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\ ABSTRACT
JA very successful theory of quasilinear evolution equations, which

applies to many problems of mathematical physics, has been developed by

T. Kato. The theory obtains solutions of quasilinear problems via contraction
mappings which are defined by means of a theory of linear evolution equations
also developed by Kato. In the current work we show how the existence and
continuous dependence theorems obtained by Kato can be proved by
discretization in time. As opposed to earlier work in this direction, the
current results are much sharper concerning the continuity properties of the
solutions of the discretized problem and the strength of the norms in which

they converge. ,
li
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CONVERGENCE OF DIFFERENCE APPROXIMATIONS OF

QUASILINEAR EVOLUTION EQUATIONS

'.'.u-L._'

Michael G. Crandall and Panagiotis E. Souganidis

We are interested in the quasilinear initial-value problem

du
— 4 =
at A(u)u 0,

(1)
u(0) = @,

in which A(u) 1is a linear operator in a Banach space X for each u belonging to a
subset W of X. T. Kato hasg studied (1) in [(8) and [9]. He obtained the existence of a
classical solution under assumptions detailed in Section ! and showed the relevance of
these assumptions by applying his theory to a wide variety of problems from mathematical
physics. The main goal of this paper is to show that, under these assumptions, the
existence theory for (1) can be obtained very directly by showing that the simple
difference approximation of (1) given by

ux(t)-ux(t-k)

+ M“x("'“)"‘x(") =0 for 0 <t <T,
(2)

ux(t) = ¢ for t< o,
is solvable for “A(t)' 0 ¢t <T (for appropriate A and T), that
(3) lim u, (t) = u(t)

A
A+0
exists uniformly on 0 < t < T and the u 80 obtained satisfies (1) in the classical

sense.
Results in this general direction were obtained in [5] (which is not going to appear }

in the periodical literature). See also [7]. The current work sharpsns the results of E
{S] as applied to (1) in several ways: By restricting attention to (1), the presentation i
i:
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. :;
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i . is clearer. We give a simpler proof of the convergence (3) and the proof of the existence
\.! of uy solving (2) is given under different assumptions than in [5]. Finally, and this
-

s-': is the point we emphasize, the convergence in (3) is shown to be better than in [5]. This
R

t:‘ is of numerical interest and the proof allows the current line of attack to obtain the
o

1') sharpness of some of Kato's results that was not previously matched by this method.

o Kato's approach to (1) and its generalizations involves obtaining sharp results for
<7y

AN linear problems of the form
, ) :—:— + B(t)u = ¢

4 4)

\ u(0) = ¢

\0

-

2 and then using these with a contraction mapping argument to solve (1). (For a current

3

> account of the state of Kato's theory and more references to other approaches, we refer
.:,v)’ the reader to [10] and its bibliography.) Our approach to solving (1) does not require a
W

“:.‘.‘ preliminary linear theory - not even the Hille-Yosida theorem. Indeed, the solvability of
1320

g, (2) under hypotheses of Kato's type is proved in a straighforward fashion and the

>R
. convergence (3) follows from standard elementary estimates of "nonlinear semigroup

*.;4, theory". We will rely on the form given these standard estimates in [3], but other

SOk

"‘f approaches work as well (e.g., [11], [13]). This direct attack on (1) is carried out in

B vl

] Section 3. However, there is ample reason to study (4) by our methods in any case, and

, this is done in Section 2. It is also a simpler matter to show the optimal convergence of
L

."::. the u, if one has appropriate results for (4) in hand, and the arguments in the case of
o>,

':.* (4) exhibit clearly several main points which can then be briefly treated in the case of
>,

padly (1). Hence we have organized the presentation by discussing (4) before (1), as is the

55 common practice. The interested reader can take up Section 3 before Section 2, and if he

o4 does 80 he will quickly obtain an existence result for (1) which asserts a little less
than both optimal regularity of u and optimal convergence in (3). To obtain these sharper
results we have relied on Section 2. The main results concerning (4) are given in Section

-"‘E 2 and state that, under hypotheses of Kato's type, (4) has a unique solution which may be

’u\.j -2-
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computed as the limit of solutions of simple difference approximations to (4), and these
approximate solutions converge in as atrong a sense as is possible. Section 1 collects
some preliminaries, notations and precise formulations of the results. Of course, there
are many variants and generalizations possible, and we comment on some of these following
the proof of Theorem 2 in Section 3. In the final S8ection 4 we briefly sketch how one
would prove (known) results on continuous dependence in this setting.

The authors are grateful to R. Pego for useful discussions about this work.
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Section 1. Preliminaries and Statements of Results

Let Z be a Banach space. We use | lz to denote the norm of Z, as well as the norm

of elements of B(Z) (the bounded linear selfmaps of 2). If B is a real number, we

denote by N(Z,8) the set of densely defined linear operators C in 2z such that if X > 0 and

AB < 1, then (I + AC) is one to one with a bounded inverse defined everywhere on Z and
1+ a0y < -

Here and below we use "I" to denote various identity operators depending on the context.

The Hille-Yosida Theorem - which we will not need in this work -~ states that C @ N(Z,B8)

exactly when -C is the infinitesimal generator of a strongly continuous semigroup e'tc.

0 < t, on Z satisfying Ie.tclz < eBt for 0 < ¢,

More generally, if C is a (possibly) nonlinear operator C from its domain D(C) C 2
into Z with the property that I + AC has a well defined inverse (I + 2¢)”! on the range of
I + AC with (1 - xe)" as a Lipschitz constant provided that A > 0 and A0 < 1, then we say
that C + OI is accretive. We recall a simple lemma about accretive operators that we will

have occassion to use. A proof can be found in [3] or [11].

Lemma 1. Let 6 € R, C be an operator in a Banach space Z and C + 6I be accretive. If

Y, § > 0 and v6,88 < 1, and z,E,w,G e D(C), £,9 € Z satisfy

2 -2 4icz=t, Y ; Y+ow=g

then

- S - gz - wr+ X g -
e-Fg—)lz iy € gt - wiy ¢ ks - i 1f - gl,.

Throughout this paper, X and Y are Banach spaces which have properties we call
(X):

(x) X and Y are reflexive and Y is continuously and densely imbedded in X.

The operator norm of a bounded linear mapping C:Y + X will be denoted by ICH 1f

Yx’

-4~

o TV
\_.’ }5 RS \_\f\
RS 8 x

AT
-~ *"\’ *\ N
yu Yy

t ~.'-

.-"' "; '\'_'-‘ i
) [y qa_n
NENESTRL

b 4

A




T > 0, the set of continuocusly differentiable mappings £:{0,T] + X will be written
c! [0,T:X] and C{0,T:Y] denotes the continucus maps into ¥, etc..

