, first solve
Eq. (XI-4a) for h., subject to the boundary condition that All
approaches zero at both X = ±oo. If the solution is normalized so that
B(x = 0) is the same on each side of the island, then there will be a
discontinuity in derivative across it. From B', calculate

(~ 1 I 6B, B, f
1-p I - p - isl

2 FXl (XI-5)
A6'(P-Pi) ax lpi

due to the symmetry. Note that now A is calculated across the island
rather than as a discontinuity at x - 0. This means the A in Eq. (XI-
5) is proportional to the field energy liberated outside the island. If
A < 0, the plasma has become stable and the calculation is finished
with the <By> = <By (r)>. If A > 0 the plasma is still unstable so
that By(p -pi, T) is advanced according to Eq. (XI-4b) and <By> is
advanced according to Eq. (XI-4c). To calculate the island width first
calculate the quantity

L i(p, r +At) - 212p B(p= pi,r +AT)/

<By(p, 7 +A7)>] /2. (XI-6)

This is the island width, determined at each p, assuming the field inside
the island is linear up to that p and equal to <By(p)> at p. The actual
island width is then determined at each time step by solving

Li(,, r + Ar) = p (XI-7)



NONLINEAR TEARING MODES 149

and the solution of Eqs. (XI-4a and c) is invoked only outside the
island. The field inside the island then is linear in p, and Eq. (XI-7)
insures that <By> is continuous at p = LiT(p, T + AT).

Equations (XI-4a-c) were solved numerically by Dr. Barbara Mel-
lander using this assumption for the field inside the island. The initial
and final magnetic fields for four choices of LS are shown in Fig. (XI-
2a-d). For weakly unstable plasma (larger L), the asymptotic field is a
very smooth function of space. However, as Ls gets smaller there is a
larger and larger discontinuity in derivative at the island edge. Most
likely this means that the quasi-linear theory becomes less accurate as
the plasma becomes more unstable. The arrow on the horizontal axis
of the four graphs is the position of the maximum of B at T = 0. For
weakly unstable plasmas, the final island width turns out to be smaller
than this, for strongly unstable plasmas, larger. In Fig. (XI-3) is shown
both the final island width and final island width divided by L. as a
function of Ls. In Fig. XI-4 is shown the liberated magnetic energy per
unit area and the liberated magnetic energy per unit area divided by
L5B2/87r as a function of scale size. To summarize, the quasi-linear
evolution of the outer region always drives a tearing mode to a final
stable state with A = 0 if one assumes <By> is linear in x within the
inner region. Also, this state will be the same no matter what is the
dissipation mechanism in the inner region. However, the quasi-linear
theory almost certainly gets less and less accurate as the mode gets
more and more unstable.

The next question is whether there are nonlinear effects within
the island itself that either stabilize the mode or strongly affect its
behavior. This problem was analyzed by Rutherford (P. Rutherford,
Phys. Fluids 16, 1903 (1973)). He found that nonlinear effects in the
island did not stabilize the mode, but did significantly reduce its growth
rate. Here we give a very much simplified version of his theory. To
start, recall that Eq. (VII-16) gives the power liberated per unit area in
the outer region as

P = Y dBx (XI-8),lrk 2  
X "

assuming hx is real. This power is dissipated by Ohmic heating within
the inner region of width Lc. That is, the current associated with the
discontinuity in By is assumed to flow essentially uniformly within L,
so that this current is given by Eq. (VII-24), j - Bx(x - 0)-

41r ik L
Balancing the Ohmic heating with this power liberated yielded the
approximate expression for the growth rate, Eq. (VII-25b).
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Fig. XI-3 - The final island width (solid) and final island width
divided by initial scale length (dotted) as a function of initial
scale length
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Fig. XI-4 - Liberated magnetic energy per unit area (solid) and
liberated magnetic divided by magnetic energy in a scale length
as a function of initial scale length

If one nr makes the reasonable assumption that Axis

2&_

- 2 k a x > LC, the current flows throughout the island, the

simple analysis leading up to Eq. Vll-25b, is replaced with

d&,(p=pis) 1 _C2A <By> 11/2

k B(XI-9)dt 8 4wA ax j(X9

or for long time
A 1~ cAt. (XI-10)A xis = W_40)

Thus the island growth becomes linear, rather than exponential in time,
and the growth rate goes as first power of resistivity, rather than some
fractional power. Thus once Axi, > L, the island growth rate does not
stop, but it does drastically slow up, even if A does not change. Hence
there are two complimentary aspects to the nonlinear evolution of tear-
ing modes. First, as the background evolves, A is reduced and eventu-
ally brought to zero by the quasi-linear evolution of the outer region
magnetic field structure. Second, because of the change in the charac-
ter of the inner region for Axis > L, the growth of the island width is
drastically reduced and it proceeds on the much slower resistive
diffusion time scale, the same time scale as for changes in equilibrium
quantities.

-- k i d II
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Now let us discuss the implication of this for minor and major 
disruptions in tokamak plasmas. As was discussed in Chapter I, a 
minor disruption is a sudden burst of x-ray activity generally associated 
with a measurable disturbance at some m number, which can be 2 or 3. 
The time scale for this x-ray activity in PLT was typically 100 J.tSec. 
One possible interpretation is that tearing modes of the associated he­
licity are excited. The plasma is not in an absolutely steady state but is 
continuously evolving due to for instance changes in the external cir­
cuit. These changes propagate to the interior of the plasma in a resis­
tive skin time, about 100 milliseconds or more. As the interior of the 
plasma changes, it might evolve to an unstable state with d > 0. Then 
a tearing mode will be excited. Its growth time will be very small com­
pared to the time for plasma evolution. For PLT, Eq. VII-25b gives a 
growth time of between about 100 usee and 1 millisec depending on 
which parameterg one chooses. The theory developed in this chapter 
would predict that the plasma then evolves to a stable state at which 
either d = 0 for complete stability, or dxis ?:_Lc for drastic reduction in 
growth rate. The time scale would be several growth times. This 
would be manifest by the plasma very suddenly changing its equi­
librium, accompanied by an x-ray burst and the onset of island struc­
ture. 

Now let us discuss whether a single tearing mode could lead to a 
major disruption. Imagine that at some radius a tearing mode is 
excited. At this radius an island or chain of islands is formed. While 
the tearing mode evolves quickly compared to the magnetic diffusion 
time, it evolves slowly compared to the Alfven time. Therefore each of 
the magnet ic surfaces within the island is an MHO equilibrium. Hence 
as the tearing mode evolves new MHO equilibria form, each flux sur­
face in the island having some average of the pressure of the two or 
more original flux surfaces which reconnected to form it. 

If the island grows to a sufficient size that it touches the limiter, 
the hot plasma from the interior can flow freely along the field to the 
limiter and this will cool the plasma. In all likelihood large numbers of 
metal impurity ions from the limiter will also. Radiation from these 
impurities will further cool the plasma. If the plasma cannot adjust to 
this sudden cooling of the interior, it may be that a major disruption 
will result. Thus it is likely that a tearing mode can produce a major 
disruption in a tokamak if the island can grow until it reaches the lim­
iter. This hypothesis seems to be confirmed by the results on Pulsator 
discussed in the introduction. Here an island is artificially induced by 
external coils, and when the island touches the limiter, a major disrup­
tion did result. 
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This chapter discussed so far how an initially tearing mode
unstable plasma in slab geometry evolves toward a final state having aI periodic chain of islands. We will close the chapter with a discussion of
the subsequent evolution of this island chain. If the original equi-
librium variation was in the x direction, this time asymptotic periodic
chain of islands extends in the y(horizontal) direction. Each island, of
course, represents a current filament in the z direction. Since these
currents are all in the same direction, they attract each other. The
plasma is in equilibrium because an island feels equal and opposite
attractive forces from the island to the right and the island to the left.

Now consider what happens if the island is given a rightward dis-
placement. First of all the attractive force of the two nearby islands is
greater than the attractive force to their now more distant neighbors.
Thus the nearby islands tend to attract each other and ultimately
coalesce so if this effect is dominant, the island chain is unstable. This
attractive force, however, may be balanced by a repulsive force. As the
two islands move toward each other, the flux, which is frozen into the
flow, must be compressed between the two islands. Thus the magnetic
pressure increases there and this forces the two islands apart. If this
latter effect dominates, the plasma is stable, at'least to this type of dis-
placement. The calculation of the stability of this plasma is very com-
plicated due to the two dimensional nature of the equilibrium. One cal-
culation has been made by J. Finn and P. Kaw (Phys. Fluids 20, 72
(1977)) and they found that the attractive force generally dominates so
that the island chain is unstable to coalescence of the individual islands.

