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SOME WEAK AND STRONG LAWS OF LARGE NUMBERS FOR D[0,1]-VALUED

RANDOM VARIABLES

XIANG CHEN WANG, Jilin University, China
&

M. BHASKARA RAQ, University of Sheffield and University of Pittsburgh

1. INTRODUCTION -

Let D[0,1] be the space of all real-valued functions
x defined on the unit interval [0,1] that are right continu;us
over [0,1), possess left-hand limits at every t in (0,1] and
left continuous at t =1, 0[0,1] 1s a linear space and is a
model for quite a number of stochastic processes containing jumps,
Cvery x 1in D[O.1J is bounded and has atmost countably many
discontinuities. D[0,1] can be equipped with two topologies.

One topology (norm topology) comes from the norm ||<|] on 9[0,1]

defined by |lx|| = sup _ Ix(t)] for x in 9[0,1]. The
te|0,1

Banach space  (0[0,1],]]-]]) is not separable. Another topology

(Skorokhod topology) comes from the Skorokhod metric 4 on 0[0,1].

PP ¢
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(For the definition of Skorokhod metric and its properties, see
Billingsley [1, p.109-153].) The metric space (50,1}, d)

is topologically complete and separable, but not a linear topological
space. for a study of stochastic:rconvergence in 9[0,1] , many of

the classical techniques become inapplicable when 0[0,1] s
equipped with either of the two topolojies described above. A

study of topologica) convergence in D[0,1] 1in either of the

two topologies above would help to pave a way for a study of

stochastic convergence in 0[0,1].

In Section 2, we examine some condftions under which
for a given sequence x , n20 fin n(0,1] . (1), (1) and (ii4)

described below are equivalent,

(i) Xpo n>1 converges to Xq pointwise on some dense

subset S of [0,1], i.e., ljf x, (t) = x (t) for every t
in S.

(it) x4y n21 converges in the Skorokhod topology to X o

i.e., 1im d(xn.xo) = 0,

Ne+o




R~

-3-
(i44) Xas N21 converges to X, in the norm topology, f.e.

N+o

One of the results in Section 2 establishes the
equivalence of (i), (ii) and (iii) when the sequence xn. n>1
belongs to a compact convex subset (in the Skorokhod topoloay)
of D[0,1] generalizing a result of Ddaffer [3]. In simplistic
terms, what this result means is that {f xn. n>1 and the
convex hull of the set Xps n>1 are relatively compact in
the Skorokhod topology of D[0,1], then the poi;:l;:nvergence

of the sequence Xos n>1 implies norm convergence of the

sequence x , >l

Of primary importance, we discuss stochastic converqence
in D0[0,1] 1n Section 3, Let 0[0,1] " be equipped with the Borel

o-field 8] generated by the Skorokhod topology. Let ( o, B, P)

be a probability space. A map X : o ~ D[0,1] 1is said to be

a random element if x'](B) e B for every 8 in B]’ Y s

the map
a random element if and only if‘A X(e¢){t) : @ =+ R, the real line
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is a real random variable for every t in [0,1]. Consequently,

if X and Y are two random elements, then X + Y 1is also a

-

random element., Also, if E[|X]] <« , then EX(¢)(t) is finite
for every t in [0,7], and the function x(t) = €X(.)(t) for

e
t in [0,1] dfines an element x 1in D[0,1] and is called the

expected value of X , denoted by EX. Let xn. n>1 be a sequence

random elements defined on g taking values in 0[0,1] and

2 ., l<ken, n>1 be a triangular array of real numbers. We seek
nk - - )
n ’ »
conditions under which the sequence z ankxk' n>1 of wefghted
k=1

sums converges in probability (Weak Law of Large Numbers), or

in the p-th mean, or a.e. [P] (Strong Law of Large Numbers).

Of spectal interest, we examine whether pointwise Weak Laws of Large

Numbers would force the validity of corresponding Weak Laws of ]

Large Numbers for the given sequence of random elements in D[O.f].
n

More specifically, we observe that we have a sequence T ankxk(-)(t). LI
k=1

n>1 of real random variables and examine whether the following two

statements are equivalent, ’
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(1) Weak Law of Large Mumbers holds for the sequence
n
I (8),
for every t in [0,1].
(ii) Weak Law of Large Numbers holds for the sequence
n

k§1 ankxk, nll

either in the Skorokhod topology or norm topnology.

This type of study has been carried out in the literature
for Bevalued random variables, where B 1is a separable BSanach
space. See Taylor [8] and Wang and Bhaskara Rao [12]. virtually,
equivalence of (i) and (i1), fn this case, is guaranteed if the

sequence Xn. n>1 is uniformly compactly lst-order integrable ,

i.e., given ¢ > 0 there exists a compact subset K of B such that

J e,/ IMall @p <

(chK

for every n>1, The methods used in this case do not carry out
to the space 0[0,1]. 1t has been felt that in order to achieve
the equivalence of (1) and (i1) in the setting of 0[0,1] -space,

one needs a stronger condition than uniformly comnactly Ilst-order

Ao
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integrability. Accordingly, Taylor and Daffer [10. p.971 introduced