In most of this paper X and Y will be related via a linear isometric isomorphism

8:Y + X. We denote this condition by (8):
(s) 8:Y + X is a linear isometric isomorphism.

We next formulate our results in the case of the equation u' + A(u)u = 0. Concerning

the operators A(u) we assume:

(A1) There is a 8 » 0, an open subset W of Y and a mapping A:W + N(X,B).

The next assumption restricts the domain D(A(w)) of A(w) and the joint continuity of

"A(u)v".

For every w @ W, Y C D(A(w)). Moreover, there are constants u,, Y, such that

(A2) foru, ueWandvey

1(A(u) =~ A(u))le < HAN‘“llel,’ and IA(u)le < YAIV‘Y-

“plaly

T
s

e

The next assumption is more subtle:

@S

There is a mapping P:W + B(X) and a constant Yp such that

BOLgN

(1) SA(w) = A(w)S + P(w)S8 for wew,
(A3)

L
)

and

(11) IP(w)Ix < Yp for wew.

1@

. . . .
LA
(e B B ]

a2,

The assumptions (A1) = (A3) will suffice to guarantee the solvability and convergence

of the scheme (2) to the classical solution of (1). However, we will obtain sharper

N \."-."
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convergence results under the further restriction
{A4) There is a ¥p such that [IP{u) ~ P(u)lx < uplu - ulY for u, u € wW.

Kato (8] has shown the relevance of these assumptions by exhibiting many important
examples which enjoy these properties. We will prove:
Theorem 1. Let (X), (8), (A1), (A2) and (A3) hold and ¢ € W. Then there are
T,Xo > 0 such that there is a unique finite sequence x;, 1 =0, .., N, in W which

satisfies

+ A(xi_1)xi =0, i=1, ..,N
(1. 1)

provided that 0 < A < Ao and T < NA KT + A Moreover, if ux(t) is defined by

ux(O) = ¢ and
(1.2)

“X(t) =-x for (i-1)A <t < jlandi=1,...,N

then
(1.3) lim ux(c) = a(t)
A+0
exists in X uniformly on {0,T] and the function u 8o defined is continuously
differentiable into X, continuous into Y, satisfies u([0,T]) CW and
(1.4) u'(t) + A(u(t))u(t) =0 for 0 <t <T.

If (A4) also holds, then the convergence in (1.3) holds in Y uniformly on [0,T].

Remarks. The description (1.2) of u, coincides with the scheme (2) (which produces

plecewise constant functions). The assumptions (A1) - (A4) are an amalgam of conditions
used by Kato in (8) and [9]. (A4) was used by Kato to establish strong results concerning
the dependence of the solution of (1) on A and ¢, and its role in our work is related to
this. 1In (8] Kato imposed an extra condition which was also used by us in [5) to obtain
the existence of uj. This was dropped in [9]) and is now dropped here. (However, one can

relax (A3) if this extra condition is imposed - see (2, Section 4] for a simple account.
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{ This work obtains the existence of u € C’[O,T:x]fb[o,'r:\'] solving u' + A(u)u = 0,
u(0) = ¢ via the scheme (1.1). This sharpens the result of [5] which, under somewhat

different assumptions, produced only a Lipschitz continuous function. If one takes the

gy Nyt

existence as given via Kato, then our main result is the fact that the solutions of (1.1)

converge so nicely to Kato's solution.

o)
".‘

As was mentioned in the introduction, we will first study the associated linear

J-
fu' problem u’' + B(t)u = 0. The assumptions on B(t) parallel (A1) ~ (A3) above.
&
. (B1) T > 0 and there is a B » 0, such that B(t) € N(X,8) for 0 < t < T.
o o
ﬂ: I-'

o'y

Y C D(B(t)) for 0 < £t < T and the mapping (0,T}] Dt + B(t)|y (the

9 (82) <
restriction of B(t) to Y) is continuous into B(Y,X). .
1 e
4 '.c.
.4 ‘s
N >
'i There is a strongly measurable mapping D:[0,T] + B(X) and a constant Y, .
(B3) such that Te
L
SB(t) = B(t)S + D(t)S and ID(£)h,< Y, for 0 <t < T. .
kvt ‘.‘
\‘. N
\’, Before formulating the result in this case, we recall a standard lemma which is often "-','
) .~
.- used in the sequel. N
. lLemma 2. Let (S) hold, C € N(X,8), YC D(C), P € B(X), and SC = CS + PS. Set ~‘.':
B \y '.\
:J 8 =8 + IPIx. Then for every y € X and X > 0 such that A0 < 1, the problems ;\‘
v‘ .r_:l
o (1.5) X+ ACx =y &
‘ —
' ol
‘: and =]
N (1.6) X + AMCx + Px) = y )
- -9
~ have unique solutions x and x in X. Moreover R
~ R s
: (1.7) b, € (1= 20 iyt ana ixt < (1-20) iy -]
X X
5 [ ]
¥ 5
25 7
- =
u o
2 - B
) )
Y
)
‘e -
¢ \'-:.j
B \‘.‘
4
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( and if y € Y, then x € Y and
~ -1 "

s (1.8) leY < (1=20) lyly . ¥

A%
>, 4

"‘3 Proof. The unique solvability of (1.5) and the estimate b

NN _ y
N (1.9) Ixt, < (1 - 28) 1lylx y

-

\

, are by definition of N(X,B8). We have weakened (1.9) to the first estimate of (1.7) for q
“ ‘
S N
§f¢ later convenience in writing. The assertions concerning (1.6) are standard perturbation 3

NI N

.?Li remarks, and can be deduced easily and directly from the unique solvability of (1.5) with g
< ¢ N

" - the estimate (1.9). (We leave it as an exercise for the reader who may not be familiar

3
11_ with the perturbation results.) If y e Y in (1.5), write y = Sy, apply § to (1.5) and use
Jv: the assumptions to arrive at the equivalent problem x + A(Cx + Px) = y for x = Sx. The
. 1]

v auxiliary assertions in the case y € Y then follow at once from the case just discussed
X and the assumption (S). J

>

K \' We will abbreviate the information contained in Lemma 1 when it applies by writing
{- e, < (1-20) 'for z = X or ¥ ana  K(zeA(CHR)) T < (1-20)

&

by with appropriate choices of C and P.

. Let

‘.(‘- -

SONY .

‘,-.& P={0 =ty <ty <.oos €ty =T} :

R

ﬂi‘\ be a partition of (0,T]. The mesh size m(P) of P is the largest step t;, - t;_,, R

P
q i=1, ...,N0 If (B1) - (B3) hold, 6§ = B + Y5, m(P)0 < 1 and ¢ € X, then Lemma 2
;, guarantees that the scheme

-

'ﬂ

\.

