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Abstract

Pointwise Weak Law of Large Numbers and Weak Law of

Large Numbers in the norm topology of DCO,11 are shown to be

equivalent under uniform convex tightness and uniform integrability

conditions for weighted sums of a sequence of random elements

in D[O,I1. Uniform convex tightness and uniform integrability

conditions are jointly characterized. Marcinkiewicz-Zygmund-

Kolmogorov's and Brunk-Chung's Strong Laws of Large Numbers

are derived in the setting of D[O,lJ-space under uniform convex

tightness and uniform integrability conditions. Equivalence of

pointwise convergence, convergence in the Skorokhod topology

and convergence in the norm topology for sequences in D[0,1]

is studied.
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RANDOMa VARIABLES

XIANG CHEN WANG. Jilin University, China

I £M. OHASKARA RAO, University of Sheffield and University of Pittsburgh

1. INTRODUCTION

Let D[0,1] be the space of all real-valued functions

x defined on the unit interval [0.11 that are right continuous

over [0.1), possess left-hand limits at every t in (0.11 and

left continuous at t - 1. D[O,1] is a linear space and is a

model for quite a number of stochastic processes containing jumps.

Every x in D[O.IJ is bounded and has atmost countably many

discontinuities. D[0,l] can be equipped with two topologies.

One topology (norm topology) comes from~ the norm Ihl on 9Y[O.1]

defined by 11x1 * sup jx(tfl for x in ')LO.l]. The
tc CO .l1

Banach space (D0l I) is not separable. Another topology

(Skorokhod topology) comes from the Skorokhod metric d on 0[0,1].
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(For the definition of Skorokhod metric and its properties, see

Billingsley [1, p.109-153].) The metric space (0[0,1], d)

I

is topologically complete and separable, but not a linear topological

space. For a study of stochastic convergence in D[0,1J . many of

the classical techniques become inapplicable when 010,i1 is

equipped with either of the two topolo-ies described above. A

study of topological convergence in D[O,1] in either of the

two topologies above would help to pave a way for a study of

stochastic convergence in DO0,13.

In Section 2, we examine some conditions under which

for a given sequence xn9 n>O in 0[0.l] () (ii) and (iii)

described below are equivalent.

(M) Xn, n~l converges to x0  pointwise on some dense

subset S of 0,01], i.e., lim x n(t) - x t) for every t
n-w

in S.

(ii) Xn, n>l converges in the Skorokhod topology to x.

i.e., lim d(xnx) 0.
n--

I
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(ixi) Xn, n-l converges to x in the norm topology, i.e.

lim lix - x Oi 0.
n 0"

One of the results in Section 2 establishes the

equivalence of (i), (ii) and (iii) when the sequence x . n>ln

belongs to a compact convex subset (in the Skorokhod topology)

of DEO,1 ] generalizing a result of )affer [31. In simplistic

terms, what this result means is that if X n n>l and the

convex hull of the set x, . n>l are relatively compact in

-wise
the Skorokhod topology of D[0,1], then the pointAconvergence

of the sequence xn. n, l implies norm convergence of the
In

sequence xn, nll.

Of primary importance, we discuss stochastic converqence

in DO.1] in Section 3. Let DO,1] be equipped with the Borel

a-field a1 generated by the Skorokhod topology. Let ( n, 8, P)

be a probability space. A map X : Q - DCO,1] is said to be

a random element if X I(B) E 8 for every B in B1. Y is

the map
a random element if and only if X(.)(t) P - R, the real line

pi
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is a real random variable for every t in [0 1, . Consequently,

if X and Y are two random elements, then X + Y is also a

random element. Also, if El IXII - , then EX(.)(t) is finite

for every t in [0,1] , and the function x(t) - ES(. )(t) for

eI
t in E0,l] dfines an element x in D[o,.I and is called the

expected value of X , denoted by EX. Let X , n1l be a sequence
nI

random elements defined on n taking values in 0[0,l] and

ank l<k<n, n>l be a triangular array of real numbers. We seek

n
conditions under which the sequence kE ank Yk n>l of weighted

kal

sums converges in probability (Weak Law of Large Numbers), or

in the p-th mean, or a.e. [P] (Strong Law of Large Numbers).

Of special interest, we examine whether pointwise Weak Laws of Large

numbers would force the validity of corresponding Weak Laws of

Large numbers for the given sequence of random elements in D[O,l .

n
More specifically, we observe that we have a sequence E ankYk(-)(t).

k-l

nl of real random variables and examine whether the following two

statements are equivalent.
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(t) Weak Law of Large Numbers holds for the sequence

n
Z a nk k(.)(t), nlk-I k' -

for every t in [0,11.

(ii) Weak Law of Large Numbers holds for the sequence

n
z a X l

kl nkk' n l

either in the Skorokhod topology or norm topology.