the following condition,

A sequence X , n>1 of random elements in n[o,1] is

said to satisfy (CT) condition 1{f for every e > 0 there exists

a compact convex {(in the Skorokhod topology) subset K of D[O.I]

such that

f c IIxall aP < e

(X":K}

for every n>1. Using Theorem 3,1 of this paper, one can characterize

this (CT) condition, It follows that Xn, n>1 satisfies (cT)

condition {f and only if xn. n:1 is uniformly convex tight, i.e,,

given ¢ > 0 there exists a compact convex suhset Kk of 0[0,1]

such that P{X_ ¢ K¢} < ¢ for every n>1 , and X , n>1

n
is uniformly integrable. As a consequence, for a sequence Xn. "l]
of random elements in Dn[0,1], it follows that (A) ===> (B) ===: (C)
in the following.

(A) (a) Xn. n>1 is uniformly convex tight,

(b) Sup Ellxnl, < = for some p > 1,
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(8) (a) X

o nt  is uniformly convex tight,

(b) Xn, n>1 is uniformly dominated by a real random

variable X , f.e., P(]|X || > a}

Ia

PCLY] > a)
for every a > 0 and n > 1, with the additional
property that E]X] < » .

(C) xn, n>1 satisfies (CT) condition.

The implication (A) =3a> (C) was observed by Taylor and

Daffer [10, p.97].

Just as compact sets play a crucial role in the form
of uniform tightness in extending limit theorems on the real line
to the setting of separable Banach spaces, it is the ;ompact convex
sets in D[O,l] that play a crucial role in the setting of nfo,1]-
space. We denote by K the collection of all subsets ¥ of n[0,1]
such that K and co(Kk), the convex hull of K, are relatively

compact in the Skorokhod topologqgy.

In Theorem 3,4 in this paper, we show that the validity

of Yeak Law of Large Numbers pointwise is equivalent to the validity
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of Weak Law of Large MNumbers in the norm topology 1f the sequence
Xps M21 satisfies (CT) condition. This result generalizes

Theorem 1 of Taylor and Daffer [10, p.97].

Under (CT) condition, we establish some Strong Laws
of Large Numbers, ™arcinkiewicz-Zygmund-Kolmogorov's Strong
Law of Large Numbers and Brunk-Chung's Strong Law of Large Numbers
are established in the D[O.]]- space setting. In Section 3, we
also obtafin an analogue of Rohatgi's Strong Law of Large Numbers

in the setting of D[O.l]-space. See Rohatgt [7. Theorem 2, p.30€].

It must be emphasized that from the Weak and Strono
Laws of Large Numbers established in the setting of pf0,1)-space,
one can derive corresponding Weak and Stronqg Laws o¥ Large Numbers
in the setting of separable Banach spaces. If the random elements
take values in a complete separable subspace of Dn[0,1], for example
in C[O.l]. in the norm topology, then uniform tightness of the

sequence is equivalent to uniform convex tightness.

]

PPN
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2. CONVERGENCE IN D[0,1]

The main purpose of this section is to study relationship
between pointwise convergence, convergence in the Skorokhod topology
and norm convergence of sequences in D[0,1] . This study is
helpful in establishing some Weak Law of Large Numbers in 0[0,1]
using pointwise Weak Law of Large Numbers for sequences of random
elements in D[0,1]. The results established in this section
on the relationship generalize certain results in the l1iterature
proved in this direction, These improvements will be pointed out

as and when the occasfon arises.

Recall that K {s the collection of all relatively
compact subsets of D[0,1] whose convex hulls are also relatively
compact in the Skorokhod topology. The following definitions

are helpful to gafn a good understanding of sets in K .

(2.1) For any H < D[0,1] and x in D[0,7], define

w (H) = sup [|x(s) - x(t)].
s,teH

(2.2) For any x in D[0,1] and 0 < § <.V, ¢efinc

Py

o

i ea &

aama
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w {6) = sup w ([t, t+s]) .
X 0<t<1-$ x

(Modulus of continuity of x.)

(2.3) For any x in D[0,1] and 0 < & < 1, define

w'(8) = Inf max o ([t t.))
x (t,} Ocich X Cyae t00

where the infimum is taken over all partitions

0 =t <ty <oco < t, = 1 of [0,1] satisfying

t, - ¢ > & for all { = 1,2,0e¢ N,

(2.4)  For any partition 0 =t < t, < e <t, =1 of

[0,1]. 1et <t > = [ti-l’ti) for is= 1'2'000.N-1

i1ty

and <ty Loty> = [ty 4.ty d .

(2.5) For any set A C 0D[0,1] and e > 0, let
S(A) = (te [0,1] 3 sup |x(t) - x(t-0)] > e} .
xeA

SC(A) describes jumps of functions in A,

The following result characterizes sets in K .

Theorem 2.1 The following statements are equivalent.
(i) K ¢ K .