Tt X, = X, _

P 2 e e x 0, L= 1N,

.*_,-u {1.10) i 1=-1

. xo = ¢,

.::9 is uniquely solvable. 1Indeed, the solution is given by iterating
» %4

L -

A xg = (T + (bt IBE, N ey,

-
:J" to find
i

0. x = 1 (1 + (et (e N0

e =1

a®y

Y
sl
]
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where the product (and all others in this paper) is "time-ordered”. More generally, given

a partition P as above, with a sufficiently fine mesh, we set

n
-1
U (t,8) =TT (X + (¢, - ¢ )B(t.))
(1.11) g jom 3 =1
for tn—1 <8< tn and tn-1< t < tn

with the understanding that U,(t,t) =1 for 0 <t <T.
Theorem 2. Lat (X), (S) and (B1) - (B3) hold and x € X. Then the limit

1.1 =
(1.12) m]('ﬂm Up(t,s)x = U(t,s)x

exists uniformly in X on A = {0 < 8 < t < T} and defines a strongly continuous mappin-
Ult,s) from A to B(X) with the property that if ¢ @ Y and u(t) = U(t,s)pons <t <T
then u @ ¢'(s,T:XINC(s,T:¥), u(s) = ¢ and u'(t) + B(t)u(t) = 0 for s < t € T. If,
moreover, D(t) in (B3) is strongly continuous into B(X) and x € ¥, then the limit (1..
is uniform in Y.

The proof of Theorem 2 is given in Section 2. Here we will be interested in the

following corollary of Theorem 2.
Corollary 1. Let P(n) = {0 = t§ < t] <...< tg(n) = T} be a partition of (0,T] for
n® 1,2, coees o lat x?, tffexXfori=1,...,N(n) and £ € t100,7:X) (the strongly

integrable functions from (0,T] to X). Assume that

N(n) t:
lim m(P(n)) = 0 and lim ) J L e, - fle)ae = o,
n+e ne { = 1 ¢
1-1
Let
n n
X X
1 371 Lat™)x = f® for 4 = 1,....,N(0),
(1.13) " -t it
1 1-1
xo- o,
and ut(t) = x} for ti <t t]. Then
9=
--'-v-'--sw. . AR ,‘-‘:_._.', '.,.' O .
NN R L e I NI
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t
(1.14) lim u™(t) = U(t,0)¢ + | U(t,s)f(s)ds.
nee 0
in X uniformly on [0,T].

Proof of Corollary 1. If (1.13) is solved explicitly, one finds

th

n n i n n n n
(1.15) u (t) = (£, 00 + i Up(nftyr8)f (8)ds for t, <t <t

Yp(n)

where f"(s) = f? on (t?_‘,t?]. It is an elementary matter to use the convergence asserted
for U’ in Theorem 2 and the assumed convergence of £ to f in Lt to pass to the limit in

(1.15) to find (1.14), and we leave it to the reader to supply details as desired.
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SECTION 2. The Linear Case '.J_
We begin the proof of Theorem 2. The proof is broken into four steps. ;j
Step 1 establishes the convergence of Up to a limit U. Step 2 eatablishes propesrties of -'qu
U. Step 3 proves that u(t) = U(t,0)¢ is continuous into Y for ¢ € Y and the final Step 4 :'
proves that the convergence holds in Y. .‘_’_.
Step 1: The convergence of Up .
Let us begin by remarking that this step involves only routine arguments and could be -'::.
deduced from various references, but we give it here for completeness and later .'
convenience. We agsume that (B1) - (B3) are satisfied and let -°:
(2.1) 8 =8+ Ype :
When A > 0 and A6 < 1, Lemma 2 and the assumptions imply that the operator SE'
(2.2) 3,(t) = (1 + AN
satisfies :
(2.3) 13, (e)h, € (1 - 20" for z e {x,¥} . \
Hereafter we will always assume that whenever we use an operator J )‘(t) then A is positive :;j
and satisfies A0 < 1/2, in which case the elementary inequality (1 - a1 ¢ ezxe holds "~._-
and (2.3) implies _
(2.4) 1w e, <o for z e fx,v} .
In particular, with this implicit reastriction on m(P), it follows that 2
(2.5) W (t,8)h, = I R"t TR To 71 2(c-s wmienre ::.;I
I T3 T3 3=m o
where the notation is that of (1.11) and Z ie either X or Y. We will also assume the mesh t.:
of every partition we deal with is at most 1. :

SN
.

Let
P={0=tg €ty .Gty ="1), P={0=8; Coy ..cCy =T}
be a pair of partitions. Fix s @ (0,T) and choose i, jo according to
2.6 < .
( ) 910_1 8 < 84“. and tjo"1 <8 < tjo

Next choose ¢ € Y and put
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(2.7) yi = U;(Si,5)¢, Xj - UP(tj'.)‘o' '|- ~ 31 -~ '1‘1 and 6j - tj "tj_1:
The the proof will proceed by estimating the numbers
(2.8) ai,j - Iy1 - lex = IU;(sl,u)y - Up(tj,s)ylx
for iy < i and jg € j. Indeed, the a8,y satisfy certain inequalities which allow us to
estimate them in a standard way.
First, observe that by (2.5)
(2.9) '”1'y' lyjlv
where we introduce the practice of denoting by K; a constant which may be estimated in

<K 1o,

terms of the "data"

(2-10) T, B' YD' and YB'
which includes the constant

(2.11) YB = MDAaxX In(t)lYx ]

0<t<T

which is well defined by (B2). For example, in this case we may take K, = e2(T + 18,

We begin by estimating ai'jo for 14 < i, To this end, first observe that for y € Y

(2.12) IJA(t)y-ylx = IJA(t)(y-(y+xa(t)y))lx< Iah(t)lxXIB(t)ylx < K2XIyly.
Now, by definition,
i
= 1 I J -J t 1
1,9, 1=t Yl(’l)" s, 4,7 %'x
0 0

80, using the triangle inequality, (2.5) and (2.12) we first find

i i
a <lp - (t, ol + T ¢ J (s Mo=-J_ (8 )0}
139 530 o X k=i, p=k+1 'p Y kX
and then
i
(2.13) a <K, (8§, + L Yk)l¢ly = K3(6 + 8~ 8, _1)I¢IY.

13 373 k=i 3o 0
Similarly, if 35 € 3
(2.14) aio,j < Ka(Yio + tj - tj°_1) ley.

Next observe that, by definition,
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¥y * vyBsy)yy = ¥4.9

and, writing it in a complicated way,
xj + Gja('i)"j - Xj_«‘ + 53(5(.1) - B(tj))xj.

