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plant is tested using a nonlinear simulation, With gain scheduling,
multivariable control is extended over the vehicle's entire speed range.
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1.0 INTRODUCTION AND SUMMARY

t.1 Background

The purpose of this thesis is to investigate the applicability of
designing a multivariable controller for a deeply submerged underwater
vehicle using the Linear Quadratic Guassian (LQG) with Loop Transfer
Recovery (LTR) methodology, At the present time, there are few examples
of multi-input, multi-output (MIMO) design of complex systems using the
LQOG procedure and still fewer examples which actually test the control
system on a nonlinear simulation as will be accomplished in this thesis,

while it is possible that full state feedback could be achieved in
the present system, this is not always practical or feasible in general
for systems with inaccessible state variables. Moreover, being able to
accomplish control with only a selected set of the available state
variables provides additional flexibility and efficiency in designing a
fault-tolerant system.

As one of the primary concerns of submerged vehicle operations is -
course and depth keeping, it is natural to desire to control the heading
angle (psi, J) and depth (z) of the vehicle. Thus, for this design it
is intended to feedback only two states (psi and z) and obtain
reconstruction of the remainder as a by-product of a Kalman filter-based
estimator within the compensator structure.

There are several reasons for designing a depth and heading
controller., An automatic control system can be expected to reduce the
operational workload and thus the required manning. With manual
control, the response to course and depth changes tends to be
oscillatory, especially at higher gpeeds. Automatic control should
provide control surface movement which is more precise, requiring less
overall motion and energy., The reduction in lifting surface motion will

also lower vehicle resistance and reduce fuel costs.

- 11 =




It is emphasized that the type of controller design proposed here
would be utilized under normal operating conditions such as transits
from one location to another or in patrolling a given area of the
ocean. It is not intended that the control system be used for rapid
maneuvers such as collision avoidance or navigation in restricted

waters.

1.2 Contributions of the Thesis

The primary contribution of this thesis is the design of a truly
multivariable control system for a submerged, underwater vehicle.
Typically, such vehicles have been controlled by separating plans of
motion and coordinating the decoupled control actions. However, when
crogs-coupling is considerable, the control system thus designed may
actually become unstable.

Design of a truly multivariable controller overcomes the
shortcomings of some of the "classical™ designs. The coupling between
planes of motion, as discussed in Chapter 2, is particularly severe for
the system under consideration. With multivariable control, these
coupling effects are incorporated in the design and thus, one may expect
to develop good controllers in a more systematic fashion.

An additional contribution of this thesis is that it represents the
first attempt to apply the LQOG/LTR control methodology to design an
autopilot for a submersible. This methodology, which largely follows
the work of Doyle and Stein (5], has several excellent characteristics.
First, it is a systematic procedure which, through the use of singular
values, allows one to "design to" a set of frequency-domain
specifications., With appropriately chosen design specifications, the
compensated system will exhibit desirable command following and
disturbance rejection properties as well as insensitivity to modeling
errors and sensor noise. Further, the design methodology allows one to
ascertain the multivariable robustness properties (stability margins),

ensuring closed-loop stability in the presence of modeling errors.
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Pinally, the control design is tested on a nonlinear simulation.
Due to the inherent robustness properties of the L0OG method, we may
expect the controller to operate satisfactorily at other than its
nominal speed and position in state space. This will ease the gain
scheduling task.

1.3 Outline of the Thesis
Chapter 2 contains a physical description of the submarine with its

nonlinear and linearized equations of motion. The second part of the
chapter investigates the dynamics of the linear model obtained at twenty
knots. This includes a modal analysis and the open loop singular values
of the plane.

Chapter 3 discusses the desirable characteristics of the controller
and sets some specifications to be met in the frequency and time
domains. Multivariable robustness considerations are also discussed.

Chapter 4 presents the model-based compensator structure along with
a discussion of the augmented dynamics incorporated in this design. The
LQOG/LTR controller design methodology is shown and a control design
based on the twenty knot linear model is developed. Finally, the
compensator is tested on the linear and nonlinear simulations,

Chapter 5 investigates the speed range over which the compensator,
designed using the twenty knot linear model, meets the specifications
and presents the other models (linearized for different speeds)
necessary to accomplish automatic control over the speed range of the
submarine.

Finally, Chapter 6 contains the conclusions and recommendations for

future study.

- 13 =
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2.0 SYSTEM DESCRIPTION, MOODELING AND ANALYSIS

4.1 Introduction

In this chapter we shall first discuss the submarine in physical
terms, describing its salient features and dynamic characteristics.
Some background will be given in the sequel describing the nonlinear
equations of motion after which a short derivation of the linearized
dynamics is presented along with the state variables and system inputs
and outputs. The twenty—knot linear model is then presented and
verified by comparing the linear and nonlinear dynamic responses.
Finally, an analysis of the dynamics of the linear model is undertaken

including the pole/zero structure and a modal analysis.

2.2 System Description

The system to be controlled is a manned, underwater vehicle with
port/starboard (left/right) symmetry as shown in Figure 2.1. For the
purpose of this control design the vehicle is assumed to be well below
the surface of the ocean and its mass constant. Neutral buoyancy is
assumed as the ballast system is not modeled. The control surface
conf iguration consists of a cruciform stern with separate sternplanes
and rudder located aft and fairwater planes located on the sail. There
is no differential control; that is, both the upper and lower or port
and starboard control surfaces must rotate together.

Positive rudder deflections primarily cause the vehicle to turn
left; however, due to vehicle banking (which causes the rudder to act to
some degree as a sternplane) as well as crossflow drag effects and
lifeing surface memory effects the vehicle exhibits a tendency to dive
in a turn. Further, the stern and fairwater plans will tend to be
“seen”, to a certain extent, as rudders. These effects are quite
pronounced at higher speeds. Thus, there is considerable cross-coupling

between planes of motion.

- 14 -
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Figure 2.1. Sketch showing positive directions of axes, angles,
velocities, forces, and moments.
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While the generic model of the underwater vehicle is based on the
the original Naval Ship Research and Development Center (NSRDC) 2510
Report (8], various supplemental models have subsequently evolved.

These modifications enable the model to predict well at least one
particular aspect of vehicle motion. The most notable additions attempt
to model the memory effects of velocities induced on the afterbody and
control surfaces by trailing vortices from the fairwater planes and
sail. Thus, the effects of crossflow drag and vortex shedding have been
included in the math model; however, neither surface or bottom effects
are included.

Finally, the subject vehicle is capable of speeds in excess of
thirty knots with a minimum speed of about five knots. The sternplanes
and rudder are limited to a maximum of plus or minus forty degrees of
rotation with the fairwater planes' maximum excursion limited to twenty

degrees.

2.3 Vehicle Modeling
2.3.1 Nonlinear Equations of Motion

The system dynamics, including control forces and moments exerted
by the rudder and planes, are typically described by a set of six degree
of :reedom nonlinear differential equations based on the NSRDC 2510
report [8]. The equations are general enough to simulate the rigid body
trajectories and responses of a submarine in normal maneuvers as well as
in extreme maneuvers such as those associated with emergency recoveries
from a sternplane jam and flooding casualties, Over the years
correlation to full scale trial measurements with the following
equations has shown them to yield accurate predictions of submarine
motions and trajectories. The advantage of using this formulation is
that it is experimentally based and takes advantage of commonly used
experimental techniques in generating many of the hydrodynamic
coefficients.
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fhe hydrodynamic coefficients constitute the heart of the
mathematical model used to simulate the rigid-body motions of the
vehicle. The hydrodynamic coefficients used for this study are for a
deeply submerged vehicle, free of free-surface, bottom, and wall
effects. The hydrodynamic forces and moments which enter into the
equations as coefficients are usually classified into three categories:
gstatic, rotational, and acceleration. The static coefficients are from
the linear velocity components of the vehicle relative to the fluid, the
rotary coefficients are due to angular velocity components and the
acceleration coefficients are due to either linear or angular
accelerations. Within limited ranges, the coefficients are linear with
respect to the appropriate variables, and thus yield good results in the
linearized equations of motion ([8].

The major modeling problem therefore reduces to finding the
numerical values of the individual coefficients with sufficient accuracy
to support the objective of the simulation study, in this case an
automatic heading and depth controller to be used during normal underway
operations. Ideally, one would acquire the values for a given vehicle
configuration using hydrodynamic theory. Unfortunately, those
coefficients which are due primarily to viscous flow considerations,
such as the static and rotary coefficients, cannot be obtained reliably
using existing theory alone. Theory has been used with good results in
computing the acceleration coefficients for simple shapes without
appendages, using potential flow theory. For an actual underwater
vehicle which includes appendages such as control surfaces, propellers
and bridge fairwaters, the use of theory does not, in most cases, yield
results which accurately describe the physical system. Accordingly, the
present state of the art is either to rely on experimental means or
semi-empirical computer-based methods to determine the hydrodynamic
coefficients for a specific design.

The primary experimental method used to obtain the coefficients is
the planar-motions-mechanisms-system in conjunction with a physical
model of the wvehicle. The physical models used for testing are large as
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towing tank. This permits determination of the hydrodynamic
coefficients which are comparatively free of scale effects and other
experimental problems, Using a large model allows one to obtain, more
easily, the high Reynolds number necessary to avoid the effects of
transitional flow over the hull and appendages of the model. The
planar-motions-mechanism is used to find all the values of hydrodynamic
coefficients except certain coupling terms and those nonlinearities
associated with high values of angular velocity, found while conducting
tight turns or dives [1,8], If such values are required, the planar-
motions~-mechanism tests are supplemented by the rotating-arm test. The
hydrodynamic coefficients used in this study were provided by NSRDC for
a generic underwater vehicle,

The equations of motion are written in a right-hand orthogonal
system of moving axes, fixed in the body, with its origin located at the
center of gravity of the vehicle. The axes are body fixed as the
hydrodynamic forces and inertia are most readily computed in the
vehicle's frame, As shown in Figure 2,1, the xy plane is the principal
pPlane of symmetry, with the x-axis parallel to the baseline of the
body. The positive direction of the axes are as follows: x-forward,
y-starboard, and z-downward, The remaining sign conventions follow from
the right-hand rule., The positive directions of the axes, angles,
linear and angular velocity components, forces and moments are also
shown in Figure 2.1, For the purposes of control, it is sufficient to
include the effect of relative motion between the body frame and flat
non-rotating earth frame with the latter used as the inertial frame.
Thus the effects of the earth's rotation and its spherical shape have
been neglected as they are relatively small, The nonlinear equations,
and kinematic relations, are given in Appendix A, and include the
crossflow drag and lifting surface memory effccts. The definitions of

the hydrodynamic coeffiocients are contained in reference ([8].
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2,3.2 Linear Time Invariant State Space Model

For the purposes of controller design the nonlinear equations of
motion are linearized about an operating or nominal point., Further, it
is sought to place the linearized equations in a state space form as

shown below:

.

Mt = Ax + Bu (2.1)

where x is the state variable vector and u is the control vector.

The equations are therefore expanded in a Taylor Series about the
steady-state operating point with only the first order terms of the
expansion being retained. Thus, given the nonlinear state model of the

form:

Mt = £(x,u) (2.2)

we linearize about the nominal point X,, u,. Neglecting higher
order terms we find the linearized dynamics to be described by the

following equations

The nominal input u, and the resulting nominal state x, satisfy

the original equations of motion at the nominal point, _bgt_-_f_(_z_t_o,gc).
Defining Ax = (_:_:_ - X5) and Au = (u - uy), one has

mag = SE(%5085) oy 4 O£ su (2.4)
6x Su
which is of the desired form, where A = if-(io'go) and B = E(i‘-o'g-o).
Sx Su
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The linearized equations of motion can be found in Appendix B,

2.3.3 State Variables

The six equations for surge, sway, heave, roll, pitch and yaw
contain eight variables in addition to the hydrodymanic coefficients.
These are u (forward speed), v, w, p, 4, r, ¢ and 6, To the previous
six equations we add the four kinematic relations - depth rate (%), roll
rate ($), pitch rate (8), and yaw rate (}). As it is intended to
control the yaw/heading angle and depth these variables will be
considered as the feedback state variables for this design. It is
interesting to note that none of the ten state equations used to model
the system is a function of the heading angle or depth, Thus, the
system as presently modeled has two integrators associated with the
variables psi and z, Within linear system theory, this integrator
action shall ensure no steady state error for step disturbances in the

closed-loop compensated system.

2.3.4 Outputs and Control Inputs

The intent of this thesis is to use and evaluate the loop transfer
recovery technique (discussed in Chapter 4) to design the compensator,
This methodology requires a square system with an equal number of
control inputs, u, and observed outputs, y. As the compensator to be
designed is to control the heading angle and depth; and, since these
variables are readily available for measurement, they are selected as

the system outputs, Thus, the output vector is:

_Y. = ‘, (2.5)

The choice of two control inputs is only slightly more difficult,
The vehicle has available, as inputs, its three control surfaces - the

rudder, stern and fairwater planes. As the fairwater and sternplanes
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are redundant (either can separately control depth, depth rate or pitch)
and present operating procedure is to fix the fairwater planes while
utilizing the sternplanes; the system inputs selected were the rudder
and sternplane deflection (8r, §s). The input vector is then:

Note that by not utilizing the fairwater planes under normal conditions,
a separate set of gains can, in the future, be generated as a means of
back-up depth control. Table 2.1 lists the inputs, states and outputs
of the submarine used in this control design along with their respective

units.

2.3.5 Twenty Knot Linear Model

The function of the multivariable controller to be designed is to
maintain an ordered course and depth as well as to be capable of
altering vehicle heading and depth. As the submarine will spend the
great majority of time maintaining a given course and depth, it was
decided to linearize about straight ahead motion at constant speed. The
SUBMODEL program, developed at Draper Laboratory is briefly discussed in
Appendix C and, more completely, in reference [18]., It was used to find
the local equilibrium point.

The local equilibrium point was found by perturbing u, v, w, p, q,
r, #, and 0 until the accelerations (derivations of the states) were,
practically speaking, zero. The accelerations and equilibrium values of
the states at twenty knots are listed in Table C.l1 of Appendix C,

At this point, the linear dynamics are calculated and the ten by
ten _l!‘l_l_ (_A_p) and the ten by three !"1_3. (_gp) matrices generated.

The Ap, Bp, and Cp matrices are shown in Table C.3 of Appendix C
and represent the unaugmented submarine model at twenty knots. The EP

matrix still shows three controls as the fairwater planes have not yet
been "locked”, Subsequently, in the control design, the second column

of By (corresponding to the fairwater planes), is deleted, -~
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u2

X4
X2
x3
x4
Xs
X6
xq
xg
X9

TABLE 2.1

Vehicle Control Inputs

sternplane deflection - degrees

rudder deflection - degrees

States
u, forward speed - ft/sec
v, lateral speed - ft/sec
w, vertical speed - ft/sec
p, roll rate - radians/sec
q, pitch rate - radians/sec
r, yaw rate - radians/sec
¢ , roll angle - degrees
8, pitch angle - degrees
Y, yaw/heading angle - degrees

X109 = 2z, depth -~ feet

System Outputs

Y1 = ¥, yaw angle - degrees

y2 = z, depth -~ feet
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2,3.6 Model Verification
To ascertain the validity of the linear model about a particular

;5 nominal point, one only has to equally perturb the linear and nonlinear
) models (using the SUBMODEL program), then observe and compare their
.l responses, If the linear model dynamics are sufficiently close to the
y nonlinear response, one may have confidence in the linear model.
Additionally, one can gain a feeling for the region of state space in
which the linear model is valid by comparing the linear and nonlinear
.I regsponses for various perturbations from the nominal point.