A numerical simulation of the evolution of this equilibrium was
done by P. Prichett and C. Wu (Phys. Fluids 22, 2140 (1979)). At
t -=0 an MHD equilibrium of a periodic chain of islands was set up,
the flux surfaces of which are shown in Fig. (XI-5). The simulation
had periodic boundary conditions in the horizontal (y) direction, each
periodicity length containing two islands. If the plasma had zero resis-
tivity, the islands displaced toward each other, but ultimately stopped
when the magnetic field compressed between them became large
enough to repel their coalescing motion. The flux surfaces at two later
times are shown in Fig. (XI-6). However, if resistivity is present, the
field structure can change its topology and the islands can coalesce.
The flux surfaces for a simulation withq -d 0 are shown in Fig. (XI-7).
Clearly the magnetic reconnection proceeds to completion and the two
initial islands merge to form a single island.
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.3

Fig. XI-5 - The initial island structure
examined by Prichett and Wu
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Fig. XI-7 - The evolution of this island structure

for a plasma with 71 d 0

Thus the nonlinear evolution of a tearing mode unstable plasma
can be quite complex. There are at least three processes which can play
a role, quasi-linear evolution of the plasma in the outer region, reduc-
tion in growth due to the dynamics of the plasma in the island, and
ultimately coalescence of the resulting island chain.

Ib
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Chapter XII

STEADY STATE QUASI-LINEAR THEORY
OF RESISTIVE g MODES

The previous two chapters emphasized that for ideal MHD insta-
bilities as well as tearing instabilities away from the singular surface, the
background plasma responded to the fluctuation only if y ;d 0. That is
the background responds directly to the growth of the mode. In this
chapter we will show that there are some cases in which quasi-linear
theory has the background plasma responding even if y = 0. To
motivate this, we first examine a little more closely just when the back-
ground plasma responds to the presence of a fluctuation.

This is easiest to do for an ordinary g mode in an incompressible

fluid which has growth rate Y2 = -ga <o>/<p>. Note the if g andax
<p > have opposite signs, y is real and a fluctuation grows exponen-
tially in time. That is, a fluctuating quantity has a spatial and temporal
dependence going as exp y t cos ky. On the other hand, if g and <p'>
have the same N/ign, the mode oscillates in time with frequency

- ( <P'>/P) . That is, a fluctuating quantity now has a spatial
and temporal dependence going as cos(ky - ot).

Now consider the response of the background density to the pres-
ence of such a fluctuation. Quasi-linear theory gives the result

O<p> - - f(
t Ox (Xi1)

The density fluctuation A5 is obtained from the fluid displacement, f by
integrating the density equation in time,

<A > (XII-2)
ax
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The remaining calculation is to relate , to P. and here is where
the difference between oscillation and exponential growth plays a crucial
role. If the fluctuation grows exponentially, then V,, - -yxey' cos
ky - -Yx and we get the ordinary quasi-linear equation for the density
evolution as expressed in for instance Eq. (X-15a). However, if g and
p' have the same sign, the fluctuation oscillates so V - wf, sin
(ky - wt). Now there is no simple relation between V, and f since
one varies as sin(ky - .t) while the other varies as cos(ky- ct).
Even more important, , V> - 0 since f, and V, are exactly 900
out of phase with each other.

Thus the crucial requirement for quasi-linear relaxation of the
background plasma is that the two involved fluctuating quantities are
not 90* out of phase. For the density response, the involved quantities
are and P; for magnetic field response they are B and P, and for pres-
sure response they are Vand P. Note that 5 and Vdo not have to be in
phase for density response, they just cannot be exactly 90' out of
phase. If say has a component in phase with P which is much smaller
than its out of phase component, <p P> 1; 0, so there can be a
quasi-linear response of the background density.

In everything we have considered up to now, the in phase com-
ponent has resulted from the linear growth of the fluctuation. However
this is not the only effect which can cause an in phase component. Dis-
sipation can cause it also. To show this let us consider a very simple
dissipation mechanism for the gravitational oscillation. Say that some
dissipative effect tends to relax a perturbed density to the ambient den-
sity with decay rate P,. Then the equation for perturbed density is

+ vA + <P> = 0. (XII-3)at ax

We further assume that g and A' have the same sign so all quantities
vary in time and space as Re exp i(ky - cot) where o is real. Thus

A - 8<p> (XII-4)/5- v - iW ax *

Note that for zero v, A and P" are 90* out of phase. However, the pres-
ence of v introduces an in phase component. Inserting A from Eq.
XII-4 into Eq. (XII-1), the quasi-linear ensemble average equation for
the time average of <p> becomes

O<P> a i 12Vw O<P>
at ax V2 + (02 ex
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Thus, to conclude, we note that either the growth of the fluctuation, or
else the presence of dissipation can give rise to a quasi-linear evolu-
tion of ensemble average quantities.

Let us now examine the quasi-linear theory of a resistive g
mode. The only dissipation involved here is resistivity. That is, ohms
law is

V x<B> = (XII-6)

where as discussed in Chapter 6, we have assumed E - 0. Thus, we
expect B will have a component in phase with V which is driven by dis-
sipation rather than growth. This should give rise to magnetic
diffusion. Thus the quantity we wish to compute an induced ensemble
average electric field in the z direction,

£z -l~ xBy' - P ' h - (X II-7)

The problem now is to calculate these quantities on the right for a
resistive g mode. We take the configuration .specified in Chapter 6 so

= _--=V B=0. Then, as shown inEq. VI-20v,=&Z

k o exp- 1/2(X/12 (XII-8)

where V is the mode amplitude and I is the width

I= (7qc 2)1/3k-1/3 _9 8<p> <P> .
116  (XII-9)

By using V-B - 0 and assuming -L > > k, Eq. (VI-15) can easily be
ax

solved for By in terms of V-,. The result is
By - 4.. ic2  0  By.x  V'exp -I X/ 2. (XII10)

Then using the fact that V • V - V43 = 0 we find for the other two
components

fly-.. fVo exp -1 2 x/ 2 (XII-11)'y - (X/

and

B, -=-tkA! 1 !Y > erf (XII-12)
TIC 2 1 2 a X 41 er



160 MHD INSTABILITIES

Inserting from Eqs. (8, 10, 11 and 12) into Eq XII- 7, we find

~ X--X1
a==r I il 2  liexp - -

orI
V 1 1x x  f2 j

exp- I X j a<Ox (XII-13)

where in Eq (XII-13), we have made a slight change of notation.
Specifically we have summed over i where xi denotes the position of
the center of the ih mode. In Chapter VI, we have assumed the mode
had k, = 0 and was centered at x = 0. However nothing is sacred
about x = 0; if a k, were included, one could simply center the mode

at the position where kzBo + kBo-.- = 0. Thus Eq (XII-13) sums the
LS

magnetic diffusion over each mode center.

Note that there is no y in front of the right hand side of Eq.
(XII-13). However since we have used linear theory to calculate the
functional form of P', P0 is growing with the linear growth rate y.
Thus the magnetic diffusion, as expressed in Eq. (XII-13) is not actu-
ally steady state diffusion. However, if some nonlinear effect limits the
fluctuating velocity, but does not greatly perturb the spatial structure of
Vx, then Eq. (XII-13) does describe a steady state quasi-linear magnetic

diffusion driven by resistivity. Since reversed field pinches have q < 1
everywhere, they are expected to be unstable to resistive interchange
modes if any pressure gradient is present. Thus these devices may well
exist in a steady state, but with small scale fluid turbulence and the
associated anomalous magnetic diffusion. This may be one possible
reason that in the quiescent state, the lifetime of a reversed field pinch
is much less than what one expects from classical magnetic diffusion.

The following is for Chapters 10, 11 and 12.

The quasi-linear theory is not often discussed in MHD. Two textbooks
which discusses it for collisionless infinite homogeneous plasma insta-
bilities are:

Nonlinear Plasma Theory, Chapter II, Sagdeev and Galeev, W.A. 3
Bengamin, N.Y., 1969.
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Methods in Nonlinear Plasma Theory, Chapters 9-12, R.C. David-
son, Academic Press, N.Y., 1972.

One nonlinear tearing mode calculation which does find saturation, pos-
sibly similar to the quasi-linear calculation here is:

Energy Release by Magnetic Tearing, Nonlinear Limit, G. Van
Hoven and M.A. Cross, Phys. Rev. A., 7 1347 (1973).

Rutherfords work on nonlinear theory is:

Nonlinear Growth of the Tearing Mode, P.H. Rutherford, Phys.
Fluids, 16, 1903 (1973).

