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-- Mathematical of a- S e-rg veicle is accomplished using
the Naval Ship Research and Development Center 2510 ReiE--fequations of
motion with crosaflow and vortex shedding terms added. A multivariable
depth and heading controller is designed using the Linear Quadratic
Gaussian/Loop Transfer Recovery design procedure wherein stability and
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system. The resulting combination of the model-based compensator and
plant is tested using a nonlinear simulation. With gain scheduling,
multivariable control is extended over the vehicle's entire speed range.

Thesis Supervisor: Dr. Lena Valavani, Research Scientist
Laboratory for Information and Decision Systems

-3-



ACKNOWLEDGEMENTS

I would like to thank, in particular, my thesis adviser, Lena

Valavani, for her support in shaping the ideas of this thesis and her

patience in seeing it through. Also, I sincerely thank William Bonnice

of Draper Laboratory for his endless hours of assistance and advice on

many of the practical aspects of this thesis. Finally, I wish to

express my gratitude to my thesis supervisors, Professors D. Cummings

and D. Yoerqer, for their assistance and time.

The Charles Stark Draper Laboratory, Inc., has provided the

facilities and financial resources required to complete this thesis.

Publication of this thesis, however, does not constitute approval by the

Charles Stark Draper Laboratory, Inc., of the findings or conclusions

contained herein. It is published solely for the stimulation and

exchange of ideas.

-4-

L A



TABLE OF CONTENTS

Chapter Page

ABSTRACT..... .... *. ...... ... * .... ... * ......................... 3

ACKNOWLEDGEMENTS... ......... o ........ * .................. # ...... 4

LIST OF FIGURES ...... .o* ..... so ...... o .................. , ...... 8

LIST OF TABLES ................ o ....... o ....................... 010

1. INTRODUCTION AND SUMMARY .............. o ........................ 11

1.1 Background..*......... ......... ........ o................ 11

1.2 Contributions of the Thesis.o ............................ 12

1.3 Outline of the Thesis ................... ......... o ....... 13

2. SYSTEM DESCRIPTION, MODELING AND ANALYSIS ........ 14
2.1 Introduction ..... *.................................o....... 14

2.2 System Description ............ so ......................... 14

2.3 Vehicle Modeling ........... o ............................. 16

2.3.1 Nonlinear Equations of Motion.................... 16
2.3.2 Linear Time Invariant State Space Model ........... 19
2.3.3 State Variables ................................... 20

2.3.4 Ouputs and Control Inputs ........................ 20
2.3.5 Twenty Knot Linear Model......................... 21
2.3.6 Model Verification ....so... .. ..................... 23

2o4 Model Dynamics ............................ ....... ..... 30

2.4.1 Analysis of the Twenty Knot Linear Model ......... 30

2.4.2 Pole Structures ....... . ....................... .30
2.4o3 Modal Analysis. ..... ... ....................... .. 33
2.4.4 Multivariable Zeros ..... ....................... .33
2.4.5 Controllability and Observability ................. 33
2.4.6 Plant Open-Loop Singular Values ................... 35

2.5 Chapter Summary ..... ....... ... ........ . ......... . ........ 36

3. CONTROLLER SPECIFICATIONS AND ROBUSTNESS ............... o...... 38

3.1 Introduction ..... ..... . ... .. ..... ... ... . ....... . .... . 38

3.2 General Specifications ............... ........... 38

3o3 Specification Development .. . .o.. .... ... ..... .. ....... 39

3.4 Robustness ........ .. *................*... ............. 43

3.5 Chapter Summary ...... .. ... ......... .......... ...... 48

-5-



... . .... - -

f..

Table of Contents (cont'd)

Chapter Page

4. MODEL-BASED COMPENSATOR AND CONTROLLER DESIGN ................. 49

4.1 Introduction ............. , ................. o........... 49

4.2 Model-Based Compensator Structure ....................... 49

4.3 Calculation of Gain Matrices............................ 53

4.4 Control Surface Dynamics and Augmentation ................ 54

4.4.1 Actuator Dynamics and Augmentation............... 54

4.4.2 Overall System Model ....... . ...................... 57

4.4.3 Augmented Plant Dynamics ........................ 61

4.5 Compensator Design Methodology ........................... 61

4.6 Compensator Design Exml.... ......... o ...... s .......... 66

4.7 Compensated System Response ............... * ............. 75

4.7.1 Simulation ................................ 75

4.7.2 Initial Conditions and Reference Inputs ........... 75

4.7.3 Error Limits .............. ....... o ........... 76

4.7.4 Compensated Linear and Nonlinear Responses to
Step Inputs* ..... *. ........... s. .... s. ............ 76

4.7.5 Compensated Linear and Nonlinear Ramp Responses... 80

4.8 Chapter Summary ......... ...... ..... .. ..... .. ............. ..82

5. GAIN SCHEDULING.*.. ..... o ....................... o .... o .... ... 84

5.1 Introduction.. .... ...... ...... o ..... s ........ 84

5.2 Twenty Knot Controller ....... ........................... 84

5.2.1 Range of the Twenty Knot Controller .............. 84

5.2.2 Vehicle Response at Fifteen Knots with Twenty
Knot Gainso.......o.... ... oo... oo................ o84

5.2.3 Vehicle Response at Thirty Knots with Twenty
Knot Gainso ....... o.... ....... o.....o... ......... 89

5.3 Ten Knot Linear Model ..... ......... ......... ... .. 93

5.4 Five Knot Linear Model............... .. .............. 96

5.5 Gain Scheduling Algorithm.............................. 100

5.5.1 Selected Gain Scheduling Results.................101

5.6 Chapter Summary.... .... ... ..... . ... ..... . ....... .. ....... 110

-6-



Tabl, of Contents (cont'd) Page

V6. SUMMARY, CONCLUSIONS AND RECOMMENDAT1ONS ..................... 111

6.3 Recommendations for Furthker Study........... .o......... 112

APPENDIX A: Nonlinear Equations of Motions and Kinematic

APPENDIX B: Linearized Equations of Motion ....*............... 121

APPENDIX C: Summary of SUBMODEL Program ................ ... 136

TABLE C.: Twenty Knot Accelerations and Equilibrium

TALS.taet Knot.... %ea System:.... A, B ....... and0

TABLE C.2: Twenty KnotAume Linear System: A, B and C

APP ~ ~ atrce D:Tn .nt .oe.. ...... .. .. ....... . . . ..... .. .. . .. 1 44

TABLE C.3: Te~nt Knot Augmented Linear System: A, B and C

TABLEce D...... Ten Knot System....... 1i42lsad rnmiso

TABLE C.4: Tent Knot Compensator Gains: G and H Matrices.16

APPENDIX E: Fie Knot Model . . . . . . . ...... .. ... .. .. .. . .. .147

TABLE E.l: Fie Knot Augmented Linear System: A, B and C

TABLE D.2: Fie Knot System Eigenvalues and Transmission

TABLE D.3: Fie Knot Compensator Gains: G and H Matrices..14

APEDI : ieKntMoe .............-7-... s.4



LIST OF FIGURES

CHAPTER 2

FIGURE 2.1 Submerged Vehicle Showing Axes, Forces and Moments
Moents*on e ... a .... et.K....ns..........................15

2.2 Linear and Nonlinear Responses at Twenty Knots,
qarna.01 ......................... ................ 24

2.3 Linear and Nonlinear Responses at Twenty Knots with
a Sternplane Deflection of 2 Degrees ................ 28

2.4 Linear and Nonlinear Responses at Twenty Knots with
a Rudder Deflection of 2 degrees ...... *.............. 29

2.5 Modal Analysis of Twenty Knot Linear Model .......... 34

2.6 Singular Values of the Twenty Knot Open-Loop
Plant ......... ...................................... 37

CHAPTER 3

FIGURE 3.1 Plot of Singular Values Versus Frequency ...... ...... 40

3.2 General Feedback System ........................... 44

3.3 Robustness in Terms of Multiplicative Error ......... 44

CHAPTER 4

FIGURE 4.1 MIM. Feedback System ................ .. .............. 51

4.2 State Space Description of the MBC .................. 51

4.3 First Order Lag Compensation Block Diagram .......... 56

4.4 State Space Representation of the Augmented
Dynamics ..... *.................*...................... 56

4.5 Overall Compensated System .......................... 59

4.6 Nominal Plant with Augmentation ............ o........ 59

4.7 Singular Values of Twenty Knot Augmented Plant ...... 62

4.8 Singular Values of _FL(s) .......... 68

4.9 Singular Values of GKF(S) ........................... 70

4.10 Singular Values of the Compensated Open-Loop
System-... ........ .... e.#..... ...... *............ 71

4.11 Singular Values of (I+T(jw)].. ...................... 73

4.12 Singular Values of [I+T-Jw)) ...... o................. 74

4.13 Step Response of the Twenty Knot Compensated
Nonlinear Model ...... .. .. 77

- 8 -



List of Figures (cont'd) Page

4.14 Thirty Degree Ramp Response of the Compensated
Nonlinear Model. ............... *...................o...81

4.15 Fifty Foot Ramp Response of the Compensated
Nonlinear Model....... ...... ............ ....... 83

CHAPTER 5

FIGURE 5.1 Compensated Nonlinear Step Response at 15 Knots
with 20 Knot Gains ...... . ........................... 85

5.2 Compensated Nonlinear Response to a 30 Degree Ramp
at 15 Knots with 20 Knot Gains ...................... 87

5.3 Compensated Nonlinear Response to a 50 Foot Ramp at
15 Knots with 20 Knot Gains ...... ............... 88

5.4 Compensated Nonlinear Step Response at 30 Knots
with 20 Knot Gains .................................. 90

5.5 Compensated Nonlinear Response to a 30 Degree Ramp
at 30 Knots with 20 Knot Gains ...................... 91

5.6 Compensated Nonlinear Response to a 50 Foot Ramp at
30 Knots with 20 Knot Gains ............... .......... 92

5.7 Singular Values of the Ten Knot Open-Loop
Plants.*... # ........................................ 94

5.8 Singular Values of the Compensated Ten Knot
System ........................ * ..................... 95

5.9 Singular Values of the Five Knot Open-Loop
Plant, ............................................... 97

5.10 Singular Values of the Compensated Five Knot
System .................................... 0 ......... 99

5.11 Scheduled Nonlinear Step Response at Seven
Knots .............................................. 102

5.12 Scheduled Nonlinear 30 Degree Ramp Response at
Seven Knots... .................................... 103

5.13 Scheduled Nonlinear 50 Foot Ramp Response at Seven
Knots .............................................. 105

5.14 Scheduled Nonlinear Step Response at Fifteen
Knots... ., .... o .................... so .............. 106

5.15 Scheduled Nonlinear 30 Degree Ramp Response at
Fifteen Knots, .......... . ...... ..... 108

5.16 Scheduled Nonlinear 50 Foot Ramp Response at
Fifteen Knots ..**....* ........ .. ,. .. ,,....... 109

9 -"



LIST OF TABLES

CHAPTER 2 Page

TABLE 2.1 Model Inputs, States and Outputs...................... 22

2.2 Eigenvalues of the Twenty Knot System ................. 32

2.3 Transmission Zeros of the Twenty Knot System .... * ...... 32

CHAPTER 3

TABLE 3.1 Encounter Frequencies ........ . ... . ................. 41

3.2 Settling Times and Crossover Frequencies ............... 42

3.3 Depth Excursion Limits ................................. 42

CHAPTER 4:

TNPT.R 4.1 Second Order Actuator Dynamics ......................... 55

- 10-



I .0 INTRODUCTION AND SUMMARY

1. I Background

The purpose of this thesis is to investigate the applicability of

designing a multivariable controller for a deeply submerged underwater

vehicle using the Linear Quadratic Guassian (LQG) with Loop Transfer

Recovery (LTR) methodology. At the present time, there are few examples

of multi-input, multi-output (MIMO) design of complex systems using the

LQG procedure and still fewer examples which actually test the control

system on a nonlinear simulation as will be accomplished in this thesis.

While it is possible that full state feedback could be achieved in

the present system, this is not always practical or feasible in general

for systems with inaccessible state variables. Moreover, being able to

accomplish control with only a selected set of the available state

variables provides additional flexibility and efficiency in designing a

fault-tolerant system.

As one of the primary concerns of submerqed vehicle operations is

course and depth keeping, it is natural to desire to control the heading

angle (psi, *) and depth (z) of the vehicle. Thus, for this design it

is intended to feedback only two states (psi and z) and obtain

reconstruction of the remainder as a by-product of a Kalman filter-based

estimator within the compensator structure.

There are several reasons for designing a depth and heading

controller. An automatic control system can be expected to reduce the

operational workload and thus the required manning. With manual

control, the response to course and depth changes tends to be

oscillatory, especially at higher speeds. Automatic control should

provide control surface movement which is more precise, requiring less

overall motion and energy. The redaction in lifting surface motion will

also lower vehicle resistance and reduce fuel costs.

- 11 -
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It is emphasized that the type of controller design proposed here

would be utilized under normal operating conditions such as transits

from one location to another or in patrolling a given area of the

ocean. It is not intended that the control system be used for rapid

maneuvers such as collision avoidance or navigation in restricted

waters.

1.2 Contributions of the Thesis

The primary contribution of this thesis is the design of a truly

multivariable control system for a submerged, underwater vehicle.

Typically, such vehicles have been controlled by separating plans of

motion and coordinating the decoupled control actions. However, when

cross-coupling is considerable, the control system thus designed may

actually become unstable.

Design of a truly multivariable controller overcomes the

shortcomings of some of the "classical" designs. The coupling between

planes of motion, as discussed in Chapter 2, is particularly severe for

the system under consideration. With multivariable control, these

coupling effects are incorporated in the design and thus, one may expect

to develop good controllers in a more systematic fashion.

An additional contribution of this thesis is that it represents the

first attempt to apply the LQG/LTR control methodology to design an

autopilot for a submersible. This methodology, which largely follows

the work of Doyle and Stein [5], has several excellent characteristics.

First, it is a systematic procedure which, through the use of singular

values, allows one to "design to" a set of frequency-domain

specifications. With appropriately chosen design specifications, the

compensated system will exhibit desirable command following and

disturbance rejection properties as well as insensitivity to modeling

errors and sensor noise. Further, the design methodology allows one to

ascertain the multivariable robustness properties (stability margins),

ensuring closed-loop stability in the presence of modeling errors.

- 12 -
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Finally, the control design is tested on a nonlinear simulation.

Due to the inherent robustness properties of the LQG method, we may

expect the controller to operate satisfactorily at other than its

nominal speed and position in state space. This will ease the gain

scheduling task.

1.3 Outline of the Thesis

Chapter 2 contains a physical description of the submarine with its

nonlinear and linearized equations of motion. The second part of the

chapter investigates the dynamics of the linear model obtained at twenty

knots. This includes a modal analysis and the open loop singular values

of the plane.

Chapter 3 discusses the desirable characteristics of the controller

and sets some specifications to be met in the frequency and time

domains. Multivariable robustness considerations are also discussed.

Chapter 4 presents the model-based compensator structure along with

a discussion of the augmented dynamics incorporated in this design. The

LQG/LTR controller design methodology is shown and a control design

based on the twenty knot linear model is developed. Finally, the

compensator is tested on the linear and nonlinear simulations.

Chapter 5 investigates the speed range over which the compensator,

designed using the twenty knot linear model, meets the specifications

and presents the other models (linearized for different speeds)

necessary to accomplish automatic control over the speed range of the

submarine.

Finally, Chapter 6 contains the conclusions and recommendations for

future study.

-13-



2.0 SYSTEM DESCRIPTION, MODELING AND ANALYSIS

Z.1 Introduction

In this chapter we shall first discuss the submarine in physical

terms, describing its salient features and dynamic characteristics.