Since B(sy) + 6I is accretive, the above relations and Lemma 1 imply that

Y, $ [
-g—4 - — -
(1 Y,_+Gj)'y1 xyly Yi+63'yi-1 xly +
Yi Yi5
+ +6 Iy1 3- 1lx 3.+ 8 '(B('i) - B(cj))lex . .
3 i N
Moreover, using (2.9), ®
..l
- - N
I(B(li) B(tj))lex < x4l¢|YIB(li) B(t’.j)l‘!x ._.:
so we have }j
.-::j
Y, 8 $ Y o~
8 i3 3 1
R LI e 2 PRI S 20 TR o
i) i 7] i) A
(2.15) ™
716 -
+ Y:I.+ jK4|lpIY|B(l1) - B(tj)'vx ‘_
kS

The results of [3] imply that for € > 0 we can guarantee that

AL 39

“i,j < w(E,n) + ¢ for 844 ¢ E < 84 tj_.' <€ ng "'j

and i € &, 3o ¢ §., as soon as m(P) and m(i) are small, where w is the solution of the
simple boundary~-value problem

ve tw - ow = K4I¢IYIB(E) = B(n)h,, for s < E,n €T
and

wiE,n) = K, ((E - 8) + (n~8))Igl, if £ =8 0r n =38,
given by integration along characteristics. While we could write the formula for w, it is
enough to know that w is continuous and w(E,E) = 0 for 8 < £ < T. In particular

1U_(t,8)p -~ U, (t,8)pl, < w(t,t) + e = ¢
P P X

as soon as m(P) and m(i) are sufficiently small. We conclude that
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N lim U_(t,s)¢ = U(t,s8)¢ 2
P\ (2.16) am)s0 ¥ ' ]
l »

X exists in X uniformly on A. Since Up(t,s) is bounded in B(X) and Y is a dense in X, the :.i

L) W
) limit in (2.16) exists uniformly if ¢ € X as well, and U:4 + B(X). oy
i~ N
: . Step 2. Properties of U "

2, .
( We now establish simple properties of U. If 0 < r < 8 < t < T, we may choose any Y
e partition of [0,T] with each of r,s and t as partition points and see that f'
2 g
N Up(t,r) = Up(t,s)Up(s,r) Ry
K. 4 -~
o and, in the limit, .
\ (2.17) U(t,r) = U(t,s)U(s,1). »
-:} We next establish continuity of U in (t,s). Let P be a partition and t = tj be a .
:§ point of P. As in the proof of (2.13) one sees that P
.\. j 3
® lup(t,ow - q;lx = | k-o k(t-.k)vp q)lx< x5(61+...+sj)lvl¥ = Kstl(ply
< ‘.

:;3 so, in the limit, -

N (2.18) W(t,000 - ¢, < K tlol . *

5 Y .

. -

The relation U(t+h,s) = U(t+h,t)U(t,s) for 0 < 8 < t < t+h < T and the above estimate »
A =

\ leads to O
od
:z‘ IU(t:+h,a)¢p-U(t,s)¢plx - IU(t+h,t)U(t,s)O-U(t's)(Plx( KE_’I'II(J(t:,l)(pIYCKshlwlY -
Y
i : since the restriction of U to Y is bounded in B(Y) by (2.5). In a similar way we see that
W

! U(t,s)p is Lipschitz continuous into X as a function of s for ¢ € Y. Since Y is dense in
-

: X, we obtain that U(t,s)x is continuous in (t,s) into X for arbitrary x & X.

LY

1‘ Let ¢ € Y and consider u(t) = U(t,0)¢. We want to argue that u([0,T]) C Y and u is
)i weakly continuous as a Y-valued function. But this is obvious, since u is the uniform (in
o [ 4
5 X) limit of the functions Up(t,0)¢ which remain bounded in the reflexive space Y. It is ::,

1

< -
)2 also clear that any function which is bounded in Y and continuous into X is weakly ::
>, ‘\.,

L)

; :ﬂ continuous into Y, and Up(t,0)¢ converges weakly to u(t) in ¥ as m(P) + 0. It now follows h
" -

& ~
.—3 from (B2) that the function B(t)u(t) is weakly continuous into X and hence strongly '.
& N

- o
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( integrable. If the points of P are cj, the relations
N %y = Xy o {8y - ge)BlEy)x
\1..
1.:,4 satisfied by xy = U,(tj,ow imply, upon luminq,
N
AN -
’_ﬁ Uplt,,010 = ¢ J I8y (8))U,(8,0) s
(‘ where gp(s) = t, on t,_4 < t € t. Choosing partitionl P which have t = tj as a partition i“;
'\‘: point, one easily verifies - using (B2) and the above remarks - that the right-hand side ]
-.}: of the above relation converges weakly (in X) to the right-hand side of -
Y e -
o (2.19) U(t,0)9 = ¢ - (J) B(8)U(s,0)pds :j
+
A and it follows that (2.19) holds and u(t) satisfies the equation u'(t) + B(t)u(t) = 0 ‘.J
N .
=, .
:‘_.}-, almost everywhere. The weak continuity of B(t)u(t) then implies that the equation holds -::
N -
\ Ry
\-“: weakly everywhere. Once we know that u(t) is continuous into Y so that B(t)u(t) is RS
o, ¢ LS
- .
> continuous into X, it will follow that u @ c! [0,T:X] and the equation holds classically. o
u. Step 3. Continuity into Y !.1
A .
-’. AR
.:.-\‘ We wish to establish the strong continuity of u(t) = U(t,0)¢ into ¥. It is R
f ‘e
N
w.} equivalent, by (S), to show that Su(t) is continuous into X. The above remarks show that -
H ' Su(t) is weakly continuous into X and thus it is strongly measurable. By (B3) we then ;J
A
" : have that D(t)Su(t) is bounded and strongly measurable and therefore strongly integrable
)
2 j {in X), and then so is & + U(t,s)D(s)Su(s). The proof will proceed by showing that
t
"
N (2.20) 8u(t) = U(t,0)8% - | U(t,s)D(s)Su(s)ds
A 0
w, from which it is obvious that Su is continuous into X.
<
\:)‘ Since D(t)Su(t) is strongly integrable in X and u(t) is strongly integrable in Y,
)
XN
1 4 there is a sequence of partitions
W .
N P(n) = {0 = tf < t] ¢ ooves <ty = T) X
10 such that m(P(n)) + 0 and ...
o 3
-y L
o« n -
o N(n) 3 N(n) tj -
) (2.21)  lm ) [ ID(t)Su(t)-D(tj)Su(tj)det =um ) [ lu(t)-u(tj)l at = 0.
< nee §=1 ¢ new j=q t "
bd) 3-1 .
d )
N > The scheme
. .Iﬁ
35
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x'; x‘;_1 n n .3

omemmSes + B(ti )x1 =0, i=1,2,...,N(n), P
(2.22) t 7t

xn = ¢

0

has the solution u”(t) = Up(,,(t,0)¢ where u,(t) = x} on (t]_4,t]l. Consider the

auxiliary scheme

z, - 22-1 n, . n n n

=Semea=e= + B(t, )z, = =D(t )Su(t,), i=1,....., N(n),
n 1'% i i

€y T ey

(- N1

(2.23)
-sw

o3

which defines the values of the piecewise constant function z"(t). By Corollary 1 and