This type of study has been carried out in the literature

for B-valued random variables, where B is a separable Banach

space. See Taylor [8] and Wang and Bhaskara Rao [12]. Virtually,

equivalence of (i) and (ii), in this case, is guaranteed if the

sequence X , nO is uniformly compactly 1st-order integrable

i.e., given E 0 there exists a compact subset K of B such that

j i c K xn)H dP < E(X n Kc  n

for every n>l. The methods used in this case do not carry out

to the space D[O,1]. It has been felt that in order to achieve

the equivalence of (i) and (it) in the setting of D[0,ff -space,

one needs a stronger condition than uniformly compactly lst-order
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integrability. Accordingly, Taylor and Daffer [10, p.971 introduced

the following condition.

A sequence X n n>l of random elements in 1)[0,1] is

said to satisfy (CT) condition if for every c > 0 there exists

a compact convex (in the Skorokhod topology) subset K of D[O,l]

such that

cx c}IIXn! dP < E
n

for every nl. Using Theorem 3.1 of this paper, one can characterize

this (CT) condition. It follows that X n, nl satisfies (CT)

condition if and only if X n, n>l is uniformly convex tight-L i.e.,

given > 0 there exists a compact convex subset K of 0i[0,11

such that P{Xn c KcI < C for every n>l , and X , n~l

is uniformly integrable. As a consequence, for a sequence Xn, n>l

of random elements in r)[Ol], it follows that (A) --=> (B) ( CC)

in the following.

(A) (a) X , n>l is uniformly convex tight.
nS

(b) Sup E II I - for some p - I .
n>l n
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(3) (a) Xn, n 1 is uniformly convex tight.

(b) X, n>l is uniformly dominated b a real random

variable X , i.e., P{jX n , _ a) _ P(jj _ a)

for every a > 0 and n > 1, with the additional

property that EI Xj < - .

(C) X, n n>l satisfies (CT) condition.

The implication (A) .=> (C) was observed by Taylor and

Daffer [10, p.971.

Just as compact sets play a crucial role in the form

of uniform tightness in extending limit theorems on the real line

to the setting of separable Banach spaces, it is the compact convex

sets in D[0,1] that play a crucial role in the setting of nIO,1J-

space. We denote by K the collection of all subsets K of 9[0,i]

such that K and co(K), the convex hull of K, are relatively

compact in the Skorokhod topology.

In Theorem 3.4 in this paper, we show that the validity

of ',-leak Law of Large Numbers pointwise is equivalent to the validity

II I II - I1 I il I 1 I .. . . . . . . . . . . . . . . . . . . . . . I
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of Weak Law of Large Numbers in the norm topology if the sequence

n nl satisfies (CT) condition. This result generalizes

Theorem I of Taylor and Daffer £10, p.97].

Under (CT) condition, we establish some Strong Laws

of Large Numhers. Marcinkiewicz-Zygmund-Kolmogorov's Strong

Law of Large Numbers and Brunk-Chung's Strong Law of Large Numbers

are established in the D[0,1]- space setting. In Section 3, we

also obtain an analogue of Rohatis Strong Law of Large Numbers

in the setting of DEOl]-space. See Rohatg . Theorem 2, p.306].

It must be emphasized that from the Weak and Strong

Laws of Large Numbers established in the setting of a[0,] -space,

one can derive corresponding Weak and Strong Laws o Large Numbers

in the setting of separable Banach spaces. If the random elements

take values in a complete separable subspace of D[0,J1, for example

in C[0,I], in the norm topology, then uniform tightness of the

sequence is equivalent to uniform convex tightness.
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2. CONVERGENCE IN D[O,11

The main purpose of this section is to study relationship

between pointwise convergence, convergence in the Skorokhod topology

and norm convergence of sequences In D[Ol] . This study is

helpful In establishing some Weak Law of Large Numbers in D[Ol]

using pointwise Weak Law of Large Numbers for sequences of random

elements in D[Ol]. The results established In this section

on the relationship generalize certain results In the literature

proved in this direction. These improvements will be pointed out

as and when the occasion arises.

Recall that K is the collection of all relatively

compact subsets of D[O.1] whose convex hulls are also relatively

compact in the Skorokhod topology. The following definitions

are helpful to gain a good understanding of sets in K

(2.1) For any H C DCO,I] and x in D[O,l], define

W (H) Sup Ix(s) - x(t)I.
s ,tcH

(2.2) For any x in D[0,1] and 0 < <.I, define
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w (6) - Sup W ([t. t+6])1
x O<t<1- x

(todulus of continuity of x.)

(2.3) For any x in D[O,1] and 0 < 6 < 1, define

W'(8) - Inf max x([ti 1 . ti)),
x {ti) O<i<N

where the infimum Is taken over all partitions

0 X to t I < < t I a 1 of [0.1] satisfying

t I  - ti  5 > for all i -

(2.4) For any partition 0 - to < t < . t, I of

[0,111, let <ti. 1 ti, - [ti 1 l ti ) for i -

and <tN- 1 *tN - tN. , tN]

(2.5) For any set A C D[O,l] and c > 0, let

S (A) - {t [0.1] ; sup jx(t) - x(t-O)l > el
xcA

S (A) describes jumps of functions in A.
C

The following result characterizes sets in K

Theorem 2.1 The following statements are equivalent.

Ci) K c K

(ii) S (K) is finite for every E > 0.