Some background will be given in the sequel describing the nonlinear

equations of motion after which a short derivation of the linearized

dynamics is presented along with the state variables and system inputs

and outputs. The twenty-knot linear model is then presented and

verified by comparing the linear and nonlinear dynamic responses.

Finally, an analysis of the dynamics of tne linear model is undertaken

including the pole/zero structure and a modal analysis.

2.2 System Description

The system to be controlled is a manned, underwater vehicle with

port/starboard (left/right) symmetry as shown in Figure 2.1. For the

purpose of this control design the vehicle is assumed to be well below

the surface of the ocean and its mass constant. Neutral buoyancy is

assumed as the ballast system is not modeled. The control surface

configuration consists of a cruciform stern with separate sternplanes
and rudder located aft and fairwater planes located on the sail. There

is no differential control; that is, both the upper and lower or port

and starboard control surfaces must rotate together.

Positive rudder deflections primarily cause the vehicle to turn

left; however, due to vehicle banking (which causes the rudder to act to

some degree as a sternplane) as well as crossflow drag effects and

lifting surface memory effects the vehicle exhibits a tendency to dive

in a turn. Further, the stern and fairwater plans will tend to be

"seen", to a certain extent, as rudders. These effects are quite

pronounced at higher speeds. Thus, there is considerable cross-coupling

between planes of motion.

-14-
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While the generic model of the underwater vehicle is based on the

the original Naval Ship Research and Development Center (NSRDC) 2510
Report (8], various supplemental models have subsequently evolved.

These modifications enable the model to predict well at least one

particular aspect of vehicle motion. The most notable additions attempt

to model the memory effects of velocities induced on the afterbody and

control surfaces by trailing vortices from the fairwater planes and

sail. Thus, the effects of crossflow drag and vortex shedding have been

included in the math modell however, neither surface or bottom effects

are included.

Finally, the subject vehicle is capable of speeds in excess of

thirty knots with a minimum speed of about five knots. The sternplanes

and rudder are limited to a maximum of plus or minus forty degrees of

rotation with the fairwater planes' maximum excursion limited to twenty

degrees.

2.3 Vehicle Modeling

2.3.1 Nonlinear Equations of Motion

The system dynamics, including control forces and moments exerted

by the rudder and planes, are typically described by a set of six degree

of freedom nonlinear differential equations based on the NSRDC 2510

report [8]. The equations are general enough to simulate the rigid body

trajectories and responses of a submarine in normal maneuvers as well as

in extreme maneuvers such as those associated with emergency recoveries

from a sternplane jam and flooding casualties. Over the years

correlation to full scale trial measurements with the following

equations has shown them to yield accurate predictions of submarine7

motions and trajectories. The advantage of using this formulation is

that it is experimentally based and takes advantage of commonly used

experimental techniques in generating many of the hydrodynamic

coefficients.

- 16-



The hydrodynamic coefficients constitute the heart of the

mathematical model used to simulate the rigid-body motions of the

vehicle. The hydrodynamic coefficients used for this study are for a

deeply submerged vehicle, free of free-surface, bottom, and wall

effects. The hydrodynamic forces and moments which enter into the

equations as coefficients are usually classified into three categories:

static, rotational, and acceleration. The static coefficients are from

the linear velocity components of the vehicle relative to the fluid, the

rotary coefficients are due to angular velocity components and the

acceleration coefficients are due to either linear or angular

accelerations. Within limited ranges, the coefficients are linear with

respect to the appropriate variables, and thus yield good results in the

linearized equations of motion [8].

The major modeling problem therefore reduces to finding the

numerical values of the individual coefficients with sufficient accuracy

to support the objective of the simulation study, in this case an

automatic heading and depth controller to be used during normal underway

operations. Ideally, one would acquire the values for a given vehicle

configuration using hydrodynamic theory. Unfortunately, those

coefficients which are due primarily to viscous flow considerations,

such as the static and rotary coefficients, cannot be obtained reliably

using existing theory alone. Theory has been used with good results in

computing the acceleration coefficients for simple shapes without

appendages, using potential flow theory. For an actual underwater

vehicle which includes appendages such as control surfaces, propellers

and bridge fairwaters, the use of theory does not, in most cases, yield

results which accurately describe the physical system. Accordingly, the

present state of the art is either to rely on experimental means or

semi-empirical computer-based methods to determine the hydrodynamic

coefficients for a specific design.

The primary experimental method used to obtain the coefficients is

the planar-motions-echanisms-system in conjunction with a physical

model of the vehicle. The physical models used for testing are large as

- 17-
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towing tank. This permits determination of the hydrodynamic

coefficients which are comparatively free of scale effects and other

experimental problems. Using a large model allows one to obtain, more

easily, the high Reynolds number necessary to avoid the effects of

transitional flow over the hull and appendages of the model. The

planar-motions-mechanism is used to find all the values of hydrodynamic

coefficients except certain coupling terms and those nonlinearities

associated with high values of angular velocity, found while conducting

tight turns or dives [1,81. If such values are required, the planar-

motions-mechanism tests are supplemented by the rotating-arm test. The

hydrodynamic coefficients used in this study were provided by NSRDC for

a generic underwater vehicle.

The equations of motion are written in a right-hand orthogonal

system of moving axes, fixed in the body, with its origin located at the

center of gravity of the vehicle. The axes are body fixed as the

hydrodynamic forces and inertia are most readily computed in the

vehicle's frame. As shown in Figure 2.1, the xy plane is the principal

plane of symmetry, with the x-axis parallel to the baseline of the

body. The positive direction of the axes are as follows: x-forward,

y-starboard, and z-downward. The remaining sign conventions follow from

the riqht-hand rule. The positive directions of the axes, angles,

linear and angular velocity components, forces and moments are also

shown in Figure 2.1. For the purposes of control, it is sufficient to

include the effect of relative motion between the body frame and flat

non-rotating earth frame with the latter used as the inertial frame.

Thus the effects of the earth's rotation and its spherical shape have

been neglected as they are relatively small. The nonlinear equations,

and kinematic relations, are given in Appendix A, and include the

crossflow drag and lifting surface memory effocts. The definitions of

the hydrodynamic coeffiocients are contained in reference (8].

- 18-



2.3.2 Linear Time Znvariant State Space Model

For the purposes of controller design the nonlinear equations of

motion are linearized about an operating or nominal point. Further, it

is sought to place the linearized equations in a state space form as

shown below:

A- Ax + su (2.1)

where x is the state variable vector and u is the control vector.

The equations are therefore expanded in a Taylor Series about the

steady-state operating point with only the first order terms of the

expansion being retained. Thus, given the nonlinear state model of the

form:

Mi - f(x,u) (2.2)

we linearize about the nominal point xo , uo. Neglecting higher

order terms we find the linearized dynamics to be described by the

following equations

__ M&~ -f~ , )+ f(x 'u ) f(x 'u)A+ _ - u + -o (i-) + --- 0 -o (u-u (2.3)
x Su

The nominal input uo and the resulting nominal state xo satisfy

the original equations of motion at the nominal point, M_.f( ou).

Defining Ax -(x - xo ) and Au -(u - uo), one has

6x 6u

which is of the desired form, where A - -f(x o'uo and B - -- o '-o
6x au

- 19 -



The linearized equations of motion can be found in Appendix B.

2.3.3 State Variables

The six equations for surge, sway, heave, roll, pitch and yaw

contain eight variables in addition to the hydrodymanic coefficients.

These are u (forward speed), v, w, p, q, r, * and e. To the previous

six equations we add the four kinematic relations - depth rate (1), roll

rate ($), pitch rate (0), and yaw rate (i). As it is intended to

control the yaw/heading angle and depth these variables will be

considered as the feedback state variables for this design. It is

interesting to note that none of the ten state equations used to model

the system is a function of the heading angle or depth. Thus, the

system as presently modeled has two integrators associated with the

variables psi and z. Within linear system theory, this integrator

action shall ensure no steady state error for step disturbances in the

closed-loop compensated system.

2.3.4 Outputs and Control Inputs

The intent of this thesis is to use and evaluate the loop transfer

recovery technique (discussed in Chapter 4) to design the compensator.

This methodology requires a square system with an equal number of

control inputs, u, and observed outputs, y. As the compensator to be

designed is to control the heading angle and depth; and, since these

variables are readily available for measurement, they are selected as

the system outputs. Thus, the output vector is:

-X - rZ1(2.5)

The choice of two control inputs is only slightly more difficult.

The vehicle has available, as inputs, its three control surfaces - the

rudder, stern and fairwater planes. As the fairwater and sternplanes

- 20 -



are redundant (either can separately control depth, depth rate or pitch)

and present operating procedure is to fix the fairwater planes while

utilizing the sternplanes; the system inputs selected were the rudder

and sternplane deflection (6r, 6s). The input vector is then:I*
u [- (2.6)

Note that by not utilizing the fairwater planes under normal conditions,

a separate set of gains can, in the future, be generated as a means of

back-up depth control. Table 2.1 lists the inputs, states and outputs

of the submarine used in this control design along with their respective

units.

2.3.5 Twenty Knot Linear Model

The function of the multivariable controller to be designed is to

maintain an ordered course and depth as well as to be capable of

altering vehicle heading and depth. As the submarine will spend the

great majority of time maintaining a given course and depth, it was

decided to linearize about straight ahead motion at constant speed. The

SUBMODEL program, developed at Draper Laboratory is briefly discussed in

Appendix C and, more completely, in reference [181. It was used to find

the local equilibrium point.

The local equilibrium point was found by perturbing u, v, w, p, q,

r, 0, and O until the accelerations (derivations of the states) were,

practically speaking, zero. The accelerations and equilibrium values of

the states at twenty knots are listed in Table C.1 of Appendix C.

At this point, the linear dynamics are calculated and the ten by

ten M-1 A (q) and the ten by three W_1B ( p) matrices generated.

The , Bp, and C matrices are shown in Table C.3 of Appendix C

and represent the unaugmented submarine model at twenty knots. The 2p

matrix still shows three controls as the fairwater planes have not yet

been slockedw. Subsequently, in the control design, the second column

of (, (corresponding to the fairwater planes), is deleted.
- 21 -



TABLE 2.1

Vehicle Control Inputs

u, - sternplane deflection - degrees

u 2 - rudder deflection - degrees

States

x, - u, forward speed - ft/sec

x2 - v, lateral speed - ft/sec

x3 - w, vertical speed - ft/sec

x4 - p, roll rate - radians/sec

x5 - q, pitch rate - radians/sec

x6 - r, yaw rate - radians/sec

x7 - , roll angle - degrees

x- e, pitch angle - degrees

x9 - *, yaw/heading angle - degrees

x10 - z, depth - feet

System Outputs

Yi - j, yaw angle - degrees

Y2 z, depth - feet

- 22 -



2.3.6 Model Verification

To ascertain the validity of the linear model about a particular

nominal point, one only has to equally perturb the linear and nonlinear

models (using the SUBMODEL program), then observe and compare their

responses. If the linear model dynamics are sufficiently close to the

nonlinear response, one may have confidence in the linear model.

Additionally, one can gain a feeling for the region of state space in

which the linear model is valid by comparing the linear and nonlinear

responses for various perturbations from the nominal point.

As an example, the linear and nonlinear responses with no control

surface deflection and initial perturbations in q and r of 0.01

radians/second are shown in the plots in Figure 2.2. Note with the

exception of the forward speed, u, the close agreement of responses.

The difference in forward speed can be attributed to the fact that we

linearized about straight ahead motion at constant speed (1]. Other

tests with different states perturbed were made with the comparisons

between linear and nonlinear responses being, in general, excellent.

Since the controller is to be capable of turning and diving, non-zero

settings of the rudder and sternplanes were also compared.

Comparing the linear and nonlinear responses with the sternplanes

set at two degrees, there is generally good agreement, especially if one

compares not only the shapes but the absolute values. Of particular

interest are the psi and depth responses shown in Figure 2.3. The

nonlinear and linear values at 100 seconds for psi although opposite in

direction are both essentially zero (.0045 versus -.0013 degrees). The

depth response for the linear model follows very closely for the first

thirty seconds (within one foot). The depth at 100 seconds being 633

feet for the linear model and 574 feet in the nonlinear case. The

variations between the responses is certainly acceptable.

When one compares the linear and nonlinear heading and depth

responses with a two-degree rudder deflection (Figure 2.4) the major

weakness of linearizing about straight ahead motion becomes apparent.

The linear model shows nearly no deviation in depth during a turn (-.16
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feet) while the nonlinear model (due to the cross-coupling effects)

shows a depth excursion of 47 feet at 100 seconds. However, it should

be noted that the difference between the two models is less than a foot

at times less than 30 seconds.

The psi responses compare well, with the difference between the

linear and nonlinear heading being less than 1.5 degrees at 30 seconds.

At 100 seconds, the nonlinear model has shown a heading change of -60

degrees while the linear model is at -103 degrees.

Other comparisons with different control surface deflections and

vehicle speeds show the same general results. As expected, the linear

and nonlinear model responses increasingly deviate as the deflections

and speeds increased, however there was good agreement in the first 20

to 30 seconds. These analyses suggest that, if the control design which

is based on the linear model of the submarine, requires large, prolonged

control surface deflections, the compensator may not provide adequate

response to perturbations. This is so because the controller will have

based its actions on the expected linear response while the actual

vehicle more closely follows the nonlinear model.

2.4 Model Dynamics

2.4.1 Analysis of the Twenty Knot Linear Model

In this section, the submarine dynamics shall be investigated. The " 1

multivariable poles and zeros are presented and their implications

discussed. A modal analysis is conducted to further validate the linear

model and lead to a more complete understanding of the vehicle

dynamics. Controllability and observability studies are undertaken and

the plant open-loop singular values are calculated and their

implications in future controller design discussed.

2.4.2 Pole Structure

The stability of the system depends solely on its poles (the

eigenvalues of p). For stability all eigenvalues must have negative

real parts. Stability implies that, if the vehicle is perturbed from
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its equilibrium point in state space, it will naturally tend to return

to its nominal state. The poles of the system are shown in Table 2.2.

Note the two poles at zero due to the independence of all the equa-

tions to the state variables psi and z. These poles at the origin show

that there is no tendency for the vehicle to return to a given heading

or depth (assuming that w have that weight equals buoyancy) when per-

turbed. Further note that the fastest system pole is -0.33 radians per

second. This emphasizes the fact that the submarine is a very slow sys-

tem. Also, the two sets of complex conjugate pairs correspond to the

oscillatory roll and pitch modes. It is desirable to further associate

the poles with the states and modes in order that one may gain insight

into the physical system and also further verify the linear model. To

accomplish this, a modal analysis of the linear system was performed.

2.4.3 Modal Analysis

As the heading angle and depth of the vehicle have no effect on

the six modes (surge, sway, heave, roll, pitch and yaw) a reduced A ma-

trix with the psi and z states and equations deleted was used in com-

puting the eigenvalues. This leaves the remaining eight eigenvectors

(two of which form conjugate pairs) to describe the six degrees of sub-

marine motion.

The normalization of the eigenvectors highlights the issues of ap-

propriate dimensions. The state variables u, v, and w are in units of

feet per second, p, q, and r in radians per second and 0 and e in ra-
dians. There is no consistent set of factors by which to non-

dimensionalize the A matrix (and hence the eigenvectors). Ideally,

each column of Ap could be normalized by its respective state equilib-

rium value; however, in this instance, most of the equilibrium states

are essentially zero (see Table C.).