A study of the linear stability of a string of islands, and an analogous
numerical simulation are given in:

Coalescence Instability of Magnetic Islands, J.M. Finn and P.K.
Kaw, Phys. Fluids, 20, 72 (1977).

Coalescence of Magnetic Islands, P.L. Prichett and C.C. Wu, Phys.
Fluids, 22, 2140 (1979).

Quasi-linear theory of resistive interchange modes is in:

Steady State Magnetic Diffusion from Resistive Interchange Modes
in a Plasma, W.M. Manheimer, Phys. Rev. Lett., 45, 1249 (1980).

Experimental results for reversed field pinches in the quiescent state
can be found in:

Factors Influencing the Period of Improved Stability in Zeta, D.C.
Robinson and R.E. King, Plasma Physics and Controlled Ther-
monuclear Fusion Research, 1968, Vol. 1, p. 263 (IAEA Vienna,
1969).

Optimization and Properties of Reversed Field Pinches in the Eta
Beta II Experiment, A. Buffa, et al., in Proceedings of Reversed
Field Pinch Workshop, Los Alamos, N.M., 1980.
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Chapter XIII

ISLAND OVERLAP AND THE ONSET
OF STOCHASTICITY

In Chapter XI we discussed the response of the plasma to a single
tearing mode in slab geometry. Although the magnetic topology is
changed by a tearing mode, magnetic surfaces still do exist. In this sec-
tion we investigate under what circumstances unstable MHD fluctua-
tions can destroy magnetic surfaces. For simplicity we considered
cylindrical geometry to lowest order in tokamak ordering, so that Bi is
two dimensional in r and 0 and B, is constant and very large.

Hence B follows from

B, - I A (r 0,z) (XIII- I a)
r 80

B0 - -- L A (r,0,z) (XIII- I b)

Or
where A is the z component of the vector potential. The equation for
the field line is

dr B, o IB9 (XIII-2)
dz B,' Oz r B,,

There are at least two possible ways to display the solution of Eqs.
(XIII-2). First of all, the solutions could be projected to z - 0, the
result being a curve in the rO plane. Secondly, if the system is periodic
in z with period 2wrR (obviously like a tokamak with radius R), the
intersection of the field line with the planes z - 21r nR could be
displayed on the z - 0 plane. The result now is not a curve, but a
series of points which may either lie on a curve, or else fill an area.

Making use of Eq. (XIII-1), it is clear that Eqs. (XIII-2) are Ham-
iltonian in form, with z playing the role of t, and A the role of the
Hamiltonian. Since A depends on z, the Hamiltonian is not a constant
of the motion. However since the motion of the field line does follow
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from a Hamiltonian, the transformation from r(z - 0), O(z = 0) to
r(z), 0(z) is an area preserving transformation. There has been a
tremendous amount of recent work on whether such area preserving
transformations have an ordered or stochastic nature. (A good intro-
duction and review can be found in J. Ford, Fundamental Problems in
Statistical Mechanics III, E. Cohen ed 1974). The basic motivation
behind this work is to see when statistical mechanics is valid for an iso-
lated Hamiltonian system. This work can be quite mathematically
abstract. For instance, it has only recently been proven rigorously that
a hard sphere gas obeys the ergodic theorem. To quote Ford, this
proof occupies "about one hundred journal pages and will involve such
concepts as discontinuous transverse foliations, completely positive
Kolmogorov entropy, and the like." Of course it is far beyond the
scope of this work to more than scratch the surface of the mathematical
theory of ergodic behavior. Principally we are interested in whether the
intersection of field with z = 2r nR (or what we will call the equivalent
z - 0 plane) fill this plane, or some region of it ergodically, or whether
the intersections lie on a well defined curve.

One thing is very easy to show. Namely if there does exist a
constant of motion say X(r, 0,z) = constant, then the intersections of
field lines with the equivalent z - 0 plane lie on a well defined curve;
in other words the motion of the field line is not ergodic. To show
this, first note that since the system is periodic in z,

X(r,O,z) = x(r,0, z + 21nR). (XIII-3)

Therefore on the equivalent z - 0 plane,

X (r, 0,z = 0) = constant (XIII-4)

so that the intersections of a field line with this plane lie on the curve
defined by Eq. (XIII-4).

We will now prove that if the perturbed magnetic field has helical
symmetry, that is the dependence on 0 and z is through the combina-
tion r - mO + kz, then a constant of motion exists. To do so, note
that V • B - 0, 6 r mB 0  rOBz

rBr + - + rk- -0. (XIII-5)

Therefore B can be expressed in terms of a "helical flux function" tp as

B, _l ( r) (XIII-6a)
r 87

ros+ krBz - Oip (r, r)(Xl-b
Or k~ (XIII-6b)
Or
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The condition that Eqs. (XIII-6) have a solution for ,P, if B is given, is
simply that the divergence of B is equal to zero. Notice that in general,
Eq. (XIII-6) cannot be used to solve for B in terms of 'P since it con-
sists of only two equations for the three components of B. (If tokam k
ordering, or B, = constant, is valid, then Eqs. (XIII-6a and b) also
solve for B if tP is given.) However the information in Eq. (XIII-6) is
sufficient to show that a constant of motion exists. It follows directly
from Eqs. (XIII-6) that

BVtP - 0 (XIII-7)

so that B lies in the surfaces of constant 'P. In other words 'P is con-
stant along the line of force.

Now consider a magnetic field with a helical perturbation specified
by

'P (r, r) = P o(r) + e (r) cosr (XIII-8)

and for simplicity, take also k = -11R. Note that the derivation of the
'PO term vanishes at radial position r, given by

q (r) = m. (XIII-9)

Near this singular surface the surfaces of constant 'P are given by
I K - e (r)cosr )1/2

r - = 1/2' 0 (r) (XIII-10)

so that the surfaces of constant 'p look as shown in Fig. (XIII-1). The
maximum radial island (i.e., when K - E) widti. from center to bound-
ary, is given by

Ar,, , 2 1 e(r.) 1/2 (Xlll-ll)4#01

Returning to standard cylindrical geometry, the surfaces of constant 'P
are shown in Fig. (XIII-2) for the case of m - 3. The projection onto
the equivalent z - 0 plane is shown in Fig. (XIII-3). Thus for the case
of a single perturbation, the helical symmetry allows us to prove the
existence of constant of motion. Therefore the field line is not ergodic.

The obvious question is what happens if the helical symmetry is
broken, for instance by the presence of an additional perturbation with
k still equal to -1,'R but a different azimuthal wave number m' Now
there is no single helical symmetry, and no obvious constant of motion.

k 
_ _ _ _ _
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2n2 T

Fig. XIII-1 - A plot of as a function oft

- Fig. XIII-2 - The island structure in
cylindrical geometry for m - 3

Fig. XI11-3 -The projection of the island structure
onto the equivalent Z - 0 plane for m - 3
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This problem has been investigated extensively by numerical simula-
tion. While a fact of ergodicity still eludes a rigorous mathematical
proof, the results of many numerical simulations and analytic theories
does point toward a very reasonable hypothesis. Namely, if the island
widths of the m and m' perturbation are small compared to the inter-
island separation, well defined islands exist around the q =- m and
q - m' points. However the separatrices may not be distinct lines but
rather thin ergodic regions.

Thus a more complicated constant of the motion exists in some
regions of space where the field lines lie on closed curves. However in
other regions where the field lines ergdig, there is no constant of
motion. The lines separating these regions of space are called KAM
(Kolmogorov, Ainold, Moser) surface and the calculation of these sur-
faces is one of the fundamental problems in this area of research.

Between the q - m and q - m' points, the field line projections
are mostly as in Fig. (XIII-3) except there may be small regions of
ergodicity and small chains of secondary islands, as indicated in Fig.
(XIII-4a) for an m - 2 and m - 3 perturbation with all islands having
the same width. As the island width increases, the ergodic regions
increase around the separatrix as shown in Fig. (XIII-4b). Finally,
when the island edges overlap, most of the region between the q - 2
and q - 3 surface is ergodic, except for perhaps a small region in the
center of each island, as shown in Fig. (XIII-4c). Thus the condition of
island overlap is almost universally accepted to be the condition for
ergodic behavior between the relevant rational surfaces.