(11) Se(K) is finite for every ¢ > 0.
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(ii1) For every ¢ > 0, there exists a partition 0O = ¢

ty < eee <t =1 of [0,7] such that

1 N

for every x in K,

Proof. This result is known, Cquivalence of (i) and (i1) s

proved by Daffer and Taylor [ 4, Theorem 6, p.QZ]. fquivalence of
(i) and (iif) is proved by Daffer [3, Theorem 3.6, p.508]. We

give a simple proof of the equivalence of (i) and (i1i) exploiting
the compactness property of [0,1]. The implication (§11) ==a> (1)
easfly follows from the equivalence of (i) and (1i). We prove

(i) ===> (iii), Let > 0, By the equivalence of (i) and (ii),

and Lemma 7 of Daffer and Taylor [ 4, p.92], for every t in [0,1],
there exist t* and t" in [0,1] such that t" < t<t',

Sup mx([t.t')) <€ and Sup mx((t".t)) <e . For t =1,

xeK xeK

we note that i:z mx((1",1]) < e . Thus we have {[0,0'),(1",1]y U -
{((t",t") ; t ¢ (0,1)} as an open cover for [0.{]. There exists

a finite sub-cover ([0,0'), (1",T]} U ((r,r}) 5 r, e (0,1),

i = 1,2,-¢,m for [0,7]. Let t, =0 and t, = 0', Then we
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must have some r"l such that r; < 0' < r; . If ry < 0', let

= p! = p! i hi
tz ree Otherwise, let tz =T and t3 rie Continuing this

way, we obtain a partition 0 =t <ty < eee <ty = 1 of [o0,1]

such that max w ([t. y,ti)) < e for every x in K. This
1<i<N 3 j-1*"1 -

completes the proof.

It is well known that if a sequence x_, n>1 in 2[0,1]
converges to an element x = in 0[0,1] in the Skorokhod topology,
then xn(t). n>1 converges to xo(t) for every t which is

a continuity point of x If x is continuous, then convergence

o’ ]

in the Skorokhod topology implies convergence in the norm topology.
See Billingsley [ 1 ,p.112]. It is useful to find some conditions
under which pointwise convergence, convergence in the Skorokhod

topology and convergence in the norm topology are equivalent., The

following results attend to this problem.

Theorem 2,2 Let a subset K of 0{0,7] have the following

property.

lim Sup w'(8) = 0.
§+0 xek x
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Let X n>1 be a sequence in X and Xo in 0[0.1] continuous.

Then the following statements are equivalent,
(i) Tim x,(t) = xo(t) for every t in S for some dense
N>
subset S of [0,1].
(i) 1im d(x_,x.) = 0,
e n*"o

(i41) Vim ||xn - x5l = 0.

N->o

Proof. We need to prove only (1) ===> (iii). By the given

hypothesis, it is obvious that 1im sup w_([0,6)) = 0 and
§+0 xek x

1im sup mx([1-6,1]) = 0, By (i) and since x_ 1is continuous,
§+0 xeK °

it follows that
lig xn(O) = xo(o) and llf xn(l) = x°(1) . (2.6)
Let ¢ > 0, By the given hypothesis, there exists & > 0 such that
m;(s) < € for every x in K, (2.7)
Since Xo is uniformly continuous, there exists a partition 0 =t
<ty cees ot =1 of [0,1] such that [t, - t, | <& for
i = 1,2,e0¢,m, tT; t2""’tm-1 in S and

wxo([ti-l't‘i)) < € (2.8)

for every i = 1,2,+e¢,m, By (i) and (2.6), we can find N > 1
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such that

lxn(ti) - xo(ti)l <€ (2.9)
for every {1 = 0,1,2,¢00,m whenever n > N, Choose and fix n > N
which is otherwise arbitrary. We claim that for every i = 0,1,00¢ m-1,

there exists u; fn [ti'ti+]] such that

w, ([t50u3)) < ¢ and w (Luzetyyy]) <€ (2.10)
n n
By (2.7), u; (6) < ¢ . There exists a partition 0 = v_ < Vy < e
n
< v, =1 of [0,1] such that Vi = V4, > & for every i =1,2,..

cee,m and w, ([vi-].vi)) < e for every § = 1,2,¢¢e,m, First,
: n

look at the interval [to.t1]. Since t, - t <6 and v, -v >,

we have [t ,t;] C [vosVvy). Take wu, = t.. Thus (2.10) s

satisfied for 1§ = 0. Next, look at the fnterval [t.,t,]J. 1If

[tyet,] © [vavy), take wy =t

then

[vo'v1)'A Vi 2tz 2 v,. In this case, take wuy = v, and u, = v,.

e If [%].tzj fs not contained in
In any case, we observe that (2.,10) is satisfied for § =1,
Continuing this way, we see that the claim fs justified. By (2.8),

(2.9) and (2.10), we obtain

w ([t u;)) < 2¢ and w ([u .t ]) < 2¢
Xn=Xg i Xp=%o §rri+




o
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Remarks. The condition on K in the above theorem figures in
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for i = 0,1,2,000 ,m=1, and
lxn(t) - xo(t)] < 4d¢ whenever ti < t< ti+1
for i = 0,1,2,.-.,m-1. This implies that [[x - x [] < 4e .