In order to more appropriately view the eigenvectors, the three

linear velocities of each eigenvector were normalized by the largest

among u, v and w. The three angular velocites and two angles (* and 8)
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TABLE 2.2

Twenty Knot Linear System Eigenvalues

0.000000

0.000000

-.011766

-.014427 ± 0.016029

-.025288

-.141521 ± 0.365928

-.296676

-.329816

TABLE 2.3

Twenty Knot System Transmission Zeros

-.025288

-.13902 ±0.36063

-.16079

-.17617

+. 48846
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were likewise normalized among themselves. Thus, while we are not able

to compare the contribution to each mode from each state on a uniform

basis, we may still gain an adequate feel for the individual state con-

tribution to each mode by the previously described normalization method.

Figure 2.5 plots for each eigenvalue, the dominant components of

its normalized eigenvector. The plots give an indication of the direc-

tions (in state space) in which each eigenvalue is important. Also, by

analyzing which states are dominant in a particular mode (eiqenvector),

one can associate with each mode a particular state. This information

is also indicated on the plots of Figure 2.5.

2.4.4 Multivariable Zeros

Table 2.3 lists the transmission zeros of the system. There is a

non-minimum phase (NMP) zero at +0.488. At present it is not clear pre-

cisely how NMP zeros can be handled so that they do not adversely affect

control system performance. It is known that, if a right-half plane

zero is within the bandwidth of the system, it will impose severe limi-

tations on system performance [5,151. However, if the NMP zero is above

crossover (outside the bandwidth) it is expected that its adverse affect

will be greatly attenuated.

2.4.5 Controllability and Observability

It is instructive to ascertain whether or not the linear model is

controllable and observable. This is due to the fact that,if

is a controllable pair (hence, stablizable) and [.p, S]

is an observable pair (implying detectable), then one is guaranteed that

at least one set of control and filter gain matrices exist such that the

closed-loop compensated system is stable.

A system is controllable, if the input u can control the complete

state x of the system. This implies every mode is affected by at least

one input. As the system, described by the linear time invariant

matrices , p and has repeated eigenvectors and is
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singular, the method used to ascertain system controllability is

n-IRank (2.7)b A l-p.........7

If the rank p, is equal to the order of the system, n (ten in this

case), the system is controllable.

A system is observable, if the complete state of the system can be

ascertained from observing the output y. This implies every mode is

connected to at least one output. The test for observability used here

was

Rank -S, AC ..... (±p )-SPI-q.(2.8)

L
If the rank of the above matrix is equal to the system order, n, the

system is observable. By forming the above matricies and determining

their ranks, the system was found to be both observable and

controllable.

2.4.6 Open Loop-Plant Singular values

In the multivariable case, the best extension of the Bode plot

concept of single input, single output (SISO) systems is a plot of the

transfer matrix singular values. Briefly, singular values of a matrix

14, a(M), are a function of frequency and are defined as:

a. (M) - /. (M*M) (2.9)

where: 01 _ ith singular value

Ai _ ith eigenvalue of M

M* - the complex conjugate transpose of 1

For our purpose, we substitute the plant transfer function matrix, G(s)

for t (31, where

- 35 -



G(S) Cp(sl-_p)-'.1 p (2.10)

and, using a computer routine, the singular values of G(s) as a function

of frequency are calculated and plotted. Figure 2.6 is the plot of

singular values of the open-loop transfer function G(s) for the twenty

knot linear model.

The maximum singular value is dominated by the depth, the minimum

by the heading angle. Notice that the crossover frequency of the

maximum singular value is approximately 1.0 radian per second while the

minimum singular value crossover occurs at about 0.13 radians per

second. This implies that the submarine naturally responds more quickly

in depth; and also, that designing a controller which is too fast

(crossover greater than 0.13 in the psi channel) will attempt to drive

the vehicle faster than it could naturally respond. Finally, it is

noted that the maximum singular value corresponding to depth crosses
over beyond the NMP zero. In designing the controller it will be

advantageous for the singular values to cross over at a lower frequency;

first, because the crossover frequency should be well below unmodeled

and other undesirable dynamics so as to attenuate their effects and,

second, so that the NMP zero will be outside the closed-loop system's

bandwidth.

2.5 Chapter Summary

The physical system to be controlled along with some of its

particular dynamic characteristics were discussed. The nonlinear

equations of motion, based on the NSRDC 2510 report and their linearized

counterparts for straight ahead motion at twenty knots, were presented.

The linear model at twenty knots was successfully verified by

comparing the linear and nonlinear model responses to similar

perturbations. It was found that for periods of less than thirty

seconds, the responses were nearly identical. Finally, the dynamics of

the twenty knot linear model were investigated. In the next chapter,

time and frequency domain specifications will be developed.
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3. CONTROLLER SPECIFICATIONS AND ROBUSTNESS

3.1 Introduction

In this chapter some desirable attributes of an automatic heading

and depth controller will first be qualitatively discussed. Next, a set

of frequency domain specifications will be derived which will serve as a

basis for the compensator design of Chapter 4. Time domain specifica-

tions will also be presented against which the resultant compensator

shall be tested. Finally, the concept of robust multivariable control

is discussed and the definiition of multivariable phase and gain margins

given.

3.2 General Specifications

There are no clearly stated design specifications which this par-

ticular compensator is required to meet. The time domain figures used

herein are the designers goals based on several discussions with opera-

tional personnel. In general terms, it is desired that a multivariable

controller be designed for use as an "autopilot" to maintain course and

depth in the presence of disturbances such as shifting currents. It is

envisioned that the compensator be activated when the submarine is near

its ordered course and depth. This implies that the compensator be able

to response favorably to step inputs (in psi and z) as it is unlikely

that the submarine will be precisely at the ordered heading or depth

when the automatic control system is activated. Further it is required

that the controller be able to alter the course and depth of the sub-

marine in response to either step or ramp inputs in heading and depth

with small steady state errors. Another requirement is that the control

system allow the vehicle to accomplish a level turn, that is, undergoing

very little depth excursion while making a turn. Finally, as the multi-

variable controller is not to be designed for rapid/critical maneuvers,

the speed of response is not of primary importance.
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The MIO extension of a bode plot is a plot of the singular values

of the transfer matrix. Referring to Figure 3.1, in the frequency

domain, it is required that the stable, closed-loop compensator have

good command following, input and output disturbance rejection, and low

sensitivity to modeling errors and sensor noise. Thus, one desires the

minimum singular value to have high DC and low frequency gains for good

command following and disturbance rejection while at higher frequencies,

where unmodeled dynamics and sensor noise typically have their energy,

the maximum singular value should be small and roll off rapidly.

In the time domain, the control design should mimimize any oscilla-

tory response or overshoot. This takes priority over the speed of

response for the present design objectives. Generally, an overdamped

response is considered desirable. Small steady state errors are

required.

3.3 Specification Development

First we shall set some guidelines in the frequency domain. Having

no other criteria, the surface wave frequency spectrum was used to

deduce some maximum crossover frequency limits. As discussed in

reference [171, the surface wave spectrum has a frequency range

typically between 0.2 and 2 radians per second. The frequency of

encounter, we, between the sea spectrum and a moving vehicle is a

function of the sea spectrum frequency, the angle between the vehicle

and direction of propagation of the dominant wave front and vehicle

speed. Specifically, from reference [131, within linear theory:

22 w u
=W ,. -- c OS* (3.1)e g

where: u = ship speed in ft/sec

g - gravity

= wave spectrum frequency

= direction of the vehicle relative to the direction

of wave probagation (180 for head seas)
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The worst case (lowest crossover) is for following seas (psi-O) in

the presence of low frequency waves (w - 0.2). Thus, for various

speeds, the encounter frequencies presented in Table 3.1 gives some
indication of frequencies above which the controller should attenuate

energy.

TABLE 3. 1 : Encounter Frequencies

Speed (Knots) Encounter Frequency

30 .137

20 .158

10 .179

5 .189

Sensor noise is well above this range: and, therefore, it will be

readily attenuated by a compensator designed according to the above

considerations for crossover. Note also that the NMP zero at +.488 is

well above the indicated crossover frequency.

In setting a lower frequency "limit", one may use the settling time

allowable. Here, the settlinq time is the time required to reach and

stay within 10 percent of the reference value. From experience,

reasonable settling times for a significant couse (10 degrees) and depth

(30 feet) changes as a function of speed are shown in Table 3.2 if one

assumes that the steady state is reached in approximately four time

constants, we are left with an indication of the lower frequency limit

for crossover.
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TABLE 3.2: Settling Times and Crossover Frequencies

Speed (Knots) Settle Time (sec) Frequency

30 100 .040

20 200 .020

10 300 .013

5 400 .010

A tight crossover pattern is indicated by the above analysis. As

the minimum singular value (corresponding to psi) was found to have a

crossover of about 0.13 radians per second along with the considerations

above, the twenty knot controller shall be designed with crossovers of

between .02 and 0.13 radians per second. Since the DC gain appears to

increase with larger bandwidths for this system, it is advantageous to

design at or near a crossover frequency of 0.13 radians per second. It

is emphasized that these ranges are guidelines rather than strict

limits. Further, it should be noted that the design procedure to be

discussed in Chapter 4 would apply equally as well to a different set of

specifications.

In the time domain, the specifications to be met include the

settling times (Table 3.2) for simultaneous 10 degree and 30 foot step

perturbations. Additionally, any overshoot or oscillatory response is

to be minimized but, from experience, acceptable figures are 20 feet in

depth and 5 degrees in heading.

The allowable deviation in depth during a course change is a

function of vehicle speed. The currently acceptable figures are:

TABLE 3.3: Depth Excursion Limits

Speed Allowable Depth Excursion

<10 kts. 10 feet

10-20 kts. 15 feet

>20 kts. 20 feet
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Reading deviations during a depth change are to be limited to three

degrees.

Of considerable importance is the allowable steady state error. An

acceptable absolute value for heading error is less than one degree

while depth error should be less than five feet. A more useful specifi-

cation for steady state error is a percentage of the required change or

deviation. Obviously, we should expect larger errors for greater course

and depth changes. it is the objective of the design to maintain a

three percent or less steady state error using the nonlinear simulation.

Finally there is the issue of rate limitations on the control sur-

faces. The state of the art for the size of the control surfaces and

vehicle speeds in this design is 12 to 15 degrees per second. This lim-

itation was not explicitly included in the compensator design or

programmed in the simulation but must be kept in mind when deciding if a

particular controller is acceptable.

3.4 Robustness

The issue of robustness deals with the fact that any model is at

best an approximation. Usually the model is a relatively low order

linear time invariant approximation in which modeling errors predomi-

nantly manifest themselves at higher frequencies. These high frequency

modeling errors include neglected dynamics (for instance from the

assumption of rigid body motion), time delays and neglected nonlineari-

ties. The basic concern is to find the extent to which the nominal

design values of the plant model can deviate without causing system

instability.

For purposes of this discussion, the feedback system is as shown in

Figure 3.2, with the loop transfer matrix, G(s), incorporating both the

plant dynamics and any compensation utilized.
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For the single input single output (SISO) case, the Nyquist

* stability criterion not only informs one if the closed-loop system is

stable but also allows one to graphically visualize the stability

margins (robustness) of the system by viewing the locus of g(s) (scalar

G(s)) in relation to the critical point (12]. For the NINO case, the

multivariable Nyquist criterion (5,11,121 answers the question of

asymptotic nominal closed-loop stability, but does not indicate the sort

or size of errors which will drive the system unstable. In order to

obtain a measure of robustness (i.e., stability margins) in the NINO

system one must use singular values.

As stated above, the actual plant, a(s), differs from the nominal

plant, G(s), because of modeling approximations and errors. There are

many ways in which to model these errors. The most common ways are as

additive or multiplicative errors. For additive errors we have

G(s) - G(s) + E(s) (3.2)

where E(s) is the error matrix. For multiplicative errors we find

&(s) G G(s) (I + E(s)] (3.3

It can be shown [11] that for additive (or division) errors the

system will be on the verge of instability when

det[I + G(s)] - 0. (3.4)

Similarly, for multiplicative (or subtractive) errors the verge of

instability in the NIO case is (11,12].

dettl + G(s)] - 0.
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In terms of the 1IMO Nyquist criterion, this is where the number of

nominal encirclement. of the critical point changes.

In terms of singular values we are interested in the smallest E(s)

such that the return difference transfer matrix ((I + G(s)] or

I +G-(aW]) is singular. It has been shown (11,121 that, if the

following conditions hold:

1. The actual (+OL(s)) and nominal (#OL(S)) open-loop

characteristic polynominals have the same number of right half

plane (RHP) roots (unstable poles).

2. If *OL(JWo) = 0 then *OL(Jwo) - 0

3. *CL(s) has no RHP zeros (no unstable poles)

then the actual closed-loop polynominal (;CL(s)) will have no RFP

roots if

a. For the additive or division error models

GminUI+ G(j ) > Umax[E(jw)]

(3.6)

b. For the multiplicative or subtractive error models

min[I+ G"(j)] > Omax(E(jw)]. (3.7)

The requirement for robust control for multiplicative error can be

visualized as shown in Figure 3.3. Thus, one may ensure the robustness

of the system under consideration using the above inequalities, if an

error matrix can be adequately estimated. However, if, as in our case,

there is no good estimate of the error margin, other means must be used

to check for robustness.

We shall examine the MMO gain and phase margins as developed in

reference [121. If the three previously stated conditions hold and
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alin(I + .G(s)] > a (3.8)

or

amin[_I + G-1 (s)] > 8 (3.9)

then the guaranteed phase (PM) and gain (GM) margins are given

respectively by:

GM - 1 (3.10;1 +a

2

PM = +cos-[ - 2 (3.11)

or

GK - [1 + 81 (3.12)

-1 I2

PM - + cos 1 - ]. (3.13)
2

it should be noted that the phase and gain margins are somewhat

conservative in the sense that the gains or phases of all the feedback

loops may be changed simultaneously without destabilizing the

closed-loop system. In fact, individual loops may have larger margins,

taken one at time. For the submersible we shall not set specific

margins but evaluate the controller to ascertain its robustness.
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3.5 Chapter Summary

The present chapter has developed a set of frequency domain specif-

ications to which a controller can be designed. In order that the com-

pensator may, once designed, be tested and validated, time domain spec-

ifications have also been presented. Finally, the basic ideas of com-

pensator robustness were discussed in terms of modeling errors with

multivariable phase and gain margin definitions given. In chapter 4,

the control design methodology is developed and a design example offered

and tested.
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4. MODEL-BASED COMPENSATOR AND CONTROLLER DESIGN

4.1 Introduction

In this chapter, a compensator will be designed based on the Linear

Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) procedure.

We will first discuss the Model-Based Compensator (MC) and the aug-

mented dynamics then, the Loop Transfer Recovery (LTR) design procedure

is employed to meet the frequency-domain specifications. A design exam-

ple using the twenty knot linear model is then presented. Finally, we

shall test the compensator design using both linear and nonlinear simu-

lations.

The control specifications will be met by loop-shaping the singular

values. In order to meet the performance specifications of small

steady-state errors, we desire high DC gains. To ensure modeling errors

will not cause closed-loop instability we desire a crossover of about

0.1 radians per second with a large roll-off after crossover. This will

ensure attentuation of the high frequency modeling errors and sensor

noise.

4.2 Model-Based Compensator Structure

The MC is a class of MIMO compensators which can be constructed

using the results of optimal control theory (the linear quadratic state

feedback problem) and optimal estimation theory (the Kalman filter).

The MBC has the property that, when cascaded with a MIMO open-loop

plant, the resultant closed-loop plant will be stable, provided the con-

stant gain parameters discussed below are properly selected. Thus, the

designer's objective is, given an open-loop plant, to select a compensa-

tor which ensures stability of the closed-loop system and achieves the

desired loop shapes in the frequency domain using singular values.

Figure 4.1 illustrates the desired feedback structure of the MIMO con-

tror system with the disturbances, d(a), reflected to the plant in-

put. Although Linear-Quadratic-Gaussian stochastic optimal control
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theory is used to obtain the numerical solutions for the gains of the

MeC, the implications of the word "optimal" should be deemphasized.