Let us see what this implies for the case of an m - 2 and m - 3
perturbation. The distance between the two rational surfaces q - 2 and
q - 3 is given roughly by

Art r (XllI- 12)

while the island width is given by Eq. (XIII- 11). Expressing 4io" in

terms of °a-, we find
Or'

Aris - 21I EJ 1/2 (XIII-13)

assuming e (m - 2) - E(m - 3). Hence an approximate condition for
island overlap is
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Fig. XIII-4 - The projection of the island structure
onto the equivalent Z - 0 plane for the case of equal
m - 2 and m - 3 perturbations. The dotted regions
represent the region of stochastic field lines. As the
amplitude of the perturbations increase, more of the
region is stochastic.

4/

Thus in a system with strong shear (large q), island overlap is accom-
plished with smaller perturbed field. Each island is smaller, but the dis-
tance between neighboring rational surfaces is also less.

Consider now the implication of this for a tokamak plasma. Imag-
ine that the plasma is initially unstable to both an m - 2 and m - 3
tearing mode. In the early stages, when the island width is small com-
pared to island separation, the equilibrium must readjust to the pres-
ence of the fluctuations, but since magnetic surfaces exist, equilibrium

I.i
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also at least exists. However, when the perturbations grow to such an
amplitude that these islands overlap MHD equilibrium is suddenly (i.e.
within a growth time) lost in a very large region of the plasma, and the
only possible pressure profile is p - constant in this extensive ergodic
region. The sudden and violent re-arrangement of the pressure profile
as a result of island overlap is a possible cause of major disruptions.

Ford's review of the modern theory of stochastic process can be found
in:

The Statistical Mechanics of Classical Analytic Dynamics, Joseph
Ford in Fundamental Problems in Statistical Mechanics III, p. 215,
E. Cohen, Ed., 1974, North Holland Publishing Co., Amsterdam.

Another series of articles in this area can be found in:

Intrinsic Stochasticity in Plasmas, G. Laval and G. Gresillon, Ed.,
Les Editions de Physique Costaboeuf, B.P., 112 91402 Orsay
France, June 1979

Other papers on the problems of overlapping resonances and the sto-
chastic transition are:

A Method for Determining a Stochastic Transition, J.M. Greene,
Princeton University Matt. Report PPPL-1489, Nov. 1978, Prince-
ton, N.J.

Destruction of Magnetic Surfaces in Tokamaks by Current Pertur-
bations, J.M. Finn, Nuclear Fusion, 15, 845 (1975).

Stochastic Instability of a Nonlinear Oscillator, A.B. Rechester and
T.H. Stix, Phys. Rev. A., 19, 1656 (1979).

Some authors have calculated analytically the turbulent diffusion as a
function of island overlap.

Calculation of Turbulent Diffusion for the Chirikov - Taylor
Model, A.B. Rechester and R.B. White, Phys. Rev. Lett., 44, 1586
(1980).

Fourier Space Paths Applied to Calculation of Diffusion for the

Chirikov - Taylor Model, A.B. Rechester, M.N. Rosenbluth and

R.B. White, Phys. Rev., A23, 2664 (1981).
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There has also been recent work concerning anomalous transport in
tokamaks due to destruction of magnetic surfaces. Some references
are:

Destruction of Magnetic Surfaces by Magnetic Field Irregularities,
M.N. Rosenbluth, R.Z. Sagdeev, J.B. Taylor, and G.M. Zaslavsky,
Nuclear Fusion, 6, 297 (1966).

Drift Wave Turbulence Effects on Magnetic Structure and Plasma
Transport in Tokamaks, J.D. Callen, Phys. Rev. Lett., 39, 1540
(1977).

Electron Heat Transport in a Tokamak with Destroyed Magnetic
Surfaces, A.B. Rechester and M.N. Rosenbluth, Phys. Rev. Lett.,
40, 38 (1978),

Diffusion from Magnetic Flutter, Gordian Knot or Granny?, W.M.
Manheimer and I. Cook, Comments on Plasma Phys., 5, 9 (1979).

Electron Heat Conductivity of the Plasma Across a "Braided" Mag-
netic Field, B.B. Kadomtsev and O.P. Pogutse, Plasma Physics and
Controlled Thermonuclear Fusion Research, 1978, Vol. 1, p. 649
(IAEA Vienna, 1979).

Magnetic Islandography in Tokamaks, J.D. Callen, et al., Plasma
Physics and Controlled Thermonuclear Fusion Research, 1978,
Vol. 1, p. 145 (IAEA Vienna, 1979).

Disruptions and Turbulence in Tokamaks, M. Dubois and A.
Samain, Plasma Physics and Controlled Thermonuclear Fusion
Research, 1978, Vol. 1, p. 615 (IAEA Vienna, 1979).

Magnetic Turbulence in Tokamaks, A. Samain, Journal de Phy-
sique, Colloque C6 Supplement, 12, 103 (1977).
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Chapter XIV

THE TAYLOR-WOLTJER THEORY OF
SPONTANEOUS FIELD REVERSAL AND

CURRENT LIMITATION

The past four chapters have discussed nonlinear theory with refer-
ence to some particular instability. Other authors, however, have
looked at the nonlinear motion of an unstable plasmas, but without
specific reference to a particular instability. In this chapter and the
next, we survey some of this work. This chapter discusses the theory
of Woltjer (Proc. Nati. Acad. Sci. U.S. 44, 489 (1958)) and Taylor
(Phys. Rev. Lett. 33, 1139 (1974)), for spontaneous reversal of the
axial field and of current limitation in a reversed field pinch. The fun-
damental assumption in this work is this work is that a plasma will relax
to its lowest energy state cpnsistent with all the constraints on it.
Taylor's main initial assumption is that the thermal and flow energy of
the plasma is much less than the magnetic energy, fd3r B2/Sr. This
(unfortunately) is true in current tokamaks and pinches, although the
ultimate hope is certainly to attain a high beta plasma. The fact that
the pressure is vanishingly small, of course, imposes severe constraints
on the MHD equilibrium. Consider for a moment the MHD equi-
librium of a high aspect ratio (Ria >> 1) torus; that is the topology is
that of a torus, but all vector equations can be expressed in cylindrical
co-ordinates. This equilibrium now becomes

I- [V1  x B) x B - Vp -0.(I 1
O. (XIV-1)

Equation (XIV-1) simply says that J is everywhere parallel to B, or
V x B- X(r)B (XIV-2)

where A is some scalar function of position. Taking the divergence of
both sides of Eq. (XVI-2) and making use of the fact that V - B - 0,
we find

B " V -0 (XIV-3)
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so that X is constant along every flux tube, flux surface, or flux
volume; whichever is appropriate.

Taylor's theory then gives a prescription for finding X and also
determining the resulting boundary conditions for Eq. (XIV-2). It does
this by minimizing the magnetic energy subject to appropriate con-
straints. The first order of business then is to find these constraints;
minimizing magnetic energy subject to no constraints gives only the
trivial solution B - 0.

The configuration is a toroidal pinch bounded by a conductor.
However, as shown in Fig. (XIV-1), there is a poloidal slit with a volt-
age source across it. At t - 0, J = 0 and there is only a toroidal field
specified by

B B ,i A - B--1,. (XIV-4)

Then at t - 0, a voltage V0 is pulsed across the gap for a time 8t. For
later times, the gap is shorted out (crowbarred). The plasma then
responds to this induced voltage, and relaxes, presumably due to insta-
bilities, to some final minimum energy state. Since the plasma is sur-
rounded by a perfect conductor, no toroidal flux can get in or out, so
the toroidal flux is conserved and has value 41 - irBia2. However
because of the poloidal slit, poloidal flux can go in or out during the
time 8 t, so it is not conserved. Thus the first constraint is that t is
constant. As we will see, this determines the boundary conditions.

CONDUCTING
POLOIOAL HL

SLIT

PLASMA

-- V 
C R O W B A R

~SWITCH
o VOLTAGE SOURCE

INITIAL
TOROIPr, L FIELD B,

Fig. XIV-. - A mchematic of a rever field pinch
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A second constraint follows from the fact that the magnetic flux is
frozen into the fluid flow. We will now show that this implies that as
the fluid relaxes, K - f A • Bd 3r is constant after the voltage pulse is
shut off. Here the integral is defined as being over the entire volume
of the plasma. Since B - V x A, Maxwell's equation for A (Eq. II-

8) can be integrated once to give
6A -A V x B- V (XIV-5)
Ot

where 0 is any scalar function. The presence of 0 on the right-hand
side of Eq. (XIV-5) of course accounts for the gauge. Taking the dot
product of Eq. (XIV-5) with B and integrating over space gives the
result

f f fd ,B'- =f ffd 3rBv

=ff dS'B-=0. (XIV-6)

The surface integral arises because V • B = 0; it vanishes because B is
everywhere parallel to the bounding surface. Thus

d ff f d3rB -A-f f fd3rA - - cf ff d3rA -vx XE

- fffEBd3r-ffidS.(AxE)I (XIV-7)

Now examine the two terms on the extreme right hand side of Eq.
(XIV-7). In a perfectly conducting plasma E is perpendicular to B, so
the first term vanishes. To evaluate the second, we need the com-
ponents of E and A only in the plane of the bounding surface. After
the system is crowbarred, E is zero in theplane of the surface (since
the surface is a perfect conductor), so t fd3rA.Bis constant.