This last inequality is valid whenever n > N, Thus we have

lim ||x_ - x || = 0 as desired,
Nae n 0

a characterization of relatively compact subsets of D[O.l]

in the Skorokhod topology. More precisely, a subset X of 0[0,1]

is relatively compact if and only if 1im sup w'(8) = 0 and 1
§+0 xeK x

sup ||x]] ¢ = . See Billingsley [ 1, Theorem 14.3, p.l]é].
xe K

Using similar ideas as in the proof of the above theorem,

one can prove the following theorem,

Theorem 2.3 Let K be a subset of D[0,1] have the following

property.
lim sup w'(8) =0,
§+0 xekK x

Let x , n>1 be a sequence in K and x ¢ 0[0,1]. Then

Tim ||x, - x°|| =0 {if and only if 1lim xn(t) = xo(t) for every

n+o N0

tin [o,1]. i
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Remarks. Daffer [ 3, Theorem 3,1,p.504] showed the equivalence

of convergence in the Skorokhod topology and convergence in the
norm topology for sequences in a compact convex subset of 0[0,1].
Theorem 2.3 above shows the equivalence of norm convergence

and pointwise convergence under conditions much less restrictive
than those imposed by Daffer. However, the following theorem
generalizes Theorem 3,1 of Daffer and the proof offered is much

simpler than that offered by Daffer.

Theorem 2.4 Let K e K. Let x , n>1 be a sequence in K,

n

Then the following statements are equivalent,
(1) Vim xn(t) = xo(t) for every t in S for some dense
n
subset S of [0,1] for some x, in n[o,1].

(ii1) Vim d(xn.xo) =0,

nN+o

(iit) lim ]lxn - X

N+e

1= 0.

Proof. The implications (1i1) ===> (§i) ===> (i) are trivial.

We prove (1) ===> (ifi), For any ¢ > 0, by Theorem 2.1, there

exists a partition 0 =t <t <o <ty, =1 of [0,1] such that

max ”x(<t1-1’t1>) < € for every x in KX

"

P
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and a partition 0 = s < s, < oo < sy, =1 of [0,7] such that

max 0 (<si 1'si>) < €
1<‘i:N" 0

following the notation of (2.4), Putting these two partitions

together, we have the partition 0 = u < Uy < ¢*e < u, =1 of

[0,1] such that

sup max w (<u u.,>) < e .
xe K {xo} T<i<N X t=1774
For each {1 = 1,2,...,N, choose r itn S such that u i < r <

uy and then choose M > 1 such that whenever n >, we have

max |x (r.) « x (r.)] < ¢ .
0<i<N n' i o i

Thus, when n > M, we have

flx, = x |] = max sup Ix (t) = x (¢t)
n 0 1ciecN te<u sUy> n o
- ja1* 1
=  max sup Ixn(t) - xn(ri)

1<i<N te<ui_],ui>

+ xn(ri) - xo(ri) + xo(ri) - Xo(t)l

This completes the proof.




-18«

3. ON STOCHASTIC CONMVERGENCE

Let Xn, n:1 be a sequence of random elements defined

on a probability space ( a, B, P) taking values in D[0,7] . Let

a ke n:1. I:Kin be a triengular array of real numbers. In this

section, we are interested in studying the convergence of the

n
sequence I ankxk' ns 1 of weighted sums in some sense{efther
k=1 -

in probability, or in p-th mean or almost surely [P] ) either
in the Skorokhod matric d or in the uniform norm ||:]|]|. More

specifically, we ask whether the convergence of

n
kEI ankxk(.)(t), n1 to 0

for every t in some dense subset S of [O.U in some sense

would force the convergence of

n
a Xk s N1 to O

L
k=) MK =
in the same sense. We answer this question in this section. (Mote
n
that r a Xk(.)(t), n>1 is a sequence of real random
k=1 nk -

variables for every t in [0,1] .) Had ofo,1] been separable

in the norm topelogy [l+]] » or Frechet space in the Skorokhod
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topology, many of the classical techniques would have become
applicable to derive some Weak and Strong Laws of Large Numbers

in D[O.ﬁ] . In separable Banach spaces, for the validity of
certain Weak Law of Large Numbers analogous %tc those available

on the real line, a crucial condition imposed in the literature

is "uniformly compactly r-th order integrability” of the
sequence of random elements under discussion. A sequence Xn. n>1
of random elements taking values in a separable Banach space B

is said to be uniformly compactly r-th order inteqrable (r>0)

if for every € > 0 there exists a compact subset C of B

such that

Jﬂ || x ||r dP < ¢
{chCc} n

for every n>1, See Wang and Bhaskara Rao [1{] for some of the
ramifications of this definition and the attendant limit theorems.
See also Hoffmann-Jgrgensen and Pisier [5, Theorem 2.4, p.597].
In Frechet or Banach spaces, closure of the convex huli of a

compact set is compact. But this is not true in the Skorokhod
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topology of D[0,1] . See Daffer and Taylor [ 4, p.97]. In order
to work out a Weak Law of Large Numbers in D[0,7] , a condition
similar to “uniformly compactly r-th order integrability" is
needed to be imposed on the sequence X“, n>1 in 0[0,1] .
Taylor and Daffer [10, p.99] introduced the following "(CT)
condition®,

A sequence X , n>1 of random elements in D[0,1]

is said to satisfy (CT) condition if for every e >0 there

exists a compact convex subset X of D[0,1] satisfying

{xn{cc}

for every n>1. Taylor and Daffer [10, p.9§] observed that

HXnII dP < ¢

if xn. n>1 is uniformly convex tight , i.e., for every e > 0

there exists a compact convex subset K of D[O,[] such that

P(X, ¢ K} < ¢ for every n>1 and i:p E||Xn||p < for some

p>1, then xn’ n>1 satisfies (CT) :ond1t1on. Nne of the goals
of this section is to characterize precisely this (CT) condition.