(2.21)
n t
1im z (t) = U(t,0)8¢ - | U(t,s)D(8)Su(s)ds
nee 0
holds in X uniformly in t. Define z(t) = lﬂ z™(t). Next we show that z(t) = Su(t). To
n

this end, set v"(t) = 5-12%(t). The values vi of v'(t) satisfy - using (2.23) and (B3) -

vt; -v:tl.l-1 n,.n -1 n,..n -1 n n

;;-:-t-;- + B(ti)vi =8 D(ti)Svi -8 D(ti)Su(ti)
(2.24) i i-1

2

n

Since z" converges as above, v" converges in Y uniformly in t to a continuous function

v(t). We are done upon showing that v = u. Using (2.24), (2.22), (B1) and Lemma 2 we

find
n n
2(e,- t 0
e - <M, < e (1 i-") (Iv -x, 0+
i 1Y i-1 i-1Y
n n -1 n n n,.n
+ (8] -t )87 (D(t)su(t]) - D(e ISV )
n n
2(t, -t )8
i i-1 n n n n n n
<e (lvi_1 = XMy Py -t dvplule) - vi"l)'

Iterating this yields
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i .
(2.25) we]) = u el < ¥ () Jtk ael) - V()1 ds). -
n Y D n i Y
k=1 ¢t
k-1 "
Since V@ converges in Y uniformly and u® converges weakly in Y and (2.21) holds, we may

take limits in (2.25) upon appealing to the lower semicontinuity of the Y-norm with

L5a

respect to the weak topology to conclude that
t
(2.26) Ivit) - uit)ty < o? Py [ hu(s) - v(e)lds for 0 <t < T.
0
Since Iv(t) - u(t)lv is integrable, this implies that u(t) = v(t) and we are done.

¥ ? fula"2"a"at

Step 4. Convergence in Y

We now impose the condition that D(t) is strongly continuous. 8ince we established
above that u(t) = U(t,0)p @ C[0,T:Y], the relation (2.21) holds for an arbitrary sequence
of partitions P(n) satisfying m(P(n)) + 0. By the analysis of Step 3 we conclude that if
P={0w= Ty € eove Sty = 7} and Zp is the plecewise constant function on P whose values
gy are given by

By T ®iaq

(2.27) t " e

'0 = 8¢,

+ !(ti)zi + D(ti)Su(ti) =0,

[T A I . TN Y W W

then gy, + Su uniformly in X as m(P) + 0. To show that Up(t,0)¢ converges in Y we need to
show that wyp(t) = SUp(t,0)9 converges in X. The values w; of wp are given by
ot S 3

t,-t

+ B(t )w, +D(t, )w,= 0
(2.28) 1" Bat 14 i

ablodd Ao Dol lonzd

'o = 8¢.

Rewriting the relations (2.27) as

z
t

1 ° B9
1 -t

o + 3“1)'1 + D(ti)l1 - D(ti)(l1 - Bu(ti)) i

and using (2.28) and the accretivity of B(t;) + D(t;) + 6I, we find

20(t1 -t

i=1
w, -zl <o (lw1_1 2, 0t

*+ (e, )ID(t ) (2, = Bule, )N ).
-17=
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We conclude that Wp - 2Zp * 0 in X uniformly as m(P) + 0 and so wp *+ Su as

8ince zy* Su in X as m(P) + 0 and Su @ C(0,T:X], the right-hand side tends to zero as
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Section 3. Proof of Theorem 1

kLY

The proof is again broken into four pieces, and (A4) is invoked only in the fourth

[ F

-a E

o part. In Step 1 we show that the scheme
XA
ol
S b S 0|
\ ) -—r———+A(xi_1) xi-o, i=1,..,N
Wiy 3.1
a % = ¢
N
23 %8
o
Rty is solvable and obtain some appropriate estimates along the way. In Step 2
‘. ") we show that if
Y, 2 (3.2) up{t) = x, on ((1~1)A,1}], uy(0) = ¢,
-;-" then the limit
W
. (3.3) lim uy(t) = u(t)
K X5 e
{-_:: exists in X uniformly. Moreover, in this step it will be proved that the limit is a
N
::: solution of the evolution problem in a strong - but not quite classical - sense. Up to
oY
.
*-’\‘- this point, the results of Section 2 will not be used. In Step 3 it is shown that the

limit u in (3.3) lies in C[0,T:¥Y] and for this we will rely on the results of Section 2.

In Step 4 we demonstrate that the limit in (3.3) exists in the topology of Y.

Ay

-2 7
A A A D BES

Step 1: Existence of uy

-
-

-
”~

We will now discuss the solvability of (3.1). To this end let ¢ € W and

-

'4':" (3.4) 4 = inf {lop - vi, : v e Y\W).
.. 9 Y
) be the distance in Y of ¢ to the boundary of W. We have:
LAY
NN Lesma 3. Let (A1) - (A3) hold and
(3.9) =8+ vpe
\X)
A Let T > 0 satisty
o
W)
)
WY 267
L] (3.6) inf ((1+e )|80-2|x + T(y 1z, + vy _1zk,)) < 4.
coy A"y T Ypl2ly ®

2
2l

~
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( Then there is a Xo > 0 such that for 0 < A < )y there is a unique sequence L ) ;—
~ L] '.!

O 1i=0,..., N, in W satisfying (3.1) and T < NA < T + A. :_-4
W o
3 ‘} Proof. The desired relation between x; and x;_., given by (3.1), can be, if A > 0 and .
-, —— J'.
~ A0 < 1, rewritten as ,:.
\ “

-1

: . - + .

3 (3.7) X, = (I +Mx,_ 0 x,_, !\
;'_' By Lemma 2, x; € Y is uniquely determined by (3.7) so long as X419 €@ W. We thus seek to ‘_t'_
3 AS
h) estimate lxi-tply and keep this below d" since the open Y ball centered at ¢ of radius )

’

P d‘b lies in W. Assuming Xj.q @ W, we put Wy = Sx;, wy_q = Sxy_4 and operate on (3.1)
with S8 ¢to obtain - via (A3) =-

(3.8) wi + X(A(xi_1)w1 + P(xl-i)'i) - w1_1 .