For the time 8t, during which the system is pulsed, E, - Vo/8
where 8 is the width of the slit, so that

--V 0

cff(bodA X E)dS- cJoa d 0 dZ---A9 . (XIV-8)

Thus the rate of change of K is simply proportional to the product of
voltage times toroidal flux. Since K(t - 0) - 0, as is obvious from Eq.
(XIV-4), then
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K - f f fA Bd3r - -CV8t* (XIV-9)

so that after time 8t, K is proportional to the Volt-seconds stored in the
external circuit.

The problem now is to determine the state that the plasma relaxes
to after the voltage source is turned off. The basic assumption is that
the plasma relaxes (presumably by instability) to a state which mini-
mizes the magnetic energy, subject to the constraint that K is constant.
Using the method of Lagrange multipliers, this means minimizing

f f f (B2 - I.A B)d3r (XIV-10)

where jt is the Lagrange multiplier. It is a simple matter to show that
the right hand term in Eq. (XIV-10) is guage invariant by letting
A - A + V0, integrating by parts, and making use of the fact that B
is parallel to the surrounding conducting wall. To minimize the expres-
sion in Eq. (XIV-10), let B - B + 8B, A -- A + A (of course
8B - V x 8A), and set terms linear in 8A and 8B equal to zero, so
that

f f f d3r[2B'gB-,(8A.B+A.8B)]=O. (XIV-11)

Writing B and 8B in terms of A and 8A and performing various partial
integrations, it is not difficult to show that Eq. (XIV- 11) reduces to

2f f fd3r8A' [V x B-AB]

-f fi2B-,A} x 8A-0 (XIV-12)

where the second integral in Eq. (XIV-12) is over the bounding con-
ducting surface. The next step is to prove that this surface integral
vanishes.

To start, consider the integral fA dl around any closed curve on
the surface. This integral is just the magnetic flux linking the closed
curve. There are two possibilities. If the curve links the torus in the
poloidal direction, the integral is q,, the toroidal flux. Otherwise the
integral vanishes. Since all variations in B leave the flux invariant,

f8A dl - 0. (XIV-13)

Therefore on the bounding surface 8A - Vsg where V, is a two
dimensional gradient within the surface, and g is a scalar function
defined on the surface. Since 8A normal to the surface gives no contri-
bution to the second term in Eq. (XIV-12), it can be written as

- . .. I - I I l I L i- _ I .- -
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£ f {(2B-iLA) xVJ}.dS-f fgV X (2B-iAA)-d

- ff V x g(2B -t/LA) dS. (XIV-14)

The second term on the right of Eq. (XIV-14) vanishes since the
integral over a closed surface of the curl of any vector vanishes. The
first term can be expressed as

f gV (2B-/AA ds

17-r J-BJ. (XIV-15)

Because the normal component of both J and B are equal to zero on
the conducting surface, the right hand side of Eq. (XIII-15) is zero.
Hence setting the constrained variation of energy equal to zero, Eq.
(XIV-12) reduces to the simple result

V x B=AB. (XIV-16)

Since this equation is invariant to the transformation . - - ,
B9 -" -B9, m -" -m (because of the cylindrical symmetry, B - eim0),
1t, can be chosen to be positive without loss of generality.

Comparing Eq. (XIV-16) to Eq. (XIV-2) we see that the only
difference is that A is a constant, whereas X is constant over a flux tube
or surface, but otherwise can vary in space. Thus minimizing the
energy subject to the constraint K = constant, picks out a particular
MHD equilibrium out of all those which are possible according to Eq.
(XIII-2). Let us now examine how this selection comes about.

In deriving Eq. (XIV-16), the only boundary conditions used were
that the components of B and J normal to the conducting surface both
vanish. In ideal MHD, this is not only true at the conducting wall, but
is also true of each flux surface, as shown in Chapter II. Therefore,
one could equally well minimize the magnetic energy between two flux
surfaces, subject to the constraint that K is constant, between them,
and derive Eq. (XIV-2) in a way similar to the way Eq. (XIV-16) was
derived. Imagine that at t - 0 the flux surfaces are circular, as shown
in Fig. (XIV-2a), but V x B d (,#)B (to denotes the flux). As the
plasma releases its excess magnetic energy and violently evolves toward
a final state described by Eq. (XIV-2), these flux surfaces will naturally
become very contorted, but must maintain their topological structure
because the flux is frozen into the flow, as discussed in Chapter II. For
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Fi.XIV-2 - Schematics of initial flux
surface and final flux surfaces having -

CINIUTING

V7 x B - /i&B, Note that because of SHELLTIN

thle ideal MHD constraint, the topology
is preserved./ ' IA

FLUX
3 SURFACES
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instance at t - c infinity, these three flux surfaces might evolve
F toward that shown in Fig. (XIV-2b). In this final state V × B

on each flux surface, but , can vary from one flux surface to another.
Notice that there are places in Fig. (XIV-2b) where flux surfaces are
forced together. For instance at the star, all three flux surfaces are

forced together. Of course all flux surfaces initially between 1 and 3
are forced together at this point also.

Now imagine that there is a very small plasma resistivity, so that

the field lines can reconnect. For instance if resistivity were suddenly
turned on for the configuration in Fig. (XIV-2b), surely all flux sur-
faces between 1 and 3 would reconnect with one another near the star,
and reconnection would also occur at other places. Of course reconnec-
tion changes topology of B, but only has a small effect on the magni-
tude of i in most places.

I

h feld lns cn r. Fr i
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Therefore, is this reconnection is allowed, it makes no sense to
talk about magnetic energy or constraints between two flux surfaces
since they are no longer defined! However all relevant boundary condi-
tions can still be applied on the conducting wall which always remains a
flux surface on the time scale of the relaxation. Hence minimizing the
total plasma energy, subject to the constraint that K is constant, is still
valid for the entire plasma even if not for each initial flux surface.
Thus inhere-it in the reduction of Eq. (XIV-2) (which could have also
been derived by minimizing the energy on each flux surface) to Eq.
(XIV-16) is the assumption that in the violent relaxation of the plasma
to its final state, a small amount of resistivity is allowed, so that topol-
ogy of the field is destroyed inside the plasma.

Now let us find the solution to Eq. (XIV-16). If B has cylindrical
symmetry, it is a simple matter to show that

B-= BoJo(4ir)

B9 = BOJI (A r) (XIV- 17)

is a solution of Eq. (XIV-16), and

AZ = -L [Jo(Ar) - Jo(.ua)].

0
A 0 = -J(A r). (XIV-18)

Here a is the minor radius and Az has an appropriate constant added to
it so that the poloidal magnetic flux through the hole in the torus van-
ishes. The next problem is to relate /z and B0 to physical parameters.
The axial magnetic flux qi is just the line integral of the poloidal vector
potential, so

-2.ra J,(Aa) Be. (XIV-19)

The simplest other relation is that between it and the pinch ratio
21/aBic where B, is the initial axial bias field at time t - 0. Relating B,
to the flux tp, and the current to B 9(r - a), we find

Be (wall) 21 p (XIV-20)

B, aBic 2

where I is the current in CGS units. The quantity K is related to the
stored Volt seconds by Eq. (XIV-9). Using the expression for the fields
given in Eq. (XIV-17 and 18), one can show that
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K R [i.a (J ,aU+2 (j a)) - 2Jo.(a)JiQa) 1a Jia) (XIV-21)%p,2 a I j2 (jza)

which defines IA in terms of initial flux and stored Volt seconds.

The remarkable thing about Eq. (XIV-17) is that it predicts that
the toroidal field reverses direction whenever lza > 2.4, the position of
the first zero of J0, or for pinch parameters

0 > 1.2. (XIV-22)

In Fig. XIV-3 is shown the theoretical prediction of F = B2 (wall)/B as
a function of 0 along with experimental points from HBTX and zeta
taken from Fig. (1-14). Clearly the agreement is quite good.