This is, among other reasons, because the designer varies the free
parameters, in a systematic way, without regard to stochastic optimality

considerations, in order to obtain good compensators.

Figure 4.2, from reference [61, illustrates the internal state-

space description of the MBC (K(s)) and the open-loop plant, Gp(s).

Note that the A, B, and C matrices describing the plant appear in the

compensator, K(s), as well as in the plant transfer function matrix,

Gp(s). The term MBC is used due to the explicit way the nominal model

of the open-loop plant, .p(s), shows up in the compensator, K(s).

The open loop dynamics of the plant are

i(t) = Ax(t) + Bu(t) + rA(t) (4.1)

y(t) - cx(t) (4.2)

where L is a design parameter which may be varied so that an open-loop

system can be constructed to reflect the specifications. The

closed-loop compensated system will then be required to match this

open-loop performance. The control-to-plant transfer function is

Gp(s) = C(a - A)-B. (4.3)

The NBC dynamics are

i(t) - (A-BG-HC]z(t) - He(t) (4.4)

u(t) - -Gz(t) (4.5)

where z(t) is the estimated state vector (of the same dimension as the

plant state vector), r(t) is the reference input vector, e(t) is the
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error vector (e(t) - r(t)-y(t)) and u(t) is the output vector of the

MBC. The control gain matrix, G, and filter gain matrix, H, are design

results which together determine the poles and zeros of the NBC. The

MBC transfer matrix, LQG(s), is given by

ELQG(s) - G(sI-A+BG+HC)- H (4.6)

where

u(s) - !LQGs)e(s). (4.7)

A closed loop representation of the cascaded plant and compensator

is derived in reference (2] as

L (] J(j+ I J (4.8)

where a change of variables has been used with

w(t) - x(t) - z(t). (4.9)

The vector w(t) is simply the error of state estimation.

The above 2n dimensioned vec--- equation completely describes the

closed-loop system. Given A, B, and C, the selection of H and G will

determine the closed-loop dynamics from which one may calculate the

closed-loop response to disturbances and/or command inputs. It can be

shown [2,3,61 that closed-loop stability decomposes into two separate

problems as follows:

1. Given A and B, find G-such that the real parts of the

eigenvalues of (A - BG) are less than zero.
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2. Given A and C, find H such that the real parts of the

eigenvalues of (A - HC) are less than zero.

From linear system theory (101 it can be shown that the feedback

system of Figure 4.2 can be made closed-loop stable by appropriate

selection of H and G, provided that [A,B] is a stablizable pair and

[A,C is a detectable pair. In fact, as discussed in Chapter 2, the

twenty knot linear model satisfies the stronger controllability and

observability conditions.

4.3 Calculation of the Gain Matricies

The procedure for calculating G and H is based on the LQG

stochastic optimal control theory [10,161. Recall that, in the Linear

Quadratic Regulator problem we attempt to minimize the quadratic cost

functional

J - J [x'(t)Qx(t) + u'(t)Ru(t)]dt (4.10)

where the R matrix is the control weighting matrix and is the state

we4 ghting matrix.

The control gain matrix G is

G - R71 BP (4.11)

where R is an arbitrary symmetric, positive definite (mxn) matrix (m

being the number of inputs and ouputs) and P is the solution to the

control algebraic Riccati equation (CARE)

0- -P- A'P - j+ PBRT-BP (4.12)

In this development _ is an arbitrary (nxn) symmetric, positive

semi-definite matrix given as

.2 NN (4.13)
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such that [AN] is detectable [2].

The filter gain matrix, H, is found using the Kalman filter

algorithm with

H - FC'S-1  (4.14)

where S is symmetric, positive semi-definite and is given as

S = MM' (4.15)

and M is an arbitrary matrix of suitable dimensions with [A,M

stablizable. The F matrix is the solution of the filter algebraic

Riccati equation (FARE)

0 - PA + A'F + S - PC'e- 1cP (4.16)

where 8 is an arbitrary, symmetric, (mxm), positive definite matrix.

The control engineer has considerable freedom in selecting the

parameters of the design. In fact, one may use L, N, R, R and 8

directly as design parameters. Obviously, this freedom is of great

disadvantage without a method of rationally and systematically selecting

these parameters. The LTR method provides such an algorithm. Before

the LTR procedure is presented, we shall augment the plant dynamics as

discussed below.

4.4 Control Surface Dynamics and Augmentation

4.4.1 Actuator Dynamics and Augmentation

In order to reduce the number of neglected dynamics, it is

desirable to include in the linear model the dynamics of the actuators

(rudder and sternplanes). The actuators are more accurately described

by second order systems (Table 4.1)1 however, as the damping ratio

approaches unity, the second order harmonics disappear. In order to

reduce the model size and because the control surfaces are heavily
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the actuators vere satisfactorily approximated with a first order

representation of the form

(l/T)
S + 1/T)

with the constant T being derived from the original second order

dynamics.

TABLE 4.1: ACTUAL DYNAMICS (Second Order)

Sternplanes: w 3.14 radians/sec

.9

a E - 2.83 radians/sec

Rudder: w 2.51 radians/sec

-.9

9 w - 2.26 radians/sec

Now; from reference [131, using the definition of the time constant

for a second order system with critical damping

T - 1/0

ve find

1/Tr - 2.83/sec

I/Ts - 2.26/sec

As the projected crossover frequency is on the order of one tenth of a

radian per second, it was clear that the actuator dynamics would not

have a large influence on the design. However, in order to increase

roll-off near crossover, it was decided to use lag compensation at 0.1

radians per second instead of the approximate control surface dynamics.

This will increase the roll-off above the crossover frequency, making

the vehicle less susceptable to modeling errors and high frequency

sensor noise. Therefore, the system was augmented with two lag

compensators as shown in Figure 4.3.
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Figure 4.3. First order lag compensation block diagram.
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Figure 4.4. State space representation of the augmented dynamics.
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The state space representation of the augmented dynamics is shown

in Figure 4.4. For the lag compensation previously developed we have

0.0-]

a -0 1:00 ]

and Ga(s), the 2 by 2 augmentation transfer matrix is

GA(s)- Ca(SI-a-) A. (4.19)

4.4.2 Overall System Model

The H4MO feedback system with the augmented dynamics Ga(s) is as

shown in Figure 4.5. Since GA(s) is decided by the control designer,

it is justifiably part of the overall compensation K(s) (it is this

overall compensation that is incorporated in the simulation), with

I(s) _G(s)LQG(S) (4.20)

and it is only the compensation denoted as 2 LQG(s) which will be

designed by the LQG/LTR methodology presented later.
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For designing K LQG(s) we first need to define the "plant"

transfer matrix G(s) as

G(S) -G(s)Ga(s) (4.21)

as illustrated in Figure 4.5. Note that the "plant" consists of the

nominal plant, Gp(s), and the augmented dynamics Ga(s). Also note

that the input to the "plant", u(t) is not the physical input (t),

but that the output y(t) is the same for either plant definition

(augmented or unaugmented). In the present design LQG(s), Ga(s),

and Gp(s) are all two by two transfer matrices.

In the frequency domain the nominal plant, Gp(s), is defined as

p(s) -- _ (4.22)

where Ap is a ten by ten matrix, B is a ten by two matrix andsp

is a two by ten matrix. The development of the specific plant matrices

was presented in Chapter 2.

Combining the augmentation dynamics and nominal plant yields an

overall plant transfer matrix

G(s) - C(sI )-B (4.23)

where A is a 12 by 12 matrix, B is a 12 by 2 matrix and C a 2 by 12

matrix. Figure 4.6 displays the state space, time domain representation

of the overall open-loop "plant".

To develop the form of the A, B, and C matrices we start by

defining the 12 by 1 state vector as

x!
X M - (4.24)
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Figure 4.5. Overall compensated system.

+ j*(k . (t) WOt) Iipr(t) + x t

Figure 4.6. Nominal open-loop plant with augmentation.
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vhere x Mt consists of the original ten state variables listed in Table

2.1 and Ea(t) are the two augmentation states.

The overall plant in state space form is nov given by

*(t) - Ax(t) + Bu~t) (4.25)

y~t) - OC(t) (4.26)

where

A- AC1OxO) B

+ (Ix2)

0O(2xO)+AA
(2x2)

Cl(2x2)

L~(2x2])
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4.4.3 Augmented Plant Dynamics

The addition of the first order lag compensation at 0.1 radian per

second increased the order of the plant to twelve. This augmentation

added two poles at 0.1 but did not change the transmission zeros.

The singular values of the augmented open-loop plant were

calculated and are shown in Figure 4.7. As expected, the augmented

plant singular values roll-off more quickly at frequencies above 0.1

radian per second as compared to the unaugmented plant. The crossover

frequencies occur at 0.48 and 0.1 as compared to the unaugmented plant

crossovers of 1.0 and 0.13 radians per second. The faster roll-off

should enable the designer to more easily meet the crossover and

robustness specifications. With the augmented plant A, 8, and C

matrices (shown in Table C.3 of Appendix C) developed, the loop transfer

recovery control design methodology will now be discussed.

4.5 Compensator Design ethodologies

The LTR procedure allows one to systematically design an LQG-based

compensator, K(s), given a nominal open-loop plant G(s). We shall

systematically select and iterate on the free design parameters L, 0,

and R. Specifically, we desire to shape the singular values of the loop

transfer matrix, T(s), where

T(s) - _(s)K(s) (4.27)

over the appropriate frequency range such that the specified

performance/robustness properties of good command following, output

disturbances rejection and insensitivity to modeling errors are met.

The LQG/LTR method presented here (and detailed in references 121 and

5]), consists of first shaping the singular values of the Kalman filter

loop transfer matrix and then recovering the same loop transfer matrix

for T(s) using the dual of the Kwackernaack recovery method [101.
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The first step is based on the Kalman filter (KF) frequency domain

equality.

II+GK Is)) + (I+G) (s() -I +G Ls) (S) (4.28)fl9K (-i )) + '-KF - U-FOL w-FOL

where

G 0L(s) - C(sI-A)-IL (4.29)

and
IKF(s) - C(sI-A)-H. (4.30)

The A and C matrices are for the augmented plant, H is for the filter

gain matrix and M and L are design parameters. At low frequencies it

can be shown [2] that as the frequency approaches zero,

a [G () G (4.31)
i [Ils)] i 7 7 FOLs

Thus the first step is to select L and p such that the specifica-

tions (command following, disturbance rejection and crossover) in the

frequency domain are met by

G [FOL( 0 w)] (4.32)

Now the FARE, of the form

0 - AIF + FA + LL' - FC'e-1CF (4.33)

is solved for F using U and 8 as arbitrary design parameters (usually 8

is taken as the identify matrix due to considerations detailed in

reference [12]). The XF gains are then

H - FC'8 -  (4.34)

L
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The singular values of the filter transfer matrix, ( (S), are made to

match, as closely as possible, the singular values of GFOL(s), by

iterating on the scalar U. That is, we select M such that for the

previously obtained L (selected to meet the stated frequency-domain

specifications) we have

ai(GKFs)] -(I-a a(s (4.35)

p_

At this point the robustness of the KF is checked by ensuring

a[I+.Ky(jw)] > 1 (4.36)

a[IG(j.) (4.37)

These robustness properties are discussed in reference [12).

The LQG compensator is now designed using LTR by solving the CARE

for P whic7- is of the form

0 - -PA - A'P - Q + PBR-1 B'P (4.38)

where

_Q - qcC (4.39)

and q (a positive scaler) and R (usually taken as the identity matrix)

are the design parameters. The control gain matrix G is then

G R-1 B'P . (4.40)
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The singular values of the resultant loop transfer matrix 0[T(j,,)]

are now calculated where

T(s) = G(s)ILQG(s). (4.41)

The designer iterates on q (and possibly R) until

OtT(jw)] = a[GKp(Jw)] (4.42)

over reasonable frequency ranges.

For all minimum phase systems, the LTR method guarantees that the

singular values of T(s) and GF(S) will coincide as the scaler, q,

approaches infinity. In NMP systems, if all non-minimum phase zeros are

beyond the maximum crossover of GF(S), then the singular values of

T(s) and G1 F(s) will coincide satisfactorily at low frequencies. If

non-minimum phase zeros exist at frequencies below crossover, it appears

that there will be basic limnitations on command-following and

disturbance rejection [2]. Precisely how to "cure" this is not known at

the present time.

Finally, if the designer has available an estimate of the modeling

error Lp(s), the robustness of the compensated system may be checked

by ensuring

mrax [L Jw)-I] < Omi n [I+1TIJ)](.3

a [L (jw)-Il < a .i[I+T(jI). (4.44)max -p - mmn-

Using the augmented, twenty knot linear model, a compensator will

now be designed. It should be noted that an accurate estimate of the

modeling error was not available to the designer. Therefore, the

robustness properties were not examined in terms of Lp(s).
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4.6 Compensator Design Example

The first step of the design procedure is to select an arbitrary L

matrix such that the performance specifications are met. Recall that

the frequency-domain specifications stated that crossover should be 0.13

radians per second or less, due to the natural crossover frequency of

the open-loop plant singular values, the frequency of wave encounter and

the N1P zero at 0.488.

The L matrix was selected such that the singular values would be

"tied together" both at low and high frequencies with crossover in the

vicinity of 0.1 radians per second. The particular L to accomplish this

was selected as follows.

At low frequency, the KF equality reduces to the approximation

[ G- FO(Jw)] a[ o[C(jw)] (4.45)

which implies

C(jwI-A) L . K(jw) (4.46)

The idea is to select L such that C(sI-A)-IL - I. As the freqeuency

approaches zero

C (-A-1 )L (4.47)

Therefore, we pick L such that

I - CA 1 L (4.48)

which yields

L - 1W AC'(CC'}- I ,  (4.49)
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5 76bvns system, the A matrix is singular. Since L is arbitrary, let A

- A where A is made non-sinular by replacing the zeros in the last two

diagonal entries of A with unity. The form of A in relation to C

makes A appear as an identify matrix and since the C matrix is unitary

(CC' - I), we have

L - VjvcI (4.50)

at low frequencies.

At high frequencies, we find the KF equality leads to the

approximation

1 CL
G(jw) (-T )CIL 1 (451

Thus we desire

CL- i(4.52)

which leads to

L - /Vc, (cc') r =,-c, (4.53)

Therefore at both high and low frequencies tying the singular values

together requires L - /C . We only have to iterate on the scalar V to

obtain the desired crossover characteristics of ai[FoL(Ji)]. It

was found that for - .01 the singular values of GFOL(S) (Figure 4.8)

exhibited the desired characteristics of high DC gains (60 dB at W -

.0001) and a crossover of 0.1 radian per second.

Using the L matrix thus generated and iterating on the scalar I/vtp,
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the FARE was solved, the filter gain matrix, H, generated and the

singular values of the KF transfer matrix (0[GF(jw)]) calculated.

With 1/i equal to 1, the singular values of bp(s) were found to

exactly match the singular values of GOL(e). Figure 4.9 shows the

singular values of AF(s) with 1//i - 1 and L - .1C'.

At this point, the poles of the filter (Xi[A-HCD) were

calculated. All had negative real parts, thus verifying the guaranteed

stability of the filter. Further, the robustness of the filter was

checked by evaluating

i (I+G K(jW) (4.55)

and

ai _G J)] (4.S6)-
1 -+K W)C

The filter robustness requirements discussed earlier were met as both

sets of singular values maintained magnitudes of unity or greater.