Choose z € Y. We have

v, -z + X(A(xi_.')(wi- z) + P(x1_1)(w1- z)) =
(3.9)
Wiy~ % - AAlx, L)z + Pilx, ,)z).
‘.' Using Lemma 2 in conjunction with (3.9) we obtain
l‘.
' -1
(3.10) '"1 - zlx < (1-18) ('wi-i-"f MYA"'Y + yplzlx))
.‘1 Again we assume that A6 < 1/2 so that (1 - xe)" < e”‘e everywhere below. Then we can
¢
'-: iterate (3.10) to obtain
oy J2i%8
o lwi-zlx (lS«p—zl +:I.X(Y iz +YPIzl M.
. j (recall wy = Sxg = S9). This further implies
N
o 2410
(3.11) Iwi-Scplx < (1+e )(lstp-zIx+1A(YAIzIY+YPIzIx)).
ﬁ By (3.5) and considerations of continuity we can choose a > 0 and z @ Y such that the
-
v right hand side of (3.11) is less than dq; if LA <T + a. Set >‘0 = min (0,1/2 ). By
* what we have shown (3.5) implics the existence of an r < d’p 80 that for 0 < A < Ao and
\ . ' .
2, -
w3 T < NA < T+, one can solve (3.1) and o
;¢. .
>
5 (3.12) x, @B (r,9) = {vey: bv-gl_ <r} for i = 1,...,N.
.'W“. i Y Y ;.‘

v -
Yo

Remark. In contrast with [S5] we have used the full force of (A3) here. This is because

0. b
::3: we do not assume any bounds on expressions like |A(v)yl¥ in this case. "
N o
2- .“j:
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Step 2: Convergence of uy

For the rest of the discussion, r is fixed at the value above.

lLemma 4. If x, x @ BY(r,w)

(3.13)

1f

(3.14)

then

(3.15)

=8+ uA('¢‘y+r)'

0 <X Ap <1 and

X + M(x)x = z,

Ix - xlx

< (

X + M(x)x = 2

-1

- g - le.

and L 8 be as in (A3) and (3.5) respectively.

Let

Before we give the simple proof, let us explain why Lemma 4 and standard results

establish Step 2. The conclusion of Lemma 4 is that the mapping By(r,¢) D x + Alx)x + ¥x

is accretive. That is, if C(x) = A(x)x for x @ D(C) = BY(r.O). then C + YI is

accretive (in X) according to Lemma 3.

It is known that if C + Y1 is accretive in X

for some ¢ and for each small A > 0, x;'s are given so that x; € D(C) and

x

A
(3.16)

A % Ieilx +0 as )X 40,

then the uy(t) given as x; on ((i-1)}, 1A)

Lipschitz continuous u @ C[0,T:X).

€

s0o, by (A2),

leilx

i

*3 X1
X
= 1(Ax,) = Alx

By xi-x1-1 = XA(xi_1)x1 and (A3)

: *\'a £ \ $ $+ﬂ: R COC N
\' \s"-."-. o
Ny

Y

+ C(xl) - (A(xi) - A(xi_1

-21-
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17 X3
+ C(xi) = ¢ for L = 0,1,.e.,Nwith T < NA < T + )},

This is a basic result of (2] when
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converge uniformly on [0,T) in X to a

=0, {=1,,..,N. In our case we have, with the x;'s of Lemma 3, and C(x) = A(x)x,
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lx1 X1 x < AYA'xi'y < XYA(I¢IY+r)

-"-L: .

and thus g, 8, < CA. It follows that for some constant C,

1°xX

) 'eil < C1(NX)X < C1(T+X)X +0 as ) + 0. -
1 K

The convergence of u, when leil + 0 uniformly in i as A + 0 is a simple extension of
{2]. More generally, the results of [1] or Kobayashi [11] or Takahashi [(13], or Crandall
and Evans (3] can (as we have already done in Section 1) be applied. 1Indeed, from these
works one has an error estimate of the form

Tu, (£) = u(t)ly € CIC (T + M)A + f’&n(«owlx)
where C depends on T and §.

Proof of Lemma 4. Forming the difference of the relations (3.14) and rearranging suitably

yields

X =%+ (X)X = x) =2z =2+ AA(X) = Alx))xe

L, -

Since x , x @ By(r,¢) and A(x) € N(X,8) this implies

4 Y

(1 - AB)Ix - xlx < 1z - zlx + AN{A(x) - A(x))xlx
< Iz - zlx+ kuhlx - xlxlxlY < Iz --zlx + Xunlx - xlx(IQIY+ r)
and rearranging this proves Lemma 4.
By the above, the convergence (3.3) takes place in X uniformly in t and the limit u
is Lipschitz continuocus. Since the values of u, are bounded in Y (they lie in By(r,9)),

and Y is reflexive, the limit u therefore takes its values in Y (in fact in By(r,9)).

S8ince u is continuous into X it is weakly continuous into Y. Similarly, the convergence

uy to u takes place weakly in Y. Iterating the relations (3.1) we find

i
U (4)) = ¢ - g A(u,(s=2))u,(s)ds .

It is a simple matter, using the above remarks, (A1) and (A2), to see that as il + t and

. "n_-l‘-
d L d L LL

A+0 (e.g., let A = t/i and 1 + =) the right-hand side above tends to the right-hand side
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u(t) = ¢ - Jth(u(l))u(u)dl
weakly in X, thus establishing the validit: of the integral relation. Observe that
Af{u{t))u(t) is weakly continuous into X - and thus integrable - by the assumptions and the
properties of u. Thus u' + A(u)u = 0 holds strongly a.e. and weakly everywhere. In the
next step we will prove that u is continuous into Y. This will make A{u(t))u(t)
continucus into X and so u @ c'(0,T:X).
Step 3. Continuity into Y
Set
(3.17) B(t) = Af{u(t)) for 0 < t < T.
where A and u are as above. It follows from (A1) - (A3) that B(t) satisfies (B1) -
(B3). We may take 8 of (A1) for B of (B1), (A2) and the continuity of u into X and
u{(0,T]) @ W imply (B2) while D(t) = P(u(t)) works in (B3). We briefly recall Kato's
reasoning concerning this latter point. From the assumptions on A and the properties of u
it follows that
s™'p(utt))y = 87 A(ult)ly - Alu(e))s 'y for y e ¥,
and the right hand side of this expression is continuous into X. Thus s"r(u(t))y is
continuous (in t) into X and bounded into Y, hence it is weakly continuous into Y and then
P(u(t))y is weakly continuous (and therefore strongly measurable) into X. Since Y is

dense is X, P(u(t)) is strongly measurable.