FA
AA

0

00

0O

Fig. XIV-3 - Plot of Fversus 0,
theory and experiment

So far, we have only considered solutions of Eq. (XIV-16) which
have cylindrical symmetry. There are also solutions which are not
symmetric. Expressing the azimuthal and axial dependence of the
non-symmetric solution to Eq. (XIV-16) as expi(kz + mO), and using
V • B - 0, it is not difficult to show that B, satisfies Be-sels equation,
so that the solutions are

B - J,(.y) cos(mO + kz)

-1+ JB, - (,A2 k2)1/2 kUm(y)+ AJ, (y) sin (mO0+ kz) (XIV-23)

BO"M 2- 12)1/2 ,, (Y) + Jak ') cos(mO + kz)k Y
• | | - A
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with y2 - (. 2 _ k2)r2 . Of course Eq. (XIV-23) is only a valid solution
to the equation if

Br(r - a) 0 0. (XIV-24)

This then imposes a relation between i and k which must be satisfied.
(However let us note that for the symmetric solution B, - 0 every-
where, so the boundary condition is automatically satisfied) Since Eq.
(XIV-16) is linear, the magnetic field can be the symmetric state, Eq.
(XIV-17), plus any linear combination of individual solutions in Eq.
(XIV-23). The condition this solution must satisfy is that the total K
and toroidal flux is given and that B,(r - a) - 0. Since the solutions
given in Eq. (XIV-23) have zero toroidal flux, this toroidal flux is
determined entirely by the symmetirc state. The quantity K then is a
summation over contributions from each solution in Eq. (XIV-23) plus
the contribution from the symmetric state.

The question now is which state the plasma picks out. Of course
the state is that having minimum magnetic energy. Imagine now that
there are two solutions to Eq. (XIV-16) having two different values of
,u and which satisfy all of the appropriate boundary conditions. We
now show that the minimum energy state is the state having minimum
IA. The energy is given by

w-fffd3rrB.B-fffd3rB.V x A. (XIV-25)

Writing B in terms of A in Eq. (XIV-16) and integrating once, it is easy
to show that

V x A - jA + V (XIV-26)

where 4) is any scalar function. Thus

W - f f fB" (V.0 + I. A)d3r - ItK. (XIV-27)

The 0 term vanishes, as one can show by integrating it by parts.
Therefore, since K is constant, the minimum energy state is the state
with minimum jA.

One possible state for the plasma is simply the symmetric state of
Eq. (XIV-17). However if a helically perturbed state with smaller 1A
can be found, the plasma should relax to it. Taylor (J.B. Taylor,
Plasma Physics and Controlled Fusion Research, 1975, IAEA Vienna)

has performed a aetailed investigation and found that the smallest j4 for
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which Eq. (XIV-24) can be satisfied is Aia = 3.11 for a helical perturba-
tion having m - I and ka = 1.25. Since all other helical states have
higher 1L, and higher energy, we need only consider this one.

Now review how the plasma state is set up. At t -0, there is
some toroidal flux and the system is pulsed with a certain number of
volt-seconds (i.e., K). A current (proportional to AJ) is thereby induced
in the plasma. The natural expectation is that I (or equivalently A) is
a monotonically increasing function of K (the volt seconds). However
for a sufficiently large K, A will be equal to 3.11. As K is further
increased the current will no longer increase. The reason is that a
lower energy state exists which is a linear combination of the cylindri-
cally symmetric state and helical state with 14 - 3.11. The toroidal flux
is determined by the cylindrical state, and the relative amplitudes of the
cylindrical and helical state are specified by K Thus after /.t - 3.11,
increasing the Volt seconds does not increase the current, but rather
increases the amplitude of the helical displacement. The current limita-
tion predicted here,

0 = 1.56 (XIV-28)

is also in reasonable agreement with what is measured in pinch experi-
ments as shown in Fig. (1-15). Thus this relatively simple theory gives
quite good agreement with experiment on the two really amazing
features of reverse field pinches, spontaneous field reversal and current
limitation.

Let us now discuss the MHD stability of these force free states.
As we will see shortly, there are strong and profound conclusions con-
cerning the stability of these states which are attainable with very little
effort. In the first part of this chapter we considered first variation of
f d3x(B2 - 1A - B) and showed that it was equal to Eq (XIV-12)
where the surface integral was shown to vanish. Since it was a qua-
dratic form which we considered, it is even simpler to calculate the
second variation, which is

8 W* - f dlx(8B' - M8A - 8B). (XIV-29)

It is also a simple matter to show that for the equilibrium described by
Eq. (XIV- 16), 8 W* is equal the potential energy 8 W, but with the
added constraint that the vector potential must be expressed in the
form of a plasma displacement j as 8A - f x B. That is, with the
added constraint that a gauge transformation can make 8A everywhere
perpendicular to B. (in deriving the energy principle we worked only
with f so the constraint is trivially satisfied by integrating in time
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BB
Maxwells equation for 8---. Here however, we work only with 8A's

and 8B's and not with f's. Thus it is not apparent that we can go back-
wards and express the now arbitrary trial functions 8A and 8B in terms
of a displacement ) Since 8 W is always bounded from below with an
appropriate normalization for the trial function, the presence of an
additional constraint implies 8 W > 8 W.* Thus the condition 8 W > 0
for any trial function is sufficient for MHD stability.

From this, it is possible to show that the solution of Eq. (XIV-16)
with minimum eigenvalue jA0 is MHD stable. Assume for contradiction
that this minimum A state is unstable. Then it follows that there exists
a trial function (specified by 8A and 8B - V x 8A) for which 8 W* is
negative. If this trial function is normalized at a particular value of
f d3xSB 12, we can minimize 8 W* subject to this constraint. That is
we can minimize X - 8 W*/f8B2dx, where X < 0 since the plasma
assumed to be MHD unstable. The minimization follows as in the first
part of this chapter and we find that

V x 8B= A--o- 8B. (XIV-30)

However since A < 0, the eigenvalue is less than IA0 which contradicts
our original assumption. Thus the only consistent assumption is that
X > 0 for the equilibrium with the minimum value of j. Thus the
solution of Eq. XIV-16 with the minimum 1A is MHD stable.

The linear combination of the helically perturbed state, Eq.
(XIV-23), and the symmetric state, Eq. (XIV-17) which can co exist
for a sufficiently large voltage, is the state with the minimum value of
JL and it is therefore MHD stable. This then, is quite an amazing
result. With virtually no effort we have shown that a fairly compli-
cated, inherently two dimensional helical equilibrium is MHD stable.
Generally the MHD stability of a two dimensional equilibrium can only
be resolved by very complex simulation of one, kind or another.

To conclude, it is worth noting that Gibson and Whiteman
(Plasma Phys. 10, 1101 (1968)) have examined the stability of the
cylindrically symmetric state to tearing modes. They have shown that
this transition from a cylindrically symmetric state to a helically per-
turbed state corresponds to the marginally stable point. Of course this
is to be expected, since as was shown in Chapter VII, the tearing mode
first goes unstable when the magnetic structure has a neighboring
equilibrium at the same energy. The theory in this chapter however is

____I -- ...
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quite different from linear stability theory in that growth rates are not
calculated, but the amplitude of the helical perturbation is.

The original work on evolution toward a force free state is:

Theorem on Force Free Magnetic Fields, L. Woltjer, Proc. Nati.
Acad. Sci. U.S., 44, 489 (1958).

This was applied to a reversed field pinch in:

Relaxation of Toroidal Plasma and Generation of Reverse Mag-
netic Fields, J.B. Taylor, Phys. Rev. Lett., 33, 1139 (1974).

Relaxation of Toroidal Discharges to Stable States and Generation
of Reverse Magnetic Fields, J.B. Taylor, Plasma Physics and Con-
trolled Thermonuclear Fusion Research, 1974, Vol. 1, 161 (IAEA
Vienna, 1975).

Additional Subtleties in this method have been discussed in:

Minimum Energy State of a Toroidal Discharge, A. Reiman, Phys.
Fluids, 23, 230 (1980).

Relaxation toward States of Minimum Energy in a Compact Torus,
S. Riyopoulos, A. Bondeson and D. Montgomery, Phys. Fluids,
25, 107 (1982).

The Stability of cylindrically symmetric force free configurations can be
found in:

Tearing Mode Instability in the Bessel Function Model, Gibson
and Whiteman, Plasma Phys., 10, 1101 (1968).

The stability of helical configurations is in:

General Stability Analysis of Force Free Fields, J. Kruger, J.
Plasma Phys., 15, 15 (1956).

Experimental Results on Field Reversal and Current Limitation in a
reversed field pinch are in:

Recent Results on HBTXI Confinement and Stability of High-Beta
Plasma in Reversed Field Pinch, E. Butt, et al., Plasma Physics
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and Controlled Thermonuclear Fusion Research, 1974, Vol. 3, p.
417 (IAEA Vienna, 1975).