The following theorem fmplies that X , m>1 satisfies (CT)

condition if and only if Xn' n>1 is uniformly convex tight

@\

'@
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and ||xn||, n>1 is uniformly integrable.
h Theorem 3.1 Let xn, n>1 be a sequence of D[0,1] -valued ]

L random elements and (10. Then the following two statements (1)
1

t (ii) are equivalent,

(i) For every ¢ > 0, there exists a Borel set K in K

such that

f X 117 dP < e

KC

for every n>1, -

(if)(a) For every e > 0, there exists a Borel set K in K

such that P{xn e K} > l-¢ for every n>1, i.e., Xn, n>1
is uniformly convex tight.

(b) ||Xn||r. n>1 s uniformly integrable.

Proof. Equivalence of (i) and (ii) {s obvious when r = 0, Let

r> 0, It is not hard to see that (i14) ==3> (i) and (i) ===>

(ii)(b). We prove (i) ===> ({ii)(a). By (i), for every e > O

and i =2 1,2,3,¢¢¢ , there exists a Borel set K% in K such that 1
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ur r i.r
[1x. ]| dP < €/2 +f
(K%)c n
i
for every n>1. Let Ki = U K3 v i21. Then K, e K. See
j=1 _
of [3].

the remarks following Theorem 2.64 Let S = b[0,1] and S, =

r {x ¢ {0,177 3 Ilx]l <174}  for 1§ =1,2,3,.e¢ , Then

i
PIX e (K, U S <" uJ» HIX [T dp <« 17 (es2%eim) = /2
n i i - (Ki" Si)c n

for every n>1 and i>1, This implies that, for every n>1,

1-rix e U (x,U 5.)°
i:l n

i>1

1o 1o Pix, e (KU ST
i>1

iv

c/Z1 =1 « ¢ .

v
—
]
™

i1

(3]

ve show that B = [\ (k,UUS,)e K . Now, B =73 (KF,US,T C
i>1 i>1
{’} (F7 U'S;), after observing that S, = (x e 0[0,1] ; [[x]] < 1/1}
>
= {x e 0[0,7] ; d(x, o) < 1/i} and consequently, that S, s
closed in the Skorokhod topology. The set (\ (RFyUs,)  ds
is>1

compact since it is closed and totally bounded in the d-metric.

This implies that B 1{is relatively compact. We show that for any

4ok dnd i) ae A
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e > 0, SE(B) is finite. Observe that, since S,2 S,2 S

0 D e

2

and K]C KZC K3c oo

c
B = f\ (Ky U sg) = 10y U (U (s, sy 0 Ky y))
>1 i>0
For any ¢ > 0,

s.(B) = (t e[0,1] ; Sup |x(t) - x(t-0)| > ¢}
xeB

[27¢€]

Cc
= 3‘(#:L (51(\ Sia O Kisr))

(27¢]
C U S (K)o

i=0

where [2/¢] 1s the largest integer < 2/e . Since Ky € K for
i=1,2,3,... , by Theorem 2,1, Se(Ki) is finite. Hence SE(B)

is finite. By Theorem 2.1, B e¢ K. This completes the proof.

Now, we concentrate on proving some Laws of Large Numbers.
To do this, we resort to the classical truncation technique by
truncating the random elements to a set K in K. The following

result §is useful in this connection,

Theorem 3.2 let X , n21 be a sequence of D[0,V] -valued

random elements such that P{X_ ¢ K} =1 for every n>1, for

Borel set
some}\K ~in k. Let a ., l1<ken, n>1 be a triangular array of




-24-

n
real numbers such that £ lagl < for all n>1 for some
k=1

positive constant r. Then

a X » n>1 converges to 0 1{n probability

n

(in r-th mean)(a.e.[P] )

if and only if

n

I a kxk(-)(t), n>1 converges to 0 in probability
k=1 " =

(in r-th mean)(a.e. [P] )

for every t {in S for some dense subset S of [0,1] .
Proof..We need to prove the "if part" only. For any ¢ > 0, by
N
Theorem 2.1, there exists a partition T = {t,} of [0,1]
i=0

such that max o ([t Jt)) < e/r for every x 1in K,
x Ltiapetyd) <
1<i<N
Choose Sys S2 » Sy in S such that t1-1 < s, < t1 for

each {1 = 1,2,°+¢ N, Then |x(t) - x(si)l < e/T whenever

te<t, j.ty> and x e K. let Ygo: p[6,1] » 0[0,1] be defined by

N
YT(x)(t) = T x(si) I,

(t) Oc<tel,
j=1 PR ELTE AR

Then for every w in Q ,

.l
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n n
12 a2 11z (Xe) = Y0y ()]
n
+ Hk§1 3 Y1 (X o))
n
=T 2y faited s 01

In the above chain of inequalities, we have used the information
that P{xn e K} =1 for every n>1 and the fact that

[lx - YT(x)II < €/T for every x in K. The desired conclusion

now easily follows from the above chain of fnequalities.