' As an example, the linear and nonlinear responses with no control
surface deflection and initial perturbations in q and r of 0.01
radians/second are shown in the plots in Figure 2.2. Note with the
exception of the forward speed, u, the close agreement of responses.,
The difference in forward speed can be attributed to the fact that we
linearized about straight ahead motion at constant speed (1]. Other
o tests with different states perturbed were made with the comparisons
between linear and nonlinear responses being, in general, excellent.
Since the controller is to be capable of turning and diving, non-zero
settings of the rudder and sternplanes were also compared.

Comparing the linear and nonlinear responses with the sternplanes
set at two degrees, there is generally good agreement, especially if one
compares not only the shapes but the absolute values. Of particular
interest are the psi and depth responses shown in Figure 2.3. The

nonlinear and linear values at 100 seconds for psi although opposite in

direction are both essentially zero (.0045 versus -.0013 degrees). The
depth response for the linear model follows very closely for the first - 4
thirty seconds (within one foot). The depth at 100 seconds being 633
feet for the linear model and 574 feet in the nonlinear case. The
variations between the responses is certainly acceptable.

When one compares the linear and nonlinear heading and depth
responses with a two-degree rudder deflection (Figure 2.4) the major
weakness of linearizing about straight ahead motion becomes apparent,

The linear model shows nearly no deviation in depth during a turn (=.16 )
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feet) while the nonlinear model (due to the cross-coupling effects)
shows a depth excursion of 47 feet at 100 seconds. However, it should
be noted that the difference between the two models is less than a foot
at times less than 30 seconds.

The psi responses compare well, with the difference between the
linear and nonlinear heading being less than 1.5 degrees at 30 seconds.
At 100 seconds, the nonlinear model has shown a heading change of =60
degrees while the linear model is at -103 degrees.

Other comparisons with different control surface deflections and
vehicle speeds show the same general results. As expected, the linear
and nonlinear model responses increasingly deviate as the deflections
and speeds increased, however there was good agreement in the first 20
to 30 seconds. These analyses suggest that, if the control design which
is based on the linear model of the submarine, requires large, prolonged
control surface deflections, the compensator may not provide adequate
response to perturbations. This is so because the controller will have
based its actions on the expected linear response while the actual

vehicle more closely follows the nonlinear model.

2.4 Model Dynamics
2.4.1 Analysis of the Twenty Knot Linear Model
In this section, the submarine dynamics shall be investigated. The

multivariable poles and zeros are presented and their implications
discussed. A modal analysis is conducted to further validate the linear
model and lead to a more complete understanding of the vehicle

dynamics. Controllability and observability studies are undertaken and
the plant open-loop singular values are calculated and their

implications in future controller design discussed.

2.4,2 Pole Structure

The gtability of the system depends solely on its poles (the
eigenvalues of 5p). For stability all eigenvalues must have negative
real parts. Stability implies that, if the vehicle is perturbed from
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its equilibrium point in state space, it will naturally tend to return
to its nominal state, The poles of the system are shown in Table 2,2,
Note the two poles at zero due to the independence of all the equa-
tions to the state variables psi and z. These poles at the origin show
that there is no tendency for the vehicle to return to a given heading
or depth (assuming that we have that weight equals buoyancy) when per-
turbed, Further note that the fastest system pole is -0.33 radians per
second, This emphasizes the fact that the submarine is a very slow sys-
tem. Also, the two sets of complex conjugate pairs correspond to the
oscillatory roll and pitch modes. It is desirable to further associate
the poles with the states and modes in order that one may gain insight
into the physical system and also further verify the linear model, To

accomplish this, a modal analysis of the linear system was performed,

2.4.3 Modal Analysis
As the heading angle and depth of the vehicle have no effect on

the six modes "(surge, sway, heave, roll, pitch and yaw) a reduced A ma-
trix with the psi and z states and equations deleted was used in com-
puting the eigenvalues, This leaves the remaining eight eigenvectors
(two of which form conjugate pairs) to describe the six degrees of sub-
marine motion.

The normalization of the eigenvectors highlights the issues of ap-
propriate dimensions., The state variables u, v, and w are in units of
feet per second, p, q, and r in radians per second and @ and 9 in ra-
dians, There is no consistent set of factors by which to non-
dimensionalize the Ap matrix (and hence the eigenvectors). Ideally,
each column of Ay could be normalized by its respective state equilib-
rium value; however, in this instance, most of the equilibrium states
are essentially zero (see Table C.1).

In order to more appropriately view the eigenvectors, the three
linear velocities of each eigenvector were normalized by the largest

among u, v and w. The three angular velocites and two angles (4 and 6)

- 31 -




i

TABLE 2.2

Twenty Knot Linear System Eigenvalues

- 0,.000000
'. -0011766
-.014427 £ 0.016029

? 0.000000

- -.025288
i -.141521 £ 0.365928
-.296676
-.329816

TABLE 2.3

Twenty Knot System Transmission Zeros

-.025288
-, 13902 * 0.36063
-, 16079
-.17617
+.48846

g - *'.v"' o
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were likewise normalized among themselves. Thus, while we are not able
to compare the contribution to each mode from each state on a uniform
basis, we may still gain an adequate feel for the individual state con-
tribution to each mode by the previously described normalization method.
Pigure 2.5 plots for each eigenvalue, the dominant components of
its normalized eigenvector. The plots give an indication of the direc-
tions (in state space) in which each eigenvalue is important. Also, by
analyzing which states are dominant in a particular mode (eigenvector),
one can associate with each mode a particular state. This information

ig also indicated on the plots of Figure 2,5.

2.4.4 Multivariable Zeros

Table 2,3 lists the transmission zeros of the system, There is a

non-minimum phase (NMP) zero at +0.488. At present it is not clear pre-
cisely how NMP zeros can be handled so that they do not adversely affect
control system performance, It is known that, if a right-half plane
zero is within the bandwidth of the system, it will impose severe limi-
tations on system performance (5,15]. However, if the NMP zero is above
crossover (outside the bandwidth) it is expected that its adverse affect
will be greatly attenuated,

2.,4.5 Controllability and Observability

It is instructive to ascertain whether or not the linear model is
controllable and observable. This is due to the fact that,if
[Ap,Bp]l is a controllable pair (hence, stablizable) and (Ap.Cpl
is an observable pair (implying detectable), then one is guaranteed that
at least one set of control and filter gain matrices exist such that the
closed-loop compensated system is stable,

A asystem is controllable, if the input u can control the complete
state x of the system. This implies every mode is affected by at least
one input. As the system, described by the linear time invariant

matrices Ap, Bp and Sp has repeated eigenvectors and Ap is
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sinqular, the method used to ascertain system controllability is
n-1
mnk[bvﬁl&)ooooooou&p 5)]‘P- (2.7)

If the rank p, is equal to the order of the syatem, n (ten in this
cagse), the system is controllable.

A system is observable, if the complete state of the system can be
ascertained from observing the output y. This implies every mode is
connected to at least one output, The test for observability used here

was

RANk[Cp,AcCpr « «+ « (Ap) )= Cpl=a. (2.8)

If the rank of the above matrix is equal to the system order, n, the
system is observable, By forming the above matricies and determining
their ranks, the system was found to be both obgervable and

controllable,

2.4.6 Open Loop-Plant Singular values
In the multivariable case, the best extension of the Bode plot

concept of single input, single output (SISO) systems is a plot of the
transfer matrix singular values, Briefly, singular values of a matrix

M, o(!), are a function of frequency and are defined as:

g, (M) = /o, (M*M) (2.9)

where: o; = ith gingular value
Ay = ith eigenvalue of M
M* = the complex conjugate transpose of M
For our purpose, we substitute the plant transfer function matrix, G(s) "1
for M [3]), where
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G(s) = cy(s1-A;)"'B, (2.10)

and, using a computer routine, the singular values of G(s) as a function
of frequency are calculated and plotted. Figure 2.6 is the plot of
sinqular values of the open-loop transfer function G(s) for the twenty
knot linear model,

The maximum singular value is dominated by the depth, the minimum
by the heading angle, Notice that the crossover frequency of the
maximum singular value is approximately 1.0 radian per second while the
minimum singular value crossover occurs at about 0.13 radians per
second. This implies that the submarine naturally responds more quickly
in depth; and also, that designing a controller which is too fast
(crossover greater than 0.13 in the psi channel) will attempt to drive
the vehicle faster than it could naturally respond. Finally, it is
noted that the maximum singular value corresponding to depth crosses
over beyond the NMP zero. In designing the controller it will be
advantageous for the sinqular values to cross over at a lower frequency;
first, because the crogssover frequency should be well below unmodeled
and other undesirable dynamics so as to attenuate their effects and,
second, so that the NMP zero will be outside the closed-loop system's
bandwid th,

2.5 Chapter Summary

The physical system to be controlled along with some of its
particular dynamic characteristics were discussed. The nonlinear
equations of motion, based on the NSRDC 2510 report and their linearized
counterparts for straight ahead motion at twenty knots, were presented.

The linear model at twenty knots was successfully verified by
comparing the linear and nonlinear model responses to similar
perturbations., It was found that for periods of less than thirty
seconds, the responses were nearly identical. Finally, the dynamics of
the twenty knot linear model were investigated. 1In the next chapter,
time and frequency domain specifications will be developed.
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3. CONTROLLER SPECIFICATIONS AND ROBUSTNESS

3.1 Introduction

In this chapter some desirable attributes of an automatic heading
and depth controller will first be qualitatively discussed. Next, a set
of frequency domain specifications will be derived which will serve as a
bagsis for the compensator design of Chapter 4., Time domain specifica-
tions will also be presented against which the resultant compensator
shall be tested. Finally, the concept of robust multivariable control
is discussed and the definiition of multivariable phase and gain margins

given.,

3.2 General Specifications

There are no clearly stated design specifications which this par-
ticular compensator is required to meet. The time domain figures used
herein are the designers goals based on several discussions with opera-
tional personnel. In general terms, it is desired that a multivariable
controller be designed for use as an "“autopilot" to maintain course and
depth in the presence of disturbances such as shifting currents. It is
envisioned that the compensator be activated when the submarine is near
its ordered course and depth, This implies that the compensator be able
to response favorably to step inputs (in psi and z) as it is unlikely
that the submarine will be precisely at the ordered heading or depth
when the automatic control system is activated. Further it is required
that the controller be able to alter the course and depth of the sub-
marine in response to either step or ramp inputs in heading and depth
with small steady state errors. Another requirement is that the control
system allow the vehicle to accomplish a level turn, that is, undergoing
very little depth excursion while making a turn. Finally, as the multi-~
variable controller is not to be designed for rapid/critical maneuvers,

the speed of response is not of primary importance.
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The MIMO extension of a bode plot is a plot of the singular values
of the tranafer matrix. Referring to Figure 3,1, in the frequency
domain, it is required that the stable, clbsed-loop compensator have
good command following, input and output disturbance rejection, and low
sensitivity to modeling errors and sensor noise., Thus, one desires the
minimum singular value to have high DC and low frequency gains for good
command following and disturbance rejection while at higher frequencies,
where unmodeled dynamics and sensor noise typically have their energy,
the maximum singular value should be small and roll off rapidly.

In the time domain, the control design should mimimize any oscilla-
tory response or overshoot., This takes priority over the speed of
response for the present design objectives. Generally, an overdamped
regponse is considered desirable., Small steady state errors are

required,

3.3 Specification Development

First we shall set some guidelines in the frequency domain, Having
no other criteria, the surface wave frequency spectrum was used to
deduce some maximum crossover frequency limits, As discussed in
reference [17], the surface wave spectrum has a frequency range
typically between 0.2 and 2 radians per second, The frequency of
encounter, we, between the sea spectrum and a moving vehicle is a
function of the sea spectrum frequency, the angle between the vehicle
and direction of propagation of the dominant wave front and vehicle
speed., Specifically, from reference (13], within linear theory:

2 wu
w, =0 - -5 cosy (3.1)

vhere: = ghip speed in ft/sec

gravity

wave spectrum frequency

€ € Q £
[

direction of the vehicle relative to the direction

of wave probagation (180 for head seas)
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Figure 3.1. Plot of singular values versus frequency.
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The worst case (lowest crossover) is for following seas (psi=0) in
the presence of low frequency waves (w = 0,2). Thus, for various
speeds, the encounter frequencies presented in Table 3.1 gives some
indication of frequencies above which the controller should attenuate
energy.

TARBLE 3.1: Encounter Frequencies

Speed (Knots) Encounter Frequency
30 137
20 +158
10 «179
5 «189

Sensor noise is well above this range: and, therefore, it will be
readily attenuated by a compensator degigned according to the above
considerations for croasover, Note also that the NMP zero at +.488 is
well above the indicated crossover frequency.

In setting a lower frequency "limit", one may use the gettling time
allowable, Hera, the settling time is the time required to reach and
stay within 10 percent of the reference value, From experience,
reasonable settling times for a significant couse (10 degrees) and depth
(30 feet) changes as a function of speed are shown in Table 3.2 If one
assumes that the steady state is reached in approximately four time
constants, we are left with an indication of the lower frequency limit

for crossover,
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TABLE 3.2: Settling Times and Crossover Frequencies

Speed (Knots) Settle Time (sec) Frequency
30 100 » 040
20 200 020
10 300 .013
5 400 .010

A tight crossover pattern is indicated by the above analysis. As
the minimum singular value (corresponding to psi) was found to have a
crossover of about 0.13 radians per second along with the considerations
above, the twenty knot controller shall be designed with crossovers of
between .02 and 0.13 radians per second. Since the DC gain appears to
increase with larger bandwidths for this system, it is advantageous to
design at or near a crossover frequency of 0.13 radians per second. It
is emphasized that these ranges are guidelines rather than strict
limits., PFurther, it should be noted that the design procedure to be
discussed in Chapter 4 would apply equally as well to a different set of
specifications.

In the time domain, the specifications to be met include the
gsettling times (Table 3.2) for simultaneous 10 degree and 30 foot step
perturbations. Additionally, any overshoot or oscillatory response is
to be minimized but, from experience, acceptable fiqures are 20 feet in
depth and 5 degrees in heading.

The allowable deviation in depth during a course change is a

function of vehicle speed. The currently acceptable figures are:

TABLE 3.3: Depth Excursion Limits

Speed Allowable Depth Excursion
<10 kts. 10 feet
10-20 kts. 15 feet
>20 kts. 20 feet
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Heading deviations during a depth change are to be limited to three
degrees,

Of considerable importance is the allowable steady state error. An
acceptable absolute value for heading error is less than one degree
while depth error should be less than five feet., A more useful specifi-
cation for steady state error is a percentage of the required change or
deviation. Obviously, we should expect larger errors for greater course
and depth changes., It is the objective of the design to maintain a
three percent or less steady state error using the nonlinear simulation,

Finally there is the issue of rate limitations on the control sur-
faces, The state of the art for the size of the control surfaces and
vehicle speeds in thias design is 12 to 15 degrees per second. This lim-
itation was not explicitly included in the compensator design or
programmed in the simulation but must be kept in mind when deciding if a

particular controller is acceptable,

3.4 Robustness

The issue of robustness deals with the fact that any model is at
best an approximation. Usually the model is a relatively low order
linear time invariant approximation in which modeling errors predomi-
nantly manifest themselves at higher frequencies. These high frequency
modeling errors include neglected dynamics (for instance from the
assumption of rigid body motion), time delays and neglected nonlineari-
ties, The basic concern is to find the extent to which the nominal
design values of the plant model can deviate without causing system
instability.