The singular value loop shapes of the filter are now recovered for

the compensator. The CARE is solved with R = I and the result used to

calculate the control gain matrix, G. The singular values of the

resultant loop transfer function (0i[T(jw)J) are generated and

compared to the KF singular values. The designer iterates on the scalar

q (where 2- qC'C in the CARE) until a satisfactory match is obtained

over the frequency range of interest. As shown in Figure 4.10, a q of

100 yielded satisfactory results with a crossover at approximately .065

radians per second and DC gains of 55 dB (at .0001). (In fact, larger

values of q allowed for crossovers and DC gains more closely approaching

the KF values but the controller gains subsequently generated were found

to saturate the sternplanes and/or cause the rate limits to be

exceeded.)
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Notice the very narrow spread at crossover between the minimum and

maximum singular values. Also, at frequencies above 1 .0 radians per

second, the roll-off approaches 80 dB per decade. This conforms to the

Bode-Horowitz condition that all physical systems must exhibit at least

two pole roll-off. This roll-off will ensure rapid attenuation of high

frequency modeling errors and sensor noise. Further, the roll-off at

crossover as predicted by Bode is approximately 20 dB (7]. The presence

of a non-minimum phase zero at 0.488 has not prevented the LTR from

being accomplished. Its presence however, might possibly have caused

the delay in rolloff exhibited by the maximum singular value.

The robustness of the overall loop transfer matrix, T(s), can now

be determined. Figures 4.11 and 4.12 plot the singular values of the

return difference (i[I + T(jw)] and inverse return difference

(oi(I + T' (J)) respectively. Using the gain and phase margins as

defined in Chapter 3, we find for additive error

G@ - [-4.73 dB, 11.2 dBI

PM E (-41.5 deg, 41.5 deg]

For multiplicative errors we have

GM- [minus infinity, 6 dB]

PM - 1-60 deg, 60 deg]

Thus, the overall loop transfer matrix is quite robust and therefore

relatively insensitive to modeling errors which may exist.

The compensator gains generated (found in Table C.4 of Appendix C),

will now be used in the linear and nonlinear simulations to ascertain

the vehicle response to various reference inputs and initial

conditions. The controller will be evaluated in terms of the

time-domain specifications delineated in Chapter 3.
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4.7 Compensated System Response

4.7.1 Simulation

Using the linearized model of the submarine at twenty knots (A, C,

and C) and the filter and control gains (H and G) designed for that

model, the compensator was tested via a computer simulation. The true

test of a compensator is whether it adequately controls the vehicle and

meets the specifications. Given that there is no actual test platform,

the alternative is a simulation which incorporates the dynamics of the

vehicle (as modeled by the equations of motion) and the compensator

effects including any augmentation. Both linear and nonlinear,

simulations were developed, solving the linearized and nonlinear

equations of motion respectively. Thus, one may ascertain how well a

linear compensator design is able to control the nonlinear model of the

vehicle and critically compare this with the linear model response.

Figure 4.5 illustrates the simulated, closed-loop system.

The simulation allows step and ramp perturbations to be input.

Free surface effects, random noise and control surface rate limits were

not modeled. Further details of the SUBMODEL program can be found in

reference [181.

4.7.2 Initial Conditions and Reference Inputs

When the depth and heading controller is initially activated, it

will have to compensate for step commands as the ordered depth and

heading will almost certainly be different from the depth and course the

vehicle is presently maintaining. During manual control it is expected

that the course will be maintained within two or three degrees of that --

ordered and the depth maintained to within 10 feet. To ensure a

practical controller, it was desired that the compensator be capable of

withstanding simultaneous step commands of 10 degrees and 30 feet.

Additionally, the controller was tested with ramp inputs in heading and

depth to ensure it could be utilized to automatically change the

vehicle's course and depth over greater ranges. Specifically, the
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compensated system was subjected to a ramp course change of 30 degrees

and a ramp depth change of 50 feet, both input over 100 seconds. The

ramp inputs were imposed separately.

4.7.3 Error Limits

Through repeated testing, it was found that error limits

(internally limited within the simulations) of 10 degrees in heading and

10 feet in depth offered satisfactory results for the twenty knot

model. These error limits prevented excessive control surface

deflection and also prevented the rate limits mentioned in Chapter 3

from being exceeded.

4.7.4 Linear and Nonlinear Responses to Step Inputs

The compensated nonlinear responses to simultaneous step commands

of 10 degrees and 30 feet are shown in the plots of Figure 4.13. The

linear and nonlinear state responses were very similar with the major

difference between the two being that the linear simulations showed less

error in psi and z at the end of the run. This is to be expected as the

compensator gains were designed using the linear model of the

submarine. The errors for both the linear and nonlinear simulations

were small and growing smaller as time progressed due to the integrator

action.

The time domain specifications for the compensator are easily met

whether controlling the linear or nonlinear model. The linear model

heading error was less than ten percent (one degree) at 28 seconds while

the depth error was within 10 percent (three feet) in 54 seconds. The

nonlinear model has settling times of 71 and 78 seconds respectively.

The settling time specification at 20 knots was 200 seconds.

The error at 200 seconds for the linear model was 0.8 percent in

heading and 1.0 percent in depth which is well within the three percent

specification. For the nonlinear model, the errors at 200 seconds are

2.245 and 1.1 percent and at 300 seconds are 0.7 and 0.5 percent.
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Initial control surface deflections were, of course, the same for

both models (same gains and initial errors). The maximum rudder angle

is 4.5 degrees at seven seconds and the largest sternplane deflection is

16.2 degrees after two seconds. Thus, the rate limits were not exceeded

nor were the control surface deflections near saturation (40 degrees).

Note the type of control action which the design procedure yields.

One finds that essentially all the control surface movement comes in the

first thirty seconds. This is due to the fact that the controller

"believes" it "knows" precisely how the vehicle will response; and thus,

it gives large initial control actions and then allows the vehicle

dynamics to take over and "carry" the vehicle to the reference

position. Therefore, we see rapid initial reductions in error as the

vehicle is allowed to glide to the desired position. Although it cannot

be seen on the plots, there is some residual control deflection tending

to take the vehicle toward zero steady state error.

4.7.5 Linear and Nonlinear Ramp Responses

Linear and nonlinear simulations were conducted to ascertain

whether the controller could response adequately to ramp inputs used to

turn or change vehicle depth. A 30 degree turn was first conducted with

the nonlinear model responses for psi, z, heading error, depth error and
control action shown in Figure 4.14. The linear model showed the

submersible reaching steady state at 60 seconds after the ramp input

ceased (160 seconds simulation time) with a heading error of 0.33

percent. The depth excursion was essentially zero. In the nonlinear

case the submarine is within 3 percent (one degree) of the ordered 30

degree heading 100 seconds after the ramp input ceased and was still

approaching 30 degrees (29.7) at 300 seconds. The maximum depth

excursion if 3.3 feet during the turn and is within 0.35 feet at the end

of the simulation. Thus the "level" turn specification (15 feet allowed

at 20 knots) was met by the controller for both the linear and nonlinear

models. Control actions were well behaved.

- 80 -



• .

10 30 s0 s ,20 250 ISO 210 20 270 300
TIME

S.

.S o go 9 20 T E I I0 210 20 I 270 300

S30 60 90 220 Ii0 I90 220 NO 270 300
TIME

B

as

TIME

00.

o0 30 60 0 2 o I o 210 240 270 302
TIME

Figure 4.14: Thirty Degree Ramp Response of the

Compensated Nonlinear Nodel

81



A depth change of 50 feet was also simulated with excellent

results. Both the linear and nonlinear simulations showed practically

no course deviation during the ramp depth change. The linear response

showed the vehicle reaching 50 feet some 60 seconds after the input with

a 0.47 foot overshoot (one percent) and a 0.3 percent (and decreasing)

depth error at 300 seconds. The nonlinear model response (Figure 4.15)

shows the ordered depth being reached 48 seconds after termination of

the ramp input with a 1.3 foot overshoot (2.6 pecent) and an error at

300 seconds of 0.7 percent (and decreasing). Again, the control design

more than adequately meets the specifications.

Other ramp inputs were imposed with similar results. The

compensator thus can be utilized to "drive" the vehicle with no apparent

magnitude limits in depth and heading. Further, although the system as

modeled has only one integrator per channel, the errors with ramp inputs

have still tended to approach zero.

4.8 Chapter Summary'

In the present chapter, the LQG/LTR methodology was presented and

used with the frequency domain specifications to design a set of filter

and control gains for the augmented system's MBC at twenty knots. It

was found that a NNP zero outside the compensator's bandwidth did not

adversely affect the recovery process.

Using both a linear and nonlinear simulations with step and ramp

commands, the MBC was successfully tested against the time domain

specifications delineated in Chapter 3. In Chapter 5, the speed range

over which the twenty knot MC meets the specifications shall be

investigated and other linear models generated in order to accomplish

gain scheduling over the submarine's operational speed range.
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5s GAIN SCHEDULING

5.1 Introduction

In this chapter we shall first investigate the speed range over

which the control and filter gains derived from the twenty knot linear

model, meet the specifications for the previously discussed ramp and

step inputs. In the following sections the five and ten knot models are

presented along with their corresponding filter and control gains. The

speed range of each set of these compensator gains is also

investigated. Finally, a gain scheduling scheme is offered that

adequately controls the submarine over the intended five to 30 knot

speed range.

5.2 Twenty Knot Compensation

5.2.1 Range of the Twenty Knot Controller

Using the nonlinear computer simulation with the propulsion and

initial condition data modified as necessary to reflect the ddsired

vehicle speed, one is able to ascertain the speed range over which the

twenty knot model-based compensator (MBC) adequately controls the

submarine. It was found that the twenty knot control gains, met or

bettered specifications over a speed range from 15 knots to 30 knots.

The nonlinear time responses at 15 and 30 knots are discussed below.

5.2.2 Vehicle Response at Fifteen Knots Using Twenty Knot Gains

The nonlinear time responses of psi, z, heading error, depth error

and control action for simultaneous step inputs of 30 feet and 10

degrees are shown in the plots of Figure 5.1. The time domain

specifications are satisfied. The nonlinear model heading error is less

than ten percent (one degree) at 80 seconds while the depth error is

within 10 percent (three feet) in 149 seconds. The specification at 15

knots is 250 seconds. The error at 250 seconds is 0.54 percent in

heading and 0.025 percent in depth which is well within the three
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percent specification. At 300 seconds (the end of the simulation) the

heading error was 0.027 degrees (0.27 percent) with the depth error at

0.17 feet (0.57 percent).

Initial control surface deflections are the same as in the twenty

knot case due to the fact that the gains and errors are the same,

initially. The maximum rudder angle is 4.5 degrees at seven seconds and

the largest sternplane deflection is 16.2 after two seconds. Thus,

neither were the rate limits exceeded nor were the control surface

deflections near saturation (40 degrees).

Simulations were conducted to ascertain whether the controller

could respond adequately to ramp inputs at 15 knots. A 30 degree turn

was conducted with the nonlinear model response shown in Figure 5.2.

The plots show the submarine reaching 29 degrees 47 seconds after the

ramp input ceased (147 seconds simulation time) and still approaching 30

degrees (29.7) at 300 seconds. The maximum depth excursion is 2.93 feet

during the turn and is within 0.11 feet (and decreasing) at end of the

simulation. Thus, the *level" turn specification (15 feet allowed at 15

knots) was met by the controller.

A depth change of 50 feet at 15 knots was also simulated with

excellent results. As before, the simulations show (Figure 5.3)

practically no course deviation during the ramp depth change. The

nonlinear model response shows the commanded depth being reached in 145

seconds after termination .of the ramp input with a 0.3 foot overshoot

(0.6 percent). Again, the control design more than adequately meets the

specifications.

Thus, the compensator designed for a vehicle linearized about

straight ahead motion at twenty knots adequately controls the

submersible and easily meets the time domain specifications at 15

knots. In the following section, the results for a vehicle speed of 30

knots are presented.
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5.2.3 Vehicle Response at Thirty Knots using Twenty Knot Gains

The nonlinear time response for simultaneous step inputs of 30 feet

and 10 degrees is shown in the plots of Figure 5.4. The time domain

specification (100 seconds settling time at 30 knots) is satisfied with

the nonlinear heading error being less than one degree at 17 seconds and

the depth error within 10 percent (three feet) in 46 seconds. At 300

seconds (the end of the simulation) the heading error was 0.093 degrees

(0.93 percent) with the depth error at 0.32 feet (1.07 percent). In

both cases the error is tending toward zero.

There are small overshoots in both heading and depth responses at

30 knots using 20 knot gains. This is to be expected, since, at higher

speeds, the vehicle responds more quickly to a given control surface

deflection. The overshoots were 0.66 degrees in yaw and 2.82 feet in

* - depth.

A 30 degree turn was conducted with the nonlinear model responses

shown in Figure 5.5. The plots show the submarine reaching 29 degrees
80 seconds after the ramp input ceased with a vehicle heading of 29.8

degrees at 300 seconds. The maximum depth excursion is 4.7 feet during

the turn and is within 0.5 feet (and decreasing) at end of the

simulation. Thus, the "level" turn specification (20 feet allowed at 30

knots) was met by the controller.

A depth change of 50 feet at 30 knots (see Figure 5.6) was

simulated with essentially no course deviation observed during the ramp

depth change. The nonlinear model response shows the ordered depth

being reached in 21 seconds after termination of the ramp input with a

1.2 foot overshoot (2.4 percent) and an error at 300 seconds of 0.01

percent. Again the control design more than adequately meets the

specifications.

Thus, the compensator designed for a vehicle linearized about

straight ahead motion at twenty knots adequately controls the

submersible at thirty knots. In the following section, the ten knot

linear model is briefly discussed along with its control gains and

applicable speed range.
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5.3 Ten Knot Linear Model

The nonlinear equations of motion were linearized about straight

ahead motion at ten knots with the resultant A and B matrices as shown

in Appendix D. The linear model was verified through a modal analysis

and a comparison of linear and nonlinear responses to comparable

perturbations. The open-loop plant contained a NMP zero at +0.241 and

two poles at the origin. The open-loop poles and multivariable zeros

are also shown in Appendix D. The plant open-loop singular values
(oi[C(sI-A)-IB) are as plotted in Figure 5.7. The singular value

corresponding to depth has a crossover frequency of 0.51 radians per

second while the singular value associated with heading angle has a

crossover at 0.063 radians per second. The lower crossover frequencies

in comparison with the twenty knot model emphasize the fact that as the

vehicle slows, so does its speed of response.

This model was also augmented with the break frequency being 0.1

radians per second. This increased the order of the plant to twelve

states and added two poles at -0.1. The singular values for this

augmented plant cross over at 0.295 (depth) and 0.059 (heading) radians

per second. Note the maximum singular value has the NMP zero within its

bandwidth.

In designing the controller, the L matrix (L-.1C') was selected so

that both singular values crossover at 0.1 radians per second. Thus,

the NMP zero will be outside the bandwidth of the compensated system.

The LTR methodology was followed (i/lW- 1 and q - 300) with the

singular values of the overall loop transfer matrix, T(s), (which

includes the nominal plant, augmentation and model-based compensator)

shown in Figure 5.8. Note that both singular values crossover at
approximately 0.052 radians per second.

The eigenvalues of the compensator (KLQG(s) - G(sI-A+BG+HC)-H)

were calculated and all were found to have negative real parts, as

expected. Thus the stability of the Model-Based Compensator was

verified. The multivariable phase (PM) and gain margins (GM) of the
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compensated system were calculated, and found to be, for additive error:

GM - [-4.48 dB, 9.75 dB]

PH - [-39.4 deg, 39.4 deg]

for multipliative error:

GN - [-infinity, 6 dB]

PM - [-60 deg, 60 deg).

The control and filter gains of the ten knot controller are shown in

Appendix D. with these gains, at speeds less than fifteen knots, the

error limits imposed within the simulation in order to avoid control

surface saturation were four feet and five degrees.