The Woltjer-Taylor Theory has also been applied to spheromak plas-
mas. The theory, which predicts tilting instability for oblate shaped
plasmas can be found in:

MHD Stability of Spheromak, M.N. Rosenbluth and M.N. Bussac,
Nuclear Fusion, 19, 489 (1979).

J.M. Finn, W.M. Manheimer, and E. Ott, Phys. Fluids, 24, 1336
(1981).

Tilting Instability of a Cylindrical Spheromak, A. Bondeson, et al.,
Phys. Fluids, 24, 1682 (1981).

Experimental results on tilting modes can be found in:

Motion of a Compact Torus Inside a Cylindrical Flux Conserver,
T. Jarboe, et al., Phys. Rev. Lett., 45, 1264 (1980).



Chapter XV

KADOMTSEV'S THEORY OF INTERNAL
DISRUPTIONS AND INTRODUCTION TO

NUMERICAL SIMULATIONS
This final chapter begins with Kadomtsev's theory for m - I

internal disruptions in a tokamak. Amazingly enough, he is able to
develop this theory without ever getting involved in the complications
of the m = n = I internal kink-tearing mode. Preliminary to discuss-
ing this theory, it is necessary to review the toroidal flux o first intro-
duced in Chapter XIII. Since all dependence on 0 occurs in the combi-
nation T = mO + kz, it was shown that the fields could be derived from
Eq. (XIII-6). In lowest order tokamak ordering where B, - constant,
this is sufficient to solve for B, and B#. (We consider only lowest order
tokamak ordering here.) It was also shown that 41 actually is a flux, it is
simplest to relate it to the vector potential. By making use of the fact
that B = V x A, it is not difficult to show that Eqs. (XIII-6) follow if

tp - krA#- mA. (XV-1)

To continue, we will relate tp to the flux through a helical ribbon at
radius r and pitch defined T - kz + mO = constant. The flux through it
is of course just the line integral of A around it. A unit vector parallel
to the edge of the ribbon is

iz- kri _ r
m kr.

[+ [.~J1/2

making use of lowest order tokamak ordering. Therefore the magnetic
flux through the ribbon is given by 2irRq,, where R is, as usual, the

major radius of the torus. Hence q, is indeed the helical flux.

We now further specialize to the case of k - --1, m - I and

examine the form of qi(r). As shown in Chapter XIII, qi'- 0 at the

185 __ _ _ _ _
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resonant surface where q- r - 1. The second derivative of q, atRBo

the resonant surface is

=, dB- B- - - d < 0 (XV-2)
dr2  dr R dr

where we have assumed the normal tokamak profile having q'> 0.
Thus tp has a maximum at resonant surface and has the r dependence
shown in Fig. (XV-la).

IW

r1  rs r2 r r
(a) (b(

Fig. XV-I - Initial and final plots of #(r)
according to Kadomtsev's theory

Let us now examine how magnetic reconnection could proceed in
an m - I internal disruption. The magnetic flux through a ribbon of
width dr is -!*-dr. Thus the helical fields, on each side of the singular

dr
surface, oppose each other. As the fluid inside the singular surface
convects toward one side, regions of plasma with opposing helical
fluxes are forced together. If the helical flux surfaces maintain their
topological structure, as they would in ideal MHD, then Rosenbluth,
Dagazian and Rutherford (Phys. Fluids 16, 1894 (1973)) worked out a
nonlinear theory for the asymptotic displacement of the plasma. They
did this by balancing the driving force against the additional restraining
force of the compressed field. They found that the plasma interior is
displaced only slightly, for instance if the initial constant # surfaces are
shown in Fig. (XV-2a), the final constant q# surfaces might appear as in
Fig. (XV-2b).

Notice however that in this final state, regions of opposite helical
field (along a-b) are forced together. Jf reconnection is allowed in this
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Fig. XV-2 - Initial and final plots of flux surfaces in ideal
MHD according to Rosenbluth, Dagazian and Rutherford

region, the large flux compression will not occur and the plasmas side-
ways displacement can proceed. Now we look into this reconnection
more carefully. Since the magnetic field always has zero divergence,
two different regions can reconnect only if they have equal helical flux.
Thus, as illustrated in Fig. (XV-la), the field at rl can connect with the
field at r2. If the layers at r, and r 2 have widths dr1 and dr 2, the fact
that the fluxes which reconnect are equal means

itd .rl drl - -Y dId r2 dr2 .- (XV-3)
dr .d

These two flux elements will, at t - oo, come to rest at a position r

having width dr such that - - dr = IIdr1. Since the fluid motion
dr dris incompressible

rdr - rdrl + r2dr2. (XV-4)

Also, since the reconnection occurs only at one point, (around a-b), the
flux is undisturbed in most of the flux tube so

di - dqi2. (XV-5)

Thus as the field reconnects, the total helical flux in the reconnecting
fluid elements is conserved.

It is not difficult to follow this reconnection process. Initially flux
tubes 1 and 2 connect as shown in Fig. (XV-3a and b) and an island
labeled I is formed opposite to the direction of the kink. In this island,
the helical field is clockwise, as it is outside of the original q - 1 sur-
face. Therefore the island has q > 1. After tubes 1 and 2 reconnect,
tubes 3 and 4, which have opposite flux, are forced together. Then
these flux tubes reconnect and island II is formed outside of I as shown kI
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/

( 1 0 2 

3

Fig. XV-3 - The reconnection process
as envisioned by Kadomtsev

in Fig. (XV-3c). The reconnection process completes itself when flux
elements 5 and 6 connect to form island III (Fig. (XV-3d)) at the posi-
tion where qj(r) = o(o). Since all field lines are now clockwise, q is
everywhere greater than unity and the plasma has returned to a stable
state. Thus the flux near the original q = 1 surface has moved to the
center and the flux initially at the center has moved to the outside.
The q (r) curve then evolves to a monotonically decreasing function of
r in which the area between two values of tp is the same at t - oo as at
t - 0. This is illustrated in Fig. (XV-lb) where the helical flux at
t -0 is shown.

Let us re-emphasize that the simplifying feature of this analysis is
that each flux tube only breaks and reconnects once. In this
reconnection, each flux tube is undisturbed over most of its length.
However in this reconnection, an outer flux tube which winds clockwise
reconnects with an inner flux tube which winds counter clockwise to
form a single, longer flux tube which winds in the same sense as the
original outer flux tube.

Thus, without invoking any details of a particular m.- n - 1 in-
stability Kadomtsev is able to derive the field configuration of a final
stable state from an initial unstable state. Once the plasma reaches a

S__-__ ,,
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stable state, the channeling of the current into the hotter regions will
drive the plasma unstable, as discussed in Chapter X. Therefore a
relaxation oscillation will ensue.

It is worthwhile to briefly compare Kadomtsev's theory of
m =- n = 1 instability with the quasi-linear theory of Chapter X. The
latter derived a diffusion equation and ultimately flattened the current
profile within the q = 1 surface. Then some other mechanism was
invoked to spread the current beyond the original q = 1 surface to pro-
duce a plasma with q > 1 everywhere. Kadomtsev's theory however
suggests a coupling between the plasma inside and outside of the q =1
surface so that only his mechanism is needed to produce a plasma with
q > 1 everywhere.

We now turn our attention to a very brief survey of numerical
simulations of MHD unstable plasmas. There has been a great world
wide effort in such simulations recently and many people now feel that
this offers the best hope for learning about the nonlinear theory of
MHD instabilities. Generally speaking, these simulations are of two
types. The first type, pioneered by Rosenbluth and his co-workers at
Princeton, assumes helical symmetry, incompressible flow, tokamak
ordering and constant density. The full set of three dimensional MHD
equations then reduce to two equations for q, and the z component of
the velocity vector potential in the two dimensional r, T space. The
second approach is to simply solve the full set of MHD equations in
three dimensions Here the plasma is generally assumed to fill either a
rectangular solil, or else a torus with rectangular cross section. The
first method allows much greater resolution, principally because the he-
lical symmetry reduces the dimensionality from three to two. The
second method, of course, has much greater flexibility. There are other
types of reduced MHD equations, as proposed for instance by Strauss.

The m - I internal kink-tearing mode has been simulated both
ways. In each case, care must be taken to allow sufficient resolution in
the singular layer. This has necessitated the use of resistivity much
larger than that existing in tokamak plasmas.