For purposes of this discussion, the feedback system is as shown in
Figure 3.2, with the loop transfer matrix, G(s), incorporating both the
plant dynamics and any compensation utilized.
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Figure 3.2. General feedback system.

A
dB8

-1
OminlL + Gliwl]

T
\/

OmaxlE (iw)]

Figure 3.3. Robustness in terms of multiplicative error.

44

RSSO S U S VI a__a ——



Can e on A e

For the gingle input single output (SISO) case, the Nyquist
stability criterion not only informs one if the closed-loop system is
stable but also allows one to graphically visualize the stability
marging (robustness) of the system by viewing the locus of g(s) (scalar
G(s)) in relation to the critical point {12]. Fozr the MIMO case, the
multivariable Nyquist criterion {5,11,12] answers the question of
asymptotic nominal closed-loop stability, but does not indicate the sort
or size of errors which will drive the system unstable. In order to
obtain a measure of robustness (i.e., stability margins) in the MIMO
system one must use singular values.

As stated above, the actual plant,.é(s), differs from the nominal
plant, G(s), because of modeling approximations and errors. There are
many ways in which to model these errors. The most common ways are as

additive or multiplicative errors. For additive errors we have
G(s) = G(s) + E(s) (3.2)

where E(s) is the error matrix. For multiplicative errors we find

G(s) = G(s) (I + E(s)] (3.3

It can be shown [11] that for additive (or division) errors the
system will be on the verge of instability when

det(I + G(s)] = O. 6.

Similarly, for multiplicative (or subtractive) errors the verge of
instability in the MIMO cage is [11,12].

detlI + _&_-1(3)] = 0,
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In terms of the MIMO Nyquist criterion, this is where the number of
nominal encirclements of the critical point changes.

In terms of singular values we are interested in the smallest E(s)
such that the return difference transfer matrix ([I + égs)] or
I+ éfl(a)]) is singular. It has been shown [11,12] that, if the
following conditions hold:
1. The actual (30L(s)) and nominal (¢or(s)) open-loop
characteristic polynominals have the same number of right half
plane (RHP) roots (unstable poles).

2, If $on(jwe) = O then éop(jwg) = 0
3. ¢cn(s) has no RHP zeros (ﬂo unstable poles)

then the actual closed-loop polynominal ($CL(s)) will have no RFP
roots if

a. For the additive or division error models

Ominl(I+ G(jw)] > Opax[E(jw))
(3.6)

be For the multiplicative or subtractive error models
OminlI + 61 (Jw)] > opay(E(w)]. (3.7)

The requirement for robust control for multiplicative error can be
visualized as shown in Figure 3.3, Thus, one may ensure the robustness
of the system under consideration using the above inequalities, if an
error matrix can be adequately estimated. However, if, as in our case,
there is no good estimate of the error margin, other means must be used
to check for robustness.

We shall examine the MIMO gain and phase margins as developed in
reference [(12]., If the three previously stated conditions hold and
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OminlI + G(s)] > a (3.8)
or
oninlI + G1(s)] > 8 (3.9)

then the guaranteed phase (PM) and gain (GM) margins are given
respectively by:

G"T_‘l_?x‘ (3.10)

PM = :pos-1[1 - —%i] (3.11)
or

@ =014+ 8] (3.12)

PM o= + cos™' (1 - E;— 1. (3.13)

It should be noted that the phase and gain margins are somewhat
conservative in the sense that the gains or phases of all the feedback
loops may be changed simultaneously without destabilizing the
closed-loopAsystem. In fact, individual loops may have larger margins,
taken one at time. For the submersible we shall not set specific

margins but evaluate the controller to ascertain its robustness.
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3.5 Chagter Summary
The present chapter has developed a set of frequency domain specif-~

ications to which a controller can be designed. 1In order that the com-
pensator may, orice designed, be tested and validated, time domain spec-
ifications have also been presented. Finally, the bagsic ideas of com-
pensator robustness were discussed in terms of modeling errors with
multivariable phase and gain margin definitions given. 1In chapter 4,
the control design methodology is developed and a design example offered
and tested.
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4. MODEL-BASED COMPENSATOR AND CONTROLLER DESIGN

4.1 Introduction

In this chapter, a compensator will be designed based on the Linear
Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) procedure,

We will first discuss the Model-Based Compensator (MBC) and the aug-
mented dynamics; then, the Loop Transfer Recovery (LTR) design procedure
is employed to meet the frequency-domain specifications., A design exam-
Ple using the twenty knot linear model is then presented. Finally, we
shall test the compensator design using both linear and nonlinear simu-
lations.

The control specifications will be met by loop-shaping the singular
values, 1In order to meet the performance specifications of small
steady-state errors, we desire high DC gains., To ensure modeling errors
will not cause closed-loop instability we desire a crossover of about
0.1 radians per second with a large roll-off after crossover. This will
ensure attentuation of the high frequency modeling errors and sensor

noise,

4.2 Model-Based Compensator Structure

The MBC is a class of MIMO compensators which can be constructed
using the results of optimal control theory (the linear quadratic state
feedback problem) and optimal estimation theory (the Kalman filter).

The MBC has the property that, when cascaded with a MIMO open-loop
plant, the resultant closed-loop plant will be stable, provided the con-
stant gain parameters discussed below are properly selected. Thus, the
designer's objective is, given an open-loop plant, to select a compensa-
tor which ensures stability of the closed-loop system and achieves the
desired loop shapes in the frequency domain using singular values,
Figure 4,1 illustrates the desired feedback structure of the MIMO con-
trol system with the disturbances, ﬂ(s)r reflected to the plant in-

put. Although Linear-Quadratic-Gaugsian stochastic optimal control
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‘ theory is used to obtain the numerical solutions for the gains of the
MBC, the implications of the word “"optimal®™ should be deemphasized.
This is, among other reasons, because the designer varies the free
parameters, in a systematic way, witho{xt regard to stochastic optimality
I considerations, in order to obtain good compensators,
Figure 4.2, from reference [6], illustrates the internal state-
space description of the MBC (K(s)) and the open-loop plant, Gp(s).
Note that the A, B, and C matrices describing the plant appear in the
I compensator, K(s), as well as in the plant transfer function matrix,
Ep(s). The term MBC is used due to the explicit way the nominal model
of the open-loop plant, _Cip(s), shows up in the compensator, K(s).
The open loop dynamics of the plant are

|
x(t) = Ax(t) + Bu(t) + Ld(t) (4.1)
y(t) = cx(t) (4.2)

]

|
where L is a design parameter which may be varied so that an open-loop
system can be constructed to reflect the specifications. The
closed-loop compensated system will then be required to match this

i open-loop performance. The control-to-plant transfer function is

Gp(s) = C(s1 ~ a)-'m. (4.3)
R The MBC dynamics are 1
. -~ -
2(t) = [A-BG-HC]z(t) - He(t) (4.4)

-~ . u(t) = -Gz(t) (4.5)

D - - 4
where z(t) is the estimated state vector (of the same dimension as the 7 %
plant state vector), r(t) is the reference input vector, e(t) is the ]

! - -
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Figure 4.1 MIMO feedback system.

Figure 4.2, State space description of the MBC.
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error vector (e(t) = r(t)-y(t)) and u(t) is the output vector of the
MBC, The control gain matrix, G, and filter gain matrix, H, are design
results which together determine the poles and zeros of the MBC. The
MBC transfer matrix, ..KLQG(S)r is given by

XroG(s) = G(SI-A+BG+HC)='H (4.6)
where
u(s) = Krogis)e(s). (4.7)

A closed loop representation of the cascaded plant and compensator

is derived in reference [2] as

E(t) = |A-BG BG |[x(t) L ofld(e)
|#(e) o a-mc v | -ml|zw) (4.8)
where a change of variables has been used with

wit) = x(t) - z(t). (4.9)

The vector w(t) is simply the error of state estimation.

The above 2n dimensioned vec... equation completely describes the
closed-loop system. Given A, B, and C, the selection of H and G will
determine the closed-loop dynamics from which one may calculate the
closed-loop response to disturbances and/or command inputs. It can be
shown [2,3,6] that closed-loop stability decomposes into two separate
problems as follows:

1. Given A and B, find G.-such that the real parts of the

eigenvalues of (A ~ BG) are less than zero.
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2. Given A and C, find H such that the real parts of the

eigenvalues of (5_- Eg) are less than zero.

From linear system theory (10] it can be shown that the feedback
system of Figure 4.2 can be made closed-loop stable by appropriate
selection of H and G, provided that [A,B] is a stablizable pair and
{A,C] is a detectable pair. 1In fact, as discussed in Chapter 2, the
twenty knot linear model satisfies the stronger controllability and

observability conditions,

4.3 Calculation of the Gain Matricies

The procedure for calculating G and H is based on the LQG
stochastic optimal control theory [10,16]. Recall that, in the Linear
Quadratic Regulator problem we attempt to minimize the quadratic cost

functional
J = [ [x'(£)gx(t) + u'(t)Ru(t)ldt (4.10)

where the R matrix is the control weighting matrix and Q is the state
weighting matrix.

The control gain matrix G is

G = r-'ep (4.11)
where R is an arbitrary symmetric, positive definite (mxn) matrix (m
being the number of inputs and ouputs) and P is the solution to the
control algebraic Riccati equation (CARE)
0= -PA - A'R - Q+ PER™

B'P (4.12)

In this development Q is an arbitrary (nxn) symmetric, positive

semi-definite matrix given as

Q=N'N (4.13)




-
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-
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such that (A,N] is detectable [2].
The filter gain matrix, H, is found using the Kalman filter
algorithm with

H = rc's-! (4.14)
where S is symmetric, positive semi-definite and is given as

S = MM' (4.15)
and M is an arbitrary matrix of suitable dimensions with [A,M]
stablizable. The F matrix is the solution of the filter algebraic
Riccati equation (FARE)

O=FA+AE+S - ECOICE (4.16)

where _B_ is an arbitrary, symmetric, (mxm), positive definite matrix.

The control engineer has considerable freedom in selecting the
parameters of the design. In fact, one may use L, N, M, Rand §
directly as design parameters, Obviously, this freedom is of great
disadvantage without a method of rationally and systematically selecting
these parameters., The LTR method provides such an algorithm, Before
the LTR procedure is presented, we shall augment the plant dynamics as

discussed below,

4.4 Control Surface Dynamics and Augmentation

4.4.1 Actuator Dynamics and Augmentation

In order to reduce the number of neglected dynamics, it is
desirable to include in the linear model the dynamics of the actuators
(rudder and sternplanes), The actuators are more accurately described
by second order gsystems (Table 4.1); however, as the damping ratio
approaches unity, the second order harmonics disappear. 1In order to
reduce the model size and because the control surfaces are heavily
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the actuators were satisfactorily approximated with a first order

representation of the form

{1/1)
s + 51/1)

with the constant T being derived from the original second order
dynamics,

TABLE 4.1l: ACTUAL DYNAMICS (Second Order)

Sternplanes: = 3,14 radians/sec

= .9

= Ew = 2,83 radiang/sec
Rudder: 2.51 radians/sec

= ,9

Q v £ Q ™ €
[}

= Ew = 2,26 radians/sec

Now; from reference [13], using the definition of the time constant

for a second order system with critical damping

T = 1/0
we find
1/ty = 2,33/sec

1/1g = 2,26/3ecC

As the projected crossover frequency is on the order of one tenth of a
radian per second, it was clear that the actuator dynamics would not
have a large influence on the design., However, in order to increase
roll-off near crossover, it was decided to use lag compensation at 0.1
radians per gecond instead of the approximate control surface dynamics.
This will increase the roll-off above the crossover frequency, making
the vehicle less susceptable to modeling errors and high frequency
sensor noise, Therefore, the gystem was augmented with two lag

compensators as shown in Figure 4.3.
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Figure 4.3. First order lag compensation block diagram.
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Figure 4.4, State space representation of the augmented dynamics.
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The state space representation of the augmented dynamics is shown

in Pigure 4.4. Por the lag compensation previocusly developed we have

—
_A_a = -e1 0.0
0.0 -1

_B_a = rO-.1 0.0
0.0 0.1

-1

ca= [1.0 0.0
0.0 1.0

and Ga(s), the 2 by 2 augmentation transfer matrix is
Ga(s) = Ca(sI-Ax)=1)B,. (4.19)

4.4.2 Overall System Model
The MIMO feedback system with the augmented dynamics G,(s) is as

shown in Pigure 4.5. Since G,(s) is decided by the control designer,
it is justifiably part of the overall compensation K(s) (it is this
overall compensation that is incorporated in the simulation), with

K(s) = Ga(s)Kyog(s) (4.20)

and it is only the compensation denoted as Kyog(s) which will be
designed by the LQOG/LTR methodology presented later,
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For designing _K_Lg;(s) we first need to define the “"plant”

transfer matrix G(s) as
G(s) = Gp(8)Ga(s) (4.21)
as illustrated in Figure 4.5, Note that the "plant® consists of the

nominal plant, Ep(s), and the augmented dynamics Ga(s). Alao note
that the input to the "plant®, u(t) is not the physical input gp( t),

but that the output y(t) is the same for either plant definition
(augmented or unaugmented). In the present design Xpog(s), Ga(s),
and _qp(s) are all two by two transfer matrices.

In the frequency domain the nominal plant, EP( 8), is defined as

,' Gp(s) = Cp(sI-Ap)=lBp (4.22)

where _A_p is a ten by ten matrix, By is a ten by two matrix and g_p

is a two by ten matrix. The development of the specific plant matrices
was presented in Chapter 2,
Combining the augmentation dynamics and nominal plant yields an

overall plant transfer matrix

G(s) = c(s1-a)='B (4.23)

where A is a 12 by 12 matrix, B is a 12 by 2 matrix and C a 2 by 12
matrix, Pigure 4.6 displays the gtate space, time domain representation -

of the overall open-loop "plant".

-~
To develop the form of the A, B, and C matrices we start by

defining the 12 by 1 state vector as L 3
x ;

x=|F (4.24)
—a 4
]
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Figure 4.5. Overall compensated system.
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Figure 4.6. Nominal open-loop plant with augmentation.
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where x (t) consists of the original ten state variables listed in Table
2.1 and x,(t) are the two augmentation states.

The overall plant in state space form is now given by

X(t) = Ax(t) + Bu(t) (4.25)
y(t) = cx(t) (4.26)
vwhere
A =] A(10x10) | BpCa
(10x2)
; 0 (2x10) Ax
: (2x2)
.
B= |0
(10x2)
Ba(2x2)
C= r_-_ch,(zxm) . 0
o (2x%2)
- -1
: .
-
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4.4.3 Augmented Plant Dynamics

The addition of the first order lag compensation at 0.1 radian per
second increased the order of the plant to twelve, This augmentation
added two poles at 0.1 but did not change the transmission zeros,

The singular values of the augmented open-loop plant were
calculated and are shown in Figure 4.7. As expected, the augmented
plant singular values roll-off more quickly at frequencies above 0,1
radian per second as compared to the unaugmented plant. The crossover
frequencies occur at 0.48 and 0.1 as compared to the unaugmented plant
crossovers of 1,0 and 0.13 radians per second, The faster roll-off
should enable the designer to more easily meet the crossover and
robustness specifications., With the augmented plant A, B, and C
matrices (shown in Table C.3 of Appendix C) developed, the loop transfer
recovery control design methodology will now be discussed.