(iii) For every c 0, there exists a partition 0 - to

tI  < .- < tN a1 of [0,.11 such that

max W x([ti ti)) < C
I<i<N

for every x in K.

Proof. This result is known. Equivalence of (i) and (ii) is

proved by Daffer and Taylor C 4, Theorem 6, p.92]. Equivalence of

(i) and (iii) is proved by Daffer [ 3 , Theorem 3.6, p.50C . We

give a simple proof of the equivalence of (1) and (iii) exploiting

the compactness property of [0,.11. The implication (iii) ---> (I)

easily follows from the equivalence of (i) and (ii). We prove

(i) ---> (iii). Let > 0. By the equivalence of (i) and (ii),

and Lemma 7 of Daffer and Taylor [ 4, p.92], for every t in [0,I],

there exist t' and t" in [0,1] such that t" < t < t'

Sup W x([tt)) < E and Sup wx((t",t)) < . For t - l,
xeK xeK

we note that Sup Wx ((1",1) < . Thus we have {[0,0'),(I",I]l UxeK

{(t".t') ; t c (0,1)1 as an open cover for [0,I]. There exists

a finite sub-cover {[0,0'), (l",l U ((r(,r ) ; ri  C (0,I) ,

i - 1,2,..,m) for [0,1]. Let to z 0 and t 0'. Then we
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must have some r such that r; O ' <r If r 0, let

t r'. Otherwise, let t r a r' Continuing this
2  and t 3

way, we obtain a partition 0 U t 0 < t <. t N z I of [0,1]0

such that max Wx(Etilti)) < e for every x in K. This

completes the proof.

It is well known that if a sequence xn, n 1 in grO,li

converges to an element x0  in D[O,11 in the Skorokhod topology,

then Xn(t), nl converges to x (t) for every t which is

a continuity point of xo .  If x0  is continuous, then convergence

in the Skorokhod topology implies convergence in the norm topology.

See Billingsley [ 1 ,p.112]. It is useful to find some conditions

under which pointwise convergence, convergence in the Skorokhod

topology and convergence in the norm topology are equivalent. The

following results attend to this problem.

Theorem 2.2 Let a subset K of D[O,l] have the following

property.

lim Sup 0(.) = 0.
5-0 xcK x

. . . . . . . . . ... .m - _ .. . . .. . . . . . .. .. . . . a . . . . . . .. . . .. .
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Let xn, n>1 be a sequence in K and xo in D[O,1] continuous.

Then the following statements are equivalent.

(M) lim xn(t) - X (t) for every t in S for some dense
n-i

subset S of [0,1] .

(ii) lim d(xn ,x) 0.
n-w

(iii) lim jix n  - X011 - .

Proof. We need to prove only (4) -as> (iii). By the given

hypothesis, it is obvious that lim sup Wx(FO,tS)) - 0 and
5.0 xcK

1in sup W ([1-8,1]) 0 0. By (i) and since x is continuous,
6.0 xcK

it follows that

lim x (0) -x o(O) and lim x (1) - x (1) . (2.6)
n - n n- n o

Let c 0 0. By the given hypothesis, there exists a > 0 such that

W'(6) < C for every x in K. (2.7)

Since xo is uniformly continuous, there exists a partition 0 = t

t . < t - l of [0,1] such that It - ti.l1 <. for1 ~ m

i 1,2,..-,m, tl; t2,,,etm l in S and

for every i - 1,2,...,m. By (i) and (2.6), we can find N > 1
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such that

lxn(ti) - xo(ti)l < (2.9)

for every I 0 ,l,2,...,m whenever n > N. Choose and fix n > N
5

which is otherwise arbitrary. We claim that for every i - O,l... ,m-l,

there exists uI  in [tl t i + l ] such that

Wx ([ti,ui)) < c and wx n (EuiotiJ) £ . (2.10)

By (2.7), WXn' (a) < e . There exists a partition 0 a V 0  V I <

Vp - 1 of [0,l] such that vI - V 1 1  5 for every i - 1,2,..

.. ,m and wxn([Vi.Vi)) - c for every I - 1,2,..-,m. First,

look at the interval [t0 ,til. since tI - to a and vI - v0 > a

we have [to,tl] C [Vo,vl). Take uo - t I . Thus (2.10) is

satisfied for i a 0. Next, look at the interval rt1,t 21. If

Etl,t2] C 'V ovl), take u I - t 2 . If [tl,t 2J is not contained in

then
IV0,VI), 1 v 1 . t 2 v: v 2 . In this case, take u I - v1  and u 2  V2 .

In any case, we observe that (2.10) is satisfied for i - 1.

Continuing this way, we see that the claim is justified. By (2.8), 5

(2.9) and (2.10), we obtain

Wxx o (Etiui)) < 2c and Wxx ([u 1 1 ti+l]) - 2c
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for i = 0,l,2,...,m-1, and

x(nt) - xo(t)I < 4 c whenever t. < t < t*1 - - 1+1

for i 0,1,2,...,m-l. This implies that lx n  - xo0 < 4 .