Corollary 3.3 (Taylor and Daffer [10, Theorem 3, p.102]) Let

K be a compact convex subset of 0[0,1]. Let X,» n2l be a

independent

sequence ofArandom elements with Exn =0 and P{X_ e K} =]

n

for every n>1, Let a 1<k<n, n>1 be a triangular array of

nk®
n
real numbers satisfying b Iankl <T for every n>1 for some
k=] -
positive constant T and max fa .| =0(n"%) as n+ = for
1<k<n

some a > 0. Then

n
llkz1 ankxkll, n>1 converges to 0 a.e., [P] .

Proof. By Theorem 2 of Rohatgi [ 7,p 306], the sequence of

n
random varfables T ankxk(-)(t). n>1 converges to 0 a,e, [ﬁ]

k=1 »
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for every t in [0,1] . Now, an application of Theorem 3.2

completes the proof.

Now we prove a general result from which some Weak Laws

of Large Numbers can be derived,

Theorem 3.4 Let X,» nx1 be a sequence of random elements

taking values in  D[0,1] satisfying either (i) or (ii) of

Theorem 3.1 for r = 1. Let a,,, l<ken, 021  be a triangular
n

array of real numbers satisfying I Iankl < T for every n>l
k=1l -

for some positive constant T . In the following statements, then

(1) axm> (iv) sze> (1ff) s=s> ({i).

(1) kgl ank(xk(-)(t) - Exk(-)(t)). n>1 converges to 0

in probability for every t in S for some dense

subset of [0,1] .

n n

(i1) d(kz] A Xy kz1 ankExk). n>1 converges to 0

in probability.

n

2 Xk I a EXp), n>1 converges to 0.

n
(i11) £ d( ¢
= k=1

(iv) El] ank(xk - Exk)ll,p;1 converges to O.

e o A aaa
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Proof. First, we prove (1) ==2> (iv).Let e >0. By (i) of
Theorem 3.1, choose X in K such that
for every n>1, As in the proof of Theorem 3.2, we can choose

S1s Sp» vy Sy in S and the operator YT built on Sys 59",

3 such that
Sup ||x - YT(x)Il < /6T .
xeK

We note that

E|] a . (x

n
Gyt BRI < BT g, O - vt

n
n .
+ E||k§1 2, (Yp(EX) = eI (3.1

We show that each of the expressions on the right hand side of

the above inequality can be made < ¢/3 for all large n, Consider

n n
BNz ap (X = v (x ) < ElL oz a (X Toy oopy = Yo(Xp Toy y))
k=] k=1 k k
n
+Ellz a X 1 N
kel nk k (Xk e K }
n
I 1
+ E||kf] AN oy e k€y) i
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n

< L la_.| sup |lx = Y_(x)]]
= k=1 "k ek T

n
+ 2 ki]lanklgllxk I{xk . Kc}II
< ef6 + /6 = ¢/3 (3.2)
In the above chain o0f inequalities, we have used the fact that

YOO < [ x]] for every x in 0[0,1] . Now, consider

n n

+ IIkz ‘nk(YT(Exk’{xkexc}) -
Exkl{xkekc})ll
N
- EX I %
n
+ 2 ¢ la_ | E[IX1 ¢ |
k=1 DK k(X ek}
n
- X |
) kf1|‘"k| E”YT(XkI{Xke”) Kl (xyeky’
+ ¢e/6
t la, | sup [1Y-(x) - x[|
i z a Sup Y X - X + €/6
k=1 nk xe K T
< €/6 + ¢/6 = e/3. (3.3)

In the chain of inequalities above, we have used the fact that
YT(EX) = EY;(X) for any random element with E[[X]|| <« . Next,

we use the hypothesis on the pointwise convergence in probability.




For any t in [0,1] and n>1,

n n
| a0 (8 = ER DI T Loy ] (IX I+ ELXID.
n
This implies that the sequence 21 ank(xk(-)(t) - Exk(-)(t)). n>1
k=

is uniformly integrable for every t in [0,1] . Hence it follows

that this sequence converges in mean to 0, i.e.,

Elk;::1 ank(xk(-)(t) - Exk(-)(t))l. n>1 converges to 0

for every t in S. We can find N > 1 such that

n
E|] ¢ ank(xk(')(si) - Exk(')(si)l < e/3N

k=1
for all i = 1,2,¢c¢¢ ,N whenever n > No‘ Consequently, we have
n
E||k:.:1 a,, (Y (X)) = Yo (EX ]
: €l 1 |
< £ Elz a_ (X (e)(s,) = EX ()(s,))] < e/3 (3.4)
=41 k=1 MKOTK ! k !
whenever n > No‘ Finally, (3.1), (3.2), (3.3) and (3.4) yield
n
Ellkil ank(Xk - EXk)II <€ whenever n > N_.