4.5 Compensator Design Methodologies

The LTR procedure allows one to systematically design an LQG-based
compensator, K(s), given a nominal open-loop plantlgp(s). We shall
systematically select and iterate on the free design parameters L, 6,

and R. Specifically, we desire to shape the singular values of the loop
transfer matrix, T(s), where

T(s) = Gp(s)K(s) (4.27)

over the appropriate frequency range such that the specified
performance/robustness properties of good command following, output
disturbances rejection and insensitivity to modeling errors are nmet.

The LQG/LTR method presented here (and detailed in references (2] and
[51), consists of first shaping the sinqular values of the Kalman filter
loop transfer matrix and then recovering the same loop transfer matrix

for T(s) using the dual of the Xwackernaack recovery method [10].
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The first step is based on the Kalman filter (KF) frequency domain

equality.
(I4Gyp (8)) + (MG (8D =1 +36. (s)G, (8) (4.28)
where
GporL(s) = C(sI-A)~lL (4.29)
and
Gxr(s) = C(sI-a)-lH. (4.30)

The A and C matrices are for the augmented plant, H is for the filter
gain matrix and p and L are design parameters. At low frequencies it

can be shown [2] that as the frequency approaches zero,

1 .
oilgu(s)] = °i[7E_EFOL(s”' (4.31)

Thus the first step is to select L and u such that the specifica-
tions (command following, disturbance rejection and crossover) in the

frequency domain are met by
¢[Gpor(jw)l. (4.32)
Now the FARE, of the form
O = A'F + FA+LL' - FC'9-lcF (4.33)
is solved for F using y and § as arbitrary design parameters (usually 8
is taken as the identify matrix due to considerations detailed in

reference [12]). The KF gains are then

H = FC'e-! (4.34)

- 63 =

Ty

P Y

-]

PO S

- - ad




The singular values of the filter transfer matrix, Gxris), are made to
match, as closely as possible, the singular values of Gpor(s), by
iterating on the scalar p. That is, we select y such that for the
previously obtained L (selected to meet the stated frequency-domain

specifications) we have

1
g.lG _(a)] = ogfl—G_  (38)] (4.35)
i —KF 1~ “FOL

At this point the robustness of the KF is checked by ensuring

o {I+Gxp(jw)] > 1 (4.36)
(4G (~jw)] > + (4.37
o [I4G, o (~jw)] > 3 «37)

These robustness properties are discussed in reference [12].
The LOG compensator is now designed using LTR by solving the CARE

for P whicl. is of the form

0 =-PA-A'P-Q+PERBE (4.38)
where
Q =qc'C (4.39)

and q (a positive scaler) and R (usually taken as the identity matrix)

are the design parameters. The control gain matrix G is then

G =Rr-lBP . (4.40)
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The singular values of the resultant loop transfer matrix o[T(jw)]

are now calculated where
T(s) = G(8)Kpog(8). (4.41)
The designer iterates on q (and possibly R) until
o(T(jw)] = olGkp(jwl] (4.42)

over reasonable frequency ranges,

For all minimum phase systems, the LTR method guarantees that the
singular values of T(s) and gq_p(s) will coincide as the scaler, q,
approaches infinity., In NMP systems, if all non-minimum phase zeros are
beyond the maximum crosgsover of Ggp(s), then the singular values of
T(s) and Gyp(s) will coincide satisfactorily at low frequencies. If
non-minimum phase zeros exist at frequencies below crossover, it appears
that there will be basic limnitations on command-following and
disturbance rejection [2]. Precisely how to "cure” this is not known at
the present time,

Finally, if the designer has available an egstimate of the modeling
error _I_.p( 8), the robustness of the compensated system may be checked

by ensuring

1
Onax L éjw)-_l_l < Opin [T+ (Juw)) (4.43)
-1
g i,‘x[_I_a_p (Juw)-1] < o . [(I+T(juwl]. (4.44)

Using the augmented, twenty knot linear model, a compensator will
now be designed. It should be noted that an accurate estimate of the
modeling error was not available to the designer, Therefore, the

robustnegss properties were not examined in terms of _I._.p(s).
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4.6 Compensator Design Example

The first step of the design procedure is to select an arbitrary L
matrix such that the performance apecifications are met. Recall that
the frequency-domain specifications stated that crossover should be 0.13
radians per second or less, due to the natural crossover frequency of
the open-loop plant singular values, the frequency of wave encounter and
the NMP zero at 0.488.,

The L matrix was selected such that the singular values would be
"tied together” both at low and high frequencies with crossover in the
vicinity of 0.1 radians per second. The particular L to accomplish this
was selected as follows.

At low frequency, the KF equality reduces to the approximation

-
4

Seor 3] = 018 (u)] (4.45)

which implies

1 -1
~ C(juI-A) L = G _(jw) (4.46)
T —XF' .

The idea is to select L such that Eﬂs}:ﬁ)‘lg_- /ﬁ}, As the freqeuency

approaches zero

ct-a-Hr = /51, (4.47)

Therefore, we pick L such that

1=alp (4.48)
which yields
L = /v ac'(cc)-l. (4.49)
- 66 -
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5 76bvns system, the A matrix is singular. Since L is arbitrary, let A
- _A_ where 5_ is made non-singular by replacing the zeros in the last two
diagonal entries of A with unity. The form of A in relation to C,
makes _A. appear ag an identify matrix and since the C matrix is unitary
(cC' = 1), we have -

L = /ﬁg- (4.50)
at low frequencies.

At high frequencies, we find the KF equality leads to the

approximation

1 CL
Sgp(Iw) = Ggr— ICIL = Jo - =1 (4.51)
H
Thus we desire
CL =1 (4.52)
which leads to
L = /uc' (cc') = Yuc’ (4.53)

Therefore at both high and low frequencies tying the singular values

together requires L= /ng « We only have to iterate on the scalar u to
obtain the desired crossover characteristics of 6j[Gpgr(jw)). It

was found that for u = ,01 the singular values of Gpgr(s) (Figure 4.8)
exhibited the desired characteristics of high DC gains (60 dB at w =

.0001) and a crossover of 0.1 radian per second.

Using the L matrix thus generated and iterating on the scalar 1/vy,
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the FARE was solved, the filter gain matrix, R, generated and the
singular values of the KF transfer matrix (o[Gyp(jw)]) calculated.
with 1//u equal to 1, the singular values of Gyp(s) were found to
exactly match the singular values of Gpor(s). Figure 4.9 shows the

singular values of Gyp(s) with 1IME =1 and L= .1C'.

At this point, the poles of the filter (A;[A-HC]) were
calculated. All had negative real parts, thus verifying the guaranteed
stability of the filter, Further, the robustness of the filter was
checked by evaluating

0,146, . (30)) (4.55)
and
-1
o, [I+c (Ju)]. (4.56)

The filter robustness requirements discussed earlier were met as both
sets of sinqular values maintained magnitudes of unity or greater,

The singular value loop shapes of the filter are now recovered for
the compensator. The CARE is solved with R = I and the result used to
calculate the control gain matrix, G. The singular values of the
regultant loop transfer function (o;[T(jw)]) are generated and
compared to the KP singular values. The designer iterates on the scalar
q (where Q = C'C in the CARE) until a satisfactory match ig obtained
over the frequency range of interest. As shown in Figure 4.10, a q of
100 yielded satisfactory results with a crossover at approximately .065
radians per second and DC gains of 55 4B (at .0001), (In fact, larger
values of q allowed for crossovers and DC gains more closely approaching
the XP values but the controller gains subsequently generated were found
to saturate the sternplanes and/or cause the rate limits to be
exceeded, ) .
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Notice the very narrow spread at crossover between the minimum and
maximum singular values, Also, at frequencies above 1.0 radians per
second, the roll-off approaches 80 dB per decade. This conforms to the
Bode-Horowitz condition that all physical systems must exhibit at least
two pole roll-off. This roll-off will ensure rapid attenuation of high
frequency modeling errors and sensor noise, Purther, the roll-off at
crossover ag predicted by Bode is approximately 20 dB {7]. The presence
of a non-minimum phase zero at 0.488 has not prevented the LTR from
being accomplished. 1Its presence however, might possibly have caused
the delay in rolloff exhibited by the maximum singular value,

The robustness of the overall loop transfer matrix, T(s), can now
be determined, Figures 4.11 and 4.12 plot the singular values of the
return difference (0j[I + T(jw)) and inverse return difference
(o301 + g‘l(jm)]) respectively. Using the gain and phase margins as
defined in Chapter 3, we find for additive error

GM = [-4,73 dB, 11.2 4B]
For multiplicative errors we have
GM = [minus infinity, 6 dB]
PM = [-60 deg, 60 deg]
Thus, the overall loop transfer matrix is quite robust and therefore
relatively insensitive to modeling errors which may exist,

The compensator gains generated (found in Table C.4 of Appendix C),
will now be used in the linear and nonlinear simulations to ascertain
the vehicle response to various reference inputs and initial
conditions, The controller will be evaluated in terms of the

time-domain specifications delineated in Chapter 3.
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4.7 Compensated System Response
4.7.1 Simulation

Using the linearized model of the submarine at twenty knots (A, C,
and C) and the filter and control gains (H and G) designed for that

model, the compensator was tested via a computer simulation. The true
test of a compensator is whether it adequately controls the vehicle and
meets the specifications. Given that there is no actual test platform,
the alternative is a simulation which incorporates the dynamics of the
vehicle (as modeled by the equations of motion) and the compensator
effects including any augmentation. Both linear and nonlinear,
simulations were developed, solving the linearized and nonlinear
equations of motion respectively. Thus, one may ascertain how well a
linear compensator design is able to control the nonlinear model of the
vehicle and critically compare this with the linear model response.
Figure 4.5 illustrates the simulated, closed-~-loop system.

The simulation allows step and ramp perturbations to be input.
Free surface effects, random noise and control surface rate limits were
not modeled. Further details of the SUBMODEL program can be found in

reference [18].

4.7.2 Initial Conditions and Reference Inputs
When the depth and heading controller is initially activated, it

will have to compensate for step commands as the ordered depth and
heading will almost certainly be different from the depth and course the
vehicle is presently maintaining. During manual control it is expected
that the course will be maintained within two or three degrees of that
ordered and the depth maintained to within 10 feet. To ensure a

practical controller, it was desired that the compensator be capable of

withstanding simultaneous step commands of 10 degrees and 30 feet,

Additionally, the controller was tested with ramp inputs in heading and -
. depth to ensure it could be utilized to automatically change the

vehicle's course and depth over greater ranges. Specifically, the
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compensated system was subjected to a ramp course change of 30 degrees
and a ramp depth change of 50 feet, both input over 100 seconds. The
ramp inputs were imposed separately.

4.7.3 Error Limits

Through repeated testing, it was found that error limits
(internally limited within the simulations) of 10 degrees in heading and
10 feet in depth offered satisfactory results for the twenty knot
model., These error limits prevented excessive control surface
deflection and also prevented the rate limits mentioned in Chapter 3

from being exceeded.

4.7.4 Linear and Nonlinear Responses to Step Inputs

The compensated nonlinear responses to simultaneous step commands
of 10 degrees and 30 feet are shown in the plots of Figure 4.13. The
linear and nonlinear state responses were very similar with the major
difference between the two being that the linear simulations showed less
error in psi and z at the end of the run. This is to be expected as the
compensator gains were designed using the linear model of the
submarine. The errors for both the linear and nonlinear simulations
were small and growing smaller as time progressed due to the integrator
action.

The time domain specifications for the compensator are easily met
whether controlling the linear or nonlinear model. The linear model
heading error was less than ten percent (one degree) at 28 seconds while
the depth error was within 10 percent (three feet) in 54 seconds. The
nonlinear model has settling times of 71 and 78 seconds respectively.
The settling time specification at 20 knots was 200 seconds.

The error at 200 seconds for the linear model was 0.8 percent in
heading and 1.0 percent in depth which is well within the three percent
specification. For the nonlinear model, the errors at 200 seconds are

2,245 and 1.1 percent and at 300 seconds are 0.7 and 0.5 percent.
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Initial control surface deflections were, of course, the same for
both models (same gains and initial errors). The maximum rudder angle
is 4.5 degrees at seven seconds and the largest sternplane deflection is
16.2 degrees after two seconds. Thus, the rate limits were not exceeded
nor were the control surface deflections near saturation (40 degrees).

Note the type of control action which the design procedure yields.
One finds that essentially all the control surface movement comes in the
firgst thirty seconds. This is due to the fact that the controller
“believes®™ it "knows" precisely how the vehicle will response; and thus,
it gives large initial control actions and then allows the vehicle
dynamics to take over and "carry" the vehicle to the reference
position. Therefore, we see rapid initial reductions in error as the
vehicle is allowed to glide to the desired position. Although it cannot
be seen on the plots, there is some residual control deflection tending

to take the wvehicle toward zero steady state error.

4,7.5 Linear and Nonlinear Ramp Responses -

Linear and nonlinear simulations were conducted to ascertain
whether the controller could response adequately to ramp inputs used to
turn or change wvehicle depth. A 30 degree turn was first conducted with
the nonlinear model responses for psi, z, heading error, depth error and
control action shown in Figure 4.14. The linear model showed the -
submersible reaching steady state at 60 seconds after the ramp input
ceased (160 seconds simulation time) with a heading error of 0.33
percent. The depth excursion was essentially zero. In the nonlinear
case the submarine is within 3 percent (one degree) of the ordered 30
degree heading 100 seconds after the ramp input ceased and was still
approaching 30 degrees (29.7) at 300 seconds. The maximum depth
excursion if 3.3 feet during the turn and is within 0.35 feet at the end
of the simulation. Thus the "level" turn specification (15 feet allowed
at 20 knots) was met by the controller for both the linear and nonlinear

models. Control actions were well behaved.
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l A depth change of 50 feet was also simulated with excellent
results., Both the linear and nonlinear simulations showed practically
-~ no course deviation during the ramp depth change. The linear response
showed the vehicle reaching 50 feet some 60 seconds after the input with

. a 0.47 foot overshoot (one percent) and a 0.3 percent (and decreasing)

‘ depth error at 300 seconds, The nonlinear model response (Figure 4,15)
shows the ordered depth being reached 48 seconds after termination of
the ramp input with a 1.3 foot overshoot (2,6 pecent) and an error at

II 300 gseconds of 0.7 percent (and decreasing). Again, the control design
more than adequately meets the specifications,

Other ramp inputs were imposed with similar results, The
coqpensator thus can be utilized to “drive® the vehicle with no apparent

magnitude limits in Jdepth and heading., Further, although the system as

3

modeled has only one integrator per channel, the errors with ramp inputs

have still tended to approach zero.