This last inequality is valid whenever n > N. Thus we have

lir I Ix n  - x I "1 0 as desired.

Remarks. The condition on K in the above theorem figures in

a characterization of relatively compact subsets o.f 1)[0.1

in the Skorokhod topology. More precisely, a subset K of D[0.1]

is relatively compact if and only if lir sup W'(6) - 0 and
8-0 xcK x

sup jxHj - . See Billingsley [ 1, Theorem 14.3, p.116].
xe K

Using similar ideas as in the proof of the above theorem,

one can prove the following theorem.

Theorem 2.3 Let K be a subset of D[0,1] have the following

property.

lim sup W'(8) = 0.
5.0 xcK x

Let xn, n>1 be a sequence in K and x° c D[0,1]. Then

lim jIxn - x0i 0 if and only if lim x (t) = x (t) for every
n-n- n o

t in [0, 1.
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Remarks. Daffer [3, Theorem 3.1,p.504] showed the equivalence

of convergence in the Skorokhod topology and convergence in the

norm topology for sequences in a compact convex subset of D[O,1].

Theorem 2.3 above shows the equivalence of norm convergence

and pointwise convergence under conditions much less restrictive

than those imposed by Daffer. However, the following theorem

generalizes Theorem 3.1 of Daffer and the proof offered is much

simpler than that offered by Daffer.

Theorem 2.4 Let K e K. Let x n, n>l be a sequence in K.

Then the following statements are equivalent.

(1) lim x (t) - x (t) for every t in S for some dense
n 0

subset S of [0,1] for some x°  in D[0,.

n. 0(ii) lim d(X nX o )  a O.
n-a

(iii) lim llX n  - XOil - 0.
n-m

Proof. The implications (iii) ---> (ii) --- > (M) are trivial.

We prove (i) -.- > (iii). For any c 0 0, by Theorem 2.1, there

exists a partition 0 - t o  t 1 < t N 1 of [0,I] such that

max x(<ti i,ti>) < c for every x in K
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and a partition 0 = so 0 s I < . . < sN,, = 1 of [10,1] such that

max W (<s i s i>) <
1 i <N" 0

following the notation of (2.4). Putting these two partitions

together, we have the partition 0 = u 1  . U 1
0 a u l <  < uN = 1o

[0,I] such that

sup max ax(<U i ,U>) < i
xE K { x }  1N x - "

For each i z 1,2,...,N, choose r. in S such that u 1 < r I <

u, and then choose M _. 1 such that whenever n >.M, we have

O Nmax Ix (ri) xr )l <

Thus, when n M M, we have

Ilxn - 1l - max sup Ix nt) - x (t)1 <I<N te<u i l ,Ui>o

max sup Ix (t) - x (r I

1 <i< N tc<u I,uI> n

+ X n(r i ) - Xo (r) + xo(r) - x (t)

< 3c .

This completes the proof.

.... ..
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3. ON STOCHASIIC CON'VERGENCE

Let X., n>l be a sequence of random elements defined

on a probability space n ., B, P) taking values in D[O,f] . Let

ank, n>l, l.<k<n be a triengular array of real numbers. In this

section, we are interested in studying the convergence of the

n
sequence r a X , n>l of weighted sums in some sense(either

k.l nk k

in probability, or in p-th mean or almost surely [P] ) either

in the Skorokhod m:. :ric d or in the uniform norm 1'-J More

specifically, we ask whether the convergence of

n
a Xk(.)(t), n>l to 0k- I ank k

for every t in some dense subset S of [0,1] in some sense

would force the convergence of

n
E a Xk n>l to 0

k-l nk k

in the same sense. We answer this question in this section. (Note

n
that r a Xk(.)(t), n>l is a sequence of real random

k-i nk

variables for every t in [O,1] .) Had D[O,l] been separable

in the norm topology H* , or Frechet space in the Skorokhod
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topology, many of the classical techniques would have become

applicable to derive some Weak and Strong Laws of Large Numbers

in D[O,fJ . In separable Banach spaces, for the validity of

certain Weak Law of Large Numbers analogous to those available

on the real line, a crucial condition imposed in the literature

is "uniformly compactly r-th order integrability" of the

sequence of random elements under discussion. A sequence Xnn .l

of random elements taking values in a separable Banach space B

is said to be uniformly compactly r-th order integrable (rO)

if for every e > 0 there exists a compact subset C of B

such that

Sl C XnII r dP <{ Xn C C5}

for every n>l. See Wang and Bhaskara Rao [12] for some of the

ramifications of this definition and the attendant limit theorems.

See also Hoffmann-Jirgensen and Pisier [5, Theorem 2.4, p.592]

In Frechet orBanach spaces, closure of the convex hull of a

compact set is compact. But this is not true in the Skorokhod
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topology of D[0,1] . See Daffer and Taylor [ 4, p.91]. In order

to work out a Weak Law of Large Numbers in D[O,l] , a condition

similar to "uniformly compactly r-th order integrability" is

needed to be imposed on the sequence X , n>l in DEo,1]

Taylor and Daffer L10, p.99] introduced the following "(CT)

condition".