It was found that the ten knot control gains met or bettered

specifications over a speed range from 8 knots to 15 knots. Thus, the

compensator designed for a vehicle linearized about straight ahead

motion at ten knots adequately controls the submersible and meets the

time domain specifications from 8 to 15 knots. In the following

section, the five knot linear model is discussed.

5.4 Five Knot Linear Model

A linear model was generated at five knots for straight ahead

motion and a compensator was designed based on this model. The

open-loop plant contained a NKP zero at +0.115. The plant open-loop

singular values are as shown in Figure 5.9. The crossovers of the

singular values corresponding to psi and depth are 0.032 and 0.26

radians per second respectively. The plant was then augmented with lag

compensation at 0.1 radians per second which altered the crossover

frequencies to 0.032 and 0.19. The NMP zero is within the system
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bandwith. Augmentation was considered at lower frequencies (0.05);

however, this caused the crossover frequencies to be further reduced in

the compensated plant, for gains which did not saturate the controls

(low values of the scalar parameter, q).

A compensator was designed to match a crossover frequency of 0.1

radians per second. Designing for a crossover at 0.1 radians per

second, instead of around 0.03, was an attempt to increase the bandwidth

of the controller (and hence, the speed of response) and to increase the

DC gains (reducing the level of steady state error). The singular

values of the overall loop transfer matrix, T(s), for this design (1/

1 1 and q = 100) are displayed in Figure 5.10.

Even though the filter transfer function singular values crossover

at 0.1 radians per second, in the recovery process the crossover

frequencies of the overall transfer matrix attained for reasonable gains

(that is gains that did not saturate the controls) are 0.032 radians per

second and for psi and 0.036 for depth. Thus, the system's natural

bandwidth appears to limit the amount of performance and/or recovery

that may reasonably be attained. This was also true in the ten knot

design. The end result of designing the filter at a higher crossover

frequency (0.1 radians per second) is that the filter poles are slightly

faster than necessary as compared to the controller eigenvalues.

The PH and GN for this controller assuming additive error are

GH 1-4 dB, 7.95 dB]

PM - (-34.9 deg, 34.9 deg)

while for multiplicative error they are

GM - (- infinity, 6 dBI

PM = [-60 deg, 60 deg].
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The five knot linear model (A, B, C), eigenvalues and transmission

zeros, and control and filter gains are found in Appendix E.

By using the five knot gains, in the simulation, at various speeds

it was shown that the five knot compensator gains met the time domain

specifications over the speed range of five to seven knots. In the next

section a gain scheduling scheme is discussed and tested.

5.5 Gain Scheduling Algorithm

From previous discussions it is clear that for the system under

consideration, the LQG/LTR methodology generates robust controllers that N.

are, in general, adequate far from their nominal design points in state

space. With just three linear models (at five, ten and twenty knots) it

has been shown that, except for the interval from seven to eight knots,

the resultant compensator gains adequately control the submersible over

its entire speed range. (Between seven and eight knots the response is

stable but too slow if the ten knot gains are used and too oscillatory

with the five knot compensation).

Unfortunately, using just these three sets of gains and linear

models leads to a problem incurred when shifting from one set of gains

to another due to the discontinuities at these shift points. This type

of gain scheduling would cause large control surface deflections when

none are warranted as a gain shift is, in effect, a step perturbation.

In order to avoid these discontinuities, it was decided to attempt a

linear interpolation scheme between the five and ten knot models; and

then, between the ten and twenty knot points. Above twenty knots, the

twenty knot model and gains are utilized. For instance, if the

commanded submarine speed is seven knots, the control gain (G), filter

gain (H) and A matrices (the B and C matrices are the same at all

speeds) used in the NBC would be interpolated at two fifths of the

difference between the respective matrices at ten and five knots plus,

the five knot matrices. It is these interpolated G, H and A matrices

that are entered in the simulation.
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The simulation has not evolved to the point where gain scheduling

can be incorporated on a real-time basis. However, the interpolated

matrices for any speed can be generated offline and tested point by

point. This was the method used to verify the gain scheduling scheme

discussed above.

The linear interpolation algorithm was used to generate NBC's at

six, seven, eight, nine, twelve, fifteen and eighteen knots. Results

for seven and fifteen knots are discussed below. The error limits for

speeds less than fifteen knots were four feet and five degrees while at

fifteen knots and above the error limits were 10 feet and 10 degrees.

5.5.1 Selected Gain Scheduling Results

The nonlinear time response at seven knots for simultaneous step

inputs of 30 feet and 10 degrees is shown in the plots of Figure 5.11.

The time domain specifications are satisfied with the nonlinear model

heading error being less than ten percent (one degree) at 100 seconds

and the depth error within 10 percent (three feet) in 244 seconds. The

specification at seven knots is 360 seconds. At 600 seconds (the end of

the simulation) the heading error is 0.096 degrees (0.96 percent) with a

depth error of 0.0039 feet (0.013 percent). Both errors are slowly

approaching zero.

Control surface deflections are within the specified rate and

travel limits. The maximum rudder angle is 7.5 degrees at twelve

seconds and the largest sternplane deflection is 24.4 degrees after four

seconds.

A 30 degree turn was conducted with the nonlinear model responses

shown in Figure 5.12. The plots show the submarine reaching 29 degrees

300 seconds after the ramp input ceased and still approaching 30 degrees

(29.6) at 600 seconds. The maximum depth excursion is 0.12 feet during

the turn. Thus, the "level* turn specification (10 feet allowed) was

met by the controller.
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A depth change of 50 feet at seven knots was also simulated as

shown in Figure 5.13. The nonlinear model response shows the ordered

depth being reached 350 seconds after termination of the ramp input with

a 0.13 foot overshoot (0.26 percent). Again the control design more

than adequately meets the specification.

Thus, the compensation derived from a linear interpolation between

the five and ten knot gains and models adequately controls the

submersible and meets the time domain specifications at seven knots.

Additionally, the phase and gain margins were calculated. With the

interpolated seven knot gains and model, for additive error we have

GM - (-4.26 dB, 8.69 dBI

PM - t-36.9 deg, 36.9 deg].

For multiplicative error, the multivariable margins are

GN [-infinity, 6 dB]

PM [-60 deg, 60 deg).

The results for a vehicle speed of 15 knots are now presented.

The time response at fifteen knots for simultaneous step inputs of

30 feet and 10 degrees is shown in the plots of Figure 5.14. The time

domain specification (220 seconds settling time) is satisfied with the

nonlinear model heading error being less than ten percent (one degree)

at 82 seconds while the depth error is within 10 percent (three feet) in

100 seconds. At 400 seconds (the end of the simulation) the heading

error was 0.064 degrees (0.64 percent) with the depth error at 0.44 feet

(1.46 percent). In both cases the error is tending toward zero.
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The 30 degree turn was simulated with the nonlinear model responses

shown in Figure 5.15. The submarine reaches 29 degrees 160 seconds

after the ramp input ceased and the vehicle heading is 29.7 degrees at

400 seconds. The maximum depth excursion is 2.3 feet during the turn

and is within 0.13 feet of the reference, and decreasing, at the end of

the simulation. The "level" turn specification (15 feet allowed) was

met by the controller.

As displayed in Figure 5.16, a depth change of 50 feet at 15 knots

was simulated. The nonlinear model response shows the commanded depth

being reached 60 seconds after termination of the ramp input with a 2.7

foot overshoot (5.4 percent) and an error at 400 seconds of 1.34 percent

(0.67 feet) and declining. Again, the control design more than

adequately meets the specifications.

Thus, the 15 knot MBC derived from a linear interpolation between

the ten and twenty knot models adequately controls the submersible. The

multivaribale margins assuming additive error were found to be

PM - [-4.64 dB, 10.64 dB]

GH - [-41.4 deg, 41.4 deg].

For multiplicative errors the margins are

PM -, [-infinity, 6 dB]

GM - [-60 deg, 60 deg].

Further, the interpolated gains were found to meet or better the

specifications at all speeds tested.
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5.6 Chapter Summary

It has been shown that a linear interpolation, gain scheduling

scheme provides satisfactory control of the submerged vehicle from five

to twenty knots. At twenty knots and above, the twenty knot NBC yields

excellent results. Thus, the three linear models and their associated

compensations have adequately served as the basis for control of the

vehicle over its operating range in speed. Also, we remark here that

faster, as well as larger, ramp inputs can be tolerated making the

controllers presented here even more practical.
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

This thesis presented a multivariable control design example for an

underwater vehicle which comprised of the following:

1. Vehicle modeling based on the NSRDC 2510 equations including

crossflow drag and vortex shedding terms. These equations

were linearized to generate the linear model of the submarine

which was then analyzed and verified.

2. Frequency and time domain specifications were then developed

against which a controller could be designed and tested.

Multivariable robustness issues were also discussed.

3. The Model-Based Compensator structure was presented and

appropriate loop shaping (lag augmentation) included in the

compensator structure. The Linear Quadratic Gaussian/Loop

Transfer Recover (LQG/LTR) methodology for multivariable

control design was discussed and an example of the frequency

domain based design process was given for the vehicle model at

twenty knots. The controller robustness in terms of

multivariable phase and gain margins was evaluated and, using

a nonlinear simulation, the compensator was tested. The

compensator was subjected to step and ramp inputs and its

response evaluated using the time domain specifications.

4. The speed range over which the twenty knot model and control

gains met the performance specifications was then

investigated. Linear models at five and ten knots were

discussed and used as a basis for generating two additional

sets of compensator gains. Using the three linear models and

their respective control gains a gain scheduling scheme was

presented and tested which allowed for good automatic heading

and depth control of the submersible over its operational

speed range.
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6.2 Conclusions

For the type of control design desired, namely, an automatic

heading and depth control, linearizing about straight ahead motion at

constant speed incorporated enough of the essential vehicle dynamics so

as to yield a model which was adequate for compensator design. The

LQG/LTR design methodology offered a systematic method for multivariable

control design which generated robust controllers that were not only

stable but provided satisfactory control far from their nominal point

in state space. Further, the method allowed recovery of the desired

singular value loop shapes in the presence of NMP zeros which were

outside the bandwidth of the compensator. However, the maximum

bandwidth of the compensated system appears to be constrained by the

plant's natural open-loop bandwidth. This is an advantageous property

of the LTR process as it disallows compensator designs that

mathematically enhance the system bandwidth but prove useless in

practice.

6.3 Recommendations for Further Study

Incorporating differential control on the sternplanes (or using a

different control surface configuration such as the inverted-Y) should

be investigated. A control system of three inputs (rudder, and

differential sternplanes) and three outputs (heading, depth and roll)

could be designed which would reduce the coupling effects between planes

of motion by allowing direct control over the vehicle roll orientation.

This would assist in further overcoming the strong tendency of the

vehicle to dive while turning.

As the controller design and model requirements are strongly

dependent upon the function a control system is expected to serve, one

could linearize the equations of motion about small control surface

deflections in order to more fully capture the true vehicle dynamics in

the linear model. This might, however, require more models and a more

complex gain scheduling technique to adequately control the vehicle over

its speed range.
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Incorporating free surface effects (wave action) in the simulation

would provide a more realistic model of the environment near the ocean

surface. This, in the addition to gain scheduling within the

simulation, would enable one to test the control design more completely

in determining its practicality.

The type of control surface action which the LQG/LTR methodology

produced is an interesting area for a designer's consideration. The

vast majority of control movement is developed in the first ten to

thirty seconds; and thus, yields large, rapid deflections. This large,

rapid control action associated with the present design is due to the

quadratic cost functional used in the linear quadratic control design.

Incorporated within the functional is the control weighting matrix R,

which penalizes any control action; and thus, by varying the diagonal

entries of R, slower, less severe control action may be. generated, if

desired.

Finally, it would be advantageous to develop an estimate of the

modeling errors. This would allow a more revealing and realistic

measure of robustness than the multivariable phase and gain margins used

in this thesis. The need for modifying the controllers may be

identified, based on the modeling error information and the robustness

criterion presented in Chapter 3.
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APPENDIX A

NONLINEAR EQUATIONS OF MOTION

1.* SURGE

m[;u + qv - rv- x G(q2 + r2 ) +yG (pq -r + z G(pr + ) -

2 ~qq~ +rr +xrp]

3 [Xo; + p2 2 2ddbb 2 2POT RG

+ [. 2tv + X wq + j X Xu + x v + X w

2 vvri wl + r6rn WWI

-WTOT sin e

2 2
PROPTH-DRAG - u(c r + bn +a

-114



2. SWAY

m[ + ur - YG(r 2 + p 2 + zG (qr _ + x ( p +rj ,

PE + Y;; +p p pq + Yrqr rv sign (r,v) /v2 ,2]

+ -L ft3[ywp p + Y ur + y up + Y lrl6rlr ] +--2~ rp Y ur Y ~

+ 2[ Yp u 2 + Y UV + u2r +

Sv + wYU 2 + Y6r

+Y2 2w 2 + WTOT sin cose +

p3p p2 2(n -1) Y u3  +A uv + I-Y u26r +

2+r 2 Vii 2 Tjn
+ t2 Yv v+ Y*
2 V r T) +CRL VTX

Y " .t ) H(x)v(x) .v x) + Cx) dx

ftDlx'dx

I-B-1 2 -v I fxf v(x)v (t T dx, not included in(xfw - x o) x x IBM program.

fir so V's

S v

signlr,v) r *

Tx: time it took vehicle to travel a distance x in the axial direction

-115 -



•. *J II.. .I. . .I.. ,. - -l-*-,- - -.-. - -: 7 7- _ . . . . .

3. HEAVE

2 2
+[w + vp - uq - ZG(p + q + xG(rp - ) YG(rP + p)] -

. L4 [z'O + Z 2 + up 1+q q zrr r+zrp p
u 2 [ w2  /-..

+ v + w

+ 13Zq + ZH u q6V2 2

£ _ _ _ _22

v [z +uZ____ vp+ZU ++Z vu +
2 /2+v2+ 2 /2 22

u J + + + -

+ Z 1 /v+v+ Zu+Z uuts+ 2s +vi

+ 1 L
2 Z --u 2 ds } + ZC +

2o 6sr(x iw xZd

ZCRFL "-2 / TdDX)(Xd

VfwVTX 2 y lu - x)dX ; not included in the IBM

3 p 2 program .