4.8 Chapter Summary
In the present chapter, the LOG/LTR methodology was presented and

used with the frequency domain specifications to design a set of filter
and control gains for the augmented system's MBC at twenty knots, It
was found that a NMP zero outside the compensator's bandwidth did not
adversely affect the recovery process,

Using both a linear and nonlinear simulations with step and ramp
commands, the MBC was successfully tested against the time domain
specifications delineated in Chapter 3. 1In Chapter 5, the speed range
over which the twenty knot MBC meets the specifications shall be

investigated and other linear models generated in order to accomplish

gain scheduling over the submarine's operational speed range.
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S« GAIN SCHEDULING

. 5.1 Introduction

E- In this chapter we shall first investigate the speed range over
which the control and filter gains derived from the twenty knot linear

model, meet the specifications for the previously discussed ramp and

step inputs. In the following sections the five and ten knot models are

presented along with their corresponding filter and control gains. The

.= speed range of each set of these compensator gains is also

investigated. Finally, a gain scheduling scheme is offered that

adequately controls the submarine over the intended five to 30 knot

speed range.

5.2 Twenty Knot Compensation
5.2.1 Range of the Twenty Knot Controller

Using the nonlinear computer simulation with the propulsion and
initial condition data modified as necessary to reflect the ddsired
vehicle speed, one is able to ascertain the speed range over which the
twenty knot model-based compensator (MBC) adequately controls the
submarine, It was found that the twenty knot control gains, met or
bettered specifications over a speed range from 15 knots to 30 knots.

The nonlinear time responses at 15 and 30 knots are discussed below.

5.2.2 Vehicle Response at Fifteen Knots Using Twenty Knot Gains

The nonlinear time responses of psi, z, heading error, depth error

and control action for simultaneous step inputs of 30 feet and 10 - 1
degrees are shown in the plots of Figure S5.1. The time domain »
specifications are satisfied. The nonlinear model heading error is less
than ten percent (one degree) at 80 seconds while the depth error is
within 10 percent (three feet) in 149 seconds. The specification at 15 - 4
knots is 250 seconds. The error at 250 seconds is 0.54 percent in
heading and 0.025 percent in depth which is well within the three
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percent specification. At 300 seconds (the end of the simulation) the
heading error was 0.027 degrees (0.27 percent) with the depth error at
0.17 feet (0.57 percent).

Initial control surface:deflections are the same as in the twenty
knot case due to the fact that the gains and errors are the same,
initially. The maximum rudder angle is 4.5 degrees at seven seconds and
the largest sternplane deflection is 16,2 after two seconds. Thus,
neither were the rate limits exceeded nor were the control surface
deflections near saturation (40 degrees).

Simuiations were conducted to ascertain whether the controller
could respond adequately to ramp inputs at 15 knots. A 30 degree turn
was conducted with the nonlinear model response shown in Figure 5.2.

The plots show the submarine reaching 29 degrees 47 seconds after the
ramp input ceased (147 seconds simulation time) and still approaching 30
degrees (29.7) at 300 seconds. The maximum depth excursion is 2.93 feet
during the turn and is within 0.11 feet (and decreasing) at end of the
simulation. Thus, the "level" turn specification (15 feet allowed at 15
knotg) was met by the controller.

A depth change of 50 feet at 15 knots was also simulated with
excellent results. As before, the simulations show (Figure 5.3)
practically no course deviation during the ramp depth change. The

nonlinear model response shows tﬁe commanded depth being reached in 145
seconds after termination .of the ramp input with a 0.3 foot overshoot
(0.6 percent). Again, the control design more than adequately meets the
specifications.

Thus, the compensator designed for a vehicle linearized about e
straight ahead motion at twenty knots adequately controls the
submersible and easily meets the time domain specifications at 15
knots. In the following section, the results for a vehicle speed of 30

knots are presented,

-~
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5.2.3 Vehicle Response at Thirty Knots using Twenty Knot Gains

The nonlinear time response for simultaneous step inputs of 30 feet
and 10 degrees is shown in the plots of Figure 5.4. The time domain
specification (100 seconds settling time at 30 knots) is satisfied with
the nonlinear heading error being less than one degree at 17 seconds and
the depth error within 10 percent (three feet) in 46 seconds. At 300
gseconds (the end of the simulation) the heading error was 0,093 degrees
(0.93 percent) with the depth error at 0.32 feet (1.07 percent). 1In
both cases the error is tending toward zero.

There are small overshoots in both heading and depth résponses at
30 knots using 20 knot gains. This is to be expected, since, at higher

speeds, the vehicle responds more quickly to a given control surface

deflection. The overshoots were 0.66 degrees in yaw and 2,82 feet in
depth,

A 30 degree turn was conducted with the nonlinear model responses
shown in Figure 5.5. The plots show the submarine reaching 29 degrees )
80 seconds after the ramp input ceased with a vehicle heading of 29.8 ’;;]
degreeg at 300 seconds., The maximum depth excursion is 4.7 feet during T
the turn and is within 0.5 feet (and decreasing) at end of the
gsimulation, Thus, the "level" turn specification (20 feet allowed at 30
knots) was met by the controller, 4

A depth change of 50 feet at 30 knots (see Pigure 5,.,6) was =
gsimulated with essentially no course deviation observed during the ramp .ifj
depth change., The nonlinear model response shows the ordered depth .
being reached in 21 seconds after termination of the ramp input with a
1.2 foot overshoot (2.4 percent) and an error at 300 seconds of 0.01 _—
percent, Again the control design more than adequately meets the
specifications.

Thus, the compensator designed for a vehicle linearized about
straight ahead motion at twenty knots adequately controls the

- -

submersible at thirty knots, In the following section, the ten knot : j

linear model is briefly discussed along with its control gains and

applicable speed range. ]
——
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5.3 Ten Knot Linear Model )
s
A The nonlinear equations of motion were linearized about straight %
i ahead motion at ten knots with the resultant A and B matrices as shown . j
% ’ in Appendix D. The linear model was verified through a modal analysis ' ~>j
and a comparison of linear and nonlinear responses to comparable "

pertuibations. The open-~loop plant contained a NMP zero at +0.241 and
two poles at the origin. The open-loop poles and multivariable zeros
' are also shown in Appendix D. The plant open-loop singular values
h (Oi[EjSE:Q)'IEJ) are as plotted in Figure 5.7. The singular value

]
adosh  Aecese i staioia: o

corresponding to depth has a crossover frequency of 0.51' radians per
second while the sinqular value associated with heading angle has a
crossover at 0,063 radians per second. The lower crossover frequencies _
in comparison with the twenty knot model emphasize the fact that as the -
vehicle slows, so does its speed of response, .
This model was also augmented with the break frequency being 0.1

radians per second. This increased the order of the plant to twelve T

states and added two poles at -0.1, The singular values for this --;J
augmented plant cross over at 0,295 (depth) and 0.059 (heading) radians -9
per second. Note the maximum sinqular value has the NMP zero within its
bandwidth.

In designing the controller, the L matrix (L=.1C') was selected so
that both singular values crossover at 0.1 radians per second. Thus, ' P
the NMP zero will be outside the bandwidth of the compensated system.

The LTR methodology was followed (1/Yu = 1 and q = 300) with the
singular values of the overall loop transfer matrix, T(s), (which 1
includes the nominal plant, augmentation and model-based compensator) -
shown in Figqure 5.8. Note that both singular values crossover at
approximately 0.052 radians per second.

The eigenvalues of the compensator (KroG(s) = gjszféfggxgg)‘{g)
were calculated and all were found to have negative real parts, as -
expected. Thus the stability of the Model-Based Compensator was
verified. The multivariable phase (PM) and gain margins (GM) of the

A
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compensated system were calculated, and found to be, for additive error:
GM = [-4.48 4B, 9,75 aB)
PM = [-39.4 deg, 39.4 deq]
for multipliative error:
GM = [-infinity, 6 dB)
PM = [-Go-deg, 60 deg].

The control and filter gains of the ten knot controller are shown in
Appendix D, With these gains, at speéds less than fifteen knots, the
error limits imposed within the simulation in order to avoid control
surface saturation were four feet and five degrees,

It was found that the ten knot control gains met cr bettered
specifications over a speed range from 8 knots to 15 knots. Thus, the
compensator designed for a vehicle linearized about straight ahead
motion at ten knots adequately controls the submersible and meets the
time domain specifications from 8 to 15 knots. In the following

section, the five knot linear model is discussed.

5.4 Five Knot Linear Model

A linear model was generated at five knots for straight ahead
motion and a compensator was designed based on this model. The
open-loop plant contained a NMP zero at +0.115, The plant open-loop
singular values are as shown in Figure 5.9. The crossovers of the
singular values corresponding to psi and depth are 0,032 and 0.26
radians per second respectively. The plant was then augmented with lag
compensation at 0.1 radians per second which altered the crossover
frequencies to 0.032 and 0.19. The NMP zero is within the system
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bandwith, Augmentation was considered at lower frequencies (0.05);
however, this caused the crossover frequencies to be further reduced in
the compensated plant, for gainsg which did not saturate the controls
(low values of the scalar parameter, q).

A compensator was designed to match a crossover frequency of 0.1
radians per second, Designing for a crossover at 0,1 radians per
second, instead of around 0.03, was an attempt to increase the bandwidth
of the controller (and hence, the speed of respongse) and to increase the
DC gains (reducing the level of steady state error). The sinqular

values of the overall loop transfer matrix, T(s), for this design (1/Vu
= 1 and q = 100) are displayed in Figure 5.10.

Even though the filter transfer function singular values crossover
at 0.1 radiang per second, in the recovery process the crossover
frequencies of the overall transfer matrix attained for reasonable gains
(that is gains that did not saturate the controls) are 0,032 radians per
second and for psi and 0,036 for depth., Thus, the system's natural
bandwidth appears to limit the amount of performance and/or recovery

that may reasonably be attained., This was also true in the ten knot

- design, The end result of designing the filter at a higher crossover

frequency (0.1 radians per second) is that the filter poles are slightly
faster than necessary as compared to the controller eigenvalues,
The PM and GM for this controller assuming additive error are
GM = [-4 4B, 7.95 4B)
PM = (-34,9 deg, 34.9 degqg]
while for multiplicative error they are

GM = (- infinity, 6 4B]

PM = [-60 deg, 60 degq].
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The five knot linear model (_5, B, g), eigenvalues and transmission
zeros, and control and filter gains are found in Appendix E.

By using the five knot gains, in the simulation, at various speeds
it was shown that the five knot compensator gains met the time domain
specifications over the speed range of five to seven knots. In the next

gection a gain scheduling scheme is discussed and tested.

S.5 Gain Scheduling Algorithm

From previous discussions it is clear that for the system under
consideration, the LOG/LTR methodology generates robust controllers that
are, in general, adequate far from their nominal design points in state
gspace. With just three linear models (at five, ten and twenty knots) it
has been shown that, except for the interval from seven to eight knots,
the resultant compensator gains adequately control the submersible over
its entire speed range. (Between seven and eight knots the response is
stable but too slow if the ten knot gains are used and too oscillatory
with the five knot compensation).

Unfortunately, using just these three sets of gains and linear
models leads to a problem incurred when shifting from one set of gains
to another due to the discontinuities at these shift points. This type
of gain scheduling would cause large control surface deflections when
none are warranted as a gain shift is, in effect, a step perturbation.
In order to avoid thegse discontinuities, it was decided to attempt a
linear interpolation scheme between the five and ten knot models; and
then, between the ten and twenty knot points. Above twenty knots, the
twenty knot model and gains are utilized. For instance, if the
commanded submarine speed is seven knots, the control gain (G), filter
gain (H) and A matrices (the B and C matrices are the same at all
speeds) used in the MBC would be interpolated at two fifths of the
difference between the respective matrices at ten and five knots plus,
the five knot matrices. It is these interpolated G, H and A matrices
that are entered in the simulation.
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tl The simulation has not evolved to the point where gain scheduling
L can be incorporated on a real-time basis. However, the interpolated

. matrices for any speed can be generated offline and tested point by
S point., This was the method used to verify the gain scheduling scheme
_ discussed above,

The linear interpolation algorithm was used to generate MBC's at
six, seven, eight, nine, twelve, fifteen and eighteen knots. Results
for seven and fifteen knots are discussed below. The error limits for
speeds less than fifteen knots were four feet and five degrees while at

fifteen knots and above the error limits were 10 feet and 10 degrees.

— W

5.5.1 Selected Gain Scheduling Results

The nonlinear time response at seven knots for simultaneous step
inputs of 30 feet and 10 degrees is shown in the plots of Figure S.11.
The time domain specifications are satisfied with the nonlinear model

" J-r--rj‘y —
L i

heading error being less than ten percent (one degree) at 100 seconds
and the depth error within 10 percent (three feet) in 244 seconds. The
specification at seven knots is 360 seconds. At 600 seconds (the end of
the simulation) the heading error is 0.096 degrees (0.96 percent) with a
depth error of 0.0039 feet (0.013 percent). Both errors are slowly
approaching zero.

Control surface deflections are within the specified rate and
travel limits. The maximum rudder angle is 7.5 degrees at twelve
seconds and the largest sternplane deflection is 24.4 dégtees after four
seconds.

A 30 degree turn was conducted with the nonlinear model responses
shown in Figure 5.12. The plots show the submarine reaching 29 degrees
300 seconds after the ramp input ceased and still approaching 30 degrees
(29.6) at 600 seconds. The maximum depth excursion is 0.12 feet during
the turn. Thus, the "level” turn specification (10 feet allowed) was

met by the controller.,

r‘ - 101 - ~ -1




YAW ERR (DEG)

60 120 160 240 ]"ESDO 360 420 480 540 600

|
T
F
|

W
*r
f
¥
]

5!

£

-

E

B

Bl [
" 60 120 180 240 ”HEsuo 350 %20 480 540 600
z

-

4

3
w8
a.{
-
I
.

g — ”

9D [1] 120 100 290 TlHE’w 360 wao ¥80 540 600
4
-
h.
~

0 N 120 180 240 300 ss0 = w20 = w80 = ss«0  #00

TIME

Figure 5.11: Scheduled Nonlinear Step Reaponae at :
Seven Knots s

102 —

- -~ Lecoosetiinpeancriselin e




> Jﬂl ENA (DEG)

0 120 180 a0 300 380 420 60

110E 540 600
&8 —
2®
[ 4
&2
=%
§ !
e
b
» s @ 20 180 20 300 %60 w20 80 560 660

TINE
o
]
g
e
b ) ] 120 180 N0 ”"Em 7] 80 7] 800
g -
'
= J J
-8
e
-~

Ry

8
% TR T w T we 0 a0 ) Sw 6%

Figure $5.12: Scheduled Nonlinear 30 Degree Ramp

Response at Seven Knots

103




L e o —— ey RN A e et AnAS A aC e A LN e RN S B

A depth chanée of 50 feet at seven knots was also simulated as

S shown in Pigure 5.13., The nonlinear model response shows the ordered
depth being reached 350 seconds after termination of the ramp input with
a 0,13 foot overshoot (0.26 percent). Again the control design more

- than adequately meets the specification,

‘ Thus, the compensation derived from a linear interpolation between

the five and ten knot gains and models adequately controls the

: submersible and meets the time domain specifications at seven knots.

I. aMdditionally, the phase and gain margins were calculated. With the

interpolated seven knot gains and model, for additive error we have
GM = (-4,26 dB, 8,69 AB]
M = [-36.9 deg, 36.9 deg].
For multiplicative error, the multivariable margins are
GM = [-infinity, 6 4B)
PM = [-60 deg, 60 deq].