A sequence X n . n>l of random elements in DEO,l]0

is said to satisfy (CT) condition if for every e >0 there

exists a compact convex subset K of D[-O, ] satisfying

c IXnll dP < €
Xn  C

for every n>l. Taylor and Daffer [lO, p.99] observed that

if Xn, n>l is uniformly convex tight , i.e., for every c > 0

there exists a compact convex subset K of D[0,l] such that

P{X n Kc} < for every n>l and Sup EIIx II p <- for some
-- n>l

p > 1, then X , n>l satisfies (CT) condition. One of the goals
nS

of this section is to characterize precisely this (CT) condition.

The following theorem implies that X , n>l satisfies (CT)
n

condition if and only if X , n>l is uniformly convex tight

nS
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and J IXI nil n>l is uni formly integrable.

Theorem 3.1 Let X n, n~l be a sequence of D[O,l] -valued

random elements and r>O. Then the following two statements (i)

(ii) are equivalent.

Mi For every e > 0, there exists a Borel set K in K

such that

S IIr dP < e

for every n>1l.

(ii)(a) For every e > 0, there exists a Borel set K inK

such that P{X~ n K) >l-c for every n>l, i.e., X n n>l

is uniformly convex tight.

(b) IIX nil r , n~l is uniformly integrable.

Proof. Equivalence of (i) and (ii) is obvious when r - 0. Let

r > 0. It is not hard to see that (ii) --- MI and (i) z==

(ii)(b). We prove (i) ...> (ii)(a). By (1), for every £ v. 0

and i -1,2,3,--- , there exists a Borel set K;- in K such that
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( c  IlIXnllIr  dP < c/21.I r

I

for every n>l. Let K. - LJ K , >I. Then Ki  e K See
-- 1 jsl -

of [3]
the remarks following Theorem 2.6 Let SO = D[OI] and SI M

{x C D [O,I] ; I x < I/iI for i - 1,2,3,... . Then

p{X n  C (KIU SI)C} < Ir 6 ) IIXn r dP < ir(,/21.i r ) _ U /2

(KI LJ S
i

for every nfl and W>l. This implies that, for every n~l,

P{Xn c ( KI) 1  ) 1 - P{X U L (K U S c

>> IP n E~ (K I USi

ii n

- I 2

We show that B - fr (K1U Si ) C K. Now, f - / (KIUJ S) C

C\ (U Si), after observing that SI - (x c 0[O,1] ; 1Ix I 1 1/i
l>l

ii-{x € D[O,Ij ; d(x, o) ' I/i) and consequently, that S1  is

closed in the Skorokhod topology. The set n (7-' u S,) is
i>l

compact since it is closed and totally bounded in the d-metric.

This implies that B is relatively compact. We show that for any
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C > 0, S (B) is finite. Observe that, since S S1 D S2 : ..-

and Kl C K2 C K C
2 3

B = r' (KiU Si) {1U (U (s( S c  K )
I i>o

For any > 0,

S (B) = {t E[0,l] ; Sup Ix(t) - x(t-O)l > £1

[2 cB

S U (S ( +1 n Ki))
i- 10 1+ +

[2/r]
C U0 S C(K i+I )

where F2/] is the largest integer < 2/. Since K c K for

i = 1,2,3,... , by Theorem 2.1, S (Ki ) is finite. Hence S (B)
€£

is finite. By Theorem 2.1, B e K. This completes the proof.

Now, we concentrate on proving some Laws of Large Numbers.

To do this, we resort to the classical truncation technique by

truncating the random elements to a set K in K. The following

result is useful in this connection.

Theorem 3.2 Let X n, n>l be a sequence of DFOIj -valued

random elements such that P{X n c K) - 1 for every n>, for

Borel set
some, K in K. Let ank, 1<k<n, n>l be a triangular array of
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n

real numbers such that k 2 1 ank~j r for all nl for some

positive constant r. Then

n
z a nk X k n1l converges to 0 in probability
kl I

(in r-th mean)(a.e.[P])

if and only if

n

k : a nkXk(*)(t)., n1,- converges to 0 in probability

for every t in S for some dense subset S of [0.11

Proof..We need to prove the "if part" only. For any c > 0, by

Theorem 2.1, there exists a partition T - {t 1 ) 10of [0,1]

such that max u([ti 11 ti)), £/r for every x in K.
1 < i<N X

Choose sit S2, , s in S such that t 1- 1 Si ti for

each i - 1,2,--,N. Then !x(t) - X(s i)) .1 /r whenever

t C <t1 1 , t i and x e K. Let YT D [0.1~] -. D[.0,1] be defined by

N
Y TxW(t) r x(s1) I<t 1 1 t1 (t), 0ctcl.

Then for every a~in f?
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n n
Z a nkXk(6))H <. 1 z ank (X k(W) YT(Xk(W)))I
W= kal

n
+ 1  ankYT(Xk()) I I

n
< + max I z kk()(sl)I.

1 l<i<N k-l

In the above chain of inequalities, we have used the information

that P(X n e K) = 1 for every n .l and the fact that

lix - YT (x < /r for every x in K. The desired conclusion

now easily follows from the above chain of inequalities.