This completes the proof., (iv) ===> ({ii{) follows from d(x,y) <
[Ix - yll for all x,y in 0J0,1] .

Remarks. (1) Taylor and Daffer [10, Theorem 1, p.97] proved the

implication (i) s==> (ii) wunder the additional assumption that




]
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the set S is the set of all dyadic rationals in [0,1] . ]
‘ )
(2) As has been remarked by Taylor and Daffer [10, p.99],
n
(i1) ===> (1) if the sequence I a Exk. n>1 converges in
k=1 Nk - ;
Skorokhod topology. In that case, we have (i), (ii), (ii1i) and
(iv) of Theorem 3.4 above are all equivalent.
]
(3) Theorem 3, Corollary 4 and Theorem 5 of Daffer
} and Taylor [ 4,p, 90-97] are special cases of the above result.
; ’
; See also Theorem 1, Theorem 2 and Corollary of Taylor and
T Daffer [ 9,p.412-415],
»
(4) In the discussion following Theorem 2 of Taylor
and Daffer [ 9, p.415], it is argued that
n »
[ (1/m) = X, - EX]ll. n>1 converges to O '
k=1 .
in probability under the additional assumption that EX1 is ]
continuous. According to Theorem 3.4, this assumption is not ’ 1
n ;
necessary, We have the stronger conclusion that E|[|(1/n) = Xy -EX1||
k=1 ’
n>1 converges to O, ’»
As has been mentioned in the introductory remarks for
»
Theorem 3.4, Theorem 3.4 is useful in deriving some Weak Law of i
1
’
1
1
1
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Large Numbers. We give a sample Weak Law of Large Numbers below. '

Theorem 3.5 Let xn. n>1 be a sequence of pairwise independent

random elements in D[O.T] satisfying either (1) or (ii) of
for r = 1,
Theorem 3.IA Let A, 1<k<n, n>1 be a triangular array of real

n
numbers satisfying z Iankl T for every n>1 for some

k=1

positive constant T and max |a

s N>1 converges to 0. Then
T<k<n

nk'

n
Vi €Ll e (5 - EXO ] - 0.

Proof. By Theorem 3.4 above, it is enough to show that for any
n

t in [0,17, kfl ank(xk(-)(t) - Exk(-)(t)). n>1 converges to O
in probability. For a given ¢ > 0 and & > 0, choose a Borel
set K in such that

ElIXy Toy o yeyll <es/or
for all n>1, Choose N > 1 such that

ma x Iankl < 8¢2/802r

1<k<n

for every n >N, where 6 = Sup [|x|| . We observe that if n > N
' xeK -

n
PULE 3y (G000 = B CHOID <

A
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n
POl E X 0000 Ty  (2(8) = EX D) Doy () () ]>e/2)

n
+ Pz (X () () T

3 kS (8] = EX () (8] Ty ey () (2)] >e/2}

{Xke

[

n
(4/e2)ki1|ank|2Var(Xk(-)(t) I . K}(-)(t))

X

n
Clare) T lagl BN T ey ()]

Ia

n
2 2
(4/¢2) max |ank| zllankl (i:z‘llxll)

1<k<n k=
n
+ (4/e)killa"kl E]]X, I{xk e k1
< (4/e2)(s5¢c2/8082r)r02 + (4/e)r(6e/8T) = §/2 + 8/2 = &5 .

This completes the proof.

Remark Taylor and Daffer [10, Theorem 2, p.100] established

the conclusion of the above theorem under the much stronger

condition that max |a_, | = 0(n"®) as n + = for some a > O
nk
T<k<n
and Exk = 0 for every n>1, This Theorem 2 of Taylor and Daffer ’
1
is thus a special case of the above theorem,
Now, we establish some Strong Law of Large Numbers. Our ’ 4
main goal is to seek analogues of Marcinkiewicz-Zygmund-Kolmogorov's
]
-~ 1
and Brunk-Chung's Strong Laws of Large Numbers for D[0,1] -valued »
i
»
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g random elements. (See Chung [2, p.125] for a proof of Marcinkiewicz-
Zygmund-Kolmogorov's Strong Law of Large Numbers, For a proof of
' Brunk-Chung's Strong Law of Large Numbers, see Chung [2 ,p. 348] .)

The following result gives the desired analogues., This result

generalizes Theorem 1 of Daffer and Taylor [4 N p.8{] .