The results for a vehicle speed of 15 knots are now presented.

The time response at fifteen knots for simultaneous step inputs of
30 feet and 10 degrees is shown in the plots of Figure 5.14, The time
domain specification (220 seconds settling time) is satisfied with the
nonlinear model heading error being less than ten percent (one degree)
at 82 seconds while the depth error is within 10 percent (three feet) in
100 seconds. At 400 seconds (the end of the simulation) the heading
error was 0,064 degrees (0.64 percent) with the depth error at 0,44 feet
(1.46 percent). 1In both cases the error is tending toward zero,
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The 30 degree turn was simulated with the nonlinear model responses
shown in Figure 5.15. The submarine reaches 29 degrees 160 seconds
after the ramp input ceased and the vehicle heading is 29.7 degrees at
400 seconds. The maximum depth excursion is 2.3 feet during the turn
and is within 0.13 feet of the reference, and decreasing, at the end of
the simulation. The "level" turn specification (15 feet allowed) was
met by the controller,

As displayed in Figure 5.16, a depth change of 50 feet at 15 knots
was simulated. The nonlinear model response shows the commanded depth
being reached 60 seconds after termination of the ramp input with a 2.7
foot overshoot (5.4 percent) and an error at 400 seconds of 1.34 percent
(0.67 feet) and declining. Again, the control design more than
adequately meets the specifications.

Thus, the 15 knot MBC derived from a linear interpolation between
the ten and twenty knot models adequately controls the submersible. The

multivaribale margins assuming additive error were found to be

PM = [-4.64 dB, 10.64 dB]

GM = [-41.4 deg, 41.4 deg].

For multiplicative errors the margins are

PM «« {-infinity, 6 4B]

GM = [=-60 deg, 60 degl.

Further, the interpolated gains were found to meet or better the

specifications at all speeds tested.
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5.6 Chapter Summary

It has been shown that a linear interpolation, gain scheduling

scheme provides satisfactory control of the submerged vehicle from five

to twenty knots. At twenty knots and above, the twenty knot MBC yields
excellent results. Thus, the three linear models and their associated
compensations have adequately served as the basis for control of the
vehicle over its operating range in speed. Also, we remark here that
faster, as well as larger, ramp inputs can be tolerated making the

controllers presented here even more practical.
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

This thesis presented a multivariable control design example for an

underwater vehicle which comprised of the following:

1. Vehicle modeling based on the NSRDC 2510 equations including
crossflow drag and vortex shedding terms. These equations
were linearized to generate the linear model of the submarine
which was then analyzed and verified.

2. Frequency and time domain specifications were then developed
against which a controller could be designed and tested,
Multivariable robustness issues were also discussed.

3. The Model-Based Compensator structure was presented and
appropriate loop shaping (lag augmentation) included in the
compensator structure. The Linear Quadratic Gaussian/Loop
Transfer Recover (LQOG/LTR) methodology for multivariable
control design was discussed and an example of the frequency
domain based design process was given for the vehicle model at
twenty knots. The controller robustness in terms of
multivariable phase and gain margins was evaluated and, using
a nonlinear simulation, the compensator was tested., The
compensator was subjected to step and ramp inputs and its
response evaluated using the time domain specifications.

4. The speed range over which the twenty knot model and control
gains met the performance specifications was then
investigated. Linear models at five and ten knots were
discussed and used as a basis for generating two additional
sets of compensator gains. Using the three linear models and
their respective contrecl gains a gain scheduling scheme was
presented and tested which allowed for good automatic heading
and depth control of the submersible over its operational

speed range.
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6.2 Conclusions

For the type of control design desired, namely, an automatic
heading and depth control, linearizing about straight ahead motion at
constant speed incorporated enough of the essential vehicle dynamics so
as to yield a model which was adequate for compensator design. The
LOG/LTR design methodology offered a systematic method for multivariable
control design which generated robust controllers that were not only
stable but provided satisfactory control far from their nominal point
in state space. Further, the method allowed recovery of the desired
singular value loop shapes in the presence of NMP zeros which were
outside the bandwidth of the compensator. However, the maximum
bandwidth of the compensated system appears to be constrained by the
plant's natural open-loop bandwidth. This is an advantageous property
of the LTR process as it disallows compensator designs that
mathematically enhance the system bandwidth but prove useless in

practice,

6.3 Recommendations for Further Study

Incorporating differential control on the sternplanes (or using a
different control surface configuration such as the inverted-Y) should
be investigated. A control system of three inputs (rudder, and
differential sternplanes) and three ocutputs (heading, depth and roll)
could be designed which would reduce the coupling effects bhetween planes
of motion by allowing direct control over the vehicle roll orientation.
This would assist in further overcoming the strong tendency of the
vehicle to dive while turning.

As the controller design and model requirements are strongly
dependent upon the function a control system is expected to serve, one
could linearize the equations of motion about small control surface
deflections in order to more fully capture the true vehicle dynamics in
the linear model. This might, however, require more models and a more
complex gain scheduling technique to adequately control the wvehicle over
its speed range.
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Incorporating free surface effects (wave action) in the simulation
would provide a more realistic model of the environment near the ocean
surface. This, in the addition to gain scheduling within the
- simulation, would enable one to test the control design more completely
. in determining its practicality.

The type of control surface action which the LOG/LTR methodology
= produced is an interesting area for a designer's consideration. The
h vast majority of control movement is developed in the first ten to

thirty seconds; and thus, yields large, rapid deflections. This large,
rapid control action associated with the present design is due to the

quadratic cost functional used in the linear quadratic control design.

Incorporated within the functional is the control weighting matrix R,
which penalizes any control action; and thus, by varying the diagonal
entries of R, slower, less severe control action may be generated, if
desired.

Finally, it would be advantageous to develop an estimate of the
modeling errors. This would allow a more revealing and realistic
measure of robustness than the multivariable phase and gain margins used
in this thesis., The need for modifying the controllers may be
identified, based on the modeling error information and the robustness
criterion presented in Chapter 3.

[y
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APPENDIX A

NONLINEAR EQUATIONS OF MOTION

1. SURGE

.. . 2 2 L 4
? m[u+qw-zv-xG(q +t)+yG(pq-t)+zG(Pr+q)l =

o 4, 2 2
> L [xqqq +x 1%+ xrprp]

_p-3.- P ,2 2 2 2
+ 2!.[xu\:|+x‘u_vr+x“'qwq] + zl’[xuu“ +X v +xww] +

p ,2 2 2 2 2 _
+ Satatx, o 6r7 + X 857 + X 0 6D ] + (PROPTH - DRAG)
2 .2, _ 2 2 2 .2 2, 2
+ S25(-n) [XMV * K Krgpn NOTT X g U 68°]

- WTOT sin 0

2, 2
PROPTH - DRAG = u(e;n” + bn + a,)
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2. SWAY

n[v - pw + ur - yG(rz +p) + zglar - p) + x (qp + r)] =

2 44yt of i 2, 2
z ¢ [Y;r + Ypp + Yp|p|p|p| + qupq + Y qr + Y sign (r,v) /vi+ w’]

. %la[vvm'p + Yur + Youp+ ¥|r|6ru|r|6r] +

+-°-!.2[Yu2+Yuv+Y vwv+wt o+ Y ur +
2 x v Iv' r

8
+ wau//u2+v2+w2] + WTOT sin ¢ cos 8 +

lz Y uv +2 22Y u26r +
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+ m-n & 23 Y, ur +5
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Yt {52 ———1" wix)v_ (t - 1 ) dx ; not included in
VTX 2 - fw x
(x, =-x_) X IBM program.
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v

A
sign(r,v) = r e <,T’T

Tyx: time it took vehicle to travel a distance x in the axial direction
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3. HEAVE

. 2 . .
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4. ROLLING TORQUE (¢)
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APPENDIX B

PARAMETRIC LINEARIZATION

I. AXIAL FORCE (SURGE)
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II. LATERAL FORCE
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b_ III. Normal Force (Heave) -

(m - z;')Aw + myGAp - (z(-1 + me)Aq

= Auf mo{zssss + 2,80 + 2, 4+ (n - ”zé'snss} + -«
2 -
+v. {2 v, +2 __p +2 r) ( ! - “o )} + :
(] v 0 vp2© 0 vr o 2 2 2y3/2 i
2 2 2 (uy + v+ wd) )
v/uo + v0 + wo 0 0 0 o
]
+w {2z +2 |w°|+( 1z} ‘
0l w lw, Y “o' wn *+
2 K
{(z z_r) ( ! -0 )} T
+p P. + - a
N s N C R R T A e ‘
o” 0" "o :
+q.(2 -+ m+ 2 Iqols + nz_} + n
Tol%q laJq, %% Mo T % —
<
u? :
1 o .
+ rolz 7 ( - )+
rr’o ———— . 3/2
2 2 2 (u + v +w ) .
/ ug + vy + vy 0 o} o
(2 r +2 + 22 v.)) T
+ Av[uo{ vr O _vgzpo vv 0O
/u2 + V2wl
0 0 0
2
) (Z r + ijpo + vatopo +3Z v, + vazvopo + 7z vo) s -
(u2 + v w2)3/2
0 0 0
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III. Normal Force (Cont.)

+ v { M lqol + ! .
el T e L

(Zw|w0| + Zw|w|wo + (ng - 1)zw|w|nwo)} + po(zvp -

+ Aw[uo{zw + Z|w| T:—::T + (no - 1)an

Yo

2 2 213/2
(ug + v +wo)/

0

2
(prpo + erro

92

CRFW

or

N -

2 2
+ z!_prop0 + 2, vorg + zvpzvopo + Zwro)} +

— T T

—— w_ v 2 v
+vo{zw|w| /1 +(wg/vg)+zw——ig—— + (n. - 1) =<0 0 } +
|w0|/v(2) + wg /vg + v,
w | la.lw w
g lled
' vé + wg /vg + "(2,
Z 92
wwW . CRFW
(ZZwlwlwo + T"_QT . 2wo(n° - 1)Zw|wln . 2w0) + S ] +
1
+ dp[u, Qe — (22, po + 2,50 + ZpoVo) *

2 2 2
/uo + vy

+ V(2 om) + poZmzg - qgmvg = romeg] 4
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I1I. Normal Force (Cont.)

10
+ Aq[“o{zq +m o+ z‘q'&s TCGT §s + (ng - ”zqn} +

2 2

v, + W, q ¥
0 * "o 9o . CRFW
+w0{zw|q| I"ol Iqol } + q Mz, - romy. + 5a
1
+ Ar[uo{ - - - (2z_ x, + zrppo + zvrvo)]
/uo + vy + g
92 erw |*
= Po™Xg < 9g™g * 7 ]
+ 8¢ [-(WTOT - B) cos B, sin 6]
+ 40 [-(WTOT - B) sin 8  cos %]
2
+ ASs [(Zss +ng = NZg Jug + z|q|68uo|qo|] +
+ a8b [2 u2] +
§b 0
2 2 2
+ An [zqnuoqo + T ugw, + zw|w|“wo/v0 +ug + zssn“o“o]
where:
92 * z w. {x)v_(x)
CRFW 4] 2 ww 0 0
= = (=2 D(x) dx
v 5 ( [zD(x) ) fz x g
v .(x) + w_(x)
0 0
2 2
3Zpew |* i 9_(_9,2 2 ) f. b (vo(x) + 2w0(x)) 4
aw 2 T;D(x) ax’ Jg O'% > > X
/vo(x) + wo(x)
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2 2
3% e |* R 2, )7 x ot (vglx) + 2wg(x)) o
9q 2 }zb(x) dx 2 /PE—————~—E—-
vo(x) + w (x)
0
azcnr“ * ] 3-(-22 zww ) f . D(x) wo(x) vo(x) i
or 2 ’zb(x) dx 2 /'T———z—-—
vo(x) + wo(x)
IV. Rolling Torque
-[nzG + K;]Av + myGAw + [Ix - K§]Ap - IxyAq - [Ixz + K;]Ar =
* -
du[2u {k* + K, 8r ) + (ng -~ MK, +
+ 82 (K, sin 44, + K__ sin 84 .} +
t0" 4t t0 8t to
+ vo{xv - 28 © (K, sin 4¢ . + Ko sin 8¢to)} +
+ poKp + q,my. + o2 + MozG + Kr) r,
2v_ B u B 2w
0 to 0" t0 t0
+ Av[uo { - - (K4t sin 4¢t0 + Kgp sin 8¢t0) t 5
vi o+ w Yeo * Yeo -
t0 t0

w v
0 0
(4K, sin 4., + 8Kg sin ¢ .) + xv} + vO{Kvlv,( 1+ ;3 +.__;_____)} .

2
o] /vo + Wy

2

+ 8ol (x

4t to * Kgy sin 80,502V, +

+w (4x4t cos 4¢t0 + K, 8 cos ¢to)} +
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r ) IV. Rolling Torque (Cont.)

2w __8
t0 t0 .
) + Aw[uof——;——-——;— (K4t sin 49 ., + K, sin 8¢t0)
Veo * Yeo
2
uf v
0t0 t0
- 2, .2 (4K4t cos 44, + 8Ky cos 8¢t0)}
to to
xvlvlwo
+ Vo{Kw + -/-%} +
vy *+ Yo
2 .
+ Bto{zwto(x4t * sin 44 , + Ky, sin 8.4’
- VeoldK,, cos 44 . + 8Ky cos ¢to)} +
+

po(KWp -m) + roxwr] +

+ aplugk = vomye + wolk - w2} + ka|p|‘pol .

+ qo(Iyz + qu) -r.1 +

0" xy
2w B X W
. 0" t0 t0 to 2
+ Aq[uo{myG - (-7;—;-—-———— 2"t08to)'
Veo * Yeo
i -1
(x4t sin 44 + Ko sin 8¢to) +
4u v, _x
0 t0t0
+ ;3-:-;3— (K4t cos 4¢to + Ket 2 cos eoto)} + A
to ~ "to0 -

+%uw}+%hw+x }-%nﬂ+:duy-%)+

Pq
2 3
+ qu + 48t0vt0xt0(x4t cos 4¢t0 + K8t 2 cos 8¢t0)} +
-
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IV. Rolling Torque (Cont.)