Corollary 3.3 (Taylor and Daffer [10, Theorem 3, p.102]) Let

K be a compact convex subset of D[0,1]. Let Xn, n>l be a

independent
sequence ofA random elements with EXn a 0 and P{X n e K) = 1

for every n>l. Let ank, l<k<n, n>l be a triangular array of

n
real numbers satisfying z Ia I 1 r for every nW for some

kul nk
positive constant r and max lanki = 0(n-') as n * a for

l<k<n

some > 0. Then

n
SI a nkXklI n>l converges to 0 a.e. [P]k=l nk -" ""

Proof. By Theorem 2 of Rohatgi [ 7,p,306] , the sequence of

n
random variables kZ afkXk(. )(t). n>l converges to 0 a.e. [P]rando varable Z aku k
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for every t i n [0,1] . Now, an application of Theorem 3.2 0

completes the proof.

S
Now we prove a general result from which some Weak Laws

of Large Numbers can be derived.

Theorem 3.4 Let X n, n>l be a sequence of random elements

taking values in D[0,1] satisfying either (I) or (ii) of

Theorem 3.1 for r a 1. Let ank, l<kn, n>l be a triangular

n
array of real numbers satisfying r la nk 1 r for every n-.1

k Il

for some positive constant r . In the following statements, then

(1) now> (iv) =WE> (iii) ...> (ii).

n
(I) k: ank(Xk(.)(t) - EXk(-)(t)). n-1 converges to 0

in probability for every t in S for some dense

subset of [0,1]

n n
(ii) d( kiE ankX k -Z ankEXk), nl converges to 0

in probability.

n n
(iii) E d( k Z a nkXk - E ank EXk ),  n>1 converges to 0.

n S
(iv) nl k a k(xk - EX k)I J n>l converges to 0.

aS
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Proof. First, we prove (i) ---> (iv).Let £ >0. By (1) of

Theorem 3.1, choose K in K such that

ElIXn 1( n K c~l  < cl2r

for every n>1. As in the proof of Theorem 3.2, we can choose

Sl,. s2 0e., SN in S and the operator YT built on s1 , s2,-- ,

s N  such that

Sup lix - YT(x)ll < E/6r
xcK

We note that

n n
ElI r ak (Xk - EXk)II _ Ell nkk " YT(Xk)ii

n
" Ell kEI a k(YT(Xk) YT(EXk))li

n
SEll a k (YT(EXk) - EXk)ii (3.1)

k-1 nkT k)

We show that each of the expressions on the right hand side of

the above inequality can be made < e/3  for all large n. Consider

n n
Ell n an (X - YT(Xk)ii Ell k a (X k I (T(X k )

k-l k a - k-1 nk kk K {XkK}
n

+ Eli ank Xk I{X k KC)lI
kul nk k

n
+ E E ankYT(Xk I C

* E {Xk Kc '
k-lk
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n

< E lank I  sup ix - YT(x'll
k=l xe K

n

+ 2k- nk Xk '{ Xk E KC 1 1

< e/6 + /6 e e/3 (3.2)

In the above chain of inequalities, we have used the fact that

I IYT(x)I[_ Il xli for every x in D[Ol] . Now, consider

n n
k=l ank (YT(EXk) EXk)i - I k-i a nk(YT (EXkI( XkI K) " EXkI(X

+ 11ka l ank T (XkI{ XkcKc } k

+ I I kir a Y T E Xk I) ( "Xk l{ )

n I
+ 2 k-i lank I Eli Xk {XkcK)

nk 2laI EIIYT(XkI X - x )Ik l {kK} kxkK

+ c16

n< - l nksup I IYT(X)" xli £16

< c/6 + c/6 - c/3. (3.3)

In the chain of inequalities above, we have used the fact that

YT(EX) - EYT(X) for any random element with El lxi i - . Next,

we use the hypothesis on the pointwise convergence in probability.

I

. ... . . . . . . ... ...... ... . . . .... ...... ... .... . .. .. . . . . .. . . .. ..
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For any t in 101 and n>1

n n
kua k (Xk ()(t) - EX k(*)(t))lc l a nI (Ix 1 + EI ~)k kul n

n
This implies that the sequence kE Iank(X (-)(t) - EXk(e)(t)), nl

is uniformly integrable for every t in [0,11 . Hence it follows

that this sequence converges in mean to 0, i.e.,

n
El k a nk(X k ()(t) - EX k ()(t))I , n>l converges to 0

for every t in S. We can find No 1 such that

n
El k E1 aflk (X k(e)(si) EX k(.)(s )I < /3N

for all ia 1,29,....,N whenever n >No. Consequently, we have

n

Elk zIl nk (Y T(X k Y YT(EX k))l

N n
< E El r a k(Xk(-)(s) EX ~)s))I < c/3 (3.4)

whenever n > N . Finally, (3.1), (3.2),, (3.3) and (3.4) yield
0

n
Ell k El a nk (X k - EX k)Il < whenever n >No*

This completes the proof. (iv) ... > (iii) follows from d(x,y)

lix - yIl for all x,y in D1091]3

Remarks. (1) Taylor and Daffer CIO, Theorem 1, p.97] proved the

implication Mi >=u (ii) under the additional assumption that



-30-
the set S is the set of all dyadic rationals in [0,1]

(2) As has been remarked by Taylor and Daffer [10, p.99],

n
(ii) -- > (t) if the sequence E ankEXk. n>l converges in

k - n

Skorokhod topology. In that case, we have (t), (ii), (iii) and

(iv) of Theorem 3.4 above are all equivalent.