-116 -

+ (T - t Z q +i I z uW+ - I



4. ROLLING TORQUE (0)
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P 5 [Nr + Np + Nrqr + Nrrj rirt + Npqpq] +

+ 2. + Nv + + Nr + N ujrl 6r] +

+ . 1 [N~u 2 + N / 2 + 2  + N uv + N ] +

+ ( ) N ur + t N u + N v + w +

+ (XGWOT - xBB ) cos sin + (yGWTOT -YB B ) sin e + NCRFL + WVT x

NCRFL - aC f x H(x) v(x) /(x) dx

Xfw

NVTX - C x w(x) ;f (t - T) dx ; not included in IBM

Vs
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KINEMATIC RELATIONS

- 2 +2 +2

zm-u sin8+ v cos0sini*+ wcosecos~

p + p+sin e

q q-cos esin~

r + i

Cos 0Cos*
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APPENDIX B

PARAM4ETRIC LINEARIZATION

I. AXIAL FORCE (SURGE)

(m -XuIU -MYGA; + -ZA

Au 2u0i + a + b n +crl + Xrr 6r 2+ X 6s6s 2+

+ AV [2(X,,V, + (ny-1)X vvniv 1 0 +. (X v + m)r 0 1 +

+ Aw [21X w + (ro-)X W}Iw 0 + (X w - m)q 0 +

+ Ap [ -myq, - (=G - Xr )r]0 +

+ Aq[(X - m)w p + 2(ixG + X )qo +
VO3GP G qqo'

+ Ar [(X r+ M)v 0+ (X p- mz G)p+ 2(mx+ X rr)r l

-Ae [(wTOT - B) cos e 0 ]

+ A69 [2(X68a + X 6  (vi -M)6sou 2 1

+ Altb [2x 6bb]

+ Aftr [2( 5  5  (vi -l))6r u21
X~r ~ 0 +O~rOn0

+ AvI [u2 (b~ + 2c n ) +X V 2+ X 2
0 0 vvn 0 wwn 0

+ X 2 + X r2 u2
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11, LATERAL FORCE

(m-Y. Av(mz + Y-)A + (ux -Y.)AV G p G r

Au [ul +Y 6r + (ni-1)Y 6r - , 2I32 +
0 Sr Srn 2 ~U02 +V 2+ W23/

00 0

yvw
v +(n-l)y + __ __ _ 0 + Y P +

0 VI / v+n pa

0 0 0

0 r~y m ) + I-l~ r r + rn]

02

+ AV [u{fy + - w0 0 2 2 TO- )y +-
0~ ~ +V 2 2w

0 0 0

yV ri v; 0 V w2V
III- orI 0 0 )v+(Vv+ [i + IVn n>1 + V2
V

4  
0 00+w0

+Yvq qo + av

0A~{ i 2 2 2
2 u + v + u0+ V 0

0 0 0

v +rW2
/-2 Hv TVT + +o'IvhJ'

0 0

+ P{fY + ml + Y r +p m +.~! 1+a-
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Ap[u Y +v (Y~ +iM) + p G p2y+2L- YPIPI) + qo(Yp mxg)] +

CRPW

+ Aq [Yqvo+ p 0(Ypq - X + ro0(Y qr - mz G) + aq +

+ Ar [u{0 1(Yr - mn) + 2Y r r0 6r + Y r(n -10} + v{ 0 yvr v

1 /2+2 +Yw+q( +r.2y+'CRFW 1

r ov+ 0 o Yr 0 0 qr nG) 2 G+ a r

+ AO [-(wTOT - B) sin 0 0sin +0]

+ A~r 21 6 or1+~6

+ATrn u~ o r o+ Y vnu ov o+ Y v 0 ~+Y 06r1l

where:

av.z (w 2 W2z(. + 2v 2(W)
ICF - 'Dox dx f, 1(x) --- ___ dx

av j 2 jv (X + '2 2W
0 0

a * 2 z wv 0xWw 0xW

I -~ d) 1(x) a 0
aw 2 JD~x) J '

i v 2(x) + w 2x)
0 0

'CFP (X2  z W xH(x)v 0xWw 0xW dx
aq 2 JD~x dx /v (x) + W 2 W

0 0

' *RF p ( 2  Z rw (2v2(xW + w2W

a j 2 JTID(x) dx) ft 2 ~)- 0 --
ar /v2(x) + v(x)
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III. Normal Force (Heave)

( - [o .+ myGA- (Z + . + -

-AU[2u olzass + Z~b~b + + (+10no 1)z6ss}s +

u 2
+ of( + 1 u0v 0 (Zv 0 Zvp2P0 + Zr) ( 2 232 +

2

+ o(Zpp + Z r) 0 2v2+w23/pp0 rp00 + 0  0+ 
qwo

1 u 0

+ r 0 {Zrrr0 ( 1 02/uu Vo+,,v t +u2 u+ vo + w20o
0 0 0

(Zr 0 + Z 2 p + 2Zwv0 )+ Av[Uof { 0 0 v
lUo2 + vo + wo2

vo(. rr + Z,,o + Z roPO + Z vro + Z 2 v oo+ Z v0 )

(U2 + 2o + w2)3/2 
I +
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III. Normal Force (Cont.)

+ (wq 1 2 2 /2 2 .
+'./-o ? . - ! + w

(Z W oI- + Z I + (n1 - II.wI + CRF +

+ .1. + 0n -

w0

(u2 + 2 + 23/2
0 00'0

(zp2 + Zrr2 + Z r p + Z v0 r0 + Z + Z r0 2} +ZppP0  Zrrr0  Zrpro 0 0 vp2VoP0 v

2 2 WoV0 Z lwnv0 A
+ voJZ..1  i /1+ + 2+/(r2)-+)Z-040-+.(n+

0 0 WW - 2 02
I Wi/v o+ w o  

2+ WV2

100 0O 0 0

V vqj 2 -2V

(2Z~ 1 VW I r +M 2woT0io - 1)ZW 1w1 n 2w0 ) + aZw +

+ Ap[u 0  (2Z ppp 0 + Zrpr 0 + Z vp2v0  +

u2+ 20 + w02
0 0o 0

+ v0 (ZVP-m) + p02mz G q OmYG - r oG] +
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MI. normal Force (Cont.)

+ Aq[u0{Z q + m + Zjq 16  (in 0 1)Z qi +

+ Vw~q v0 +v 0 0  + q 2mZ~ r0 Y st 'F +

+ Ar[u { (2Z r +Z p +Zvv0
02 ~2 2 roZpo vV

- u 0 + vZ0 + W 0

+ A* [-(WTOT - B) cos 0 i 0]

+ Ae [-(WTOT - B) sin eo 0Cos 001

+ A6S [(Z 6 + (Y10 - 1)z 6 )u 2 + Z q1 8 u~fq0 j1 +

+ h6b I[Z6e 0] +

* (q 11Uq +ne 0 0 0 + zjwv+~ z6 s 0

where:

3z CRFP 2 Z w Dx w v0(Wv 0 WCx x

a v T X ( X ) x ) / 2 ( x ) + v 0 ( x )

2 2
ZCRPW p (2 zw ((VOW + 2w0 Wdx

aw2 JD(X) dx) fDC)
Tt Vv2(x) + w2(x)
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*. ZV ~v(X) + 2v2(x)J
CRPW ( 2 w f Xd)-x0 0
82 ID(x) dx) / x D )

.V12 (X) 2(x)
v0 +w0

aZRW m p 2Z w D(x)w 0(x)v (x) d

a9:Jr.F I 2 JD2 t D(x) dx)(x) (x)

IV. Rollinq Torque

-[ + 1A+ myGA+ fix - K p- I A; + K -
G v G xp xy xz r

Au[2uo{K + K6r 6r0 + (r O - 1)K~n +

2"(K sin 4# + K8t sin 8#t0
+toK 4 to 8 t, +

f 22
" fv - (tto to wt. + sin 4# + K s +

+ v 0 2 + 2 t4t t 08t +

00 0

"pK~q si 4qyG+ r tn +K} + ro r ) r 0

2vo~to u 0 2 owto
+ " t0 (K4t sin 4# K sin +

to +wto to to

-172

0. v-
0 0

+ ~O1(K4t si 4# to + K St si 8 t~o) 2v to +

+vwt (4K 4tcog 4 t + K 8 t 8cog t +

+ w0K -p OMG+ K q]+
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IV. Rolling Torque (Cont.)

+ AW[uo{ toto (K 4t sin 4 t + K8t sin 8to)

to to2 2 _vto to (4wot40 K Co t2
2 2 (4K4t to + 8 t o

to to

K0VI w0

+ V }2 +

0 0

+ 20{2tot(K • sin 4to + K8t sin 4to

-to (4K4t cos 4*to + 8K8t cos to +

+ P0(Kw - mzG  + r0Kwr] + _
0 WP G

+ -p[u0kp  VOMYG + Wo{kWP - mZG} + 2kplII I ol +

+ q 0 (Iyz + Kq) - r 0I xy] +

+ Aq[u 0 {my G - ( 2 0Bto xtowto + 2wt0 20).
OlMG / 2 ,2 t

vto + wto

(K4t sin 4#to + K8t sin 8*to) +

4u oVtoXto 2 cos

2 2 (K4t cos 4tO + K8t o +
Vto to

+ v0{K I + p0{I + K - q 2 r0{(I - I +

2

+K + 40 vtxt0(K4t cos 4# + K 2 cos 8# +
qr to -
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Iv. Rolling Torque (Cont.)

to to

2
S tOto (4K4t to + (kt Cos 4tol + WOk v O I 0) +

/v2vt0

wt____0  St
, 2 L

t0to to 8 .-

•+ 0 4 cos 4# + 8Kt Cos 8t0)+w0r-P0y
+ q0 {(I y - Iz ) + Kr} - r0 2r1 +

+2vt0 xct0Bt0 8 sn 4tO + K8 t sin 8t0

2 B xto(4K 4t C o + 8K8t cos 80to]

+ A* [-(yGWTOT - YBB) cos e0 sin *o - (zGWTOT - EBB) cos 0 Cos e0] +

+ Ae [(ZGTOT -ZBB) sine sin *0- (yGW TO T  BB) sine 0 cos 0] +

+ A6r [K6 u0

+ AT) K U1
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V. Pitching Torque

aUzGA (ax + M)V- Ap+ (I-m]A-I r

GG w zY y q yz

p-Au 12u {M* + 14668 +3 6b 6bO + (n 1)146s6s} +

2 2
S-V +Vw

+ v0o (Mr 0 + m + mv~ V 0 0 3 ~

I w 0l
+ w ofmw + m I w7 + (n0- 1 )M}n +

V2 +w2

+ p 0(14p 0 + Mrp2 ro) 2 0 2 0 2 332

I q 01
+ qfmq m G+ mIqI s (T--6s 0 + (TI 011 }n +

r 0 Mrr r(vo + vo) +
+(U2 + 2+ w2)4J2

+ A 1+ 2)3j/2 14(vL + W~ 0+V 0

+o 2 oV+ M ooo

- VOL 4rr ro + m pp% + m V rov 0+MVP 4 1 4mrp2 ro +

+ 0____ (14r r0 + 14 o vro

'u2 2 2 rr w 2 4 0

o o 0

0+ w 0 1vqo+ vvo wvl+

'CRFW
+ (n 0 - 1)m w, 1 vwo0 + POaxG +0-- av +
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V. Pitching Torque (Cont.)

+ Av[uof 2 20
(u0 + vo+2)/

2 + Mvp+ M oo+ v2ppP 0 Mrr i 0 Mv 0 0 l vp 0 0 rp 2Vo Mv )

+ m + 01  + (TI 0 - r +) 0
t w IOT V + w 2

0 0

{Hffqo M; 2 2 ) (2 +2~
2w 0 + 2 +

lm w o+ (ri - IK1  1 WO~ + +

v~~~2~ 2~ p0 M r + x
+(n0 0~ 0 w0+V) m

-
2p 1 zx- q 01 ZY+ (Iz - + M~r )r ] +

zy &quf x rp 0

q Gqu{ + (n 0 1)m qn + mIq lag rqo Ssoj +

o~ l lq + V2 G O 'Yz% + 2M ql lq0 1 +
0

+~ ~ ~~ 3 Ar U0v +m p +2M r)+m
Vu+ 2 + -

0 0 0 M M p +4 r +~ v

+ 1z- I x+M ) p+ ICYq0+21X rF
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V. Pitching Torque (Cont.)

+ A# [-(xGwToT - XBB) cos 60 sin #0] +

+ Ae [(xGW- xBB) sin e0 cos *0 - (zGwT°T zBB) cos e0] +

+s ("6 13 + K 6 ,,(ia 0 )u + MIqfu~o~ 4

+6b[ 6bua02

&ni I H u q 0 + M~UW u Mj v 2 +vw2 ++ 2 2

Where: snUo S0]
Where FW " 2 Z ww D(x) wo(x) v (x)

3,, " (x) ) ft ( ) 2 dx

/v 0 (x) + w 0 (x)

3MCFW ~ r v(x) + 22 (x))

aq 2 ~ (x) dx ~ v2 (x ) + w2x

3M I*z 2 w(x)+2,()

CRFW 0 (2 ww x2  0x) 0 0x
rt D JbX))/ 2(x) 2(x

2 (t
2  " "x

tDx)dx fI2(x) 2 o
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V1. Yawing Torque.

N*)A (Ix +N*)A - I A4 + (I - ;A
-mGu+ -X N&v- + p yz z r

*&u[2uofN* + (NSr + (TO- )N )6 ro

+ v{IN +N " ON 0 + (i -1)N +
Ov +vw (u2 +2 +w2)3/2 0 vn}

+ Npp ro[N + IN -
0 +r 0[ - 'IG INj6 r 3 - 6ro + (no 1)N ri-

AV~0{ + ( w + u2)/ o -1N }

+ +uj 0 N j 0 + 0  + -1)N 1 1 0

0 0

V+

0

0I 0

+ N q 'CRFW

+ Aw[u0 Nv v0(uo + vo) 0 ____

(uo + v + w" ~2 2
0 0

{N~ 
1

v 
0 

I o n - 1)N; 1 Tw0 } +

N (I rO 0 NCRFWI
+ ro( + - + mx + Np 0 + my q 0 + - 1+ifr 2 3 w I

0 0
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vi. Yawing Torque (cont.)

+ AP[N p u0 + vo0(lx G + N W, + 20 + q 0

(pq +Ix y + mYG + N pq +Iyz r0+

+ Aq[N vqv 0 +lhye + (N pq + Ix I- )

21 2Iq0 + r0(N qr Izx )+ 1

+ Ar[ufN r- mx G+ NI r r r 0+ (no- 1)N 1ni+
Or G ~~I(r r0

2

+ Vo(Nvr 1 wo mG + N wo + l1p 0 +

0

+q0(N - I )x + 2N rwlIno + ar

+ he [(GWTOT - BB) cin eo sos +0

+ & [yw'~ - BB)cos eO- (xGW - XBB) sn8

AeSr (N6  + N6  (n1 - M)u 2 N 1 Uorofl +

+ an( uNr0r + N nu 0 v0 + N 1 v 0/Vvov + w 0 + N 8ru8r0 ]

where:

IN Z (w2(x) + 2v 2W)
CREW _t wV f~ X, 0x d

IV 2 JtD(x) dx' iv x

3Npj., 2 T,*x v0(x) I 0 x

3w f 2 JD~x ~/v 2(x) + w2(xW
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INRF * Z Vo(X)W(X)

CRW - Cr2 WW X2 H) W 0 dx

8q ~ A T ITzD (x) dx T+ 7

-~3 t (d 2 () + o 2

S0 -- + ' 0 dx
2 2
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APPENDIX C

The SUBBMODEL program as detailed in reference [18] was developed

at Draper Laboratory to perform any of the following tasks:

1. Solve the previously developed nonlinear differential

equations of motion of a submarine.

2. Search for a local equilibrium point in the nonlinear

equations of motion by finding a set of state variable values

for which the derivatives are essentially zero.

3. Calculate the linearized dynamics about a particular nominal

point using the previously developed linearized equations.

4. Solve the linearized equations of motion for the submarine.

5. Simulate, using either the linear or nonlinear equations, the

compensated vehicle response.

The program, as originally implemented was designed to handle

nonlinear equations of the form

N i - f(x, u)

where

x - 10x1 state vector

u - 4x1 control vector

f - 10xi vector that is the nonlinear functions of the states

and controls

N - I0xiO matrix of hydrodynamic coefficient

The first nine states are u (forward velocity), v. w, p, q, r,

phi (0), theta (8), and psi (*). The tenth differential equation and

state variable is used to describe the propulsion dynamics. The four

controls originally incorporated in SUBDODEL were 6s (sternplane

deflection), 6b (bowplane deflection), 6r (rudder deflection), and

WSTEAM (steam flow).
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For purposes of this thesis, the SUBMODEL Program was modified for

the following reasons. The present operating procedures are such that

the propulsion plant is controlled from within the engine room of the

submarine. The engineers maintain the ordered propeller speed

regardless of the maneuver the submarine is presently undertaking.

Additionally, as discussed previously, the fairwater planes are placed

in a fixed position and not utilized under normal operating conditions.