28 Vv, X
t0 t0 t0 .
+ Ar[uo{sz +K_+ /—E-——-_E_ (k,, sin 44, + kg, 8in 8. +
Veo * Yeo

2
. Yo e0to*to

2 2
R

(4K, ., + 8Kg, cos 8¢to)} +wR - pony +

+ qo{(IY - 1)+ xar} -T2+

2
+ 2vtoxt08to(l(8t sin 4¢t0 + Ket sin 8¢to)

+ 82

c0Vt0%eo  ¥Kge €O8 4 , + 8Ky, cos 8¢t0)]

+ A [-(yGWTOT - ¥ B) cos 8, sin ¢, - (2 WIOT - z_B) cos ¢, cos eo] +

+ A8 [(szTOT ~ z_B) sin 0 sin ¢, = (Y WIOT - ygB) sin 8, cos 00] +
+ a8r [k uz]
§r O

2
+ An [K*nuO]

e h
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V. Pitching Torque
L] * [ ] * L]
szAu - (me + M;)Aw - IxyAp + [Iy - M&]Aq - IyzAr

= du[2u {M* + M 88 + m, b + (ng - ”"5sn6’}. +

‘rA
-
N
I
=
5

§s
2 2
V + Wo
+ vo{ M_x, + Mvppo) +M vo} E 3 3372
ua, + VvV, + W
0 0 (o
ol
+w (M + M‘ | + (ng - 1)Mm} +
v + WZ
0 0
* pompppo Mrz>2r0) E 2, 2., w233/2
0 0 0

] |
88, + (n, - 1)qu} +

+ c;o{Mq - mx . + Mlqlss To- 0

rouu_ro( v, + w

(u +v0+w)

3}2

Yo

+Av[
(u?J + vg +wg)

2 2 3
373 {Mw(zvo(uo + wo) + vo)

2
(Mn_ro + M Do+ M TV, + M oVoPo* Mrpzropo)} +

b . uo

b ————

g + = (Mn_ro + Mvppo + Mvrro) +
H v’uo + vy *+ v,

Yo

4 R ————

: . + - > {H|w|qq0 + Mwlwlwo + Mwlwol +

v/vo + v, 3

-4
oM *
CRFW

P +ng - 1)Hwnwo} + PgMX, + romz. + —— ] + - -1
2 4
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V. Pitching Torque (Cont.)

-, . .
(ug+ v+ w32

+ awlu | -
0 0 -

i

2 2 2
M + M +
( Po n-ro “vr"o'o + vavop 0 + "zpz"op 0 * vao)

PP
Yo } Yo
. +M +M +(n_ - 1)M P — o
. w Iw, Iwol 0 wn /-—-—-——2 2 ’
vl +w -
o* % B
2 2 2 2
(0 | q s (2w°+v°)+n (2w°+vo) .
. 'wlq 0 w,w' wo ww Yo
R
, 2 2
. (w8 + v ) M
g 0 0 CRFW
’ + (nO = ”Mwlwln wo } - szqO + ow ] +
i + 8p [ o (M _p +M v +M_ r) +mev
i- vl s vl s w peo e il 0
- 0 0 0
- 2,1, - T, + (I, -1+ "rp)’o] +
| 2,
+ dafus{m ~ mx, + (n, - nm_ MM“ % 8s,} +
\. 2
- AR
M 1 —_— - -
D * Y% [w]la 7T * 72 "% = TyzPo * mq,q”%' *
M *
CRFW
| + Ixyto * =i ] +
R u -
0
+ar | > - - (Mvrvo + Mrp2po + aln_ro) +mzovo+ {
/uo + vyt
M *
CRFW
) +P(I, - I+ Mpp) + L0+ 20 ro + = ] -
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V. Pitching Torque (Cont.)

+ A¢ [-(xGw'ro'r - x,B) cos 8 sin ¢0] +

+ 40 [(xGw - XgB) sin 0, cos ¢, - (z WTOT - z_B) cos eo] +
2
+88s [+ Mgan Mo = MIug + M|q'ssuo'qo'] +

2
+ 88b [Mg u)

2 2
+ An [quuoqo M ugw, + MW,W'nwO‘/vO twy o+

2
heres + MGsnuOGSO]
'aucm * 0 2 zw D(x) wo(x) vo(x)
v = -2-(,' ,zD(x) dx) I!. x 3 3 dx
/vi(x) + w (x)
0 0
2 2
Moew |* i °—(1,2 Z,., Y o) (vo(x) + 2wo(x)] i
ow 2 ],'D(x) dx’/ /g X VX o
/v (x) + w_ (x)
0 0
2 2
Mew |* .2 (2 Z,, )7 % oo (vox) + 2w (x))
—3a 2 (M ThGo @ o X P e
v/vo(x) + wo(x)
M * z w_ (x) v, (x)
CRFW p 2 ww 2 0 0
e = -2-(1 T—ID(X) dx) J'zx D(x) . - ax
/vo(x) + wo(x)
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VI. Yawing Torque.

-myGAﬁ + (mx, - N;,)Aw.r - (1, + Nl-,)Ab - Iyzm'; + (1, - N;)A}

= suf[2u {N% + (N + (n, - ”Nam)‘sro} +

2 2
w (v +w)
+ vo{uv +N + (ng - 1)an} +

2 3/2
(u + vy +wo)/

|2

clor = 61:0 + (ng - 1)Nrn] +

0'

+ Nopy + ro[Nr - mx

w(w +u)

(n
(u +v2+w)3/2 0

+avfu (N + N - 1)an}

—_ {N|v|tro + 2Nv|v|vo + 2(ng - ”Nvlvlnvo} +

+ _———0— {Nvlvlwo + (nO - ”Nv,vlnwo} +

2
/vo + vy

aNCRFW *
+ quqo - my r, +—o ] +

v (ul+v? v
+ Aw[u N 0.0 9 + 0 .
oOw 7.2 . 2 23/2 T ———
o 2

u_+ V. +w 2
0] 0 /v0+wo

{Nvlvlwo+ (no - ”Nv'vlnwo} +

va'rwo IN *
+ ro(Nwr + —-—-——2 +mxpo + N_p) +my g, +

Sd
+

wp aw
Vo + wo
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vI. Yawing Torque (Cont.)

+ Ap[Npuo + wolmx + pr) + 2p°Ixy + a4
(N + T, = I, +mvg+ N Iyzro] +

+ Aq[quvo + myGwo + (Npq + Ix - ]:Y)po

0
+ Ar[uo{Nr - mx + NH“ -'?(-)T Sr, + (n, - 1)Nrn} +

w2
+ v (N 1+-—2-my)+uw+1p+
0 |v|r 2 G wr 0 “yzbo
Yo
aN *
CRFW
qo(th - sz) + mrlrllrol M T ]

+ A¢ [(xGWTOT - x,B) cos 8, cos ¢0] +

+ A8 [yGW'rO'r - ¥,B) cos 8, - (x W - xgB) sin 8, sin ¢o] +

+ AST [(Nsr + Ng o ng = 1))u(2) + N‘rl&ru0|r0“ +

_——"

+4n [N m%%0 * Non%vo +N| |nv/v + v ot Nsy nuosro]

I LJ_‘A

where:
INpow 2 P (wz(x) + 2v2(x))
v - 3 (" 500 ) Jq x H0 dx 1
4 / 2 2
vo(x) + wo(x)
]
N Z v {x) w.(x)
CRFW p 2 ww 0. 0
————— = == % H(x) axk
dw 2( sz(x) dx) Iz >
viix) + w_ (x)
0 0
--4
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oRFW v (x) wo(x)

9 * p 2 zww 2
T3q | "z TEm e [ R e
Volx) + wi(x)

WNoprw |* 6 .2 Cuw 2 ("g(") + 2’ (x)
5t = -5(-!. T_—-LD(X) dx) Il X~ H(x) = dx

2 2
/vo(x) + wo(x)
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APPENDIX C

The SUBBMODEL program as detailed in reference [18] was developed

at Draper Laboratory to perform any of the following tasks:

1. Solve the previously developed nonlinear differential
equations of motion of a submarine,

2. Search for a local equilibrium point in the nonlinear
equations of motion by finding a set of state variable values
for which the derivatives are essentially zero.

3. Calculate the linearized dynamics about a particular nominal
point using the previously developed linearized equations.

4. Solve the linearized equations of motion for the submarine.

Se Simulate, using either the linear or nonlinear equations, the
compensated vehicle response.

The program, as originally implemented was designed to handle

nonlinear equations of the form

Mk =£(x, u)

where

10x1 state wvector

4x1 control wvector

Im e f®
[ I |

10x1 vector that is the nonlinear functions of the states

and controls

|=
]

10x10 matrix of hydrodynamic coefficient

The first nine states are u (forward velocity), v, W, p, qQ, I,
phi (@), theta (8), and psi (y). The tenth differential equation and
state variable is used to describe the propulsion dynamics. The four
controls originally incorporated in SUBMODEL were §s (sternplane
deflection), 6b (bowplane deflection), §&r (rudder deflection), and
WSTEAM (steam flow),
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For purpogses of this thesis, the SUBMODEL Program was modified for
the following reasons. The present operating procedures are such that
the propulsion plant is controlled from within the engine room of the
submarine. The engineers maintain the ordered propeller speed
regardless of the maneuver the submarine is presently undertaking.
Additionally, as discussed previously, the fairwater planes are placed
in a fixed position and not utilized under normal operating conditions.
(It should be noted that by not utilizing the fairwater planes under
normal conditions, a separate set of gains can, alternatively, be
generated as a method of backup control of vehicle depth.) Further, it
is the intent of this thesis to use and evaluate the loop transfer
recovery technique (discussed in Chapter 4) to design the compensator.,
This methodology requires a square system with equal control inputs (u),
and observed outputs, y. Finally, the controller to be designed is one
that will control the heading and depth of the submarine.

Due to these requirements and considerations a modification to the
SUBMODEL program was developed. CONSTRPS is a computer program which
will accomplish the same five tasks as outlined previoulsy, but the
shaft speed is assumed constant and the number of controls and outputs
can be varied. The above considerations led to the adoption of a two by
two system with the two controls being the rudder and the sternplanes
and the outputs, psi and z. The propulsion variable, with constant
shaft speed becomes a function of the forward velocity and therefore, is

incorporated in the u state variable. To summarize:

y=| psi us={ds
2 Sr

theta
psi

=
(]

%amt<=1
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Before the linearized dynamics can be calculated, equations of
motion solved, or the local equilibrium point search for, the program
must be supplied the mass properties, hydrodynamic coefficients, and the
propulsion and drag constants. The constants and coefficients describe
the dynamics of a specific wvehicle; and, with two exceptions, are
assumed to be valid for any dynamic condition. The exceptions are the
propulsion variables, wake and thrust deduction which must be included
in the propulsion data provided to the program. Within the SUBMODEL and
CONSTRPS program there are two different propulsion models. The RPS
propulsion model calculates these variables while in the ETA propulsion
model these two variables are assumed constant.

The RPS propulsion model contains a first order differential
equation in terms of rps (revolutions per second) of the propellor and
differential equation in terms of eta (eta being defined as ut/U). It
is a simplified version of the RPS model and is the propulsion model
that was linearized and included in the linear equations of motion.
Thus, a method of determining accurate wake and thrust deduction factors
is to solve the nonlinear equations of motion using the RPS model and
use the values of wake and thrust deduction calculated after the
transients have settled out.

At this point a nominal point can be found by integrating the
nonlinear equations of motion (using the ETA propulsion model with the
wake and thrust deduction found above) and using a set of search
routines. To integrate the nonlinear equations of motion, initial
conditions of the states and controls must be supplied. The program
solves the nonlinear equations using a fourth order Runge Kutta
routine., Additionally, the initial and final times and the integration
time step must be specified.

The search routines take a supplied guess (provided by the
integration of the nonlinear equations using the ETA propulsion model)
and iterate a specified number of times in search of a nominal point.
The routines iterate by perturbing the state variables in attempting to
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find a combination that sets the derivatives of the states equal to
zero. The closeness of a point to being a local equilibrium point is
determined by how close the sum of the squares of the derivatives is to
zero.

Once the nominal point is found, the linearized dynamics of the

form

=M ax + M B

1%

(vhare x and u are the perturbations from the nominal values of the
state and the controls) can be calculated by linearizing about the
nominal point. The A and B matrices are calculated and placed in a file
for use in later designing a compensator. Further, if one desired to
ascertain the linear dynamics by solving the linearized differential
equations, the initial conditions of the state and controls must be
provided as well as the nominal point. The perturbations from the
nominal point are then calculated and the linear dynamics generated. As
with the nonlinear equations, the user must specify the initial time,
final time, and integration time step. Also, the options to store data
for plotting and to print out the state and control responses must be
delineated.
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Table C.1: Twenty Knot Accelerations and Equilibrium States

XDOT(
XDOT(
XDOoT(
XDOT(
XDOT(
XDOT(
XDOT(
XDOT!{

PR FRLLALEL
»

~.766276E~20
0.183523€E-11
0.949660E-19
-.2257647E-11
0.651512E-19
0.364509E-1%
0.770974E-19
-.134837€-22

0.333301E+02
0.573749%-14%
-.585669E~-17
0.770974E-19
~.366668E-20
-.363823E-16
0.608781E-02
-.160134E-1%
0.153802E-02
0.202062E-01
0.000000E+00
0.000000E+00
0.000000E+00
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- Table C.2: Twanty Knot Linear Syatem: A, B and C Matrices

A MATRIX

= 252008-01 -.58100E-16 ~.121568-63 ~.E2700K-16 0.31460K-01 0.11565E-15 0.000000¢00 0.29651E-03 §.00000£+00 0.000008+00
<. S06ME-0S -.091218-41 §.128328-18 ~.0ME1E00 0.266508-16 ~.11477R0Z 0.13181K+00 §.391128-21 0.00000E+00 0.000008+00
= GALBAE-06 -.41217R-19 ~.5R0MOR-01 -.SB625R-14 0.06721M0¢0L ~.36900E-18 0.000008+00 0.76178€-02 §.00000€+00 0.00000€+00
0.376900-48 =.TITTHE~02 ~.31407R-21 ~.2NAGE00 -.296268-16 ~.1098E-01 -.162135+00 -.481078~21 0.00000E¢+00 O.00000€+00
0.2115%-06 0.49387E-21 §.103352-02 ~.309908-16 -.267488+00 ~.21239E-19 0.00800E+00 -.251255-02 0.90080£+00 0.80000+08
. 6009CE-06 ~.165BLE-02 ~.404LER-21 -.4ABG12E-02 -.7TPMT76E-19 -.25900E+00 0.26100€-03 0.77706E-2¢ 0.00000E¢00 0.00800F+00
6.00000E+00 §.00000E+00 0.000008+00 6.100008+01 ~,29672E-20 -.279288-16 0.41383E-39 -.34400E-16 0.00000K+08 O.00000F+00
0.000008+08 ¢.000008+88 0.000008+08 0.00000E+00 0.10000E+01 -.10626E-03 §.34400£-16 0.00000£+00 0.00000E+00 8.00000E+00
0.000002+80 0.000008+00 0.00000R+00 0.000008+00 0.10626E-03 0.100008+01 -.14808E-22 0.96063E-33 0.00000£+08 0.00000F+00
6,27925R-16 0.106268-63 0.100008+01 0.000008+00 0.00000£+08 0.00000E+00 0.57400E-1¢ -.333308+02 0.00000E+00 0.00000F+00

0.260048-62 ~.759062-03 0.000008+08
0.000008+40 0.000008+00 §.107318+01
. 910878 +00 ~.67190E+00 ©.30000K +08
9.000008+00 0.000008400 0.1%0208-01
=.221108~81 0.645308-02 §.000008+00
0.000008+08 0.000008+00 ~.271068-01
0.00000E+00 0.000008+00 §.000008+00
0.000008+00 §.000008+08 §.000008+00
0.00000£¢00 §.000006+00 0.00000E +80
0.000008¢08 9.000008+08 6.000008+00