(3) Theorem 3, Corollary 4 and Theorem 5 of Daffer

and Taylor [ 4,p. 90-91] are special cases of the above result.

See also Theorem 1, Theorem 2 and Corollary of Taylor and

Daffer [ 9,p.412-415].

(4) In the discussion following Theorem 2 of Taylor

and Daffer E 9, p.415], it is argued that

n
11(1/n) z Xk - EXII1. n >1 converges to 0k-I

in probability under the additional assumption that EX I  is

continuous. According to Theorem 3.4, this assumption is not

n
necessary. We have the stronger conclusion that EIl(i/n) r Xk -EX If

kul

n>1 converges to 0.

As has been mentioned in the introductory remarks for

Theorem 3.4, Theorem 3.4 is useful in deriving some Weak Law of

• - al II I . . . m I . . . . . . . I I . . . . l . . . . . . . . . . . . . . . . . . . .
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Large Numbers. We give a sample Weak Law of Large Numbers below.

Theorem 3.5 Let X n , n>.l be a sequence of pairwise independent

random elements in D[0,1] satisfying either (i) or (ii) of

for r - I.
Theorem 3.1 Let afnk, l<k<n, n>l be a triangular array of real

n
numbers satisfying r lankj < Ir for every n>l for some

k-l

positive constant r and max la I I n>1 converges to 0. Then
l<k<n nk c e

n
lim Ell r a (X " EX o.
n - kal n k k Ek)I .

Proof. By Theorem 3.4 above, it is enough to show that for any

n
t in [0,1], r a k(Xk()(t) - EXk(-)(t)). n>l converges to 0

in probability. For a given > > 0 and 8 > 0, choose a Borel

set K in such that

EIIX n  I{xn  E KCIll <e /8r

for all n>l. Choose N > 1 such that

max lankl < 6€2/8 2r
l<k<n

for every n >N, where e - Sup Ilxll . We observe that if n • N
xeK

n
P(I r ank (X k(.)(t) - EXk(.)(t)lll <

k-l k



-32-

n
E( afl (kl( ) {Xk K) K(.)(t) - EX k(-)(t) I{Xk e K) (.(t)I)£c/2)

k k

n
+ P(j r a nk(X k(.)(t) I (XKc I .)(t) - EX k(*)(t) I1X cK c(.)(t)l >c/21

kul k {kslk~N

(4/F2) r ja Ik 2Var(Xk(.)(t) I { EK (.)(t))

n
+ (4/c) I a k I El Xk(.)(t) c I('(~

n
<(4/c2) max Iaflk I k ja nkI (Sup.IIXII)2

I k< k i <nk xeK

+ (4/e) k-i IaflklI EIIX k '{(Xk KC)III

(4/e2 )(8c 2 /892 r)rq2  + (4/c)r(.sel8r) - 8/2 + 8/2 *8

This completes the proof.

Remark Taylor and Daffer Dio. Theorem 2, p.100] established

the conclusion of the above theorem under the much stronger

condition that max [a kI - 0(n_") as ni* for some a ). 0
1 <k <n

and EX k 0 for every n-)l. This Theorem 2 of Taylor and Daffer

is thus a special case of the above theorem.

Now, we establish some Strong Law of Large Numbers. Our

main goal is to seek analogues of Marcinkiewicz-Zygmund-Kolmogorov 's

and Brunk-Chung's Strong Laws of Large Numbers for D[0,1] -valued
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random elements. (See Chung [2 ,p.125] for a proof of Marcinkiewicz-

Zygmund-Kolmogorov 's Strong Law of Large Numbers. For a proof of

Brunk-Chung's Strong Law of Large Numbers. see Chung [2 ,p. 348] .

The following result gives the desired analogues. This result

generalizes Theorem I of Daffer and Taylor [4 . P.861

Theorem 3.6 Let x n * n~l be a sequence of independent D[O,1]

for r = 1
valued random elements satisfying either (i) or (ii) of Theorem 3.1

(a) If I <p.12 and Z ElIX IIP/iP < then
J>1

n
J1(1/n ) k r (X k - E Xk)I, n>1 converges to 0 a.e. [P]