We want to show next that the schemes (3.1) and

+ A(u(iX))yi =0, i=1,...,,N,
{(3.18)

are equivalent. More generally, let us argue that if (t,s) € 4 = { (t,8):t 0 <8 <t <T}

and

,.;1.;,*,) A N R N T NN gt
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REARER

n
-1
v,(t,8) = (I + A A _))

¢
( k=m
-f L
2 “ -1
- Ux(t,s) = T (I + M(u(kd))) -]
Pyl k=m R
-, -
» N
> when (m-1)A € 8 < mA, and (n-1)A < t < nA, then \1
~ (3.19) lvx(c,s)lz ‘ lux(c,s)lz <c,forze X,Y} ®
15
- and
%]
B ‘
e (3.20) lim V) (t,8)x = Ult,8)x for x € X +
P in X uniformly on A where ..;.J
: L
L (3.21) Ult,s)x = lim U,(t,8)x t -
. A+0 "o
".‘: exists by Section 2 and the fact that B(t) satisfies (B1)~(B3). We now adopt the 114
o~ :'.'
¥ convention that the C,'s are constants estimable in terms of the data. The first estimate Kt
. o~

‘ of (3.19) is proved just like the second, and this is part of the proof of Theorem 2. It ’
'.;'.
¥ suffices to consider the case s = 0, as the general case is entirely similar. Assume that ':~.
N
\3’ (3.1) and (3.18) hold, but allow xp = yo = X to be an arbitrary element of Y (and not R
] ,

o necessarily u(0)). Writing (3.18) as .
! ®
Yy 7 Y44 ~ <y

L ..
i X +Alx,_ Dy, = (Alx,_ ) = Alult, )y,
~ -,.‘
l" -.'.-
and using (3.1) and the accretivity of A(x;_4) + BI yields '-:,‘

) T
-1 i

-. - - - - y ~
N tx -y 0y € (1228)7 (Mx,_ -y, 0+ ANAx, ) =~ Afuit, Dy by NG
~ 238
-‘ - - F‘
N <e (Ixi_‘| Yy ly Ao ix, o u(ti)lxlyily) e
) s
LY ZAB - - .\1
Fe < e (Mxy -y, N HXC, Ik Nk, - ule ). e
L
L o
-, Iteration yields --
i\ -

N 28(T + X)) <
w Ix -yl <e C,Tixl, max Ix . - u(t )N -
- 1" ¥y'x cHh S 5 k! 'x =
b <
and then, since u, converges uniformly to u, we conclude that U,(t,0)x - V)‘(t,O)x + 0 in X !l.-

)

,-: uniformly as desired. o
- S
. o
L) '.':
4 -
. { -24~ ;...-
[ J
Iy
: I\\.
G4 ‘o
5 3
4 o

»

[4
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It is now established that u(t) = U(t,0)9 is the solution of u' + B(t)u = 0 produced
in Section 2, and so u € C[O,T:Y]rb1[0,T:x] and u'(t) + A(u(t))u(t) = 0 by the results of
Section 2.

Step 4: Convergence in Y

We now assume (A4). We will be considering four families of functions: The functions

u, whose values x; are given by (3.1), the functions Wy = Suy whose values w; satisfy

i-1
+ A(x yw, + P(x w, =0, i = 1,...0.0,N,
(3.22) A i-1"71 i-1"1

wo = SO,

the functions z) whose values zy satisfy

2 e

x + A(xi_1)zi + P(u(id))su(i)) = 0, 1i=1.....,N,

(3.23)
zo = 8¢,
and the functions vy = s'1zx whose values vy satisfy

Vi T Viq

-1 =1
Y + A(xi-l)vi+ § Plu{ir))su(ir)-8 P(x1_1)Sv1- 0 for i=t,..,N,

(3.24)
Vo ™ ¥
Concerning these we claim several things. First, it is obvious that u, converges in Y
exactly when wy converges in X. Since we cannot show the convergence of the w) directly,
we begin by observing that z, satisfies
t
(3.25) lm z,(t) = U(t,008¢ ~ J U(t,s)P(u(s))Su(s)ds,
A+0
in X where U(t,s), given by (3.21), is the evolution generated by -B(t) = -A(u(t)). The
relation (3.25) holds in X uniformly in t, because of arguments like that sketched in the
proof of Corollary 1 in Section 1 together with (3.20) and (3.23), the convergence of the
function whose value on ((i-1)X,iA] is P(u(i}))Su(id) to P(u(t))u(t) - which follows in
turn from (A4) and the continuity of u into Y and of Su(t) into X from Step 3. Second,

«25=

N -'a*¢
Tl e

\vﬂ)‘ #'J‘{"\\n“\\\\ ,,- ,: :
Jﬂléﬁufxﬁi}ﬁ\fl,ly.

B AR A e,

> vy vy e -
AR AL BY
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- L IR i, A
~ =
N e
~ J
i
~
".!
. (3.26) Um vy(t) = u(t)
- A+0
:.: « holds in X. The reasoning here parallels the corresponding arguments which led to
:‘: (2.26). 1Indeed, from (3.1) and (3.24) we deduce that
<
N (1-19)lv1-x1ly < 'vi 17%4-1 ¥+ AP(u(ir))Su(ir) P(x )SVilx
4 -
W < Ivi 17%5- 1IY+ A(P(u(idr)) P(x )))Su(il) + P(x1_1)s(u(ik) vi)'x
.a'
\J

and then, using (A4) and letting C denote a bound on lu(t)l and lvi ly , we find

- .

.

1 +ACu (lu(ik)-v l +lv ) +

(=200 vy =x, By Shvy ™%y Yy 11"y

-

+ Xy lulid)=v, 1.

The rest of the proof of (3.26) is essentially the same as that of (2.26) and is left to

PR PP

the reader. At this point we have identified hlg z, with Su(t). One can then show, using

(3.22) and (3.23), that

(1 - XO)Izi- \vilx < lzi 1 1 x + XY Iz - Su(1X)l

+ e A

+AuPc(lv -z I, + Izi_1- Su(.u)lx).

~ i-1 Ti-1'X

i

& Iterating this inequality and using the uniform convergence of Z, to Su establishes
lim(wy - 2,)(t) = 0
X0 AT A

v in X uniformly in t in the same way aa established (2.27) in Se.cion 2, and the proof is

complete.

Remarks on Generalizations.

4
o
g. The problem
[ { 4 Awu = f(w),
v (3.27) -
'a -
N u(0) = o, “"
N N
" -::
+ generalizes (1) and is in turn generalized by e
[ J
N
1 1
"'.
) -26~
P
:' » .
0) L
!‘ l\
5 =~
g "~
") ~
i: A
b
)
¥,
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%3 + Alt,w)u = £(t,u),

(3.28)
u(0) = .