0.000002¢00 0.000008400 0.000001+08 0.00000E+00 0.00000E+08 0.00000E+00 0.000002+00 0.00000E+00 0.10000E+01 0.00000E+00 0.00000€+00
0.000008+00 0.00000E+00 0.00000E+00 0.00000E+00 0.000S0E+00 §.00000E:00 0.00000E+00 §.000002+00 0.00000E+00 0.10000€+01 0.00000€+00
0.000008400 0.90000£+00 0.00000E+00 0.00000E+00 §.00000E+00 0.000008+00 0.100008401 0.00000E+00 0.00000E+00 0.000002+08 ©.00000E+00
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}
h Teble C.3: Twenty Knot Augmented Linear System: A, B, and C Natrices

. 2538-01 ~.008E-16 -.1220-43 ~.BRTE-16 0.315E-01 0.1160-15 0.0000+00 0.29%E-03 .0000+00 0.0001+08 §.2600-02 0.0000:00
= 3000-43 ~.0912-01 0.120H-10 ~.000E00 §.2678-16 ~.1158402 0.1520¢00 0.3918-21 0.000E+00 0.0000+00 0.0000+00 0.1078+01
., A2E-06 ~.4128~-19 - . 500E-01 -.B06E-14 0.872E+0L ~.370E~18 0.000R00 6.7620-62 0.0008+30 0.000E400 -.9LEE+00 0.000F+00
0.3770=43 =.790E-0L - S18E-21 ~.296E00 ~.2900-16 -.1900-01 -.143R¢00 ~.451L-21 §.0008+00 0.0000+00 §.0008400 §.190E-01
0.2128-06 9.4947-21 0.1038-82 =.5108-16 ~.267H+00 -.2126~19 G.000E00 -.251E-0L 0.000E¢00 0.000+08 -.2211-01 6.0008+00
= 609=-06 =.1062-0L ~.40E-21 - 456808 ~.77HE-19 ~.239E400 0.2628-03 0.777H-2¢ 0.000E+00 0.000£+00 6.0008+00 -.272¢-0L1
0.0000+00 0.0001+00 9.0008+00 0.100E+01 ~.297X-20 -.279E~16 0.4105-59 -.3440-16 0.000€+00 6.000E+00 0.0008+00 §.0008+00
©.000K+00 §.0000+00 §.0000+00 0.000R+00 0.1000+8) -.106£~03 0.3448-16 0.0000¢00 0.000E+00 0.0008+00 §.000E+00 §.0008+00
0.0000+00 0.000000 §.0000+00 0.000E+00 §.1068-05 0.1008401 -.1408-22 0.9%1E-33 0.000E+00 0.000E+00 0.0002+00 0.0008+00
0.2798-16 0.1060-03 9.1008:01 0.0000+00 9.000E+00 §.0000+00 0.57HE-16 -, 3332402 §.000R+00 0.000E+00 0.000E+00 0.0008+00
0.000E400 0.0000+00 0.0002+00 §.000+00 0.000E+00 0.0008+00 0.000E+08 §.000E+00 §.000E+00 §.000E+00 -.100E+:00 0.0001+00
0.000E400 €.0008400 0.000R+00 §.000E+00 0.000E+00 §.000E+00 0.000E+00 §.000E+00 §.000E+00 §.000E+00 0.0008+00 -.1008+00

0.0008+00 0.0008+00
0.0002+00 0.0008+00
0.0008+00 0.000€+00
0.0008+00 0.0008+08
0.0008+00 0.0008+00
0.000E+08 9.0008+00
0.0008400 0.0008+08
0.0008+00 ©.0008400
0.0002+00 0.0008+00
0.0008+00 0.0008+00
0.1008+00 0.0008+00
0.0008+08 §.2008+00 -

. © maTRIx -

0.0000+00 0.0001+00 0.000U+00 0.0007+00 0.0001+00 6.000+00 §.0008+00 §.0008+00 0.100E+01 0.0002+00 0.0000+:00 0.0008+00
0.000E+00 0.0008400 0.0000+00 6.000E+00 §.0000+00 0.0000+00 §.0000400 0.0000+00 §.0008+00 §.1008+01 0.000K+00 §.000E+00
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)
h Table C.4: Twenty Knot Coapensator Gains: G and H Matrices

H ~. 1568-02 6.0262-02 9.451L+02 -.3462-02 -.297R+00 0.3018400 0.4000-02 -.2028404 -.S24E-02 0.100E+02 0.2112+02 -.308E-02
~402E-08 §.2220400 ~.1200-01 -, 189E-01 0.798E+00 -.3778402 0.1590-01 0.522£400 ~.1008+02 ~.324E-02 -.300E-02 0.4138+01

0.1148-17 ~.60%-16
0.4708-16 0.1258-18
0.5408-18 -.1612-10
-.3378-18 0.729¢-19
0.2608-20 -.209€-20
=-.1058~16 ~.9528-10
=.1218-18 -.8338-17
«.2518-19 0.2098-18
0.1002+00 -.B50R-18
0.583E~1¢ 0.1008+00
0. 200821 -.348R-21
-.2008-18 0.7928~19

v
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APPENDIX D

Table D.1: Ten Knot Augmented Linear System: A, B and C Matrices

«.1318~01 0.9048-12 ~.6168-00 0.7412-12 0.159-01 -, 761E~10 0.000500 0.296E-03 0.000L+00 0.0002+00 6.667TE-03 0.000E+00
~. 150003 ~.4518-01 -.8872-1¢ -.AB3IE400 ~.3908-11 - SS1E+0L §.1522400 0.473E-16 0.000E+00 0.000E+00 0.0000+00 §.2788+00
= 553806 ~.1100-12 ~.2E-01 0.379E-10 0.4ALE+01 0.353E-11 0.0000+00 0.7628-02 0.000E+00 0.000E+00 -.235+00 0.000F+00
0.1910-63 -.400E-02 0.403E-15 -.150E+00 0.4020-12 ~.961E-02 -.1628400 ~.0208~16 0.000E+00 §.000E+00 §.0000+00 0.50%-02
0.1108=06 -.777E-18 0.5208-0S 0.455E-12 ~.1550+00 0.126E-12 0.000R+00 ~.251E-02 0.000E+00 €.000E+00 -.560L-82 0.000€+00
«.300E-06 -.8300-03 0.9718-18 -.2312-02 0.1318-13 -,.1216408 §.2628-03 6.1342-18 0.000E+00 0.000E+00 0.0008+00 -.6908-02
0.0008480 0.0001+00 0.000E+00 0.1002+41 -.511E-18 0.166E-11 ~.9678-25 0.485E-12 0.0008400 0.000E+00 O.000€+00 §.000E+00
0.0000200 0,0008:00 0.000E+00 0.0000+00 9.1000+01 0.3008-03 ~.400E-12 0.000E+00 0.0008+00 §.000E+00 0.000E+00 O.000K«00
0.000E+00 0.0000000 0.000E+00 0.0005+00 -.300E-0S §.1008401 ~.B96E-15 0.004E-2¢ 0.000€+00 §.000¢+00 0.0008+00 O.000E+00
=, 1648-11 ~.3008-03 0.1008+02 0.0000+00 0.000E+00 §.000E+00 -.370R-10 ~.1690+02 0.000E+00 0.000E+00 ¢.0008+00 0.0008+00
0.0008+00 0.0002+00 0.000E+00 9.0001+00 0.0008+00 6.000E+00 0.000E+00 0.0008+00 9.000E+00 0.000£+08 -.100£+00 0.000E+00

A 0.0008+00 0.0008¢00 0.000L+00 §.000E+08 0.000E+00 0.000E+00 0.000E+00 §.000E+00 0.000E+00 0.000E+00 §.000L+00 -.1006+60
! » maTRIX
i 0.000£+00 0.0008+08

0.000£¢00 0.0002+00

0.000E¢08 0.0002+08

.0002¢00 0.0008+08

0.0008+00 0.000+00

. 0.0002+00 0.0002400
I 9.0001400 0.000E+00
9.0008400 0.0002+08

0.000E:00 0.0008400

0.000£+00 0.0002+08

0.1000400 0.0002400

0.0001400 01000400

.

0.0008400 0.000R+00 0.000E+00 §.0002+00 0.0000+00 0.0008+00 0.0002¢00 §.000E+00 0.100E+01 §.000E+00 0.0000+08 0.0008+00
'._ 0.0000+00 0.0002+60 0.0008+00 0.000¢+00 0.000R+00 0.0000+00 0.000L+00 0.000E+00 0.000E+00 §.1008+01 0.0008+00 0.0008+00




. Table D.2: Ten Knot Syatem Eigenvalues and Transmission Zeros

0.000000000£ +00
0.000000000E +00
-5.828713416E-03
-1.311178789%-02
~1.329846220E-02 1.812963465E-02 5.915679721€-01 2.248002398€E-02
-1.000000000E-01
-1.000000000E-01
=-1.382963877€-01
-1.646311070E-01
=7.297208977€-02 3.932787325E-01 1.826341654E-01 3.999913591E-01

4
BN PWNM E

s pe
NOow

i ZEROES
NAMRER BEAL IMAG DRAMPING EREQUENCY
1 -1.3111786958-02
2 -7.523505946E-02
i 3 -8.382681761E-02
&  2.612065619E-01
6 ~-7.312544279E-02 -3.920159008E-01 1.833738696E-01 3.967778791E-01
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Table D.3:

Ten Knot Compensator Gains:

# MATRIX

0.5288-19 -.1208~18
- 4608-1¢ ~.00BE-16
-.913E-18 0.5142-18
0.1908-15 ~.4%08-18
-.5958-20 0.3408~28
0.1758-16 0.3948~18
0.7038-18 -.3988-17
0.1008-18 ~-.597R~19
0.1008400 -.%062-16
0.1228-13 0.1000+80
«.0008-20 §.1908-2¢
0.1008-27 ~.4708~24
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= 410E-02 ~.391E-01 0.1408403 ~.1158-01 ~-.8518+0% ~.239€¢01 -, 313E-01 -.311E+04 0.225¥-01 O.173E+02 0.152F+02 O.660E-02
0.1948-08 0.399€400 0.1412+00 0.560E-01 ~.717E401 ~.993E+02 -.2688-0L -.294E401 -.17SE+02 0.225E-01 0.460E-02 0.3138+01

G and H NMatrices
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APPENDIX E

n Table E.1: Five Knot Augmented Linear System: A, B and C Matrices

-y ¥

" A NATREX

= 711800 ~.2038-13 -.3168-00 -.179€-13 0.0328-0F 0.3308-11 0.000E+00 0.29%E-03 0.000€+00 0.000E+08 0.181E-03 0.000E+00
*.S158-06 ~.2548-01 0.9%108~-17 ~.2372+06 0.877E-14 ~-.303E+01 0.1328400 ~.158E-19 0.000£+00 0.000£400 0.000E+00 0. 746E~01
= 3000-06 ~.1138~16 -.1728-01 -.1TRE~-11 0.131E+01 0.12¢€-185 0.000E+00 0.7626-02 0.000£+00 0.000E+00 -.636E-01 0.000L+08
0.1008-03 ~.2110-82 0.4115-20 -.70MR-0) ~-.1008-13 -.SORE-02 -.162E+00 0.194E-19 0.000E+00 0.000E+00 0.000€+00 0.139€-02
0.595R-07 9.507R-19 9.269¢-08 ~.1072-13 ~.707E~01 -.316E-17 0.000E+00 -.251E-0F 0.000E+00 0.000E«00 -.154E-02 0.000E+00
=, 102006 ~.4300-43 0.14062-19 -.121E8-02 0.729E-17 -.6326-01 0.2462€-03 - 31322 0.000E+00 0.000€+00 0.000E+00 -.189¢-02
0.000E+00 §.0008+00 0.000E+00 0.1008401 0.120€-18 -.616E-18 ~.533E-38 -.117¢-13 0.000£+00 0.000€+00 0.000E+00 0.000E+00
0.0000¢00 §.0008+00 0.0008+00 8.000K4+00 0.1008+01 0.19E-03 0.1178-13 0.000€+00 0.000€+00 0.000€+00 0.000E+00 0.000€+00
0.000E+00 0.000C+00 §.0002+08 0.000E¢00 ~.190E-03 0.100E+01 0.845E-20 0.721E-29 0.000€+00 0.000€¢00 0.000€+00 O.000E+00
9.6162-15 -.1948-03 0.100€+01 0.000E+00 §.000E+00 0.000€+00 0.168€~11 -.001E+01 0.000E+00 0.000£+00 0.000E+00 O.000E+0D
0.0008¢08 0.000E+00 0.000E+00 0.000E+08 0.000E+00 0.000E+00 0.000E+00 0.000€+00 0.000£+00 0.000£+00 -.100E+00 0.000€+00
0.0008+00 0.000€+00 §.000E+00 0.0002+00 ©.000E+00 0.000E+00 0.000€+00 0.000E+00 0.000€+00 0.000E+00 §.000E+00 -.1008+00

0,000E+00 ©.000E+00
0.0008+00 0.000€+00
0.000E+00 0.000E+00
0.0008+00 0.000E+00
0.0008+00 0.0008+00
0.0008+00 0.000£400
0.000£+00 0,0008+00 - :
0.000E+00 0.000E+00 . 1
0.0008+00 0.000€+00
0.0008+00 0.000€+00
6.1008+00 0.000E+00
0.000E+00 0.1008+00

r
3
€ MATRIX 1
0.000E+00 0.0000:00 8.0008+00 0.0008+00 0.000E+00 0.0008+00 0.000E+00 0.000E+00 0.100€+01 0.0002+00 0.0008+00 O.0008% +00
- 0.0008408 §.0008400 0.0002+08 0.000§+00 0.0002+00 0.000€+00 0.0008+00 0.0008+00 0.0008+00 O.100€+01 0.0008+00 0.000E+00
-
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&
n . Table E.2: Five Knot System Eigenvalues and Transmission Zeros

W
:

ReAL mas DaMPING ~ FREGUENCY

0.000000000E+00

0.0000C0000E +00

-3.024089983E-03

=7.113993141E-03
-3.005117302E-02

-2.892676692E-02 2.308620747E-02 7.815959177E-01 3.700987462E-02
-8.558510799€-02
-1.000000000E~01

-1.000000000E-01
-3.825415101E-02 4.001017488E-01 9.517701732E-02 4.019263483E-01

NOVONUBHUWNK

[l =

ZEROES

NRMBER  REAL L LIS DPAMPING ~  FREQUENCY

=7.113992856E-03
-2.890585762E-02
-4.318266216E-02
1.153794658E-01
-3.8453414226-02 -3.996021859E-01 9.578676498E-02 4.014480939E-01

CPWN M
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!
& Table E.3: Five Knot Compensator Gains: G and H Matrices

€ MATRIX

=.5226-02 ~.201€~01 0.166E403 ~.289€~01 ~.920€+04 -.167E+01 -.120E-01 -.173E+04 0.822E-02 0.100E+02 0.753E+Q1 0.209€-02

e

4 : =.833E-08 0.450€400 0,1012400 0.149¢+00 -.501E+01 -.110E+03 0.510€~02 ~.104E+01 -.100E+02 0.822E-02 0.209€-02 0.142£+01

H MATRIX

~.49%0E-17 0.455E-18
-.106E-14 0.191¢-18
~.291E-18 ~.342E-17
0.4458-17 -.268E-17
-, 881E-20 -.92¢E-19
0.3788-17 -.103¢-17
- =.994¢-19 0.157%-17
-.28TE~18 -.1308-17
0.100€+00 -.1208-16
0.255E-14 0.1008+00
0.000€+00 0.000E+00
0.000€+00 0.000E+00
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