(b) If p12 and ZElj IX~ 1~1+/ < then

n
1(1/n ) Z (x k -EX k )1, n1 converges to 0 a.e.[1

k-l

Proof. (a) For a given c > 0, choose a Borel set K in K

such that EIIXn I { K c~ c /4.for every n>1. As in the

proof of Theorem 3.2, we can choose s Is S2 1' s N in [0,1]

and build a linear operator Y T : D [0,1] *D[O,1] such that

sup Hjx - Y T(x)jj < /4 (3.5)
xeKT

Then



-34-

n n
1l(1/n) t (x - EXk)11 < 11(1/n) 1 (Xk  K - EXk  I {I

kal k= 1 Xk K {Xk
n

" 11(1/n) k I Xk I (Xk K cII

n
" 11(1/n) Z EXk '{Xk c Kc I

£

n11I (1/n) r (Xk  I{ EX I K )I
1(/)k=lk {Xk E K) k {Xk £ K}

n
+ (1/n) (Ixk I(Xk KCIIl - EIIXk I{XkcKC)I

n
+ (2/n)kr EIlx I{X £ KC1ll (3.6)

We show that the first term on the left hand side of the above

inequality is < e/2 as n - a.e. [P3 , the second term converges

to 0 a.e. [P] and the third term is, obviously < e/2. Using (3.5),

we obtain

n
II(l/n) k-i (X I {Xk E - EXk I k )1

n
11(1/n) r (X k I{X K} YT(Xk TXk I K )MI

n
+ 11(1/n) k I (EXk I{X£ K) - YT(EXk IXk £ K)))II

n
k=1 T k {Xk £ K T(k 'Xk K

n
e/2 + 11(1/n) z (YT(Xk I{Xk KI- YT)(EXk {X K

k-l k knI



-35-

The last term on the left hand side of the above inequality is

equal to

N n
1 (I/n) z (Xk(.)(S I .xk  c K}(' ( l

-I k-Ik

- EXk(*)(si) I{Xk  e £ l(')(s£))l

which, by Marcinkiewicz-Zygmund-Kolmogorov's Strong Law of Large

Numbers, converges to 0 a.e. [P] as n *- . Consequently,
n

lim sup 11(1/n) E (Xk I - EXk Ik )
n - kal {Xk £ K) {X £ K}

C/2  a.e. [P3 * (3.7)

Again, by Marcinkiewicz-Zygmund-Kolmogorov's Strong Law of Large

Numbers, we have

n
(1/n) k I (IIXk I{Xk K)I' - EIIXk I{Xk e K£ II) , n > 1

converges to 0 a.e. [P] . (3.8)

Thus, (3.6), (3.7) and (3.8) yield

n
lim sup 11(1/n) r (xk - EXk)ll e c a.e. [P]

n - k-l

Since e is arbitrary, we have the desired result. Proof of (b)

is similar to that of (a) and is omitted.

Remarks Daffer and Taylor F4, Theorem 1, p.88] established

the conclusion of the above theorem under the assumptions that

• b . . . . . . . .. . . .. ... I . ... . .. IN m - In -"ml .... . . .ili -1
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for some r>l.

Xn 's are independent, uniformly convex tight and Sup EllXn r < -
n>]

In fact, they established the weaker conclusion that the almost

sure convergence takes place in the Skorokhod topology. This result

is a special case of the above theorem.

Using the argument presented in the proof of Theorem 3.6

above, one can obtain the D[0,1] space version of Rohatgi's

Theorem 2 [ 7, p.306j as reported below. This version generalizes S

Theorem 4 of Taylor and Daffer [10, p. 102].

Theorem 3.7 Let Xn, n>l be a sequence of D[O.lJ - valued

random elements uniformly convex tight and uniformly dominated

by a non-negative real random variable Y with EYr - for

some r > 1. Let ank, l<k<n, n>l be a triangular array of real

n
numbers satisfying E Ia I r for every n>l for some S

kal

positive constant r and max ja I = 0(n s) as n -
l<k<n nk

for some 0 < (1/s) < r-l. S

(a) If 0 < s < 1 and Xn , n>l is independent, then

n S
lim E a k(X - EXk)II = 0 a e [P]
n-as kl nk k k
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(b) If s 1 I and X , n>l is pairwise independent, then
n

n
nm Ijk a nk(Xk - EX)II = 0 a.e. [P.

Remark For separable Banach space valued version of the above

theorem, see Wang and Bhaskara Rao [12, Theorem 4.2].

Now, we establish an analogue of Jamison, Orey and

Pruitt's Strong Law of Large Numbers in D[O,l] space. See f 6

Theorem 3, p.42]. Let an , n>l be a sequence of positive numbers

n
and An = E ai, n!l with lim max (a 1/A) 0. Let N(n) -

i-I n.- l<i<n

card{i >; (A1/aI) < n) , n >.

Theorem 3.8 Let Xn , nl be a sequence of pairwise independent

identically distributed D[0.I] -valued random elements. If

(a) N(n)/n < r for every n>l for some positive constant r

and EIXI[ I <

or

(b) sup lani and EIIXl I log lIX 1 ll < - holds, then
n>l

n
In II E (a i/An)Xi - EX1 1l 0 a. . P].
ni*= I-.
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Proof. One can prove this result using the argument given in the

proof of Theorem 7.3.2 of [8 ] and combining it with the argument

given in the proof of Theorem 4 of Wang and Bhaskara Rao l..

Remarks The above result generalizes Theorem 7.3.2 of Taylor t81

I

I
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