The methods of this paper succeed, under appropriate assumptions, in the generality of
(3.28). However, these methods do not entirely subsume the t-dependence in either A or ¢
assumed in Kato's original works. Roughly, the conditons on the t-dependence are required
to be wmore uniform in u than Xato needs (but are otherwise quite general). We will not
discuss this point further here - see, e.g9., [5] and (6]. Instead, let us indicate the
situation with respect to (3.27). Xato used the following two conditions on f:

£ maps W into a bounded subset of Y and there is a constant ., such
(£1) that for every u, U @ W we have

b(w) - £(R)1, € pyhu = uly.
and
There is a constant Ug such that for every u, G € W we have

(e 1£ta) = £ <y b = Gl
The following modification of Theorem 1 is trus and has essentially the same proof: If

(x), (8), (A1), (A2), (A3) and (£1) hold, the difference scheme in (1.1) is replaced by

o R O

N T M Ixg = )

and (1.4) by the equation of (3.27), then the assertions preceeding (1.4) remain true. 1If
also (A4) and (£2) hold, then the convergence holds in Y uniformly on (0,T].

Remark. Results completely analogous to the above can be proved for the fully implicit
approximation

vx(t) - vx(t-X)
A

+ “‘vx(t))vx(‘) =0 for t>0,
VA‘t) -9 for ¢ € 0.

in place of the semi-implicit scheme (2).
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> Remark. One can play a bit with the assumptions on P(u). For example, it is enough to
. require u + P(u) to be continuous into the strong operator topology from the X topology on
J:-.' W in order to assert the convergence in Y. (However, this does not seem a good assumption

, from point of view of applications.)
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z * Section 4. Continuity with Respect to Data °

i In this section we state and prove a result of (8] concerning the continuous T-,“

R

dependence of the solution of (1) as an element of C(0,T:Y] on the data. Nothing new s "‘N

RO

:?- proved in the process and we include this section primarily to indicate how one might :-:

a0y

' prove such results in the current setting. To formulate the result, we consider a

sequence of equations

{

O] n
% + A"(un)un - tn(un), n=1,.000,%,

’ m*e

ﬁ‘ un(o) -wn' n-1'otco'-,

"‘ where n = » ig explicitly allowed. We assume
N\ A" and £ gatisfy (A1) - (A4) and (£1) - (£2) with the same

(4. 1)

X, ¥, 8, W and constants independent of n = 1,2,....,%, o,
Ll "n_
; The result is: I'\'
X s
2] Theorem 3. Let (4.1) hold. Moreover, for each w € W let -

N ,$‘

(1) a%(w) + a"(w strongly in B(X,Y) as n + =, e
\ K3

o (4.2) (11) P"(w) + P (W) strongly in B(X) as n » =, ‘~

Ly L
. n -

2 (114) £(w) + £ (w) inYas n + =,

L]

’ IfPPewtorn=1,...,and ¢ + ¢" as n + », then there is a T > 0 such that the ®
y solution of (1)® constructed in Section 3 satisfies u® e c(0,T:¥]Nc'(0,T:X]) (i.e., the 1
: interval of definition of u" includes (0,T]) for n = 1,2,...,% Moreover, N

N - -‘
u? » u” in ¥ uniformly on [0,7].

Remark. Theorem 3 shows, in particular, that u depends continuously on ¢ in the Y norm.

Proof of Theorem 3.

For simplicity (and of necessity, since we did so before) we assume that f" = 0. The
existence of T and u" as in the statement of the Theorem is an immediate consequence of

Theorem 1, (3.4) and the assumption that ¢" + ¢™.
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( We need the following lemma: P
P, Lemma 5. Let UP(t,s) correspond to A" and ¢" for n = 1,...,® as U corresponded to A and ¢ }5
]

% in (3.21). Let x @ X. Then o
':J n L] .::
. (4.3) lim U (t,s)x = U (t,s)x in X uniformly on A. .
\ nee 'y

‘ We continue with the proof of Theorem 3 and then we prove the lemma. In Step 4 of Cy
‘?: the demonstration of Theorem 1 we established that

N

2 n n t n, n n
su™(t) = uM(t,008¢ - | U"(t,8)P"(u"(8))Su"(8)ds for n = 1,... ..
N 0
.ﬁ If we subtract the nth and wth equations and use the triangle inequality several times we
W
ff, can obtain
K+
: whe) - ey < 7 - e 1,0 - 0Tk, 0008071,

A t

‘ n ™ o L L] @ o @
X + ] W (t,8)P (u (8))Su (8) - U (t,8)P (u (8))Su (s)l ds +
§ 0

‘l
' 3 20T t n, o L] . o o

-3 +e J 1 (u (8))Su (8) - P (u (8))Su (s) I ds +
J 0

t
+ &y + 01 W(e) - u"ta)d s
0

.‘J:l'_-l..

where 6 is given by (3.5), v is the bound on ll’“(w)lx and C = y(bound on lSun(t)lx).

Using Lemma 5, (4.2)(ii) and ¢ + «p’ in Y we see that all the terms on the right hand side

LA/

above except the last one tend to zero as n + ®, Elementary estimates complete the proof.

Sketch of Proof of Lemma 5. This result is follows from those in [5], but we sketch the

‘'@

proof here in this context for completeness. Since Y is dense in X and (A1) - (A4) hold

.
a®e

with constants uniform in n, U™ is bounded in B(X) and it suffices to check (4.3) for

AU

x @ Y. To this end, we note (with the obvious notations) that ‘x‘_-i

-

%A 4

(4.4) lim u;(t) = u™(t) in X uniformly for 0 <t < T and n = 1,....,%, AN
A40 X

=30~ .:..-'1
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This is evident from Step 2 in the proof of Theorem 1. In addition, one can easily check

that
(4.5) lim u}(t) = uj(t) in X uniformly for 0 < t < T.
ne+e

for small A > 0. Using (4.4) and x @ Y, the proof of Theorem 1 adapts to show that

(4.6) 1im v (t.l)x « u"(t,8)x in X uniformly in (t,s) @ A and n.
A+0

Finally, a straightforward estimate shows that

w (t.l)x -V (t u)xl < Const.sup (luA(t) - ux(t)l
0<T<T
(4.7)

n, e - ® -
+ sup (A (ux(t)) =A(u (1)))Vx(t,l)xlx)
0<t<T

and the right hand side can be made small for fixed A > 0 by choosing n large. (Recall
that every function subscripted by A has finitely many values, (4.5) and (4.2)(i).) But

then (4.5), (4.6) and (4.7) together yield (4.3).
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