(It should be noted that by not utilizing the fairwater planes under

normal conditions, a separate set of gains can, alternatively, be

generated as a method of backup control of vehicle depth.) Further, it

is the intent of this thesis to use and evaluate the loop transfer

recovery technique (discussed in Chapter 4) to design the compensator.
This methodology requires a square system with equal control inputs (u),

and observed outputs, y. Finally, the controller to be designed is one

that will control the heading and depth of the submarine.

Due to these requirements and considerations a modification to the

SUBMODEL program was developed. CONSTRPS is a computer program which

will accomplish the same five tasks as outlined previoulsy, but the

shaft speed is assumed constant and the number of controls and outputs

can be varied. The above considerations led to the adoption of a two by

two system with the two controls being the rudder and the sternplanes

and the outputs, psi and z. The propulsion variable, with constant

shaft speed becomes a function of the forward velocity and therefore, is

incorporated in the u state variable. To summarize:

x- u y-u

v
w
p
q
phi
theta
psi
z
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Before the linearized dynamics can be calculated, equations of

motion solved, or the local equilibrium point search for, the program

must be supplied the mass properties, hydrodynamic coefficients, and the

propulsion and drag constants. The constants and coefficients describe

the dynamics of a specific vehicle; and, with two exceptions, are

assumed to be valid for any dynamic condition. The exceptions are the

propulsion variables, wake and thrust deduction which must be included

in the propulsion data provided to the program. Within the SUBMODEL and

CONSTRPS program there are two different propulsion models. The RPS

propulsion model calculates these variables while in the ETA propulsion

model these two variables are assumed constant.

The RPS propulsion model contains a first order differential

equation in terms of rps (revolutions per second) of the propellor and

differential equation in terms of eta (eta being defined as uT/U). It

is a simplified version of the RPS model and is the propulsion model

that was linearized and included in the linear equations of motion.

Thus, a method of determining accurate wake and thrust deduction factors

is to solve the nonlinear equations of motion using the RPS model and

use the values of wake and thrust deduction calculated after the

transients have settled out.

At this point a nominal point can be found by integrating the

nonlinear equations of motion (using the ETA propulsion model with the

wake and thrust deduction found above) and using a set of search

routines. To integrate the nonlinear equations of motion, initial

conditions of the states and controls must be supplied. The program

solves the nonlinear equations using a fourth order Runge Kutta

routine. Additionally, the initial and final times and the integration

time step must be specified.

The search routines take a supplied guess (provided by the

integration of the nonlinear equations using the ETA propulsion model)

and iterate a specified number of times in search of a nominal point.

The routines iterate by perturbing the state variables in attempting to
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find a combination that sets the derivatives of the states equal to

zero. The closeness of a point to being a local equilibrium point is

determined by how close the sum of the squares of the derivatives is to

zero.

Once the nominal point is found, the linearized dynamics of the

form

1-1Ax + -1Bu

(where x and u are the perturbations from the nominal values of the

state and the controls) can be calculated by linearizing about the

nominal point. The A and B matrices are calculated and placed in a file

for use in later designing a compensator. Further, if one desired to

ascertain the linear dynamics by solving the linearized differential

equations, the initial conditions of the state and controls must be

provided as well as the nominal point. The perturbations from the

nominal point are then calculated and the linear dynamics generated. As

with the nonlinear equations, the user must specify the initial time,

final time, and integration time step. Also, the options to store data

for plotting and to print out the state and control responses must be

delineated.
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Table C.1: Twenty Knot Acceleration& and Equilibrium States

XDOT( 1) a -. 764276E-20
XDOT( 2) z 0.1863523E-11
XOIT( 3) a 0.949660E-19
XDOT( 4) x -. 22574k71-11
XDOT( 5) x 0.6515121-19
XDOT( 6) a 0.3645091-14
XDOTI 7) a 0.770974E-19
XWOTI 8) a -. 2348371-22

U z 0.333301E.02
v = 0.573749E-14
M a -.5654691-17
P a 0. 770974E-19
Q a - .3666681-20
R 2 -. 343823E-16
PHI a 0.606761E-02
THETA a -. 160234E-14
PSI a 0.1536021-02
Z z 0.202062E-01
DS x 0.0000001+0
OB a 0.0000001400
OR a 0.0000001,00
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Table C.2: Twenty Knot Linear System: At 8 and C Matrices

.1u1- JI-26 -I*1i4-.S 61 0.514m41 O.1IsA-U 0.US6U.* O.SB1E C.OMMU* 6.089M#

-. 5064-" -. SUI4I 6.1u -IS -. a6Wsu. 0.266MS-16 -. N1*m49 ua1eS 0.59IIU-2i OMM+= S.00msS

-. 64M -96 -AUIN1-19 -iSin-.m 6.09314S -. 36I-16 0.USuI4eS 0.76IMf-N s.uoeu4e o.000M..s
0.37M4S -. 797M-M -I5MM1-2l -496W~40 -29UMW-16 -. 10%09-U -. lhflhI" -. 4"879-fl S.09SU.S @.USUMO

*.fim-ft o.~o8-fl o.ui-u -3911-3* -267w -. nusg1-x9 ScomnSUoS -25uu-o oSos s.eeau.

.66M-ft -. 43 - .444=4 -. 41*1*548 -. 77474-19 -.259661.o 6.*.053. 776-260 .60010"4" 0.600615.6

6.66665.6 e.uuu s.6sui.s 6.3066.01 -. 296m-o -. 27939-16 0 A1383-39 -. 465160.06061.0 6.600615.06

o.001.a .0066390.666615. 0.08SM01 6.100W#4.1 -106W65 6.44015K-16 0.010500 0.08O615.1 0.060154

s~umum .. sin~me~mu . 9N1 @me ...6.06M-03 O.U"oo -. A06-2 0.wooU-us .oooMOW.oe0.u0"

6.2796-16 0.106*0-15616650 0.001615.0 6.6066640 .06000N#G6 6.574005-14 -. 3535 0.00.001#.M 0.060015.00

S MTMD

0.U60-f -. 736064 .06150

-. i37Mo -. 76msm 0.606040

-&um- 0.in15. 0.102141

6.00006.1 6.GW66640 -.271061

s 0oouo .o6606 6.0060660

6.006615.6 0.isOoMo 6.66153

O.0660 .0066640 0.00601540

C sMiu

6.66015466 0.66601546 6.66 6 6.660664s0.06666640660.6.06066406.0 006COM ON6.6 #.16601 0.606100 .666666406

6.OMM1540 6.6660060.660615.60.06664066.06666.66.66666406 6.0606 66N .6601066t.0006646 6.166666401 6.OMM6ON

6.6606646 6.066666.66.6666606.666MO46.066640 6.666066O .166066.6 6.06666600.666064 0.06664 066.66=46
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Table C.3: Tweenty Knot Augmented Linear System: A, Sp and C Mtrices

-. 35-6 -. 69341 9.163-16 -. 64.66 6.2676-IA -. 246 .12466 6.393-f 6.3 @ .55.6 -22U. 616764

.463-66 -.14434 -.444-3 -. 46543 -.173-19 -.33P46 6.36114 0.7771-M0 6.55436.533 6.66543 -. E3721

6.3543 6.5343 6.354t 6.115461 -.391-36 -. 97W-16 6.4139 -3W4-16 6.5543 6.54 .5546 C.O5O

6.654 .54 6.5545 6.5545 6.166461 -. 614 .344-16 6.556.6 .5543 6.5430.54

66536.5545 6.5545 6.5545 6.16-5 6.16461 -. 14W-22 8.90M-33 6.66545 0.665" 6.5545 6.665

6.37-16 6.165-61 @.iis6 6.66545 6.66664 66545 6.3746-14 -33346 6.5545 6.6654 6.66664 6.6654

6.555 6.66645 $.$WON 6.55t" 6.5543 6.66664 6.5543 6.66545 6.554 .54 -. 6I543 -. 1664

6. Oft 6.5543 6.5545 Ot 9 OtCNo A4

0.54 .5543

6.5545 6.5545

6.5543 6.543

6.5543W 6.5545

6.554 6.54 6.5545 6.5545 6.554t 6.5545 6.5543 6.604 6.165 14461 5 .5545 6.5545
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Table CA4: TwentY Knot Coapenstor Gains: G and H Matrices

116 .411026.614 -w34614 -. 2971.0 O.3611460.4SAM4- a~ -. 324-02 DAMON.0 6.2112.0 -Sm-2

-.461-H .26 .U02-164 .114 .11 0.161 O.5l2I. -.1I6*"0 -329-02 -1m-02 6431461

0.114-1? -.606-10

6.476-14 0.1Gm-15

0.846-18 -. 12-18

6.311 .7m6-19

a.t60m-o -.asw-go

-11 -IS .3-17 -

-. 512R-19 0.2400-M

0.ism~o -.um-iu
6.313-14 DAMON40

6.mm6-fl -31-22
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APPENDIX D

I Table D.l1: Ton Knot Augmented Linear System: A, B and C Katrices

A NOW

-10-66 -. 461341 -637-14 -. 4* -161-fl amw146 6.11546 6.67-il 6.6661466.66614 6.66146 6.17664

-16 -N166- -.29614 6.319-16 6.465461 6.36.U 11 .666 " 0.76=1-" COMO146 6.6661.6 -2666 66616

6.1911-6 - e64-f1 0.46-15 -11146 0.6-11 -. 9*1-U -16146 -.616-16 .6646 6.66146 6.66646 6.366-6

6.1AM-6 -.717-Uo 6.366-61 6.46-U -. 1=14"66.120-12.@Mon46 -.511-61 6Co66e666.6614 -. 5*6-62 0.66646

C.an*"G .6161.6 .971-1 .3311-1 6.1-U -.1116 6.-56 6.134-166COMO146.6661466.666146 .061-6

Con#"46 0.666466.6661466.16614 -.511-1 O.1*431 -. 961-56.4161-1266666466COMO1466.6661466.1664

6.666646 6."661466.666146 6.666466.616 6.3661-6 -. 46.-i 6.6661.6 6.661146 6.6661.6 6.666146 6.666

j ~6.666146 6.666.6

6.666146 6.661.6

6.666146 6.66646

6.61646 6.666146

6.6661.6 6.66646

6.66616 6.666146

6.614614 6



I Table D.2: Tan Knot System Eigenvalues and Transmission Zeros

2 0.000000000E+00
3 -.S.828723426E -03
4 -1.31117689E-02
6 -1.3296462201-02 1.8124634651-02 5. 91567972]1E-01 2.2480023961-02
7 -1.0000000001-01 -

8 -1.000000000E-02
I.9 -1.38296387-01

10 -1.46%311070E-01
12 -7.297208977E-02 3.9327873251-01 1.824341634E-01 3. 99991591-01

1 -1.3111766951-02
2 -7.523S059461-02
3 -8.382681741E-02
4 2.412065619E-01
6 -7.3125442791-02 -3.9201590061-01 1.833738691-01 3. 987778791E-01
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I Table D.3: Ton Knot Coapenator Gains: G and R Matrices

-.42*-ft -. 39W101 a.1"**"0 -. UK-01 -. SSW#"6 -. 14601 -313341 -. 31114!t 0.22m-01 9.17W#9! 2331 0AMO 6*34!f

0.190-4 0.39%*40 0.1411.0 6.34*-01 -. fllt.0 -.9933.0 -811-. 41 -. 1L731U.0*.13-01L 046014! 0.3131401

-. sm-1, -. uu-u

-. 111 .314-1*

G.19K-3S -. 490-10

I. -. sow1-" 0.341-U

0.1=1-1 60.3906-1

0.763-15 -. 390-17

6.13*-18-.9-1

0.11MW4 -.96"-16

0.140-t7 -A76-36
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APPENDIX E

Table 1.1: Five Knot Augmented Linear System: A, B and C hatrices

-721-0 -303-13-i2s 0 -. 11w-li 0.03314 0.330-2 0.00040 0.39014 0.001.0 c.0010 0.18114 0.0001

-. a=-" -1104 0.910-17 -. n7E340 0.871-14 -1041 0.13314 -.110-19 0.0mon4 M.m0#"0 0.00010 0.7w01K ~ ~~~~~-0-0 -. 11M0.1 -170161 -1M1-11 0.13401 0.110-31 0.00014 0.741=-U 0.500140 0.0040 -.013M-61 0.0001

0.10014 -114 .41-10 -. 7w0011 -.100-11 -30134 -.241400 0.1001.19 0.000140 0.00010 0.00014 0.UM0-0

0.B90-07 6.301-19 0.24W-O -103-13 -. 72-01 -310-1? 0.00400 -. 051-01 0.000*0 0.005140 -. 130-03 Come"40

-. 1114 -. 30136.14U1-19 -. U-Og 0.72W-i? -. 0541 0.14211 -. 3132-t2 0.005140 0.0001.0 0.0001.00 -. 1aft-02

0.000140 C.00400 0.00014 0.100401 6.120-1 -. 4161-15 -111-39 -. 1179-13 0.000140 0.0001400 0.00514 0.000140

C.60140 0.00040 0.00014 0.00014 0.1001401 0.9130.1172-U 6.000100 0.0001400 0.000140 0.000140 0.000140

0.00640 .014 .00014 0.00014 -. 1"2103 0.100140 0.041-10 0.7211-9 0.00014 0.00024 0.00019W 0.000140

0.0161-18-904 0.1001401 0.00014 0. 00 0.00014 0.111-U -.001141 0.000140 0.010 0.000140 0.0001

0.00014 0.06014 0.0100040 0.00MO40 0.00010 0.000140 0.00010 0.50014#0 0.0051400 -. 100140O 0.0001400

0.00064 9.000140 "O 0.060140 0.00=1 M 0.00014 " 0.00014 M 0.0001 0 0.4 0.000E 0010 0.0514 -. 100140

0.00014 O.00014

0.000640 0.00014

0.0062#00 0.00014

9.0001#0 @.am#"4

0.000140 0.000140

0.00040 0.0001440

0.000140 0.00014

0.00040 0.00040

0.0001040.004

0.000140 0.00014

8.100140 0.000140

0.00014 0.100140

0.0004 0.00040 0.00004 0.000140 0.00014 0.06014 0.00040 0.00014 0.10014001 0.006140 0.0001400 0.00014

0.000140 0.00014 0.00040 0.0001 0.000140 0.00010 0.00014 0.000140 0.00014 0.1001 0.000140 0.00010
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Table E.2: Five Knot System Elgenvalues, ad Transmission Zeros

EOLE

1 0.0000000000
2 O.000000000E*00
3 -3.024089983E-03
4 -7. 113993141E -03
5 -3.0051173021-02
7 -2.892676692E-02 2.308620747E-02 7.83.5959177E-01 3.700967462E-02
8 -8.558510799E-02
9 -1. 000000000E-01

10 -1. 0000000001 -01
12 -3.8254151011-02 4.00101748-01 9.517701732E-02 4. 019263483E-02

-" MEAL MGDPIFERINCY

I -7.113992856E-03
2 -2.890585762E-02
3 -4.318266216E-02
4 1.1537946581-01769E0 4.1893-1
6 -3.8453414221-02 -3. 990218591-01 9.57866910".04.03E0
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Table E.3: Five Knot Compensator Gains: G and H Matrices

-. 833E-0S 0.98010 0.1019400 0.16914f0 -.5023.01 -.1101.03 0.3101-02 -.10*401 -.1006.02 0.622142t 0.2091-02 0.12Z441

N PAY=~

-. 4901-1? 0.435-13

-. 1049-14 0.1912-35

-. 2912-18 -342M-17

0.4411-17 -. 2411-17

- .6011-20 -. 9m4-19

0.37W6-17 -103E-17

-. 994-19 0.2371-1?

-. 287E-l6 -134-17

0.1001400 -1201-16

0.231-14 0.1001400

0.000140 0.0001400

0.0001400 0.0001400
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