A two dimensional simulation of the kink tearing mode was p.r-
formed by Waddell, Rosenbluth, Monticello and White (Nuclear
Fusion 16, 528 (1978)). A current density

JJ(r) - (XV-6)

I+ rJr2

l- .--lJ
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is set up at t = 0. J is chosen so that q (r = 0) = 0.9 and r0 = 0.6a
where a is the radius of the conducting wall. For this current profile,
the radius of the q =- 1 surface is at r, = 0.2a and the radius at which
the helical flux 41 has the sme value as it does at r = 0 is r, 0.3a.
Island formation is observed, but the helical flux surfaces become quite
complicated very quickly, with multiple island structure developing.
What is simpler are the flow patterns, shown at four times in Fig.
(XV-4). This shows that the basic flow pattern of an m = I mode per-
sists well into the nonlinear regime. Kadomtsev's theory indicates
there should be reconnection out to r, = 0. 3 a. The perturbed flow and
perturbed field seem to be limited to radii somewhat smaller than this,
but accurate resolution is difficult. Also, Waddell et al., show the total
current as a function of radius, and this is shown in Fig. (XV-5).
Clearly, the simple quasi-linear theory, which predicts current diffusion
witlin the singular surface, is reasonably accurate.

t 193:0 W ,38 a10

/ / .../_

~ ~ 19

Fig. XV-4 - The time evolution of the flow pattern

for this instability as computed by Waddell et al.
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Fig. XV-5 The time evolution of the
toroida current profile as computed by Wad-
dell t a.

A full three dimensional simulation of this instability was done
by Sykes and Wesson (Phys. Rev. Lett., 37, 140, (1976)). By assuming
a resistivity with the functional form ?- 7 "- 3/ 2, they were able to simu-
late several cycles of the relaxation oscillation. In Fig. (XV-6) are
shown various curves of constant qj surfaces. Here it can be seen that
an island with q > I grows and ultimately displares the orginal flux

surfaces having q < 1. However different cycles of the relaxation
oscillation are not all alike. On other cycles, the original island may
return and displace the newly formed island. In this case the original
island relaxes to a state having q > 1.

It is clear that numerical simulation can be a very powerful tech-
nique for the siudy of the nonlinear behavior of MHD instabilities.

A
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Fig. XV-6 - The time evolution of the .nagnetic surfaces
as computed by Sykes and Wesson

However, as these two simulations illustrate, different types of simula-
tions of the same process do not necessarily give exactly the same
result. Undoubtedly there will be many more such simulations in the
future. In fact, many different instabilities have already been studied
by simulations, including tearing modes, interna' kinks and free bound-
ary kinks.

i
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Kadomtsev's work on the m = 1 internal disruptions is in:

Disruptive Instability in a Tokamak, B.B. Kadomtsev, Sov. J.
Plasma Phys., 1, 389 (1975).

Reconnection of Field Lines and Disruptive Instability in
Tokamaks, B.B. Kadomtsev, Plasma Physics and Controlled Ther-
monuclear Fusion Research, (1976), Vol. 1, p. 555 (IAEA Vienna,
1977).

A partial list of the numerical simulation approach to the nonlinear
(and even linear) theory can be found in:

MHD-Instabilities as an initial value problem for Elongated Cross
Sections, W. Schneider and G. Bateman, Plasma Physics and Con-
trolled Thermonuclear Fusion Research, (1974), Vol. 1, 429
(IAEA Vienna, 1975).

Toroidal Calculations of Tokamak Stability, J.A. Wesson and A.
Sykes, Ibid, p. 449.

Study of Magnetohydrodynamic Modes in Tokamak Configurations
with Non-Circular Cross Sections, M.S. Chance, et al., Ibid, p.
463.

Numerical Studies of Nonlinear Evolution of Kink and Tearing
Modes in Tokamaks, R. White, et al., Ibid, p. 495.

Nonlinear, Three Dimensional Magnetohydrodynamics of Non-
Circular Tokamaks, H.R. Strauss, Phys. Fluids, 19, 134 (1976).

Dynamics of High Beta Tokamaks, H.R. Strauss, Phys. Fluids, 20,
1354 (1977).

Nonlinear Growth of the m = 1 Tearing Mode, B.V. Waddell,
M.N. Rosenbluth, D.A. Monticello, and R.B. White, Nuclear
Fusion, 16, 538 (1976).

Numerical Studies of Nonlinear Evolution of Kink Modes in
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Appendix

In this appendix, we derive an equation for the ideal MHD stabil-
ity of a cylindrical plasma. We start from the linearized MHD equa-
tions in component form

VPO Vr aI + B0  ,l- B B,. (Al)

Boo

VI 1  Bo'B, 1{k s..k 'B~ 1 8. B,1Y/Po V10" - , + B P B+  + I 0IB0+ -- (rBoo)r 87 1rrO 41r
fA2)

iJ B°B1r  k'Bo 1 d~o Bl,.4r

YpoV B- + +11 ki Bi 1+ (A3)8 wr 4wJ4

Bi,- A -(k Bo) V1 , (A4)

yBe l- (Boo V1 ,) + ik (Boz V1 - Boo Vz) (A)
Or

yBjz - - 0-(BorVl,) + i -S (Boo V1, - Bo, V0) (A6)
r Or r
I L(rV,, ) + I -M 11 11 .Wr riVi,+ikVizlO. (A7)

Now introduce

Fk B0

and also introduce the new variable

X = P + B0 B'

This is the scalar part of the perturbed fluid plus magnetic pressure.
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Substituting for B1, Big and B1, from Eqs. (A4)-(A6) into Eq.
(A2) we have

I k--O- 1yp0V1 9  .r__F Boo BY'0o Vie -21 X + i _Lk- 0 VIZ - k Bo V,,
r 4v 1 i, vY

1 0 rV li(rBo) F V.
iv Or r r r 4rr 4

Then further manipulation yields

ivp V10 - F 2 V i = m x
41ro iv r

F1 I Boo 1i Fl kV
4vr_ I -1Y r r T)r rd1

+ - -- I jrVi,- - - - -(rBoo) VI,.
4lwy r r y 4r rOr

Using Eq. (A7) we obtain

S o F2  V . mX 2FB°o rV1, W)
12 40-- iy r 4,rnr 2 VY

Substituting Eqs. (A4) and (A6), into (A3) gives

iyPo Vlz -kX - - ' Boz Vie - ' Boo V ,4w1iyr y r

1 0 (BozrVl,)l d oz F
yr Or J dr 4ry

Proceeding as for Vie we obtain

-2p0- V -_ - kX. (A9)

Next, substitute Eqs. (A4) and (A5) into Eq. (Al) to obtain

iA, Vl Or 4wr r |

- Vie 8 lo rV,1I

Substituting for Vis and V1, from Eqs. (A8) and (A9), the above equa-
tion becomes
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F 2 I kBoz FB&_ 2 F2  rVir

IYVP0O-4w i 4T r 41r r2  Y P0  41r J y
+2Boo 0 Boo rVl.]

4wrrOr I r iJ

X - 2- - X. (A10)
Or 4,rr Lv2pO -L

Now substitute Eqs. (A8) and (A9) into Eq. (A7) to give

10 (rV,) + i 'n M iYX
r Or r Ir (-r2por- F2/41r)

2FBoO r VI, i
4rr2  y (-2po - F2/4ir)

kykX . 0.
(-T2p0- F2/41r)

This equation can now be solved for X to give
X-ir (-y2po- F2/41) a (rV,)

(k 2r2 + m 2) O r iy

+ 2FBOe m (k 2r2 + r 2 )1 ri,

4w" r v
Substituting Eq. (All) into Eq. (AIO) yields

a r(-y2po- F2/4r) a (rVi,) +O L2FB0o m rV1,

O1 (k2r2 + Mn2) Or t-y J Or 4w r (k2r2 + in2) iy

+ 2B kBoo - k M B o. (k 2r2 + Mr2 Y' -

4w r~ Or] rVI1,

+ 2 k2Bo- k r oI 2FB0o m ) rVi,

I- 2 PIV 1,r 4kB0 z FR~jg rV1,
I r -POT-F/z) 4r •(~ 2 +m ) i

4v i - 4-rr uor 2(lypo- F211o) i

+ 2B;BsLI
2o O I(o rV 1

I
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0(r Vl,)
The coefficient of the T--7--)term is zero. The equation can be

8r iv
written in the form

a I ('2po + F2/47t) a (r~l)
T- r (k 2r2 + M2)  Or

F2  2Boo Bo I 2mr FBo 1
P+ 4-rr gso r(k 2r 2 + M2)

-4k 2 F2B&. }

1672(k 2r 2 + m2 )(y 2p ° + F2/41) Vir - 0.

Which is the form of Eq. VIII 12.
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