Theorem 3,6 Let Xn, n>1 be a sequence of independent D[O.[] -

; for r = 1,
o valued random elements satisfying either (i) or (ii) of Theorem 3.1 i
(a) 1If 1<p<2 and T E||Xj||p/jp < = , then
. AER
: n
E ]](l/n)kf (Xk - EX, )|, n21 converges to 0 a.e. el .
i
t : p, . 1+pn/
» (b) If p>2 and t e[1x,][Prs' P2 <=, then
r i>1 J
h n
’ [[(1/n) (X, - EX )II, n>1 converges to 0 a.e. [P] .
; k=1 k - ’
[
i Proof. (a) For a given ¢ > 0, choose a Borel set K in (
. ,, 4
E such that Ef X, I{xn . Kc}|| < €/4 for every n>1, As in the
proof of Theorem 3.2, we can choose s, Sy ' Sy in [0,1]
and build a linear operator YT : D[O,f] -+ 0[0,7] such that ]
Sup ||x - YT(x)|| < e/8 (3.5) ]
xeK
Then ' J
]
\
;
— J
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ia

n n
H(1/n)kr;1(xk - EXOI < HO7n) z (x, 1

0 Ty e 0 7 B Ty, e

n
+ Il(1/n)k§]xk Lexg e kGl

n
+ [1(1/n) £ EX, I e, |
K1 k {Xk e K5y

A

EX, 1

n

n :
+ (1/n)k§](llxk I{Xk . cCyll= EFIXy x{xchc}’

n
+ (2/n)k£1Ellxk I{Xk e xSyl (3.6)

We show that the first term on the left hand side of the above
inequality is < €¢/2 as n -+ « a,e, [P] , the second term converges
to 0 a.e. [P] and the third term is, obviously < e/2. Using (3.5),

we obtain

EX, I )

n
z (x, 1 .
Hamy 2 O Ty e 7 B Texy e 0

{a

- Y {x, I

n
arm 2 0 T kg = Y Tx e kg D

n
+ || (i/n) £ (EX 1 - Y (EX, 1 DR
ka1 koUx e K} Tk (X, e KD |

n
s a7 s O Ty ()= YHEX Ly e )

ta

n
e/2 + H(\/n)kE](vT(xk I{xk . K}) - vT(Exk I{xk . K}))ll

PYSSes

PP I LI G

—— A
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The last term on the left hand side of the above inequality fis

equal to

N n
07 2 0G5 Ty g () s

{(Xg €
which, by Marcinkiewicz-Zygmund-Kolmogorov's Strong Law of Large

Numbers, converges to 0 a.e, [P] as n » = . Consequently,

n
lim sup |[(V/n) £ (X, 1 - EX
k=1

N>

e k37 B Tox e k! 1
_<_ 5/2 a.,e, [P_] hd (307)

Again, by Marcinkiewicz-Zygmund-Kolmogorov's Strong Law of Large

Numbers, we have

n
converges to 0 a.e. [P] . (3.8)
Thus, (3.6), (3.7) and (3.8) yield
n
Tim sup ||{(1/n) £ (X, - EX.)|| < ¢ a.e. [P] .
n+e ksl K k -

Since ¢ 1{is arbitrary, we have the desired result, Proof of (b)

is similar to that of (a) and is omitted.

Remarks Daffer and Taylor [ 4, Theorem 1, p.8{] established

the conclusion of the above theorem wunder the assumptions that

1
- 4 - A —— e e e A
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for some r>1,

X,'s are independent, uniformly convex tight and Sup E||Xn||r <= 4
n»
In fact, they established the weaker conclusfon that the almost

sure convergence takes place in the Skorokhod topology. This result

is a special case of the above theorem,

Using the arqument presented in the proof of Theorem 3.6
above, one can obtain the 0[0,1] space version of Rohatgi's
Theorem 2 [ 7, p.30€] as reported below. This version generalizes

Theorem 4 of Taylor and Daffer [10, p. 102].

Theorem 3.7 Let X , n>1 be a sequence of D[0,1] - valued

n

random elements uniformly convex tight and uniformly dominated
by a non-negative real random varfable Y with EY" <« for

some r > 1, Let LI l1<k<n, n>1 be a triangular array of real

n
numbers satisfying pA Iankl <T for every n>1 for some
=
positive constant T and max |a k| = 0(n°s) as N + =
1<k<n n

for some 0 < (1/s) < r-1,

(a) If 0 <s < and X n>1 is independent, then

n
llr lIkEI ank(xk - Exk)ll =0 a.e. [P] .
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(b) If s> 1 and xn' n>1 is pairwise independent, then

n
Tim || £ a (X

N+ = N

Remark For separable Banach space valued version of the above

theorem, see Wang and Bhaskara Rao [12, Theorem 4.2].

Now, we establish an analogue of Jamison, Orey and
Pruitt's Strong Law of Large Numbers in D[0,1] space. See [ 6,

Theorem 3, p.42]. Let a , n>1 be a sequence of positive numbers

n
n

and An = I a4, n>1 with 1im  max (ailA ) = 0, Let N(n) =
i=1 n+e  1<i<n n

card{i > 13 (Ailai) <n} ,n>1,

Theorem 3.8 Let xn. n>1 be a sequence of pairwise independent

identically distributed D[D.l] -valued random elements, If

(a) N{n)/n < for every n>1 for some positive constant r
and EI[Xlll < -,

or

(b) sup lanl < ® and EllX1|| 1°9+||X1|| < o holds, then

n
Vim ||z (a, /A%y = EXy[] =0 a.c. P].

nee i=)
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Proof. One can prove this result using the argument given in the
proof of Theorem 7.3.2 of [8 ] and combining it with the argument

given in the proof of Theorem 4 of Wang and Bhaskara Rao [11].

Remarks The above result generalizes Theorem 7.3.2 of Taylor [8].

W
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